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ABSTRACT 

Psychopathology is hypothesized to be rooted in neurodevelopment. However, clinical and 

biological heterogeneity, and a focus on case-control approaches, have made it difficult to 
link specific forms of psychopathology to abnormalities of neurodevelopment. Here, we 

modeled the normative neurodevelopment of brain structure in 1,393 youths aged 8 to 22 
years from the Philadelphia Neurodevelopmental Cohort. Normative neurodevelopment of 

cortical thickness and volume was estimated using Gaussian Process Regression in 410 
healthy individuals. Deviations from normative neurodevelopment were estimated in the 

remaining 983 individuals who reported lifetime psychopathology. Next, we modeled six 
orthogonal psychopathology dimensions: overall psychopathology, anxious-misery, 

externalizing disorders, fear, positive psychotic symptoms, and negative psychotic 
symptoms. Psychopathology dimensions were correlated with regional deviations from 

normative neurodevelopment. Finally, we performed conventional case-control 
comparisons of deviations in a group of individuals with depression and a group with 
attention-deficit hyperactivity disorder (ADHD). Psychopathology dimensions were 

associated with spatially varied patterns of deviations from normative neurodevelopment. 
In particular, greater overall psychopathology was associated with neurodevelopmentally 

advanced volume reductions in ventromedial prefrontal, inferior temporal, dorsal anterior 
cingulate, and insula cortices, all regions consistently implicated in a range of putatively 

distinct disorders. Furthermore, case-control comparisons of deviations revealed spatially 
overlapping group-level effects for depression and ADHD, which diminished when 

controlling for overall psychopathology. Together, our results demonstrate that case-
control comparisons are confounded by overall psychopathology, rendering them unlikely 

to yield meaningful biomarkers. Instead, the neural underpinnings of psychopathology may 
be better elucidated by integrating dimensional models of psychopathology with models of 

normative neurodevelopment.  
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INTRODUCTION 

 

 Throughout childhood, adolescence, and young adulthood the brain undergoes 

major structural changes that facilitate the emergence of complex behavior and cognition 
[1, 2]. Mental disorders often surface during this period [3] and are increasingly understood 

as resulting from disruptions to normative brain maturation [4, 5]. While maturational 
changes are stereotyped at the population level, substantial individual variation is also 

reported [2]. The extent to which this individual variation in neurodevelopment may explain 
psychopathology remains unclear. 

Linking abnormalities in neurodevelopment to psychopathology has been limited by 

several challenges. First, diagnostic nosologies assign individuals with distinct symptom 
profiles to the same clinical diagnosis, yielding disorder groups with highly heterogenous 

clinical presentation [6]. Second, comorbidity among disorders is high [7–9], rendering it 
difficult to detect the neural correlates of specific disorders. Third, much of the extant 

literature has adopted case-control designs that reveal only abnormalities associated with 
the ‘average’ patient, ignoring the dimensional nature of psychopathology [10]. Research 

linking individuals’ neurodevelopmental alterations with distinct dimensions of 
psychopathology relevant to multiple disorders is a critical step toward developing 

diagnostic biomarkers for mental health [11–15]. 
A promising approach entails examining dimensions of symptoms that cut across 

diagnostic categories [16]. The p-factor hypothesis [10, 17–19] posits that 

psychopathology symptoms cluster into latent dimensions including a general factor 
(known as p or ‘overall psychopathology’), which underpins individuals’ tendency to 

develop all forms of psychopathology, alongside multiple dimensions that describe 
specific types of psychopathology. This dimensional scoring can be accomplished with a 

bifactor model [20], which yields specific factors (e.g., externalizing, psychosis) that are 
orthogonal to the general factor and to each other. Previous research has revealed that 

such psychopathology dimensions relate to differences in brain structure [19, 21–23]. 
However, whether these psychopathology dimensions help elucidate abnormal 

neurodevelopment remains unclear.  
Here, we evaluated whether dimensions of psychopathology relate to individual 

differences in neurodevelopment. Using a bifactor model, we modeled overall 
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psychopathology and five specific factors, corresponding to mood and anxiety symptoms, 
externalizing behavior, fear, positive psychosis symptoms, and negative psychosis 

symptoms [21, 24, 25]. We integrated these psychopathology dimensions with T1-
weighted neuroimaging data using a contemporary machine learning technique known as 

normative modeling [26]. Here, a normative model is a statistical model that finds the 

relationship between age and any brain feature, as well as the variation in this relationship 
expected in a group of healthy individuals. Then, the brains of individuals who experience 

psychopathology can be understood with respect to this normative model, allowing 
identification of regional deviations from normative neurodevelopment for each individual 

[27–29]. 
The above framework is applicable to any brain feature that changes reliably with 

age.  Here, we focused on cortical gray matter, indexed via cortical volume and cortical 
thickness, which is known to undergo plastic maturation in youth, including showing a 

robust global decrease from childhood to adulthood, reflecting cortical myelination and 

potentially synaptic pruning [30–33]. Prior work has shown widespread non-uniform 
reductions in gray matter across major depressive disorder [34, 35], schizophrenia [36], 

bipolar disorder [37], and anxiety disorders [38]. Across these disorders, overlapping 
reductions were particularly found in ventromedial prefrontal / medial orbitofrontal cortex 

(vmPFC/mOFC), inferior temporal, dorsal anterior cingulate (daCC), and insula cortices [38, 
39]. 

We tested the primary hypothesis that dimensions of psychopathology are 
associated with unique deviations from normative neurodevelopment. Specifically, we 

examined the relationship between regional deviations from normative neurodevelopment 
and inter-individual differences in dimensions of psychopathology. We expected that 

overall psychopathology would explain the common abnormalities observed in case-
control literature [38, 39], and predicted that greater overall psychopathology would be 
predominantly associated with greater negative deviations (i.e., accelerated reductions 

with respect to the normative age pattern) in cortical gray matter in the vmPFC/mOFC, 
inferior temporal, daCC, and insula cortices. Drawing on our previous work [21], we also 

expected the fear dimension to be associated with accelerated reductions in the anterior 
and posterior cingulate, insula, and temporal-parietal junction.  
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 Our secondary aim was to assess the extent to which overall psychopathology 
explained the overlap between group-level differences observed for traditional case-

control analyses. Specifically, we examined group-level deviations from the normative 
model in two samples, one with depression and another with attention-deficit hyperactivity 

disorder (ADHD). We expected that both groups would show correlated patterns of 
average deviations from normative neurodevelopment. Critically, we hypothesized that the 

correlation between patterns of average deviations would diminish when overall 
psychopathology was controlled for in our sample, indicating a lack of sensitivity of a 

case-control approach to detect disorder-specific biomarkers. 
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MATERIALS AND METHODS 

 

Figure 1 displays the workflow of our analyses. All analytic code can be found at: 

https://github.com/lindenmp/NormativeNeuroDev_CrossSec_T1 
 

 
Figure 1. Schematic illustration of analyses conducted in the current study. A, 117 items from 
psychopathology symptom rating scales were distilled into six orthogonal psychopathology phenotypes 
using bifactor analysis. B, Individuals were assigned to train ( ) and test ( ) subsets based on the absence 
or presence of psychopathology, respectively. Normative models learned the relationship between age (and 
sex) and brain features using the train subset, and deviations from this normative pattern were estimated for 
the test subset. Deviations in the train subset were estimated via 10-fold cross-validation. Correlations 
between psychopathology phenotypes and deviations were calculated, and p-values were assigned by a 
non-parametric permutation test. 
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Participants 

Participants included 1,601 individuals from the Philadelphia Neurodevelopmental 
Cohort [40], a large community-based study of brain development in youths aged 8 to 22 

years. We studied a subset of 1,393 participants, including individuals who were medically 
healthy and passed stringent neuroimaging quality control (see Supplementary Methods).  

 

Psychopathology phenotyping 
Details of the dimensional psychopathology model have been published elsewhere 

[24, 41] (see Supplementary Methods). Briefly, we used confirmatory bifactor analysis to 
quantify six orthogonal dimensions of psychopathology, including an overall 

psychopathology factor common to all symptoms measured herein, and five specific 
factors: anxious-misery, psychosis-positive, psychosis-negative, externalizing behaviors, 

and fear (Figure 1A; see Table S2 for factor loadings). This model expands on our previous 
model [21, 25, 42] by splitting psychosis into positive and negative dimensions [43]. 

 
Normative modeling 

For details on image acquisition, processing, quality control, and derivation of brain 

features see Supplementary Methods. Briefly, regional cortical thickness and volume were 
extracted for each of 400 brain regions defined by the Schaefer atlas [44]. Next, we built 

normative models to predict regional cortical thickness and volume (Figure 1B). In order to 
estimate normative neurodevelopmental trajectories, we split our sample of 1,393 

participants into two groups based on the presence or absence of psychiatric history. A 
total of 410 individuals reported no clinically significant symptoms on any disorder 

examined and are hereafter designated as our normative training subset. The remaining 

983 individuals who reported experiencing psychopathology are hereafter referred to as 
the testing subset.  Next, for each brain feature and region (j), we used Gaussian Process 

Regression (GPR) to predict regional brain feature values from age and sex using the 
training subset (see Marquand et al. [26] and https://github.com/amarquand/nispat for 

details). A key advantage of this approach is that in addition to fitting potentially non-linear 

predictions of a brain feature, it also provides regional estimates of the expected variation 
in the relationship between age and brain features (normative variance) as well as 

estimates of uncertainty in this variance. Then, for each participant (i) in the test subset, we 
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generated the predicted brain feature (𝑦"!") and combined it with the true value of the brain 

feature (𝑦!"), the predictive uncertainty (𝜎!"), and the normative variance (𝜎#") to create a z-

score that quantified deviation from normative neurodevelopment [26]: 

 

𝑧!" =
𝑦!" − 𝑦"!" 	

(𝜎!"$ + 𝜎#"$
	. 

 
This normative model stands in contrast to alternative approaches, such as so-called brain 

age models [45], that typically estimate deviations from linear relationships and that do not 
incorporate estimates of normative variance and uncertainty into the derivation of 

deviations [15]. Univariate application of the normative model to regional thickness and 
volume yielded a 983 × 800 z-score deviation matrix for the testing subset. Next, we used 

10-fold cross-validation to also generate deviations in the training subset. Together this 
yielded a 1,393 × 800 z-score deviation matrix, 𝑭𝒛.  

  

Interpreting deviations from normative models 

We were interested in interpreting the extent to which deviations in 𝑭𝒛 represented 

neurodevelopmental delay or advance with respect to the normative trajectory. This 
information is encoded in the sign of the z-score. However, whether a positive or negative 

z-score corresponds to delay or advance is determined by the underlying age effect. If the 

normative trajectory was characterized by a decrease in the brain feature with advancing 
age, then positive deviations could be considered a delay in this decrease, and negative 

deviations could be considered an advance of this decline (e.g., Figure 1B). In contrast, if 
the normative trajectory was characterized by an increase in a brain feature as a function 

of increasing age, then the opposite would be the case. We do not interpret delay or 
advance as inherently ‘bad’ or ‘good’. Instead, delay and advance are used to lend 

interpretation to the z-scores with respect to what is normative for our training subset. 
 

Correlations between psychopathology dimensions and brain features 
To test our primary hypothesis that each psychopathology dimension would be 

associated with unique patterns of abnormal neurodevelopment, Spearman rank 
correlations were calculated between each psychopathology dimension from the p-factor 
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model and each of the columns in 𝑭𝒛, controlling for age and sex. Significance was 

assigned using permutation testing and multiple comparisons were rigorously corrected 
across regions and psychopathology dimensions (2,400 tests) using the Benjamini and 

Hochberg False Discovery Rate (FDR, q = 0.05) procedure [46] (see Supplementary 

Methods). Next, to examine whether different psychopathology dimensions were 
associated with deviations from normative neurodevelopment in specific brain systems, 

we summarized our results across 17 canonical systems of the brain [47]. For each brain 
system, we visualized spatial extent by calculating the proportion of regions that showed 

significant correlations to a given dimension separately for positive and negative 
relationships. 

 
Case-control comparisons of deviations from normative neurodevelopment 

To test our assertion that p-factor models of psychopathology provide more precise 

insights into neurodevelopmental structural brain abnormalities, we selected a subsample 

of our test subset with clinically significant depression (N = 144, Mean age = 17.62±2.28 
years, 33% males) and a subsample with clinically significant ADHD (N = 188, Mean age = 

13.62±3.10, 62% males), two disorders with distinct clinical presentations, and performed 

case-control analyses. In each group, we excluded participants with comorbid depression 
and ADHD. We estimated group-level deviations from normative neurodevelopment by 

calculating regional Cohen’s D values comparing the deviations from each group with 

deviations from the training subset, controlling for age and sex. Then, to assess 
correspondence between group-level effects for depression and ADHD, we estimated the 

spatial (Pearson’s) correlation between regional Cohen’s D values. Finally, to examine the 
extent to which regional variation in Cohen’s D values was explained by overall 

psychopathology, we re-estimated the spatial correlation between regional Cohen’s D 

values after controlling for overall psychopathology.  
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RESULTS 

 
Participants and age effects 

Figure 2A-B display sample demographics and psychopathology scores as a 
function of the training and testing subsets. For both males (Figure 2C) and females (Figure 

2D), the normative model revealed that greater age was associated with whole brain 

decreases in cortical thickness and volume. Thus, for the purposes of subsequent 
analyses of the psychopathology dimensions, positive correlations were interpreted as 

greater psychopathology scores being associated with neurodevelopmental delay (greater 
positive z-scores) and negative correlations were interpreted as greater psychopathology 

scores being associated with neurodevelopmental advance (greater negative z-scores). 
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Figure 2. Participant demographics and psychopathology phenotypes as a function of the train and 
test split as well as age trajectories of brain features learned by the normative model. A, Participant 
demographics for 410 individuals who reported no clinical symptoms on any disorder examined (train) and 
983 individuals who did report experiencing psychopathology (test). B, Scores on psychopathology 
phenotypes as a function of train and test. Vertical long-dash lines represent the median of each distribution 
and vertical short-dash lines represent the upper and lower quartiles. C, Predicted change (expressed as 
annualized percent change) across thickness and volume features for males between ages 8 and 22 years 
from the normative model trained on the train subset. D, Predicted change across thickness and volume for 
females between ages 8 and 22 years from the normative model trained on the train subset. Ov. Psych. = 
overall psychopathology, Psy. (pos.) = psychosis-positive, Psy. (neg.) = psychosis-negative, Anx.-mis. = 
anxious-misery, Ext. = externalizing behavior. 
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Psychopathology dimensions explain regional deviations from normative 

neurodevelopment 

To address our primary hypothesis, we examined the relationship between 
psychopathology dimensions and deviations from normative neurodevelopment. We found 

that cortical volume yielded more significant effects than cortical thickness. Indeed, only 
the fear dimension showed significant correlations in >5% of brain regions for thickness. 

Overall psychopathology, psychosis-positive, and externalizing yielded significant 
correlations with thickness in <5% of regions, and psychosis-negative and anxious-misery 

showed no significant correlations. 
Concerning cortical volume, in support of our hypothesis, we found that greater 

overall psychopathology was associated with advanced volume reductions in the 

vmPFC/mOFC, inferior temporal, daCC, and insula cortices (Figure 3A). Notably, advanced 
volume reductions in the inferior temporal cortex was observed to a greater extent for 

psychosis-positive (Figure 3B) compared to psychosis-negative (Figure 3C) and anxious-
misery (Figure 3D), suggesting that positive psychotic symptoms accounted for abnormal 

neurodevelopment in the inferior temporal cortex beyond that accounted for by overall 
psychopathology. Second, consistent with prior work [21], greater scores on the fear 

dimension were associated with developmentally advanced volume reductions in the 
insula cortex as well as many other regions. 
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Figure 3. The relationship between dimensions of psychopathology and deviations from normative 
neurodevelopment for cortical volume varies over brain systems. A-F, Significant r correlations between 
the dimension of psychopathology and deviations from the normative model. For positive correlations, 
greater scores on the psychopathology dimension are associated with greater neurodevelopmental delay. 
For negative correlations, greater scores on the psychopathology dimension are associated with greater 
neurodevelopmental advance. The proportion of significant signed effects within each of 17 Yeo brain 
systems are shown in the lower panel of each subplot. Bars emerging from the left of 0 represent the 
negative correlations and bars emerging from the right of 0 represent the positive correlations. Note: Only 
regions where standardized mean squared error was < 1 are presented.  
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Summarizing findings at the system level, our results demonstrate that while most 
psychopathology dimensions (except anxious-misery) were associated with 

neurodevelopmentally advanced volume reductions, the extent to which different systems 
were implicated varied substantially. For example, the effects of overall psychopathology 

(Figure 3A) most broadly implicated the Limbic A system, whereas fear (Figure 3F) most 
broadly implicated the Limbic B system. The psychosis-positive dimension implicated the 

default mode and control systems (Figure 3B) more broadly than did the psychosis-
negative (Figure 3C) dimension. For the externalizing dimension (Figure 3E) we found a 

gradient of increasing number of effects going from dorsal attention to ventral attention 
systems whereas the opposite was observed for fear. On the other hand, a surprising 

consistency in our results was that overall psychopathology, psychosis-positive, 
psychosis-negative, and fear all showed relatively widespread effects in the visual system. 

Concerning the results for cortical thickness, similar to volume, greater scores on each of 
the psychopathology dimensions was associated with advanced reductions (Figure 4) that 

varied by brain system, albeit to a lesser extent. 
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Figure 4. The relationship between dimensions of psychopathology and deviations from normative 
neurodevelopment for cortical thickness varies over brain systems. A-D, Significant r correlations 
between the dimension of psychopathology and deviations from the normative model. Negative correlations 
are interpreted as greater scores on the psychopathology dimension are associated with greater 
neurodevelopmental advance. Owing to limited effects, the proportion of significant signed effects within 
each of 17 Yeo brain systems are shown for Fear only. No effects were found in the left hemisphere for 
Externalizing. Note: Only regions where standardized mean squared error was < 1 are presented.  
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regionally specific neurodevelopmental abnormalities, we next examined the extent to 
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shows the distribution of Cohen’s D values for ADHD and depression for cortical volume 
with and without controlling for overall psychopathology. For both groups, controlling for 

overall psychopathology resulted in a significant shift in the Cohen’s D distribution towards 

zero (ADHD, t = 40.92, p < 0.001; depression, t = 40.97, p < 0.001). Figure 5B shows the 
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overall psychopathology (r = 0.40, p < 0.001), while Figure 5C shows the relationship 

between regional Cohen’s D when the effect of overall psychopathology was controlled for 

(r = 0.18, p < 0.001). Notably, controlling for overall psychopathology reduced the 

correlation between depression and ADHD to r = 0.18; a delta of 0.22. We repeated this 
analysis using each of the other psychopathology dimensions and found that this finding 

was specific to overall psychopathology; when controlling for other dimensions, the next 
largest reduction in spatial correlation was 0.04 for psychosis-positive (r = 0.36, p < 0.001). 

Figures 5D-F show the same analysis described above for cortical thickness. While 

Cohen’s D values were in general smaller for thickness compared to volume, controlling 

for overall psychopathology still resulted in a significant shift towards zero (Figure 5D; 
ADHD, t = 9.17, p < 0.001; depression, t = 9.04, p < 0.001). Furthermore, the correlation 

between Cohen’s D values across groups reduced when controlling for overall 

psychopathology (Figure 5E, 5F). Together, these results suggest that spatial 
correspondence between group-level deviations was explained to a large extent by overall 

psychopathology for both thickness and volume. However, a significant correlation 
between depression and ADHD remained for both brain thickness and volume after 

controlling for overall psychopathology, demonstrating persistent overlap between these 
clinically dissimilar groups. 
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Figure 5. Group level deviations from normative neurodevelopment in depression and ADHD groups 
show correlated whole-brain effects confounded by overall psychopathology. Case-control 
comparisons were conducted examining group differences in deviations between individuals with depression 
and individuals with ADHD with healthy individuals from the train subset. A-C, Results for cortical volume. D-
F, Results for cortical thickness. A,D, Regional Cohen’s D values from the ADHD group (top) and depression 
group (bottom) with and without controlling for overall psychopathology. For both volume and thickness and 
both groups, controlling for overall psychopathology resulted in a significant shift in Cohen’s D values 
towards zero. B.E, Regional Cohen’s D values from the depression group correlate to regional Cohen’s D 
values from the ADHD group. C,F, Correlations between depression and ADHD groups decrease when 
controlling for overall psychopathology. 
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DISCUSSION 

 

Mental disorders are increasingly viewed as disorders of neurodevelopment [3–5, 

48]. However, heterogeneity in both neurodevelopmental trajectories and symptom profiles 
have confounded case-control designs and made it difficult to precisely identify which 

neurodevelopmental abnormalities explain specific forms of psychopathology. Here, we 
showed that distinct dimensions of psychopathology that cut across diagnostic 

boundaries [24] track deviations from normative neurodevelopment in a large sample of 
youth. Higher scores on distinct psychopathology dimensions corresponded to spatially 
varied patterns of regional abnormalities in neurodevelopment. As expected, overall 

psychopathology correlated with neurodevelopmentally advanced gray matter volume 
reductions in vmPFC/mOFC, inferior temporal, daCC, and insula cortices, all regions 

previously implicated in case-control literature across a broad spectrum of disorders [38, 
39]. Additionally, case-control comparisons between two clinically dissimilar groups 

(depression and ADHD) and our normative sample showed spatially correlated group 
differences in deviations from neurodevelopment that diminished when controlling for 

overall psychopathology, suggesting that overall psychopathology confounded case-
control comparisons. Overall, our results demonstrate that p-factor models of 

psychopathology, which decouple specific dimensions psychopathology from overall 

psychopathology, provide novel insights into the pathophysiology of psychiatric 
conditions. 

Previous studies have revealed non-uniform gray matter reductions concentrated in 
vmPFC/mOFC, inferior temporal, daCC and insula cortices across major depressive, 
bipolar, schizophrenia, and anxiety disorders [38, 39]. Here, we found that each of these 

regions were implicated by overall psychopathology. Further, while the daCC was 
implicated by overall psychopathology, effects in this region were largely absent for the 

psychosis and anxious-misery dimensions. This finding suggests that the effects reported 
in the literature for the daCC may reflect the general neural correlates of mental disorder 

rather than a disorder-specific signature [38]. Additionally, the patterns of 
neurodevelopmental abnormalities observed for the psychosis dimensions were distinct 

from those observed for anxious-misery. While neurodevelopmentally-advanced volume 
reductions in the lateral OFC and inferior temporal cortex were present in the psychosis 
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dimensions, particularly for psychosis-positive, these effects were not present for anxious-
misery, which instead showed scattered neurodevelopmentally-delayed volume 

reductions. This pattern of results suggests that, when considering the psychosis and 
anxious-misery dimensions, only the psychosis dimensions were associated with 

advanced volume reductions in the OFC and inferior temporal cortex beyond the effects 
observed for overall psychopathology. Thus, abnormalities in these regions reported for 

depression [39] may reflect the neural correlates of overall psychopathology. Together, 
these results illustrate the capacity for p-factor models to isolate candidate biomarkers 

that are potentially disorder specific from those that are disorder general.  

A striking consistency in our results was that the visual systems were broadly 
implicated for the overall psychopathology, psychosis-positive, psychosis-negative, and 

fear dimensions. This observation is consistent with recent functional connectivity work 
[49, 50]. Elliot et al. [49] showed that overall psychopathology correlated with 

dysconnectivity between the visual systems and the frontoparietal and default mode 
systems, and Kebets et al. [50] showed that overall psychopathology correlated with 

dysconnectivity within and between somatomotor and visual systems. Although there are 

several clear differences between the studies of Elliot et al. and Kebets et al. and the 

current study, including neuroimaging modality, clinical assessments, statistical 
methodology, and sample age, the results converge on the idea that disruptions to lower-

order brain systems are common across mental disorders. Given that our sample, and the 
sample used by Elliot et al., were both younger than that used by Kebets et al., our results 

may represent an early phase of disease progression that, together with later dysfunction 
in the somatomotor system, are common across most disorders. Datasets covering the 

lifespan will be critical to test this hypothesis directly. Notably, our results suggest that 
lower-order systems, while important, may be less likely than higher-order systems to yield 

discriminatory utility for mental health. 
Prior work has emphasized the unique contributions of volume and thickness to 

studies of individual differences [51]. We found that cortical volume yielded many more 
significant correlations with psychopathology dimensions than cortical thickness. For 

example, while both of the psychosis dimensions were associated with widespread 
neurodevelopmentally advanced volume reductions across the cortex, the same was not 

true for cortical thickness, which showed only scattered effects for the psychosis-positive 
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dimension. This pattern of findings is consistent with previous case-control work 
demonstrating cortical volume abnormalities in the absence of corresponding cortical 

thickness changes in schizophrenia [52]. Our results suggest that building accurate 
predictive models of psychopathology throughout development will require multiple 

assays of brain structure. 
 

Limitations 

A limitation of this study is the use of cross-sectional data to model 
neurodevelopment. It is well documented that individual variability in neurodevelopment 

occurs at both the inter- and intra-individual level [2], and characterizing the factors that 
explain the latter will be critical for predicting the emergence of psychopathology over 

time. Thus, future work should test whether the brain regions identified using our approach 
explain variance in psychopathology dimensions at follow-up timepoints. Lastly, we 

focused on properties of gray matter derived from voxel data and as such did not examine 
cortical surface area, a property dependent on vertex data. Given the observed differences 
between thickness and volume in our results, future examination of surface area may 

reveal additional insights into the pattern of structural neurodevelopmental abnormalities 
associated with psychopathology. 

 
Conclusions 

Our results represent an important step toward understanding the link between 

neurodevelopment and psychopathology. We explicitly modeled normative variance in 
neurodevelopment, allowing us to estimate continuous single-subject neurodevelopmental 

abnormalities. Combining this approach with a dimensional model of psychopathology 
allowed us to uncover spatially varied patterns of neurodevelopmental abnormalities 

associated with distinct psychopathology dimensions. Critically, our work underscores the 
importance of decoupling specific forms of psychopathology from overall 

psychopathology and that not doing so may confound case-control designs, rendering 
them less likely to yield clinically useful biomarkers in psychiatry. Our work contributes to a 

growing body of literature demonstrating that, in order to discover neurodevelopmental 
biomarkers for mental health, psychiatric research could benefit from supplementing 
examination of the statistical ‘average patient’ with dimensional approaches to 
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psychopathology and brain pathophysiology [14, 15, 26]. Such a neurobiologically-
grounded framework may provide a step towards personalized medicine in psychiatry, and 

ultimately allow for improved outcome for patients.  
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CITATION DIVERSITY STATEMENT 

Recent work in neuroscience and other fields has identified a bias in citation 
practices such that papers from women and other minorities are under-cited relative to the 

number of such papers in the field [53–56]. We sought to proactively consider choosing 
references that reflect the diversity of the field in thought, form of contribution, gender, and 
other factors. We obtained predicted gender of the first and last author of each reference 

by using databases that store the probability of a name being carried by a woman [53, 57]. 
By this measure (and excluding self-citations to the first and last authors of our current 

paper), our references contain 47.5% man/man, 15% man/woman, 25% woman/man, 8% 
woman/woman, and 2.5% unknown categorization. This method is limited in that a) 

names, pronouns, and social media profiles may not, in every case, be indicative of gender 
identity and b) it cannot account for intersex, non-binary, or transgender people. We look 

forward to future work that could help us to better understand how to support equitable 
practices in science. 
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Table S1. Brain regions with significant correlations between psychopathology dimensions and deviations 
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neurodevelopment for cortical thickness in the Schaefer200 parcellation. 
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SUPPLEMENTARY METHODS 
 
Participants 
 
From the original 1,601 participants from the Philadelphia Neurodevelopmental Cohort 
(PNC) [1], 156 were excluded due to the presence of gross radiological abnormalities 
distorting brain anatomy or due to medical history that might impact brain function; those 
with a history of psychiatric illness were retained. An additional 51 individuals were 
excluded because they did not pass rigorous manual and automated quality assurance; 
one individual was excluded due to corrupted data. This process left a final sample of 
1,393 participants. Note that this is a larger sample than studies of normative brain 
development that have used the PNC; unlike previous reports, we did not exclude based 
on history of psychiatric illness. Indeed, previous work has illustrated that this broader 
coverage of the PNC yields prevalence rates of mental disorders consistent with 
population norms [2]. The institutional review boards of both the University of Pennsylvania 
and the Children’s Hospital of Philadelphia approved all study procedures. 
 
Psychopathology phenotypes 
 
In this study, we extended a p-factor model that was previously developed based on the 
GOASSESS interview [3, 4] and that has previously been used to study the brain [5–7]. 
Briefly, the GOASSESS is an abbreviated and modified structured interview derived from 
the NIMH Genetic Epidemiology Research Branch Kiddie-SADS [8] that covers a wide 
variety of psychiatric symptomatology such as the occurrence of mood (major depressive 
episode, mania), anxiety (agoraphobia, generalized anxiety, panic, specific phobia, social 
phobia, separation anxiety, obsessive compulsive disorder), externalizing behavior 
(oppositional defiant, attention deficit/hyperactivity, conduct disorder), eating disorder 
(anorexia, bulimia), and suicidal thoughts and behaviors. GOASSESS was administered by 
trained and certified assessors. The original model used a combination of exploratory and 
confirmatory factor analysis to distill the 112 item-level symptoms from the GOASSESS 
into five orthogonal dimensions of psychopathology. The original model included a factor 
common to all psychiatric disorders, referred to as overall psychopathology, as well as 
four specific factors: anxious-misery, psychosis, externalizing behaviors, and fear. 
 
Here, owing to emergent evidence that the positive and negative aspects of the psychosis 
spectrum elicit unique effects on the brain [9], we extended the above p-factor model in 
two ways. First, we included an additional five assessor-rated polytomous items (scored 
from 0-6, where 0 is ‘absent’ and 6 is ‘severe and psychotic’ or ‘extreme’ from the Scale of 
Prodromal Symptoms (SOPS) derived from the Structured Interview for Prodromal 
Syndromes (SIPS [10]) designed to measure the negative/disorganized symptoms of 
psychosis. These five items were (i) P5 disorganized communication, (ii) N2 avolition, (iii) 
N3 expression of emotion, (iv) N4 experience of emotions and self, and (v) N6 occupational 
functioning. Including this additional set brought the total to 117 items. Second, we split 
the psychosis factor into two factors, one describing the delusions and hallucinations 
associated with the psychosis spectrum, which we call psychosis-positive. The second 
psychosis factor described disorganized thought, cognitive impairments, and motivational-
emotional deficits, which we call psychosis-negative for simplicity. We used confirmatory 
factor analysis implemented in Mplus [11] to model five specific factors of 
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psychopathology (anxious-misery, psychosis-positive, psychosis-negative, externalizing 
behaviors, and fear) as well as one common factor (overall psychopathology) (Figure 1A). 
Note that all phenotypes derived from this model are orthogonal to one another. 
 
Imaging data acquisition 
 
MRI data were acquired on a 3 Tesla Siemens Tim Trio scanner with a 32-channel head 
coil at the Hospital of the University of Pennsylvania. A 5-min magnetization-prepared, 
rapid acquisition gradient-echo T1-weighted (MPRAGE) image (TR = 1810ms, TE = 
3.51ms, FOV = 180 x 240mm, matrix 256 x 192, voxel resolution of 1mm3) was acquired 
for each participant.  
 
Imaging data quality control 
 
All T1-weighted images underwent rigorous quality control by highly trained image 
analysts, see [12] for details. Briefly, all images were visually inspected and evaluated for 
the presence of artifacts. Images with gross artifacts were considered unusable; images 
with some artifacts were flagged as ‘decent’; and images free of artifact were marked as 
‘superior’. As mentioned above in the section titled Participants, 208 individuals were 
removed due to unusable imaging data. As a result, 1,155 of our 1,393 participants had 
T1-weighted images identified as ‘superior’, with the remaining identified as ‘usable’. 
 
Whole brain parcellation 
 
We summarized each of the brain features examined in the current study at the region 
level. Analyses reported in the main text were conducted using 400 regions covering the 
cortex that were defined using functional neuroimaging data in a previous study [13], 
hereafter referred as the Schaefer400 parcellation. However, there is a plethora of 
parcellations available in neuroimaging research that vary in their construction and 
resolution (i.e., number of regions). In light of this diversity, we sought to confirm that our 
results were not driven by choice of brain parcellation, and thus we repeated our analyses 
using both a lower resolution version of the Schaefer parcellation that included only 200 
regions covering the cortex (Schaefer200), as well as a separate parcellation wherein 
boundaries were defined according to neuroanatomy rather than brain function [14], 
including 234 regions (Lausanne234). For each parcellation brain features were generated 
for each participant as described in the following sections. 
 
 
  

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 12, 2020. ; https://doi.org/10.1101/2020.06.11.147009doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.11.147009
http://creativecommons.org/licenses/by-nc/4.0/


 33 

Structural image processing 
 
Structural image processing used tools included in ANTs [15]. Structural images were 
processed in participant’s native space using the following procedure: brain extraction, N4 
bias field correction [16], Atropos tissue segmentation [17], SyN diffeomorphic registration 
[18, 19], and direct estimation of cortical thickness in volumetric space [20]. Large-scale 
evaluation studies have shown that this highly accurate procedure for estimating cortical 
thickness is more sensitive to individual differences over the lifespan than comparable 
techniques [15].  
 
Regional estimates of cortical thickness and volume were extracted from every 
participant’s native space data using the following procedure. First, we created a custom 
adolescent template and tissue priors using data from 140 PNC participants, balanced for 
age and sex. A custom template minimizes registration bias and maximizes sensitivity to 
detect regional effects that can be impacted by registration error. Second, the 
Schaefer400 and Schaefer200 parcellations were generated in this template space. Third, 
non-linear registration warps were generated that mapped each participant’s structural 
scan to template space, and the inverse of these warps were applied to the Schaefer 
parcellations to generate participant-specific parcellations.  Participant-specific 
Lausanne234 parcellations were generated in native space data using code available 
online: https://github.com/mattcieslak/easy_lausanne. Fourth, each participant’s Schaefer 
parcellation was masked by a cortical gray matter mask from ANTs, also in participant’s 
native space. Finally, regional cortical thickness estimates were extracted using these 
participant-specific parcellations (Schafer400, Schaefer200, Lausanne234); a count of the 
number of voxels in each parcel in native space served as an estimate of regional volume. 
For the Schaefer400 parcellation, these features were assembled into a 1,393 × 800 
feature table, 𝑭, with brain regions along the columns, each represented twice to account 
for thickness and volume, and participants along the rows. 
  
Permutation test 
 
As mentioned in the main text, for each psychopathology phenotype we generated whole-
brain correlation maps that quantified the relationship between a given psychopathology 
phenotype and deviations from normative neurodevelopment for each measure of cortical 
thickness and volume. We used a random permutation procedure to assign p-values to 
these correlation maps. Specifically, the psychopathology phenotypes were randomly 
shuffled and the correlation coefficients r were recalculated between the permuted 
psychopathology phenotypes and the columns of 𝑭𝒛. Note, the unpermuted 
psychopathology phenotypes were already residualized with respect to age and sex. This 
was repeated 1,000 times to generate an empirical null distribution for every 
psychopathology phenotype-brain feature pair. p-values were calculated as the proportion 
of absolute r values from the empirical null that were greater than or equal to the absolute 
observed r value for a given psychopathology phenotype and brain feature. 
 
When considering the parcellation used in the main text (Schaefer400), the above 
permutation procedure generated 400 uncorrected p-values per psychopathology 
dimension and brain feature. Considering our derivation of six psychopathology 
phenotypes, this translated to 2,400 uncorrected p-values for each of cortical thickness 
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and cortical volume. Multiple comparisons were corrected for across brain regions and 
psychopathology dimensions by adjusting the 2,400 p-values using the Benjamini and 
Hochberg False Discovery Rate (FDR, q = 0.05) procedure [21]. Next, we discarded brain 
regions where the standardized mean squared error from the normative model was ³ 1 
(Figure S1), ensuring that our correlations of psychopathology dimensions to deviations 
were not testing for effects where no reliable age effect was present. This multiple 
comparison correction procedure was applied to cortical volume and thickness separately. 
 
Comparison of effect sizes to traditional analysis of inter-individual differences 
 
Primary analysis in the main text were done by correlating dimensions of psychopathology 
with deviations from a normative model of neurodevelopment estimated using gaussian 
process regression. To test the utility of the normative model in our primary analysis, we 
also conducted a conventional analysis of inter-individual differences, wherein each 
psychopathology dimension was correlated directly with regional brain features rather than 
deviations from the normative model. In this analysis, age and sex were controlled for in 
the full sample using ordinary least squares linear regression. As per our primary analysis, 
significance was assigned using the same permutation test outlined above (see section 
titled Permutation test) and rigorously corrected for multiple comparisons across regions 
and psychopathology dimensions using FDR. 
 
In order to directly compare to two correlation analyses (normative model and 
conventional) we performed regional comparisons of the significant r values using 
Steiger’s test for dependent correlations [22]. Specifically, for each psychopathology 
dimension, we selected the subset of regions that showed both significant correlations 
with deviations from the normative model as well as in the conventional analysis (i.e., the 
intersection). Then, we compared the r value pairs within each region to see which 
analysis yielded the significantly larger effect size. Steiger’s test p-values were assigned 
parametrically and corrected for multiple comparisons using FDR. 
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SUPPLEMENTARY RESULTS 
 

 
Figure S1. Regions without reliable effects of age and sex. Regions with standardized mean squared error 
of ³ 1 are shown in white for cortical thickness (A) and cortical volume (B). These regions were excluded 
from all analyses reported in this study. 
  
 
 
  

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 12, 2020. ; https://doi.org/10.1101/2020.06.11.147009doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.11.147009
http://creativecommons.org/licenses/by-nc/4.0/


 36 

 
Comparison of effect sizes to traditional analysis of inter-individual differences 
 
To test the extent to which our normative model yielded stronger correlations to 
psychopathology, we also performed a conventional analysis of inter-individual differences 
by estimating direct correlations between our dimensions of psychopathology and brain 
features. We examined the subset of regions where significant effects were found in both 
the normative model and the conventional model. The proportion of this subset that had 
significantly larger effect sizes in one analysis or the other is shown in Table S1. We find 
that for overall psychopathology, psychosis-positive, and fear, a greater proportion of 
regions showed significantly greater r values, under the Steiger’s test, when dimensions 
were correlated with deviations from the normative model rather than directly with cortical 
volume. No significant differences in effect sizes were observed for psychosis-negative, 
anxious-misery, or externalizing. 
 
 
Table S1. Brain regions with significant correlations between psychopathology dimensions and deviations 
from normative neurodevelopment of cortical volume (normative) yield larger effect sizes when compared to 
direct correlations between dimensions and cortical volume (conventional). 
 

 Ov. 
Psych. 

Psy. (pos.) Fear 

Number of regions in subset 
(Number of brain regions = 400) 

118 53 83 

Significantly larger r values in the normative model 
(% of subset) 

10.17 20.75 13.25 

Significantly larger r values in the conventional 
analysis 

(% of subset) 

3.39 1.89 0 

Note Steiger’s test p-values were corrected using FDR (q = 0.05). 
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Parcellation scheme 
 
In the main text, we reported results for Schaefer400. Here, we report our results 
according to a Schaefer parcellation with only 200 regions (Cortical Volume, Figure S2; 
Cortical Thickness, Figure S3) as well as an entirely different parcellation known as the 
Lausanne atlas with 234 regions (Cortical Volume, Figure S4; Cortical Thickness, Figure 
S5). 
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Figure S2. The relationship between dimensions of psychopathology and deviations from normative 
neurodevelopment for cortical volume in the Schaefer200 parcellation. A-F, Significant r correlations 
between the dimension of psychopathology and deviations from the normative model. Psychopathology 
dimensions not shown had no significant correlations. 
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Figure S3. The relationship between dimensions of psychopathology and deviations from normative 
neurodevelopment for cortical thickness in the Schaefer200 parcellation. A-C, Significant r correlations 
between the dimension of psychopathology and deviations from the normative model. Psychopathology 
dimensions not shown had no significant correlations. 
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Figure S4. The relationship between dimensions of psychopathology and deviations from normative 
neurodevelopment for cortical volume in the Lausanne234 parcellation. A-F, Significant r correlations 
between the dimension of psychopathology and deviations from the normative model. Psychopathology 
dimensions not shown had no significant correlations. 
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Figure S5. The relationship between dimensions of psychopathology and deviations from normative 
neurodevelopment for cortical thickness in the Lausanne234 parcellation. A-E, Significant r correlations 
between the dimension of psychopathology and deviations from the normative model. Psychopathology 
dimensions and hemispheres not shown had no significant correlations. 
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Table S2. Factor loadings from bifactor model of psychopathology dimensions 
 

  Loadings 

Item General 
Psychosis 
Positive 

Psychosis 
Negative Anxious-Misery Externalizing Fear 

psy001 0.657 0.442 0.000 0.000 0.000 0.000 
psy029 0.606 0.411 0.000 0.000 0.000 0.000 
psy050 0.632 0.220 0.000 0.000 0.000 0.000 
psy060 0.666 0.316 0.000 0.000 0.000 0.000 
psy070 0.637 0.285 0.000 0.000 0.000 0.000 
psy071 0.721 0.187 0.000 0.000 0.000 0.000 
sip003 0.598 0.522 0.000 0.000 0.000 0.000 
sip004 0.422 0.616 0.000 0.000 0.000 0.000 
sip005 0.593 0.605 0.000 0.000 0.000 0.000 
sip006 0.557 0.559 0.000 0.000 0.000 0.000 
sip007 0.584 0.608 0.000 0.000 0.000 0.000 
sip008 0.519 0.628 0.000 0.000 0.000 0.000 
sip009 0.615 0.502 0.000 0.000 0.000 0.000 
sip010 0.437 0.666 0.000 0.000 0.000 0.000 
sip011 0.623 0.607 0.000 0.000 0.000 0.000 
sip012 0.639 0.596 0.000 0.000 0.000 0.000 
sip013 0.605 0.593 0.000 0.000 0.000 0.000 
sip014 0.715 0.489 0.000 0.000 0.000 0.000 
sip027 0.487 0.000 0.288 0.000 0.000 0.000 
sip028 0.517 0.000 0.305 0.000 0.000 0.000 
sip032 0.758 0.000 0.188 0.000 0.000 0.000 
sip033 0.681 0.000 0.205 0.000 0.000 0.000 
sip038 0.396 0.000 0.795 0.000 0.000 0.000 
sip039 0.483 0.000 0.631 0.000 0.000 0.000 
SIP030 0.524 0.000 0.383 0.000 0.000 0.000 
SIP035 0.714 0.000 0.302 0.000 0.000 0.000 
SIP037 0.387 0.000 0.395 0.000 0.000 0.000 
SIP041 0.459 0.000 0.846 0.000 0.000 0.000 
SIP043 0.496 0.000 0.678 0.000 0.000 0.000 
SIP001 0.461 0.000 0.328 0.000 0.000 0.000 
add011 0.473 0.000 0.000 0.000 0.745 0.000 
add012 0.458 0.000 0.000 0.000 0.749 0.000 
add013 0.490 0.000 0.000 0.000 0.596 0.000 
add014 0.442 0.000 0.000 0.000 0.606 0.000 
add015 0.499 0.000 0.000 0.000 0.565 0.000 
add016 0.510 0.000 0.000 0.000 0.678 0.000 
add020 0.497 0.000 0.000 0.000 0.543 0.000 
add021 0.448 0.000 0.000 0.000 0.599 0.000 
add022 0.468 0.000 0.000 0.000 0.603 0.000 
agr001 0.611 0.000 0.000 0.000 0.000 0.474 
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agr002 0.635 0.000 0.000 0.000 0.000 0.489 
agr003 0.651 0.000 0.000 0.000 0.000 0.421 
agr004 0.550 0.000 0.000 0.000 0.000 0.422 
agr005 0.523 0.000 0.000 0.000 0.000 0.469 
agr006 0.620 0.000 0.000 0.000 0.000 0.457 
agr007 0.621 0.000 0.000 0.000 0.000 0.286 
agr008 0.621 0.000 0.000 0.000 0.000 0.453 
cdd001 0.573 0.000 0.000 0.000 0.407 0.000 
cdd002 0.548 0.000 0.000 0.000 0.219 0.000 
cdd003 0.621 0.000 0.000 0.000 0.462 0.000 
cdd004 0.468 0.000 0.000 0.000 0.334 0.000 
cdd005 0.606 0.000 0.000 0.000 0.477 0.000 
cdd006 0.613 0.000 0.000 0.000 0.384 0.000 
cdd007 0.635 0.000 0.000 0.000 0.372 0.000 
cdd008 0.637 0.000 0.000 0.000 0.348 0.000 
dep001 0.760 0.000 0.000 0.220 0.000 0.000 
dep002 0.724 0.000 0.000 0.187 0.000 0.000 
dep004 0.791 0.000 0.000 0.031 0.000 0.000 
dep006 0.775 0.000 0.000 0.034 0.000 0.000 
gad001 0.506 0.000 0.000 0.377 0.000 0.000 
gad002 0.554 0.000 0.000 0.404 0.000 0.000 
man001 0.743 0.000 0.000 -0.517 0.000 0.000 
man002 0.744 0.000 0.000 -0.567 0.000 0.000 
man003 0.732 0.000 0.000 -0.523 0.000 0.000 
man004 0.771 0.000 0.000 -0.456 0.000 0.000 
man005 0.767 0.000 0.000 -0.460 0.000 0.000 
man006 0.689 0.000 0.000 -0.487 0.000 0.000 
man007 0.808 0.000 0.000 -0.241 0.000 0.000 
ocd001 0.844 0.000 0.000 0.197 0.000 0.000 
ocd002 0.807 0.000 0.000 0.125 0.000 0.000 
ocd003 0.709 0.000 0.000 0.209 0.000 0.000 
ocd004 0.826 0.000 0.000 0.060 0.000 0.000 
ocd005 0.822 0.000 0.000 0.115 0.000 0.000 
ocd006 0.843 0.000 0.000 0.107 0.000 0.000 
ocd007 0.665 0.000 0.000 0.143 0.000 0.000 
ocd008 0.766 0.000 0.000 0.131 0.000 0.000 
ocd011 0.712 0.000 0.000 0.196 0.000 0.000 
ocd012 0.721 0.000 0.000 0.134 0.000 0.000 
ocd013 0.699 0.000 0.000 0.119 0.000 0.000 
ocd014 0.763 0.000 0.000 0.061 0.000 0.000 
ocd015 0.732 0.000 0.000 0.092 0.000 0.000 
ocd016 0.714 0.000 0.000 0.150 0.000 0.000 
ocd017 0.719 0.000 0.000 0.090 0.000 0.000 
ocd018 0.629 0.000 0.000 0.095 0.000 0.000 
ocd019 0.561 0.000 0.000 0.073 0.000 0.000 
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odd001 0.588 0.000 0.000 0.000 0.436 0.000 
odd002 0.573 0.000 0.000 0.000 0.515 0.000 
odd003 0.532 0.000 0.000 0.000 0.568 0.000 
odd005 0.553 0.000 0.000 0.000 0.486 0.000 
odd006 0.634 0.000 0.000 0.000 0.397 0.000 
pan001 0.621 0.000 0.000 0.275 0.000 0.000 
pan003 0.692 0.000 0.000 0.156 0.000 0.000 
pan004 0.779 0.000 0.000 0.159 0.000 0.000 
phb001 0.276 0.000 0.000 0.000 0.000 0.309 
phb002 0.340 0.000 0.000 0.000 0.000 0.350 
phb003 0.422 0.000 0.000 0.000 0.000 0.282 
phb004 0.270 0.000 0.000 0.000 0.000 0.355 
phb005 0.186 0.000 0.000 0.000 0.000 0.263 
phb006 0.456 0.000 0.000 0.000 0.000 0.314 
phb007 0.418 0.000 0.000 0.000 0.000 0.388 
phb008 0.365 0.000 0.000 0.000 0.000 0.199 
scr001 0.494 0.000 0.000 0.000 0.163 0.000 
scr006 0.487 0.000 0.000 0.000 0.357 0.000 
scr007 0.651 0.000 0.000 0.210 0.000 0.000 
scr008 0.545 0.000 0.000 0.000 0.255 0.000 
sep500 0.462 0.000 0.000 0.000 0.000 0.168 
sep508 0.413 0.000 0.000 0.000 0.000 0.202 
sep509 0.433 0.000 0.000 0.000 0.000 0.226 
sep510 0.525 0.000 0.000 0.085 0.000 0.000 
sep511 0.310 0.000 0.000 0.000 0.000 0.108 
soc001 0.444 0.000 0.000 0.000 0.000 0.638 
soc002 0.436 0.000 0.000 0.000 0.000 0.557 
soc003 0.383 0.000 0.000 0.000 0.000 0.708 
soc004 0.449 0.000 0.000 0.000 0.000 0.685 
soc005 0.486 0.000 0.000 0.000 0.000 0.661 
sui001 0.647 0.000 0.000 0.185 0.000 0.000 
sui002 0.740 0.000 0.000 0.260 0.000 0.000 
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