An Adaptive Detection for Automatic Spike Sorting Based on Mixture of Skew-t distributions

Ramin Toosi ${ }^{\mathbf{1}}$, Mohammad Ali Akhaee ${ }^{1}$, and Mohammad-Reza A. Dehaqani ${ }^{1,2}$
${ }^{1}$ School of Electrical and Computer Engineering, College of Engineering, University of Tehran, Tehran, Iran
${ }^{2}$ School of Cognitive Sciences, Institute for Research in Fundamental Sciences, Tehran, Iran

Appendix S1: Zero-Phase Filtering

In this method, first the signal is filtered, and then the time reversed version of the filtered signal would be filtered again. Assuming h is the filter response, in the z-transform domain we have:

$$
\begin{align*}
& D(z)=R(z) H(z) \\
& R_{F}(z)=D\left(z^{-1}\right) H(z) \tag{S.1}
\end{align*}
$$

where R is the z-transform of the raw signal (r). When $|z|=1$ or $z=e^{j w}$, the output reduces to $R_{F}\left(e^{j w}\right)\left|H\left(e^{j w}\right)\right|^{2}$. Thus, the output has zero-phase distortion.

Appendix S2: Expectation-Maximization for Mixture of Skew-t distribution

In the EM algorithm, it is usual to define a membership variable, $Z_{i}=\left(Z_{i 1}, \ldots, Z_{i g}\right)$, where

$$
Z_{i j}= \begin{cases}1, & \text { if } s_{i} \text { belongs to the component } \mathrm{j} \tag{S.2}\\ 0, & \text { otherwise }\end{cases}
$$

The completed log-likelihood function can be written as follows:

$$
\begin{align*}
\ell_{c}(\theta \mid s, t, u, z)=C-\sum_{i=1}^{N} \sum_{j=1}^{g} Z_{i j} & {\left[\log \left(\pi_{j}\right)-\frac{1}{2} \log \left(\gamma_{j}\right)-\frac{u_{i}}{2}\left(s_{i}-\mu_{j}-\Delta_{j} t_{i}\right)^{T} \gamma_{j}^{-1}\left(s_{i}-\mu_{j}-\Delta_{j} t_{i}\right)\right.} \\
& \left.+\frac{v}{2} \log \left(\frac{v}{2}\right)+\left(\frac{v}{2}-1\right) \log \left(u_{i}\right)-\log \left(\frac{v}{2}\right)-\frac{v}{2} u_{i}\right] \tag{S.3}
\end{align*}
$$

where C is a constant, and

$$
\begin{equation*}
\delta=\frac{\lambda_{j}}{\sqrt{1+\lambda_{j}^{T} \lambda_{j}}}, \quad \Delta=\Sigma_{j}^{\frac{1}{2}} \delta_{j}, \quad \gamma_{j}=\Sigma_{j}-\Delta_{j} \Delta_{j}^{T}, \quad t_{i} \sim N\left(\mu+\Delta t_{i}, u_{i}^{-1} \gamma_{j}\right) \tag{S.4}
\end{equation*}
$$

The E-step includes calculating of $Q\left(\theta \mid \theta^{(K)}\right)=E_{\theta^{(K)}}\left(\ell_{c}(\theta \mid s, t, u, z) \mid s\right)$, where the superscript (k) indicates the value of the parameters in the k 'th iteration. The EM algorithm which finds the parameters of a mixture of p-dimensional skew-t distributions can be summarized as follows:

E-Step: First, consider the following auxiliary parameters.

$$
\begin{align*}
& M^{2}(\theta)=\left(1+\Delta^{T} \gamma^{-1} \Delta\right)^{-1} \\
& m(\theta, s)=M^{2}(\theta) \Delta^{T} \gamma^{-1}(s-\mu) \\
& A(\theta, s)=\lambda^{T} \Sigma^{-\frac{1}{2}}(s-\mu) \\
& \beta(\theta, s)=\frac{2 \Gamma\left(\frac{v+p+2}{2}\right)\left(v+d_{\Sigma}(s, \mu)\right)^{-1}}{\Gamma\left(\frac{v+p}{2}\right)} \frac{T\left(\left.\sqrt{\frac{v+p+2}{v-d_{\Sigma}(s, \mu)}} A(\theta, s) \right\rvert\, v+p+2\right)}{T\left(\left.\sqrt{\frac{v-p}{v+d_{\Sigma}(s, \mu)}} A(\theta, s) \right\rvert\, v+p\right)} \\
& \tau(\theta, s)=\frac{1}{\left(\left.\sqrt{\frac{v+p}{v+d_{\Sigma}(s, \mu)}} A(\theta, s) \right\rvert\, v+p\right)} \frac{\Gamma\left(\frac{v+p+1}{2}\right)}{\pi^{\frac{1}{2}} \Gamma\left(\frac{1}{2}\right)} \frac{\left(v+d_{\Sigma}(s, \mu)\right)^{(v-p) / 2}}{\left(v+d_{\Sigma}(s, \mu)+A(\theta, s)^{2}\right)^{(v-p+1) / 2}} \\
& \xi(\theta, s)=\beta(\theta, s) m(\theta, s)+M(\theta) \tau(\theta, s) \\
& \omega(\theta, s)=\beta(\theta, s)(m(\theta, s))^{2}+(M(\theta))^{2}+M(\theta) m(\theta, s) \tau(\theta, s) \tag{S.5}
\end{align*}
$$

The probability of i 'th spike belongs to the j 'th component, i.e. $p_{i j}$, is

$$
\begin{equation*}
p_{i j}=\frac{\pi_{j} S T_{p}\left(s_{i} \mid \theta_{j}\right)}{\sum_{l=1}^{g} \pi_{l} S T_{p}\left(s_{i} \mid \theta_{l}\right)} \tag{S.6}
\end{equation*}
$$

Given $\theta=\theta^{(k)}$, first we calculate $p_{i j}^{(k)}$, then,

$$
\begin{equation*}
\beta_{i j}=p_{i j}^{(k)} \beta\left(\theta_{j}^{(k)}, s_{i}\right) \quad \xi_{i j}=p_{i j}^{(k)} \xi\left(\theta_{j}^{(k)}, s_{i}\right) \quad \omega_{i j}=p_{i j}^{(k)} \omega\left(\theta_{j}^{(k)}, s_{i}\right) \tag{S.7}
\end{equation*}
$$

M-Step: In this step, by maximizing $Q\left(\theta \mid \theta^{(k)}\right)$, the update rules for the parameters would be obtained as follows:

$$
\begin{align*}
\pi_{j}^{(k+1)} & =n^{-1} \sum_{i=1}^{N} p_{i j}^{(k)} \\
\mu_{j}^{(k+1)} & =\sum_{i=1}^{N}\left(\beta_{i j}^{(k)} s_{i}-\xi_{i j}^{(k)} \Delta_{j}^{(k)}\right) / \sum_{i=1}^{N} \beta_{i j}^{(k)} \\
\Delta_{j}^{(k+1)} & =\left[\sum_{i=1}^{N} \xi_{i j}^{(k)}\left(s_{i}-\mu_{j}^{(k+1)}\right)\right] / \sum_{i=1}^{N} \omega_{i j}^{(k)} \\
\gamma_{j}^{(k+1)} & =\left(\sum_{i=1}^{N} p_{i j}\right)^{-1} \sum_{i=1}^{N}\left(\beta_{i j}^{(k)}\left(s_{i}-\mu_{j}^{(k+1)}\right)\left(s_{i}-\mu_{j}^{(k+1)}\right)^{T}\right. \\
& \left.-\left[\left(s_{i}-\mu_{j}^{(k+1)}\right)\left(\Delta_{j}^{(k+1)}\right)^{T}+\left(\Delta_{j}^{(k+1)}\right)\left(s_{i}-\mu_{j}^{(k+1)}\right)^{T}\right] \xi_{i j}^{(k)}+\Delta_{j}^{(k+1)}\left(\Delta_{j}^{(k+1)}\right)^{T} \omega_{i j}^{(k)}\right) \\
v^{(k+1)} & =\arg \max _{v} \sum_{i=1}^{N} \log \left(\sum_{j=1}^{g} \pi_{j} S T_{p}\left(s_{i} \mid \mu_{j}^{(k+1)}, \Sigma_{j}^{(k+1)}, \lambda_{j}^{(k+1)}, v^{(k)}\right)\right) \tag{S.8}
\end{align*}
$$

The update procedure is based on Δ, and γ instead of λ and Σ. These parameters could be recovered as follows:

$$
\begin{equation*}
\lambda_{j}=\frac{\left(\gamma_{j}+\Delta_{j} \Delta_{j}^{T}\right)^{-\frac{1}{2}} \Delta_{j}}{\left[1-\Delta_{j}^{T}\left(\gamma_{j}+\Delta_{j} \Delta_{j}^{T}\right)^{-1} \Delta_{j}\right]^{\frac{1}{2}}} \quad \Sigma_{j}=\gamma_{j}+\Delta_{j} \Delta_{j}^{T} \tag{S.9}
\end{equation*}
$$

