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Abstract Speciation in the absence of divergent selection remains a topic of active debate in10

evolutionary biology. Existing empirical and theoretical studies have linked the process of11

speciation to complex genetic interactions. Gene Regulatory Networks (GRNs) capture the12

inter-dependencies of gene expression and encode information for individual development on a13

molecular level, which form a feedback loop to learn both patterns and effects of hybrid14

incompatibilities. Here, we develop a pathway framework considers GRNs as a functional15

representation of coding sequences. We then simulated the dynamics of GRNs through a simple16

model integrating natural selection, genetic drift and sexual reproduction and uncovered17

reproductive barriers among allopatric population subjected to identical selection pressure. A18

minimal mechanism of how reproductive isolation emerged was identified by numerical19

counter-factual analyses. We discuss how many features of our results are able to account for20

observed empirical patterns, which are currently in opposition to classical models of speciation.21

This study adds support for the central role of gene networks in speciation and their potential to22

shed light on as yet largely unexplained patterns in evolution.23

24

Introduction25

Over the past 100 years, the role of reproductive isolation due to genetic differences between26

populations has received considerable attention in both the empirical and theoretical literature27

on speciation (Rieseberg et al., 1996; Coyne and Allen Orr, 1998;Marques et al., 2019; Satokangas28

et al., 2020). Through this work, it is widely accepted that divergent selection between geographi-29

cally isolated populations can facilitate speciation due to the accumulation of genetic incompati-30

bilities (Bateson, 1909; Dobzhansky, 1936;Muller, 1942). Despite well-established examples from31

Drosophila (Brideau et al., 2006), Xiphophorus (Wittbrodt et al., 1989; Powell et al., 2020), Oryza32

(Yamamoto et al., 2010), Arabidopsis (Bikard et al., 2009), andMus (Davies et al., 2016), the genetics33

and evolutionary history of incompatibilities are typically far more complex than suggested by early34

models (Marques et al., 2019).35

Classically post-zygotic, genetic isolation is thought to arise due to epistatic interaction between36

loci, where alleles arise and fix in allopatry prior to secondary contact, i.e., the Bateson-Dobzhansky-37

Muller (BDM) model (Bateson, 1909; Dobzhansky, 1936;Muller, 1942). However, many incompati-38

bilities uncovered using high-throughput molecular analyses (Kuzmin et al., 2018) and quantitative39

traits loci mapping (Turner et al., 2014; Chae et al., 2014), do not conform to the processes sug-40

gested by BDMmodel. In particular, in both natural populations and model organisms, studies have41

found reproductive barriers exist between allopatric populations experiencing similar selection42
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pressures (Schluter, 2009) and many of the alleles underlying genetic incompatibility predate the43

allopatric split of populations (Marques et al., 2019). Both of which are clear violations of the BDM44

model. As a result, why and how genetic incompatibilities arise without divergent selection and45

involve alleles that pre-date the allopatric separation of populations remains one of the most46

profound questions in evolutionary biologyMarques et al. (2019).47

Analytical and computational models have proposed theoretical explanations for the observed48

patterns of complex genetic interaction underlying post-zygotic isolation. A collection of models49

considered de-novo allele substitutions on the population level and the accompanying accumulation50

of hybrid incompatibilities. For example, Orr (1995) predicted that the number of incompatibilities51

should increase faster than linearly with the number of substitutions. The study by Orr also52

suggested higher prevalence of complex genetic interactions than simple pairwise incompatibilities.53

This so-called “snowballing" effect has been further extended by incorporating protein-protein54

interaction and RNA folding (Livingstone et al., 2012; Kalirad and Azevedo, 2017).55

The substitution-based approaches nevertheless are largely incompatible with emerging data56

on the evolutionary history of alleles involved in reproductive isolation (Marques et al., 2019). In57

addition, many models make an implicit assumption that two allopatric lineages only differed by58

fixed alleles, which does not capture the empirical diversity among individuals’ gene expression in59

natural populations (Gould et al., 2018). More importantly, substitutions originating from de-novo60

mutations fail to explain the recent evidence that ancient alleles underlying reproductive barriers61

often predate speciation events (Sicard et al., 2015; Meier et al., 2017; Nelson and Cresko, 2018;62

Wang et al., 2019; Duranton et al., 2019;Marques et al., 2019).63

Another class of computational approaches focused on the overall regulation structure that is po-64

tentially accountable for complex genetic interactions, whose evolution then creates a feedback loop65

to generate hybrid incompatibilities. Gene regulatory networks (GRNs) describe inter-dependencies66

between gene expression and encode information of individual development on the molecular level.67

Johnson and Porter (2000) simulated a single linear regulatory pathway as a sequence of matching68

functions for binding sites, which resulted in reduced hybrid fitness compared to non-epistatic69

models. Palmer and Feldman (2009) explored the developmental process where the expression of70

gene products was iteratively determined through the regulatory networks. Diverse dynamics of71

hybrid incompatibilities was revealed which suggested the role of neutral gene regulatory evolution72

on speciation. Recently, Schiffman and Ralph (2018) modeled gene networks as linear control73

systems and demonstrated that reproductive isolation can be a consequence of parallel evolution74

of GRNs with equivalent mechanism.75

The implications from gene network evolution are not mere outcomes of incorporating complex-76

ity into existing computational models. Instead, it is natural to consider GRNs to study evolutionary77

processes due to their close relation to coding sequences. Ideally, and hypothetically given “omni-78

science" over the genomes including comprehension of every fundamental interaction between79

molecules, one can reconstruct inter-dependencies among genes and thus obtain the GRN from a80

bottom-up approach. Of course, this ambition is far from practical and even sounds like a fantasy.81

Yet, it shows that GRNs are essentially a direct abstraction of the genome sequence. Furthermore,82

this abstraction has been proposed as the heart of the omnigenic perspective of complex traits83

(Boyle et al., 2017), which aims to ultimately map genotypes to phenotypes. GRNs therefore bridge84

the gap between inheritance factors and physiological traits, whose dynamics over generations85

then becomes a candidate to understand speciation.86

Moving beyond substitution-based approaches, models that consider the evolution of GRNs are87

more flexible and can embrace recent observations such as the rich genetic variation in natural88

populations and the that incompatible alleles often far predate speciation events. That modern89

genetic details on incompatibilities are often opposed to existing theory is well articulated by90

Marques et al. (2019) who suggested that these two lines of empirical evidence can be consolidated91

into a “combinatorial view" of speciation. The combinatorial mechanism proposes that, if there92

was a past admixture event or if standing genetic variation persists, the reassembly of these old93
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genetic variants can facilitate rapid speciation and adaptive radiation. Here, we integrate the94

combinatorial view and the evolution of GRNs. Specifically, we study the inherited molecular95

pathways encoded in GRNs, which are established upon genetic elements and propagate chemical96

signals that produce physiological traits. These pathways amplify a gene networks’ potential to97

disentangle the genotype-phenotype map in light of epistasis.98

Specifically, we propose a pathway framework for studying the evolution of genetic interactions99

that considers GRNs as a functional representations of coding sequences. The pathway framework100

takes a network-science approach to model how a current generation’s GRNs bring forth the101

next generation’s GRNs. Presuming ancestral variation as in the combinatorial view of speciation,102

the dynamics of individuals’ gene networks was simulated through a naive model integrating103

independent assortment during sexual reproduction, genetic drift resulting from finite population104

size and natural selection on gene network functionality. We observed emergence of reproductive105

barriers among allopatric populations under identical selection pressure, where early evolutionary106

divergence between lineages was critical for barriers to arise. We concluded that it was the107

functional degeneracy nature of GRNs that accommodated potential lethal pathways in a diverse108

genetic background and leaded to reproductive barriers.109

Results110

The Pathway Framework: Networks as a Functional Representation of Genetic In-111

teractions112

Gene interactions networks are conventionally built such that genes are “nodes" and interactions113

between genes are “edges" or links, for examples see Tong et al. (2004); Schlitt and Brazma (2007);114

Langfelder and Horvath (2008). Here we propose an alternative methodology, termed the pathway115

framework, for constructing gene interaction networks. The key idea is to conceptualize genes,116

or alleles of genes, as “black boxes" that describe their expression behavior. More precisely, the117

pathway framework transforms alleles of genes into directed edges pointing from nodes that are118

activator/repressor molecules, e.g., transcription factors, and nodes that represent gene products,119

e.g., proteins. For example, in Figure 1 we show how: a.) a gene is activated by a transcription120

factor and generates a protein product (top-right), b.) two genes interact via a transcription121

factor created by one gene that activates the other (middle-right), and c.) genes can interact via122

shared transcription factors (bottom-right). As a result of its flexibility, arbitrarily complex genetic123

interactions can be encoded as “pathways" through a gene interaction network.124

Importantly, while our proposed representation is closely related to conventional gene interac-125

tion networks (and a direct mapping between the two always exists when considering interactions126

mediated by a single class of molecules, e.g., proteins), the pathway framework is often either a127

more compact or informative representation. For example, anytime a gene is regulated by a protein128

product from another gene, the conventional framework usually show redundancy that does not129

appear in the pathway framework, and the pathway framework will capture information not present130

in the conventional construction, e.g., see Box 1. Because the computational complexity of network131

analyses often scales non-linearly with the number of edges, switching to the pathway framework132

can facilitate a more robust exploration of model space.133

The pathway framework further highlights how phenotypes are a product of both genetics and134

the environment (not all nodes in the pathway framework need be gene products). Concentrating135

on the molecular basis of physiological traits, a phenotype can be thought of as the biochemical136

status of a universal collection of nodes in the pathway framework, e.g., gene products such as137

proteins or environmental stimuli. Therefore, under the pathway framework, the development of a138

phenotype can be viewed as an iterative process of chemical signals propagating through woven139

pathways built from a groups of “inherited metabolisms", namely the functionality of genes, and140

external signals from the environment. As a result, the pathway framework can readily capture141

genetic, environment, and gene x environment effects in the same network.142

3 of 22

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 13, 2020. ; https://doi.org/10.1101/2020.06.12.147322doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.12.147322
http://creativecommons.org/licenses/by-nc-nd/4.0/


Manuscript submitted to eLife

Figure 1. Pathway framework captures complex genetic interactions through consecutive regulatory

pathways. In contrast to directly representing genetic interactions as in conventional GRN, the pathway

framework abstracts genes as black boxes of their expression behavior. It turns alleles of genes into edges

between the transcription factors and the protein products, and regulatory interactions between genes are

encapsulated by consecutive pathways.

Box 1. Pathway framework is often a more compact representation143144

The pathway framework is usually more informative than the conventional construction of

GRNs since it directly shows the expression behavior of genes. When considering genetic inter-

actions that are mediated by a single class of molecules, e.g., one gene being regulated by the

protein product of another, the pathway framework takes advantages of this information and

presents genetic interactions in a compact pathway format. On the contrary, a conventional

GRN lacks the specific regulatory context, and thus it has to present all pairs of interacting

genes as individual edges rather than summarizing them by a smaller set of protein mediators.

More technically, the pathway framework and a conventional GRN correspond to the first- and

second-order de Bruijn graph (De Bruijn, 1946) respectively, and higher-order de Bruijn graphs
usually tackle combinatorial problems at the cost of introducing redundant elements.
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Evolutionary Mechanisms under the Pathway Framework156

Although in its most abstract state, the pathway framework can include nodes that are not proteins157

and not directly involved in gene regulation, we focus here on the evolution of GRNs where all nodes158

are proteins directly involved in transcriptional regulation. To model and simulate the evolution of159

GRNs, the pathway framework translates evolutionary mechanisms, such as mutation, independent160

assortment, recombination, and gene duplication, into graphical operations on the gene networks1.161

Because mutation of a locus can potentially alter its protein product and/or the transcription162

factor binding region(s), we consider mutation as rewiring process where the incoming and/or163

outgoing directed edges are re-directed to point from or to different nodes (Figure 2, top-right).164

Independent assortment during meiosis can be modeled via edge-mixing of parental GRNs such165

that an offspring acquires alleles, i.e., edges in the GRN, from both parents (Figure 2, bottom).166

Similar to mutation, recombination is an edge-rewiring process that is constrained to swapping167

binding sites or transcription factors at the same locus. Finally, gene duplication is equivalent to168

adding a parallel edge that represents the identical allelic content of a duplicated locus.169

An individual’s viability subjected to natural selection is a response to the molecular phenotypic170

status, which, under the pathway framework, can be modeled as a fitness function associated with171

the collective state of nodes in the gene network. For example, one could study the time-varying172

concentration of each protein, attach a continuous dynamic or a stochastic reaction to every allele173

and define fitness as a function of the high-dimensional concentration vector, etc.. On the other174

extreme, we instead consider Boolean networks, which have been shown to effectively portray175

many of the relevant dynamical features of empirical regulatory systems (Davidich and Bornholdt,176

2008). In this minimal scenario, each protein is assigned to a Boolean state — present or absent.177

External environmental signals stimulate the existence of some proteins in the organism. The178

logical states then cascade through the genetic pathways, where given the presence of a gene’s179

transcription factor, its allele turns on and generates a protein product. The phenotype of a GRN is180

thus the “reachability" from the environmental stimuli, whose binary survival is defined via a sharp181

fitness landscape over plausible collective Boolean states (Figure 2, top-left).182

We further adopt the Boolean-state assumption of GRNs because it readily sheds light on the183

formation of hybrid incompatibilities. A hybrid incompatibility is a combination of alleles that184

were separated in parental lineages but are present in hybrids and cause fatalities. Moreover, the185

combination is minimal in the sense that the lack of any of its allelic elements will not lead to an186

inviable hybrid. In the pathway framework, suppose that the binary viability only depends on a set187

of lethal proteins, i.e. an individual will not survive selection if any of those protein are present, a188

combination of alleles that includes a pathway from a environmental stimulus to a lethal protein189

makes the GRN inviable. If the alleles exactly comprise a simple path, which contains no cycles,190

they become a minimal combination and thus form an incompatibility. Additionally, The complexity191

of genetic interactions can be characterized by the number of alleles involved, which is called the192

order of hybrid incompatibility and related to the length of the simple pathway2.193

Simulating the Evolution of GRNs194

Briefly, we first consider a Wright-Fisher model of evolution with natural selection, i.e., constant195

population size, no mutation, no migration, non-overlapping generations, and random mating.196

Selection occurs during the haploid stage of the life-cycle, which fuse randomly after selection,197

i.e., create diploids, and undergo meiosis to generate the subsequent generation (simulations are198

further detailed in the Methods). Populations are seeded such that each individual has a randomly199

generated GRN and evolve until a single GRN fixes in the population.200

Figure 3a shows the proportion of individuals in the population that survive natural selection.201

1These graphical operations particularly focus on edges in the GRNs, while remaining the underlying node set constant

because the nodes represent all possibly existing proteins in the organism.
2Since for n ≥ 1, n + 1 alleles form an nth-order incompatibility, the order of genetic interaction is then the path length minus

one.
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Figure 2. Pathway framework turns evolutionary mechanisms into graphical operations on the GRNs.

Since the pathway framework directly models the functionality of alleles of genes as edges, mutation and

recombination can be modeled as edge-rewiring and edge-mixing respectively, while a minimal selection

scenario of binary fitness can be modeled as identifying reachability in the GRNs.

Initially, the fraction of viable individuals differed dramatically between simulations with different202

initial conditions due to the variation of randomly seeded GRNs. As the gene networks evolved,203

the population’s viability increased and quickly reaches a state where every individual survives204

selection (dashed line). During this 100% survival stage, natural selection was no longer effective205

and the population evolves to fixation via genetic drift. Not surprisingly, our results demonstrate206

that GRNs can rapidly evolve from a heterogeneous population with low average viability to “match"207

and imposed environment.208

In addition to achieving 100% survival, populations always fix for a single GRN. Figure 3b plots209

the number of structurally-distinct GRNs in each generation. The decreasing trend demonstrates210

that, although various GRNs have equal survival probability, it became more and more likely that211

individuals shared a common GRN. Moreover, the populations always fixed a single GRN (dotted212

line) after a sufficiently long period of time. This phenomenon can be intuitively explained by213

the mechanism of sexual reproduction. In our model, parents with identical GRN would lead to214

offspring of the same GRN, since any two corresponding groups of segregated alleles retrieved the215

parental gene network. Thus once there was a majority gene network in the population, it has a216

higher chance to retain its genetic configuration in the next generation rather than being replaced217

by shuffled variants.218

Lastly, to better understand how parallel lineages evolve, we consider a scenario where mul-219

tiple allopatric populations are seeded with the same initial conditions. Similarly, each allopatric220

population rapidly achieves 100% survival and then fixes a single GRN. However, across allopatric221

populations, seeded from the same initial conditions, many different GRNs fixed. Figure 4 presents222

the distribution of fixed GRNs for a smaller-scale simulation (Setup 2 in Methods). We see that the223

fixed gene networks were diverse and non-uniformly distributed. Despite being under identical224

selection forces and having the same initial condition, lineages evolving from a common ancestral225

population fixed alternative GRNs. This result demonstrates that a broad range of GRNs can survive226
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Figure 3. Populations adapted to the environment and then fixed a single GRN. Here we show, for every

generation of GRN evolution across multiple allopatric populations with different initial conditions: (a) the

survival probability of an individual and (b) the number distinct GRNs in each population, where two individuals’

GRNs were deemed effectively identical if they were isomorphic. The average viability of each population

increased over time and rapidly achieved 100% survival, which indicates that evolution of GRNs drove

adaptation toward the imposed environment. We also observe decreased variation of GRNs as they evolved,

with individuals in the same allopatric population, i.e., simulation run, eventually fixing for the same GRN.

Figure 4. Fixation of parallel lineages resulted in a

wide range of GRN structures. We simulated isolated

populations from the same intial conditions until they

reached fixation. In this case Setup 2 in Methods was

applied in order to tractably enumerate all plausible

GRN, and the ancestral populations were chosen such

that the fixation was unbiased by the initial allele

frequencies. The 107 acquired GRNs were categorized
into 465 viable structures and the fixation frequency of

each structure was plotted in a descending order. The

distribution shows that isolated lineages fixed

alternatives gene networks, some among which were

more favorable under our model of GRN evolution.

the given selection pressure. Furthermore, none of the viable GRN structures had a zero fixation227

probability, indicating an thorough exploration of evolution in the space of possible GRNs. That so228

many different GRNs fixed suggests that evolution was less governed by a definite trajectory, but229

instead it occurs via an uncertain realization among all the possibilities constrained by the ancestral230

population and the selection pressure.231

Reproductive Barriers Arose Rapidly as Gene Networks Evolved232

If the survival probability and fitness of GRNs were identical, the distribution of fixed networks233

should be uniform over all viable conformations. Because we observe a strongly non-uniform234

distribution (see Figure 4) some other form of selection is likely operating on the GRNs. We note235

that during random mating, even between two parents with viable GRNs, some of their shuffled236

offspring can be inviable. Coupled with the observation that different allopatric populations, i.e.,237

simulation runs, fix alternative GRNs from the same initial conditions, we hypothesized that some238

degree of reproductive isolation may exist between these fixed populations.239

To test for the presence of reproductive isolation, we performed a “hybridization" experiment240

between parallel lineages that had reached fixation. Starting with lineages branched from a241
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common ancestral population, two fixed lineages were randomly selected and interbred. Hybrids242

were generated and the reproductive isolation metric (RI) between the parental populations was243

computed (see Methods). By repeating this procedure, we obtained a distribution of reproductive244

isolation, as demonstrated in Figure 5a inset. Despite a large fraction of crosses resulting in nearly245

zero RI, we discovered pairs of lineages with positive reproductive isolation metric. Specifically,246

the RI distribution displays several regions of positive reproductive isolation such that a high247

percentage of hybrid offspring are inviable. Thus, we conclude that reproductive barriers between248

fixed lineages, derived from the same initial population and experiencing identical selection, exist.249

Given noticeable reproductive barriers between fixed lineages, we further studied when those250

barriers first manifested during GRN evolution. Note that because our simulations did not contain251

mutation, incompatibilities arise because of shuffling during meiosis. Here, instead of waiting until252

GRN fixation, we instead evolve lineages for T generations and then cross them to generate hybrids253

as described above. By varying T , a series of reproductive isolation distributions were acquired.254

Figure 5a collects and displays them in a heat map. A vertical slice represents a RI distribution as255

in the inset panel, but crosses were made after T generations rather than waiting for lineages to256

reach fixation. We see that the regions of high incompatibility noted in Figure 5a inset becomes257

bands in the heat map, which allows us to trace the emergence of reproductive barriers.258

Initially the reproductive isolation distribution was relatively symmetric around zero. However,259

As GRNs evolved, the range of RI broadened and its extreme value in the positive tail increased.260

The trend towards higher levels of RI decelerated after 100 generations; it then stabilized and261

formed a band structure, where crosses cluster around certain levels of reproductive isolation.262

Figure 5a hence reflects that reproductive barriers existed at low levels as soon as the lineages263

started evolving independently and peaked at a time prior to GRN fixation. By assumption, the264

alleles underlying RI were present in the ancestral population, but we further conclude that RI265

peaked well before fixation of GRNs.266

Next, for incompatible hybrids generated in our crossing experiment, we determine how complex267

the underlying mechanism of RI was. Specifically, Figure 5b shows how frequently an inviable hybrid268

resulted from an incompatibility of a certain order. We see that hybrid incompatibilities spanned269

over a broad range of interaction orders. Importantly, the simple two-allele interaction was only270

slightly more common than incompatibilities resulting from three or four interacting alleles and271

that interactions above forth order made up 2.79 percent of all incompatibilities. However, we note272

that the frequencies of incompatibility order varied depending on the ancestral population.273

The pattern of complex genetic interactions provides insights on the distribution of reproductive274

isolation. Based on the independent assortment mechanism in our model–and assuming that275

multiple incompatibilities rarely occurred between two parental GRNs–we conclude that hybrid276

incompatibilities quite often involved higher order interactions, which did not arise as a result277

of selection, but simply were an expected consequence of GRNs being high order (Appendix 1).278

Further, the discrete characteristic of hybrid incompatibilities led to a higher likelihood at certain279

RI levels. The band structure in Figure 5a agrees with this prediction (Appendix 1), which suggests280

that reproductive barriers are strongly influenced by the concealed hybrid incompatibilities and are281

coupled with the genetic interaction pattern shown in Figure 5b.282

Early Divergence between Lineageswas Critical for Reproductive Barriers to Emerge283

To further study the emergence of reproductive barriers in our model, we investigated the relative284

importance of various evolutionary forces in generating the observed patterns of RI. In particular,285

were the barriers attributed to selection pressure, random genetic drift, or both? We designed286

two “control scenarios” that were based upon the previously simulated model, but contained287

modifications to remove the effects of either selection or drift. Comparing the strength and pattern288

of RI resulting from the two control scenarios, i.e., the removal of drift or selection, to the original289

GRN dynamics, which contain both evolutionary forces, provides an assessment of the removed290

component’s role in shaping the observed pattern of RI.291
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Figure 5. Reproductive barriers arose rapidly between allopatric populations. (a, Inset) Distribution of

reproductive isolation between pairs of fixed lineages. A non-negligible fraction of crosses led to positive

reproductive isolation, which reflects the occurrence of inviable hybrids and indicates reproductive barriers

between fixed lineages. (a)We crossed allopatric populations at every generation during GRN evolution and

stacked the RI distributions into a heat map. A vertical slice in this heat map represents the RI distribution at a

given time, similar to the inset, but where the color shows the mean frequency for each bin. The growing level

of positive RI indicates that reproductive barriers arose at the early stage of evolution. (b) Frequency that

incompatibilities with various order were observed among hybrids between fixed lineages. We see that the

order of incompatibilities included a broad range and that the simple pairwise interaction did not significantly

dominate over more complex incompatibilities. Moreover, hybrid incompatibilities are consistent with the

clustered level of RI and hence sheds light on the observed RI distribution (Appendix 1). In both the inset and
panel (b), the plots show the statistic of the distribution among multiple groups of allopatric populations,

specifically the median frequency and the 95% confidence interval.

Removing the effect of natural selection is straightforward to simulate. In this control scenario,292

populations simply evolve in a selectively neutral environment where all GRNs are viable. Thus, all293

individuals survived and genetic drift became the only remaining evolutionary force. Of course,294

this neutrality concurrently made the RI metric ill-defined. We avoided this issue in the crossing295

experiments to calculate RI by placing the parental populations under the same non-neutral296

environment in the original model, so the hybrids would be generated from survivors subjected to297

selection pressure. The reproductive isolation metric could then be computed with respect to the298

non-neutral environment. This ensures comparability between the model and the “no selection"299

control scenario since the survivability of hybrids was evaluated under the same environment and300

was not biased by the otherwise inviable parents.301

Figure 6a shows the contrast of barriers observed in the original GRN evolution model (red) and302

in the scenario with no selection (blue). We traced the leading reproductive isolation over time,303

defined as the 99th percentile of the RI distribution, which is a sufficient indicator of reproductive304

barriers between lineages. We discovered that in both the model and the control scenario, the305

leading RI I∗ increased and then saturated. Furthermore, the growth in I∗ decelerated after a similar306

number of generations in both scenarios. That RI occurs at a higher level in the control experiment307

indicates that selection did not “cause" the fixation of barriers between allopatric populations,308

but instead suggests that selection was actually limiting chances for incompatibilities to occur309

in hybrids. We hypothesize that–although restricted as compared to drift–selection operating310

on incompatibilities likely induced the observed disconnect between viability and fitness seen in311

Figure 4.312

We next turned to the contribution of genetic drift to the emergence of reproductive barriers.313

The control scenario, however, was less straightforward due to technical difficulties associated with314

directly removing random genetic drift from the model. Neither abandoning sexual reproduction315

nor simulating an infinite population would result in non-trivial and/or computationally tractable316

GRN evolution. Alternatively, we designed a control scenario where the evolutionary influence317
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Figure 6. Early divergence of evolutionary trajectories between lineages was necessary for

reproductive barriers to arise. Here we compare a statistic, termed leading reproductive isolation I∗ (99th
percentile of the RI distribution), measuring the degree of reproductive barrier in the original model and two

designed control scenarios. Control scenarios were simulated with the same group of ancestral populations as

the model, where lineages were then crossed to generate hybrids. (a) Leading reproductive isolation I∗ among
allopatric populations over time, where positive values indicate the existence of reproductive barriers. We plot

the original model in red and the control scenario with a neutral environment in blue. The increasing and larger

I∗ uncovered in the control scenario implies that reproductive barriers were still observed when the selection
forces were silenced. (b) Long-term fraction of positive RI fp when the influence of random genetic drift was
tuned. We simulated the evolution of lineages, but first confine them to a common trajectory of length L, which
was realized by evolving a single population from the ancestors for L generations, and then simulated allopatric
evolution from this now less diverse ancestral population. The original model corresponds to the case where

L = 0, and for any positive L the effect of drift were lessened. We obtained the fp metric when lineages evolved
for 600 generations, where fp = 0 suggests no barriers among populations. That fp decreased with L to 0
shows that reducing the effect of drift diminished reproductive barriers. As a result, it implies the criticality of

divergence among evolutionary trajectories for barriers to emerge.
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of drift could be tuned and limited. Genetic drift results in stochasticity and causes populations318

to experience diverse trajectories. On the other side of the coin, if two lineages show similar319

evolutionary trajectories, one would say that drift effectively leads to less divergence between them.320

We restricted the influence of genetic drift by first confining lineages in a common trajectory for L321

generations, and then freed the populations and let them evolve independently, i.e., in allopatry.322

Varying the length of the common trajectory L tunes the overall similarity among lineages. L hence323

quantitatively reflects the strength of genetic drift.324

Figure 6b demonstrates the long-term fraction of positive reproductive isolation introduced325

in Methods, termed fp, as we varied the length of the common trajectory. Despite substantial326

variation in fp in the original model, which corresponds to the case where L = 0, a decline of327

fp was uncovered as early evolutionary confinement was extended. We discovered 50% of the328

experiments showed a zero fp in the after lineages were evolved together for 40 generations, and as329

the length of common trajectory exceeded 80 generations positive reproductive isolation was hardly330

found between lineages. More importantly, Figure 6b suggests that as the evolutionary influence331

of genetic drift was mitigated, RI was weakened and eventually vanished. Namely, restricting332

early divergence among populations due to genetic drift diminished reproductive barriers. This333

control scenario consequently suggests that, instead of the selection pressure, divergence between334

lineages, coupled with high diversity in the ancestral population, is critical for reproductive barriers335

to arise.336

Intra-lineage Incompatibilities were Eliminated Stochastically While Inter-lineage337

Incompatibilities Persisted and Led to Reproductive Barriers338

To better understand how reproductive barriers might be removed within a lineage, but persist339

between lineages, we computed two quantities from the underlying genetic pool. First, the size340

of the genetic pool, which determines how many possible genotypes a population contains. This341

measure captures the potential genetic diversity in the population. Second, we count the number342

potential incompatibilities in the underlying genetic pool, which are lethal allelic combinations343

that could potentially be realized in the next generation. These incompatibilities compose the344

source of inviable offspring and RI between allopatric populations. However, because even for345

small GRNs searching for all possible incompatibilities quickly becomes computationally intractable,346

we developed a novel algorithm (summarized in Methods) to compute their number in the genetic347

pool.348

Because our model does not contain mutation, one would expect the size of the underlying349

genetic pool to decline in our simulated gene network evolution. Any allele in an individual was350

inherited from its parents, and thus it must appear in the parental generation as well. Additionally,351

a parental allele might not persist in the offspring for two possibilities: either it was not transmitted352

because of finite population size of the progeny generation and the stochasticity during sexual353

reproduction, i.e. drift, or it formed a lethal pathway along with other inherited alleles which made354

the offspring inviable, i.e. selection.355

Figure 7a demonstrates the size of genetic pool over time, where we compare simulations in the356

original model (red) and in the control scenario without selection pressure, i.e., only genetic drift357

will reduce the size of the genetic pool (blue). A rapid decline of genotypic diversity was witnessed358

under both models. More intriguingly, little difference was found between the GRN evolution model359

and the control scenario under a neutral environment. The two median curves nearly overlaps, and360

for any given generation, the pool size in the original model was not significantly smaller than the361

control counterpart. Therefore, we find additional support for our earlier finding that although both362

natural selection and random genetic drift decreased genotypic diversity, drift was the dominant363

driving force. However, while the effect of drift reduced diversity within a lineage, it increased the364

divergence among lineages.365

Figure 7b shows the number of potential incompatibilities within a lineage’s underlying genetic366

pool (orange). We found that the amount of incompatibilities embedded in a population also367
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Figure 7. The underlying genetic pool lost alleles and eliminated potential incompatibilities within

allopatric populations, whereas inter-lineage incompatibilities persisted. (a) Size of the underlying

genetic pool for each generation, where we plot the original model in red along with the no selection control

scenario in blue. Both cases show a similar reduction in the genetic pool. The similarity of these curves suggests

that the continual losses of allelic diversity within a lineage was dominated by random genetic drift. (b) Number

of potential intra-lineage (orange) and inter-lineage (pink) incompatibilities for each generation in the original

model. We found that the number of potential incompatibilities also decreased as GRNs evolved, which is

explained by the reduced allelic diversity in the genetic background. The vanishing intra-lineage

incompatibilities implies disappearing sources of inviable hybrids, and it provides a mechanistic understanding

of how a genopytically rich populations adapted to the imposed environment. Contrarily, the intra-lineage

incompatibilities remained during GRN evolution. It was the persistent potential incompatibilities between

allopatric populations that led to evident reproductive barriers.

Figure 7–Figure supplement 1. Inter-lineage incompatibilities were sustained throughout GRN evolution.

decreased over time. This phenomenon is understood by the continual loss of allelic diversity,368

since removing an allele from the underlying pool always restricts the possibilities to form a lethal369

pathway in the GRN. Furthermore, the number of potential incompatibilities fell rapidly until no370

potential incompatibilities remained. The elimination of potential incompatibilities illuminates how371

a population adapted to the imposed environment when GRNs evolved, as shown in Figure 3a.372

Random genetic drift drove the loss of a lineage’s genotypic diversity, and along with the guidance of373

selection, it eliminated probable lethal pathways in the genetic background. Once all the potential374

incompatibilities were eliminated, no source of inviable offspring existed and consequently the375

population reached 100% survival. Again, this result supports our earlier finding that natural376

selection was operating against incompatibilities within a lineage, but that drift was nevertheless377

the dominate force in structuring incompatibilities between lineages.378

Finally, we investigated incompatibilities between underlying pools of lineages, which we call379

the “inter-lineage” incompatibilities, as compared to potential lethal allelic combinations within380

a population termed “intra-lineage” incompatibilities. Figure 7b presents the number of inter-381

lineage incompatibilities over generations (pink). We observed more incompatibilities between382

allopatric populations than those within a population, i.e., sympatric RI, and similarly their amount383

dropped as allelic diversity decreased. In contrast, inter-lineage incompatibilities were removed384

at a slower pace compared to intra-lineage incompatibilities. The sustained confidence interval385

further suggests that some inter-lineage incompatibilities persisted, which was also the case after386

populations reached fixation (Figure 7–Figure Supplement 1). The persistence of these potential387

incompatibilities qualitatively explain the inviable hybrids revealed after GRN evolution. In spite388

of lineages adapting to the same imposed environment, hybrdiziation can “resurrect" a lethal389

combination of alleles, which was eliminated in either lineages yet remained in their joint genetic390

background. This explanation also supports the stronger barriers uncovered in the neutrally391
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evolving control in Figure 6a, since inter-lineage incompatibilities would be more persistent without392

the constant selection pressure (Figure 7–Figure Supplement 1).393

Discussion394

In this work, we propose a path-oriented construction of GRNs where alleles are labeled and395

presented by their functionality. The pathway framework brings a natural perception of GRNs396

considering how a genotype can give rise to a phenotype, and it allows us to apply network science397

analyses to study the process of speciation. We simulated the generational dynamics of gene398

networks via a model incorporating natural selection, segregation and random sampling. With399

the presumption of ancestral genetic variants, a population adapted to the imposed environment400

and fixed a single GRN, whereas parallel allopatric populations resulted in alternative regulatory401

structures. More importantly, we discovered reproductive barriers that arose rapidly among402

allopatric lineages even under the same selection pressure.403

We also provide a mechanistic illustration of how reproductive isolation emerged as GRNs404

evolved. Early evolutionary divergence of lineages, particularly the way they lost accessible alleles405

in their genetic background, established the base of reproductive barriers. Despite that allopatric406

populations adapted to the imposed environment whose genetic background no longer contained407

lethal allelic combinations, potential incompatibilities could persist in the joint background of two408

parallel lineages. Interbreeding them might therefore resurrect previous removed incompatibilities409

and led to inviable hybrids.410

The persistence of inter-lineage incompatibilities implies co-occurrence of many GRNs with411

negative reproductive interaction under the same selection force. This “functionally degenerate"412

characteristic of GRNs reflects the concept of genetic redundancy (Nowak et al., 1997; Láruson413

et al., 2020), and it resonates with earlier studies that suggested alternative regulatory structures414

to achieve the same phenotype (True and Haag, 2001; Wagner and Wright, 2007; Schiffman and415

Ralph, 2018). Our pathway framework illustrates why degenerate genotypes can naturally arise.416

Once the alleles are presented as functional pathways connecting a underlying group of proteins,417

the conjunction between genetic factors and physiological traits is no longer a bipartite mapping;418

the phenotype, as the collective chemical status of proteins, is a convolution of active signals419

and external stimuli propagating on the network consisting of genetic pathways. The pathway420

configuration that satisfies an acknowledged environmental input and phenotypic output is, as421

a result, not unique. One could find numerous functionally degenerate gene network structures422

fulfilling the input-output pair, as what Figure 4 demonstrates, whereas mixing edges between two423

GRNs possibly leads to a fatal pathway and hence an inviable offspring. Therefore, we evidence that424

the pathway framework underlines the role of GRNs in speciation processes through the innovative425

edge-and-node interpretation between genotypes and phenotypes.426

Our minimal model of GRN evolution encapsulates selection through binary viability, which is427

essentially a special of holey adaptive landscapes (Gavrilets, 1997). Gavrilets and Gravner (1997)428

introduced a multi-locus model where each genotype was independently assigned to one of429

the two fitness level. The study suggested that reproductive isolation could arise from the high430

dimensionality of the genotype space, which bypassed and connected seemingly disjoint genotypic431

regions. In a similar spirit, our model further ties the high dimensionality of genotypes to complex432

genetic interactions; under the pathway framework, inviability originates at the mechanism of433

hybrid incompatibilities, i.e., allelic combinations that form lethal pathways in a GRN. The pathway434

framework also features flexibility, and in future works it can be combined with other fitness435

landscapes that have been investigated in the speciation literature. For example, Barton (2001)436

demonstrated that stabilizing selection can generate reproductive isolation, and the pathway437

framework can be easily embedded into such a continuous fitness landscape.438

Our work endorses the latent connection between speciation processes and ancestral genetic439

variation. Ancient polymorphisms not only confound inference of evolutionary processes that440

can drive genomic divergence (Guerrero and Hahn, 2017), but they have also been hinted as a441
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potentially good substrate for rapid speciation through the combinatorial mechanism (Marques442

et al., 2019). In particularMarques et al. reviewed that old genetic variants had underwent selection443

and thus likely to be beneficial, they would have higher allele frequency than de-novomutations, and444

they could enrich large-effect haplotypes and more. Alternatively, we demonstrate that stochasticity445

of losing accessible pathways in GRNs relatively thrived selected functional regulatory structures446

among ancestral polymorphisms. Segregating these regulatory structures may notwithstanding447

upraise deadly pathways. Our pathway framework hence adds theoretical supports to findings of448

substantial inheritable polymorphism in hybrid incompatibilities, as reviewed in Cutter (2012). We449

suggest to consider evolution of regulatory pathways as a parallel mechanism with which ancestral450

genetic variation can facilitate appearance of new species.451

In principle, any group of ancestral polymorphisms that encodes a lethal regulatory pathway452

induces a non-zero chance of reproductive isolation. We numerically assessed the strength of re-453

productive barriers reflecting on the tuned ancestral variation (Appendix 2). For finite-size allopatric454

populations, there appeared a critical amount of variants to observe evident barriers. Further theo-455

retical efforts are required to quantitatively comprehend the strength of barriers and its relation456

with the extent of ancestral variation. First, one needs more advanced analyses than Appendix 1 to457

evaluate the survival probability of hybrids given multiple incompatibilities embedded in parental458

GRNs. Second, the likelihood that a certain incompatibility lies between two parental GRNs depends459

on the balanced distribution of regulatory structures, for instance Figure 4 as the case at fixation.460

The skewed patterns of fixed GRNs sketches that some regulatory structures are more favorable461

than others under evolution. Understanding the balance between gene regulation is necessary to462

model the dynamics of hybrid incompatibilities.463

Methods464

Numerical Simulations465

General Schema and Assumptions466

In this work we simulated evolution GRNs in allopatric populations. Throughout evolution, we467

assumed that individuals had a constant number of loci and thus a fixed number of edges in their468

GRNs. The underlying set of nodes in GRNs also remained unchanged as we reasoned in Results.469

We further introduced different categories of nodes/proteins to concrete the space of plausible470

alleles. Some proteins were presumed to only be present with the environmental stimuli, which471

were not products of any locus; on the other hand, some other proteins were presumed to have472

mere physiological effects, and thus they were not capable of activating gene expression. We called473

them source proteins and target proteins respectively. A plausible allele was therefore labeled474

by a non-target protein that could activate its expression and a non-source protein that would be475

synthesized. In our simulations we supposed only one source protein and one target protein.476

We considered a naive model of GRN evolution incorporating natural selection, independent477

assortment and random genetic drift. The environmental condition was set fixed over time and478

across populations. We assumed that the environment stimulated presence of one protein and it479

specified another protein with a lethal effect3. Viability of individuals was presumably equated to480

the reciprocal binary state of the lethal protein. Hence given the current generation, individuals481

were selected such that whoever did not possess a pathway from the environmental stimulus to482

the lethal protein survived and were able to reproduce.483

The survivors then randomly mated and formed the next generation with independent assort-484

ment. Here we assumed individuals with haploid-dominant life cycles, where the multicellular485

haploid stage is evident4. Supposed even segregation during meiosis of the diploid zygotes, we486

modeled the process of independent assortment as follow. Two parental individuals were randomly487

3Specifically, they reconciled with the source and the target protein respectively.

4During reproduction, specialized haploid cells from two individuals combined and formed a diploid zygote. The zygote

experienced meiosis and generated haploid spores, which then developed into multicellular-haploid-stage individuals through

mitosis.
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sampled from the survivors. The set of loci was first randomly partitioned into two groups of equal488

sizes. The offspring inherited alleles of one group of loci from one of its parents and alleles of the489

remaining loci from the other parent. Hence half of the edges in the offspring’s GRN came from490

one parent’s GRN and the rest was acquired from the other. This procedure was repeated until the491

next generation had the same constant population size as their predecessors.492

Simulations and Parameter Setups493

Here we summarize the two different parameter setups in our simulations:494

Setup 1: We assumed 11 possibly existing proteins in the organism. A generation was composed of495

100 individuals with 10 loci each. We generated 100 ancestral populations where individuals’496

GRNs were randomly sampled from all plausible genotypes. For every ancestral population,497

we in parallel ran 100 simulations from it, which were regarded as lineages evolving in isolated498

geo-locations.499

Setup 2: We assumed 5 possibly existing proteins in the organism. A generation was composed500

of 16 individuals with 4 loci each. We generated 104 ancestral populations induced from a501

genetic pool5 containing all plausible alleles for each locus. For every ancestral population, we502

in parallel simulated 103 lineages from it.503

The randomly generated ancestral populations encapsulate our assumption of ancestral genetic504

variation, which reflect divergence of gene regulation that has been found in empirical studies505

(Gould et al., 2018). Setup 2 aimed to examine how broadly, in terms of fixed GRNs, evolution can506

explore in all possibilities. Thus it consisted of a larger amount of simulations starting with unbiased507

ancestral populations that were induced from a maximal genetic pool. If not otherwise specified,508

simulations shown in Results were run under Setup 1.509

When we inspected reproductive barriers between allopatric populations by interbreeding them,510

we first sampled 1000 pairs of lineages and then each generated F1 1000 hybrids. The survival511

probability of hybrids can then be obtained for all crosses. The same sampling procedure was also512

applied when we computed the number inter-lineage potential incompatibilities between pairs of513

allopatric populations.514

Metrics of Reproductive Isolation515

We introduce a quantitative measure of reproductive isolation between lineages which evolved516

from a common ancestral population. Given a group of lineages and a chosen pair among them,517

the reproductive isolation between the pair is defined as the relative difference of hybrid survival518

I =
pc − pℎ

pc
(1)

where pℎ is the survival probability of F1 hybrids, and pc denotes the average of survival probabilities519

of all lineages’ next generation. A positive value of reproductive isolation I implies that the hybrids520

have less survivability than the expectation of the offspring. In the extreme case where no hybrid521

lives, I = 1. It therefore serves as an indicator of reproductive barriers between two lineages.522

Strengths of reproductive barriers among the group of lineages are described through a distribu-523

tion of reproductive isolation, which can be obtained by sampling pairs of lineages and computing524

their reproductive isolation I . We further introduce two indicators for the existence of reproductive525

barriers. A quantity named leading reproductive isolation I∗ is defined as the 99th percentile of the526

reproductive isolation distribution. It signals that there is one percent of crosses with reproductive527

isolation equal or larger than I∗. We would also like to raise a caveat that I∗ > 0 is sufficient for the528

existence of reproduction barriers but not a necessary condition, due to the possibility of positive529

I in the distribution even if I∗ ≤ 0. The leading reproductive isolation metric hence summarizes530

a high level of reproductive barriers that can be found among the lineages. On the other hand,531

5We refer a population induced from a genetic pool to a sample among all possible populations that own the same underlying

genetic pool.
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the fraction of positivity in the reproductive isolation distribution serves as a necessity indicator532

for reproductive barriers, which we denote as fp. The zero-value of fp implies that none of the533

crosses generate inviable hybrids more than the anticipation of the offspring and thus the absence534

of reproductive barriers. Contrarily, a positive fp does not satisfy existence of barriers considering535

small reproductive isolation subject to noise. These two indicators are beneficial for us to identify536

the responsible part of the model to the observed evolutionary consequences.537

Potential Incompatibilities within and between Genetic Pools538

An intra-lineage incompatibility is a group of alleles in its genetic pool, each of a unique locus, that539

generates a lethal pathway. In our model those incompatibilities are the only source of inviability,540

and hence the number of potential incompatibilities provides information about reproductive541

barriers. Nevertheless, counting the number of potential incompatibilities within a genetic pool542

through a brute-force manner is computationally intractable. Here we suggest a relatively efficient543

algorithm when the total number of loci is small. Our strategy is to turn the task into solving a graph544

problem. The genetic pool can be transformed to an edge-colored network where nodes once more545

represent possibly existing proteins in the organism. The edges correspond to available alleles546

in the pool, which are colored by their according loci. A potential incompatibility then becomes547

a simple path from an environmental input signal to a lethal protein node, with an additional548

constrain that no edges on the path have the same color. We call such a path an edge-colorful549

simple path (ECSP).550

The proposed algorithm, as demonstrated in Appendix 3 Algorithm 1, counts the number of551

ECSPs from the source nodes to the targets nodes by having agents propagate on the edge-colored552

network iteratively. An agents is capable of keeping information of the trajectory, including its553

current position on the network, the colors of edges it has traversed and the nodes that it has554

visited6. Initially we deploy one agent on each source node. At every iteration, each agent is555

substituted by all of its possible successors who are a hop away, such that the hop along with the556

agent’s memory obeys an edge-colorful simple path. Those successors can be deduced from the557

agent’s trajectory information as shown in Appendix 3 Algorithm 2. The cautiously-designed rule of558

agent propagation guarantees that the total number of agents locating on the target nodes at the559

nth iteration equals to the number of the desired ECSPs of length n. Moreover, since the order of560

an potential incompatibility is bounded above by the number of genes in the organism, iterations561

as many as the amount of edge colors in the network are sufficient to obtain a computationally562

feasible count of all potential incompatibilities. The efficiency of the algorithm can be further563

improved by, instead of keeping track of numerous agents, monitoring the distribution of agent564

states over iterations.565

The same algorithm can be applied to count the number of inter-lineage incompatibilities566

as well. In this case the underlying genetic pools of both lineages are transformed into a single567

edge-colored network, whose edges then consist of alleles in the two pools and are again colored568

by their according loci. A ECSP on this composite network either only traverses through edges569

from one of the genetic pools, or it contains alleles from the two different pools. These two570

scenarios correspond to a incompatibility within and between genetic pools respectively. Therefore,571

by counting the number of ECSPs on the composite network, and subtracting by the number of572

potential incompatibilities within the two genetic pools separately, we can compute the number of573

incompatibilities between the two underlying genetic pools.574
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Appendix 1677

Hybrid Inviability against a Single Incompatibility678

Here we analytically evaluate the probability that a hybrid is inviable presuming that multiple

incompatibilities are rarely embedded in two parental gene regulatory networks. In addition,

this naive analysis explains the pattern of RI distribution, Figure 5a in the main text.

679

680

681

Assume that there is only on incompatibility  between the two parental gene networks
G1 and G2. For convenience we suppose there are an even number of loci in the organisms,

denoted by 2m, and let the incompatibility  be of order k − 1 so it consists of k alleles to
form a lethal combination. We also suppose that, among the k alleles in , k1 of them come

from G1 and the other k2 alleles are from G2.

682

683

684

685

686

Following the rule of recombination between haploid GRNs in our model, the hybrid is

generated by randomly segregating alleles of m loci from G1 and then mixing with alleles

of the other m loci from G2. Hence if m < k1 or m < k2, then there is no chance that the

incompatibility  appears in the hybrid. Otherwise, among all plausible segregation, we
can compute the number of achievable ways that the k1 and k2 alleles from G1 and G2

respectively are sorted into the hybrid. The probability that the hybrid is inviable due to the

only incompatibility  is thus

P () =

⎧

⎪

⎨

⎪

⎩

(2m−km−k1
)

(2mm )
, if k1, k2 ≤ m

0, otherwise

(2)

687

688

689

690

691

692

693

694

695

696

If we further assume that m ≫ 1 and m ≫ k, applying the Stirling’s approximation we have
an estimate of the hybrid inviability

P () =
m!m!(2m − k)!

(m − k1)!(m − k2)!(2m)!
≈ 2−k (3)

This plain derivation shows that, should there be only one incompatibility concealing between

two parental GRNs, the survivability of a hybrid is predominantly determined by the order of

the incompatibility.

697

698

699

700

701

702

703

704

Here Figure 1 shows good agreement between our analytical prediction of hybrid invia-
bility and the “bulges" from the observed RI distribution. Our simple derivation explains the

higher likelihood of certain RI levels relative to their neighboring regions. It also manifests

how the discreteness nature of hybrid incompatibilities shapes the RI distribution and that

this characteristic has major effects on the strength of reproductive barriers.
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Appendix 1 Figure 1. Comparison between the uncovered RI distribution in our simulations and the

predicted hybrid inviability Equation 2.
711
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Appendix 2714

Reproductive Barriers and Ancestral Genetic Variation715

Here we demonstrate our examination on how the extent of ancestral genetic variation

influences the appearance and strength of reproductive barriers. To begin with, we designed

a pipeline to produce ancestral populations whose amount of genetic variation are tunable.

A fixed population was first obtained from our GRN evolution model starting with randomly

generated individual GRNs. For every locus, the allele might then mutate into any other

possible allele with a per-locus mutation probability p. The resulting population was regarded
as the ancestral population, where the mutation probability p became a tunable parameter
to assess the degree of ancestral variation.

716

717

718

719

720

721

722

723

We followed the same methodology to simulate generational dynamics of GRNs and to

compute reproductive isolation between allopatric lineages as in the main text. Figure 1a-c
shows, for different number of loci, the reproductive barriers consequent to the varying

ancestral mutation probability p. Here we present two indicators of barriers: the leading RI
(blue, left axis) and the fraction of positive RI (red, right axis). On a first glance the simulations

evince that, for a organism with a larger number of loci, emergence of barriers only required

a smaller ancestral mutation probability yet more apparent barriers were observed.

724

725

726

727

728

729

730

Figure 1a-c furthermore suggest some critical level of ancestral variation associated with
the constant population size, such that reproductive barriers would hardly appear between

lineages evolving from an ancestral population with less polymorphisms. We quantify the

critical level of genetic variation through a critical mutation probability pc ; this is the smallest
ancestral mutation probability with which a barrier indicator has non-zero median value.

Nevertheless, due to the lack of a both sufficient and necessary indicator, we could only

estimate the interval that this critical level fell into. The critical level of ancestral variation

would be bounded above by pc for the leading RI (a sufficient indicator of barriers) and
bounded below by one for the fraction of positive RI (a necessary indicator of barriers).

Figure 1d presents the interval estimation that the critical ancestral variation fell into for
organisms with different number of loci.
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Appendix 2 Figure 1. Varying the extent ancestral variation and its corresponding strength of

reproductive barriers. The GRN evolution was simulated under Setup 1 described in Methods. (a-c)

Indicators of barriers for 5, 10 and 20 loci. (d) Estimation of their critical level of ancestral variation.
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Appendix 3747

Algorithms of Counting Potential Incompatibilities748

Algorithm 1 COUNT-ECSP749750

Require: A set of source nodes S; a set of target nodes T ; a map I from nodes to their
incident outgoing edges; a set of path lengths of interests L.

751

752

Ensure: A map C from L to the number of edge-colorful simple paths from S to T , which
are of the corresponding length.

753

754

1: C ← an empty map755

2: lmax ← the largest element of L756

3: A ← an empty list ⊳ Initialize agents.757

4: for all node s ∈ S do A.INSERT(NEW-AGENT(s, ∅, {s}))758

5: end for759

6: for l ← 1 to lmax do ⊳ Iterate over the number of hops agents have made from the

source nodes.

760

761

7: n ← 0762

8: N ← an empty list ⊳ Update the list of agents.763

9: for all agent a ∈ A do764

10: for all agent a′ ∈ NEXT-POSSIBILITIES(a, I ) do765

11: N .INSERT(a′)766

12: if a′.position ∈ T then n ← n + 1767

13: end if768

14: end for769

15: end for770

16: A ← N771

17: if l ∈ L then C .INSERT(l, n) ⊳ Update counting.772

18: end if773

19: end for774

20: return C775

Algorithm 2 NEXT-POSSIBILITIES776777

Require: An agent a; a map I from nodes to their incident outgoing edges.778

Ensure: A set P of agents who are of all the possible states that can be reached through a
hop from the given agent a, such that

779

780

1. The hop only goes through an edge of a color that has not been visited by the agent.781

2. The position after the hop has not been visited by the agent.782

1: P ← an empty set783

2: for all edge e ∈ I .GET(a) do784

3: if e.color ∉ a.colors-visited and e.target ∉ a.nodes-visited then785

4: a′ ← NEW-AGENT(e.target, a.colors-visited∪{e.color}, a.nodes-visited∪{e.target})786

5: P .INSERT(a′)787

6: end if788

7: end for789

8: return P790
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Figure 7–Figure supplement 1. (a) The size the underlying genetic pool continually shrank until

there was only one accessible genotype. At this stage a population fixated a single GRN, and no

significant difference was found between the model and the control scenario without selection,

i.e., drift only. (b) In our model, inter-lineage incompatibilities persisted throughout evolution (red),

which accounts for the sustained confidence interval of their abundance even after populations

reach fixation. Interestingly, in the control scenario where natural selection was silenced, inter-

lineage incompatibilities were eliminated at a slower pace. We hypothesize that due to the lack of

guidance by selection, inter-lineage incompatibilities only became inaccessible through random

genetic drift. This scenario led to fatal allelic combinations that were more persistent than those in

the model and hence stronger reproductive barriers were observed.
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