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Highlights
• A new software toolbox is introduced for layer-specific

functional MRI: LAYNII.
• LAYNII is a suite of command-line executable C++ pro-

grams for Linux, Windows, and macOS.
• LAYNII is designed for layer-fMRI data that suffer from

SNR and coverage constraints.
• LAYNII performs layerification in the native voxel space

of functional data.
• LAYNII performs layer-smoothing, GE-BOLD vein re-

moval, QA, and VASO analysis.

Abstract
High-resolution fMRI in the sub-millimeter regime allows re-
searchers to resolve brain activity across cortical layers and
columns non-invasively. While these high-resolution data make
it possible to address novel questions of directional information
flow within and across brain circuits, the corresponding data
analyses are challenged by MRI artifacts, including image blur-
ring, image distortions, low SNR, and restricted coverage. These
challenges often result in insufficient performance accuracy of
conventional analysis pipelines. Here we introduce a new soft-
ware suite that is specifically designed for layer-specific func-
tional MRI: LAYNII. This toolbox is a collection of command-
line executable programs written in C/C++ and is distributed
open-source and as pre-compiled binaries for Linux, Windows,
and macOS. LAYNII is designed for layer-fMRI data that suffer
from SNR and coverage constraints and thus cannot be straight-
forwardly analysed in alternative software packages. Some of
the most popular programs of LAYNII contain ‘layerification’
and columnarization in the native voxel space of functional data
as well as many other layer-fMRI specific analysis tasks: layer-
specific smoothing, vein-removal of GE-BOLD data, quality as-
sessment of artifact dominated sub-millimeter fMRI, as well as
analyses of VASO data.
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Graphical abstract

1. Introduction
Functional Magnetic Resonance Imaging (fMRI) aims to
measure correlates of brain activity at the level of individual
voxels. Recent advances in fMRI hardware (Yacoub and
Wald 2018), readout strategies (Poser and Setsompop 2018),
and fMRI contrasts (Huber et al. 2019b) provide estimates
of brain activation with voxel-sizes in the sub-millimeter
domain. Thus, modern fMRI data from ultra-high fields
(UHF) are approaching the spatial scale of cortical layers
and columns (Norris and Polimeni 2019). While the first
decade of sub-millimeter fMRI research focused on data
acquisition methods, the methodological research questions
of the layer-fMRI field have since shifted towards addressing
analysis challenges. As such, a recent survey of the ISMRM
study group Current Issues in Brain Function showed that
most high-resolution fMRI researchers consider analysis
challenges to be more relevant than acquisition challenges
(Huber for ISMRM SG CIBF 2018).
The specific shortcomings of common analysis approaches
for high-resolution fMRI are listed in multiple review
articles (Kemper et al. 2018; Polimeni et al. 2018),
and there are many fMRI analysis software packages
that are able to minimize these shortcomings to some
degree: AFNI/SUMA (https://afni.nimh.nih.gov, (Cox
1996)), ANTs (http://stnava.github.io/ANTs/, (Avants et al.
2008)), BrainVoyager (http://www.brainvoyager.com,
(Goebel 2012)), CBSTools/Nighres (http://www.
nitrc.org/projects/cbs-tools/, (Bazin et al. 2007),
https://nighres.readthedocs.io/, (Huntenburg et al. 2018)),
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FreeSurfer (https://surfer.nmr.mgh.harvard.edu, (Fischl
2012)), FSL (http://fsl.fmrib.ox.ac.uk/fsl, (Jenkinson et al.
2012)), and SPM (http://www.fil.ion.ucl.ac.uk/spm (Ash-
burner 2012)).

Many of these packages, however, have been originally de-
veloped, validated and established for the application for
fMRI data that have resolutions in the range of 1.5-5mm,
large brain coverage and T ∗

2 -weighted fMRI contrasts. Such
fMRI data constitute the vast majority of the fMRI litera-
ture and are hereafter referred to as “conventional fMRI”.
However, layer-fMRI data are different from conventional
fMRI data and layer-fMRI data are limited by many unique
high-resolution constraints. Thus, layer-fMRI data can-
not be straightforwardly analysed with conventional analysis
pipelines (Fig. 1). The specific layer-fMRI data constraints
are listed below:

• Low SNR: Layer-fMRI data are noisier compared to
conventional fMRI data. In layer-fMRI studies, tSNR
values in the single-digit regime are not uncommon.
This indicates that layer-fMRI data are usually more
limited by thermal noise than physiological noise (Tri-
antafyllou et al. 2011). Therefore, many quality as-
sessment (QA) tools that have originally been de-
veloped for conventional fMRI data are not applica-
ble to layer-fMRI data. For example, in the ther-
mal noise dominated regime, the QA metric of tSNR
cannot capture many sources of MR-sequence related
and physiological-noise-related signal clutter. These
sources of signal instability are below the thermal noise
floor (for more discussions of inappropriate QA met-
rics see section 2.5). Thus, for layer-fMRI data, new
analysis tools with additional (and optimized) QA met-
rics are needed.
Due to the low tSNR in layer-fMRI, it can become
necessary to average multiple data points across space
(e.g. spatial smoothing, or voxel pooling). In many
layer-fMRI application studies, it can be assumed that
neighbouring columnar structures are performing the
same neural task (e.g. top-down attention) with the
identical layer-specific processing signature (albeit po-
tentially different feature representations). In those
cases, it can be beneficial to apply local smoothing
within the layer direction and without signal blurring
across layers (Blazejewska et al. 2019) to enhance the
layer-specific processing signature. Alternatively, it
can be beneficial to apply intracortical non-isotropic
smoothing based on the directional functional acti-
vation (Lohmann et al. 2018) or based on the non-
isotropic MRI signal intensity across the cortical depth.
Thus, for layer-fMRI analyses, new software tools
with a larger variety of anatomically informed spatial
smoothing methods are needed.

• Necessity to manually intervene: In layer-fMRI, the
data acquisition procedure is usually pushed to its
limits. This means that every acquisition protocol -
and sometimes each participant- may suffer from in-

dividual image artifacts and other experimental short-
comings. In comparison to standardized conventional
fMRI that has gone through several decades of protocol
optimizations, it is currently harder to establish stable
and standardized analysis pipelines for layer-fMRI. In
layer-fMRI, the researcher therefore needs to have the
flexibility to specifically adjust the analysis pipeline for
each individual data set. Thus, a flexible and modular
analysis software can facilitate user-dependent and in-
teractive intervention access-points along the analysis
stream on a step-by-step and participant-by-participant
basis. This flexible layer-fMRI analysis paradigm is in
direct opposition to the demands of large scale popula-
tion studies of conventional fMRI (UKBiobank, HCP,
etc.). In those large scale studies, the analysis pipelines
need to be executable with minimal user interventions;
and in those population studies, analysis robustness
can outrank small accuracy tradeoffs.

• Restricted coverage: Layer-fMRI acquisition proto-
cols are usually pushed to the limits of what the scan-
ner can achieve. Thus, high spatial resolutions are of-
ten achieved by significant tradeoffs in coverage and
even single-slice protocols are accepted as a compro-
mise for resolution (Cheng et al. 2001; Guo et al.
2020; Kashyap et al. 2018b; Yacoub and Harel 2008).
Furthermore, layer-fMRI data are often acquired with
small coil arrays that do not facilitate straightforward
whole-slice analyses. While it is without question that
small fMRI coverage can be troublesome for many
analyses, small coverage data play a crucial part in this
rapidly developing field. However, many conventional
fMRI analysis pipelines are not designed for (or are in-
compatible with) small coverage data. Therefore, new
layer-fMRI analysis tools that are more accommodat-
ing to small coverage data are needed.

• No topology requirements: Almost all current layer-
fMRI studies use reduced field of views (Schluppeck
et al. 2018) and do not exceed a coverage volume
beyond a thin slab. However, many of the current
topography-related analysis packages have been de-
signed for whole brain analyses that need to fulfill a
number of topological requirements. Namely, fMRI
data are used in brain models of closed, continuous
GM sheets, without holes or crossing surfaces. How-
ever, even though the biological structure of the cere-
bral cortex fulfils this requirement, common layer-
fMRI EPI slab-data do not fulfill this requirement. It
is not uncommon for some parts of the functional data
to suffer from holes in the cortical sheet and not fulfill
the original topology requirements. There are discon-
tinuities, resolution constraints, as well as constraints
of brain coverage (commonly 0.5-2.5 cm slabs) that
violate the topology constraints in virtually all layer-
fMRI data. Therefore, there is a need for analysis soft-
ware that allows topographical analysis of layers and
columns with fewer topological requirements (Kemper
et al. 2018).
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• Necessity to work in voxel space: There are vari-
ous philosophical approaches to layer-fMRI analyses.
Many brain researchers prefer to analyse, depict and
interpret their data in a data format that best resem-
bles the object of interest. Since the brain consists
of a folded sheet of stacked layers, one could ana-
lyze and depict brain data in surface space (using mesh
vertices). Alternatively, many MRI and reconstruction
methodologists prefer to keep their data as raw (and
original) as possible and thus prefer to analyse, depict
and interpret their data in the format they are acquired
(in voxel space) and without additional necessary data
conversions. Since layer-fMRI is still largely limited
by the data acquisition strategies, it might be appro-
priate to favour data processing tools that operate in
voxel space to avoid additional confounds that come
from transitioning to surface space. Thus, in layer-
fMRI, there is a need for purely voxel-based analysis
software in addition to already existing surface-based
analyses.
If researchers had access to layering analyses in voxel
space, the data acquisition and analysis could be
brought closer together. This would allow researchers
to optimize acquisition and analysis concurrently and
would enable a new form of fMRI studies that were
still unthinkable until today. For example, with layer
estimates directly accessible in the raw scanner voxel
space, online analysis at the scanner console are doable
and layer-dependent neural-feedback studies can be-
come possible (van Hoof et al. 2020).

• Accuracy and precision trumps streamlining:
While some conventional fMRI analysis tools aim for
stable and robust streamlined analysis that can pro-
cess thousands of participants without necessary user-
interventions, this is neither possible, nor currently de-
manded for layer-fMRI analyses. While minimal man-
ual tuning of conventional analysis pipelines provides
more than sufficient quality for conventional fMRI res-
olutions, it is not uncommon in layer-fMRI applica-
tions to invest 8-12 work hours per dataset for man-
ual high-quality corrections of the segmented borders.
Furthermore, it is not uncommon that the experimenter
needs to spend more than an entire work week per par-
ticipant to complete an analysis pipeline. This is due
to the layer-fMRI specific requirement to have excep-
tional accuracy of the analysis and high precision of
gray matter (GM) borders. Thus, a timely layer-fMRI
analysis toolbox does not need to be optimized to pro-
vide moderate results for an extremely wide range of
input data. Instead, a timely layer-fMRI analysis tool-
box should rather be optimized to allow straightfor-
ward user-based manipulations of a wide range of algo-
rithm parameters. This would aid the user to iteratively
tweak the parameters for every dataset to end up with
fine-tuned pipelines that provide the required quality.
Such an approach is necessary to optimize layer-fMRI
analysis strategies globally in the long term until the

data quality will allow streamlined analyses.

• No anatomical reference requirements: Since layer-
fMRI data are limited by a high noise level, a suc-
cessful study often depends on extensive averaging of
countless task trials. In light of limited research fund-
ing for expensive scan time and ethically appropriate
finite scan durations, it is often challenging for the ex-
perimenter to acquire additional non-fMRI auxiliary
data that might aid the analysis. As such, it can be chal-
lenging to obtain high-quality high-resolution whole
brain anatomical reference data, B0 and B1 maps, as
well as reliable distortion inverted EPI reference data.
It is also not uncommon that a researcher is confronted
with the decision: either a) to obtain many auxiliary
analysis-facilitating reference data without remaining
scan time for sufficient functional averages, or b) to
obtain sufficient functional averages for decent func-
tional interpretability but without additional reference
data. Furthermore, in cases when these auxiliary data
are available, their utilization at submillimeter accu-
racy level is rarely perfect.
While the lack of reference data is not ideal, there is a
need for software analyses that can still extract useful
information from layer-fMRI without reference data.
Thus, there is a need for a layer-fMRI analysis software
that is able to perform layer-specific analyses directly
in the distorted native EPI space without the require-
ment of additional non-fMRI data.

• Non-BOLD fMRI contrasts: At high spatial reso-
lutions, conventional GE-BOLD fMRI sequences are
limited by spatially unspecific draining veins that ob-
scure the underlying layer-specific neural activation.
Thus, it is getting popular to use alternative fMRI con-
trasts that do not suffer this shortcoming (Chai et al.
2019; Huber et al. 2019b). One example is the blood
volume sensitive VASO (vascular-space-occupancy)
contrast that is used in approximately 30% of current
layer-fMRI studies (Huber et al. 2020a). The VASO
sequence, however, does not directly provide a sin-
gle contrast time course like conventional fMRI GE-
BOLD data do. Instead, raw VASO time series data
consist of multiple interleaved contrasts with variable
repetition times (TR) and require additional prepro-
cessing steps to extract pure BOLD and pure blood-
volume weighted time courses, respectively. Thus,
there is a need for an analysis software that performs
respective VASO processing analyses including tem-
poral image resorting, nifti header manipulations and
dynamic contrast divisions.

• Draining vein problem: In cases where layer-fMRI
data have already been acquired with GE-BOLD, the
unwanted venous signal can no longer be accounted for
with advanced acquisition methods. Instead, one could
use knowledge of the directional blood flow in the cor-
tical vasculature to estimate the venous signal contam-
ination (Markuerkiaga et al. 2016; Uludag and Blinder
2018) and remove it (Markuerkiaga et al. 2016; Mar-
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quardt et al. 2018). Thus, a timely layer-fMRI anal-
ysis software should contain corresponding tools for
model-based venous signal removal.

In short, layer-fMRI data often suffer from multiple short-
comings that hinder a straightforward analysis of layers and
columns. While the acquisition methodology needs to be
further advanced to remove those shortcomings, there is a
current need for a layer-analysis software that works despite
each and all of the current shortcomings (Fig. 1).

Here, we present an fMRI analysis software suite LAYNII
that is specifically designed for layer-fMRI data and that ad-
dresses all of the above listed challenges. LAYNII is de-
signed to perform layer analyses entirely in voxel space and
consists of many modular programs that perform layer-fMRI
specific tasks:

a) Cortical depth and thickness measurements with corre-
sponding assignments of layer tags to each GM voxel
(a.k.a. layerification) in any segmented volume data
set,

b) Estimation of columnar structures across voxels in any
volume data set,

c) Performing various ways of layer-specific smoothing,

d) Providing a set of appropriate QA metrics for thermal
noise-limited layer-fMRI data,

e) Pre-processing blood-volume based VASO fMRI con-
trasts that are optimized for the layer-specific mi-
crovascular responses,

f) Applying model-based de-veining algorithms of layer-
fMRI GE-BOLD data.

2. LAYNII algorithms

2.1. Package structure

The LAYNII software suite is available as stand-alone C++
source code without external dependencies or needing li-
braries. It is distributed as pre-compiled (binary) installation
packages for all major operating systems (Linux, Windows,
macOS). LAYNII can read and write nifti files (Neuroimag-
ing Informatics Technology; https://nifti.nimh.nih.gov/) in
uncompressed NII and compressed NII.GZ formats.
The name LAYNII is derived from the two words “LAYER-
fMRI” and “NIFTI”.1 The prefix LAY stresses that this
suite is particularly built for layer-fMRI (which includes
sub-millimeter fMRI and columnar fMRI). The suffix NII
emphasizes that this software suite operates in the voxel
space of nifti data. The pronunciation of LAYNII is ‘leIni’
(IPA) or “lei nee”, which is intended to sound similar to
AFNI.
The structure of LAYNII is largely inspired by the philoso-
phy of alternative software packages and is aimed to be as

1The name has nothing to do with the author’s wife’s pet name: Leni, nor
does it relate to the kissable laynii: https://www.urbandictionary.com/laynii.

modular as possible. It is designed to consist of multiple
individual lightweight programs that are executable from the
command line and can be combined in pipeline scripts that
may or may not include additional elements of alternative
software suites like, AFNI, fslmaths, ANTs, etc. LAYNII’s
modularity without external dependencies will also help to
straightforwardly include LAYNII’s programs into already
established software suites in the future. We follow the
AFNI principle of providing mechanisms, not policies. We
aim to give the user the power to assemble computing pieces
in different ways to make customized analysis, which in turn
means that it is the users responsibility to know what the
individual programs do. Currently, the aim of the LAYNII
package is not to provide a one-shot analysis solution for
entire pipelines, as this is already well-covered by other
available packages.

Some of the most popular LAYNII programs are dis-
cussed below. An exhaustive list of additional pro-
grams and tutorials of all (>30) programs is available on
https://github.com/layerfMRI/LAYNII. Each individual pro-
gram has a -help option that describes the main functionality
and how to use it.

2.2. Layering: algorithm description and examples

Layer-fMRI necessitates determining the cortical depth of
each gray matter voxel. This information can be used to pool
together every voxel within a certain cortical depth range
to generate “layers”. Since the cortex varies in thickness
across regions, absolute (as opposed to relative) cortical
depth measurements are often not very useful to consistently
determine layers. To account for this variation across
regions, local cortical thickness measurements are used to
normalize the cortical depths. We refer to the resulting
normalized cortical depth measurement as “equi-distant
metric”. The equi-distant metric yields equi-distant layers,
when quantized.

In addition to cortical thickness, the location and size of
the cortical neurobiological layers also vary with regards
to the cortical curvature. The effect of cortical curvature
on layering was originally demonstrated by Bok in 1929,
where he subdivided the cortex into columns to show that
deeper layers get thicker and superficial layers get thinner
around gyri. Meanwhile, deeper layers get thinner and
superficial layers get thicker around sulci. This observation
is known as the equi-volume principle (Waehnert et al. 2014).

In LAYNII, we provide both equi-distant and equi-volume
layering options to the user. While solutions already exist
(Bazin et al. 2007; Fischl 2012; Goebel 2012; Huntenburg
et al. 2018; Saad and Reynolds 2012; van Mourik et al. 2019;
Wagstyl et al. 2018), our implementation differs in a unique
way. It is computed completely on the discrete lattice (as
opposed to by means of surface approximations) (Glen et al.
2018; Huber et al. 2015). To give a description of our layering
algorithm, first we define the terms that will be referred to
later (also see Figure 2):
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Figure 1. There is a need for a new software suite that is explicitly developed for layer-fMRI.
Panel A) humoristically illustrates that it can be time consuming and frustrating to analyze layer-fMRI data with analysis software that has originally been developed for
conventional fMRI data.
Panel B) illustrates that because layer-fMRI data suffer from countless shortcomings, the corresponding processing software needs to give the user the flexibility and
responsibility to harmonize analysis algorithm parameters for their specific data’s features.
Panel C) illustrates that for layer-fMRI data, the possibility and necessity of user dependent algorithm tweaking can result in reproducible results of higher quality as opposed
to enforcing standardized homogeneous user-independent black-box analysis pipelines without any user interventions necessary.
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• Layer(s): In neuroscience, the term “cortical layers”
often refers to neurobiological layers. Here we are not
using layers to exclusively mean neurobiological lay-
ers, but instead to mean “a thickness of some voxels
laid within cortical gray matter” which may or may not
correspond to neurobiological layers.

• Inner gray matter surface: Portion of gray matter
that mostly faces white matter.

• Outer gray matter surface: Portion of gray matter
that mostly faces cerebrospinal fluid.

• Cortical thickness: Shortest streamline distance be-
tween outer and inner gray matter borders.

• Cortical depth: Distance from inner or outer gray
matter surface, a portion of cortical thickness. Slightly
different from layer because this term indicates a
quantitative measure which can be used to define the
neurobiological layers.

• Streamline: A line that connects inner and outer gray
matter surfaces based on some principle (not necessar-
ily the shortest Euclidean distance).

• Column: A group of voxels that are successively pen-
etrated by one or multiple streamlines. Not to be con-
fused with neurobiological cortical columns which in-
dicates a group of neurons, not voxels.

• Unit column: Smallest unit of column that can be de-
fined in a discrete lattice (ordered set of voxels) given
the image resolution and topology of the cortex.

• Curvature: A measure of ’how much a shape bends’.
More specifically, here we are defining it as a measure
of ’how much a unit column bends’. E.g. banana-
shaped or pyramidal-shaped.

• Rim: A volume of cortical gray matter. Here, we
specifically use this term to indicate our input image,
which consists of four integer values (0=irrelevant vox-
els, 1=inner gray matter surface voxels, 2=outer gray
matter surface voxels, 3=pure gray matter voxels; see
panels of Fig. 2).

In what follows, we detail the implementation steps of layer-
ification in LAYNII.

1. The layerification algorithm in LAYNII starts from a
segmented rim image (see Fig2. Panel C).

2. For each voxel, we measure two cortical depths. One
relative to the inner gray matter surface voxel and an-
other relative to the outer gray matter surface voxels.
We compute these cortical depths by using an iterative
growing algorithm.

3. By adding relative distances to inner and outer gray
matter surfaces, we compute the cortical thickness per
voxel.

4. Cortical depth relative to inner gray matter surface vox-
els divided by thickness provides an equi-distant metric
(ranges between 0 to 1).

5. One streamline per gray matter voxel (green) is defined
by the closest outer (red) and the inner (blue) gray
matter surface voxels. We use the streamlines to de-
scribe the curvature type of each unit column (as either
gyrus, sulcus or straight wall). This is done by means
of counting the unique inner and outer gray matter sur-
face voxels each streamline of a unit column connects
to. Note that this method avoids traditional curvature
computations while still yielding the useful curvature
type information.

6. Then we define our unit columns. A unit column has
to touch at least one outer gray matter voxel and at
least one inner gray matter voxel. A unit column might
correspond exactly to one streamline where the cor-
tex curvature is mostly straight (and thin). However,
unit columns will often correspond to multiple stream-
lines when the cortex is curved (and thick). Such unit
columns exhaustively cover all gray matter voxels (see
illustrative examples in Fig. 2E).

7. By exploiting the equi-distant metric, we count the
voxels that fall close to the superficial side versus the
deeper side of the middle gray matter surface.

8. In order to ultimately estimate equi-volume layers, we
solve a mass-balance problem to compute how much
and to which direction the middle gray matter should
be pushed to, in order to balance the amount of vox-
els on each side. We call the resulting numbers equi-
volume factors.

9. Then we exploit the equi-distant metric as a con-
strained vector space (adding up to always one when
the normalized cortical depth relative to inner and outer
gray matter surfaces are added together). This con-
strained vector space can be recognized as a simplex
space of two dimensions. The n-dimensional sim-
plex space was first described by August Ferdinand
Möbius in 1827 under the name “barycentric coordi-
nates” and brought back to attention in the modern
era by John Aitchison in 1986 (Aitchison 1986) under
the name compositional data. We perform a mathe-
matical translation operation that is defined as a linear
operator within the simplex space (called perturbation
in Pawlowsky-Glahn et al. (2015)) by using the equi-
volume factors. This translation balances the metric
space in a way to yield the equi-volume metric. Note
that this operation is done on a per unit-column basis.

10. Since the unit-columns have sharp transitions in be-
tween, it can be advantageous to smooth these tran-
sitions to have a more biologically plausible equi-
volume metric distribution over gray matter voxels. We
use iterative smoothing with a small kernel to prevent
leakage around kissing gyri and tight sulci.

11. As the final step, we quantize the equi-distant and equi-
volume metrics to provide the desired number of lay-
ers to the user. However, note that we are also pro-
viding the equi-distant and equi-volume metrics as de-
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Figure 2. Description of the layerification algorithm.
Panel A) shows an ideal cortex model consisting of sharp tissue boundaries together with terms exemplified on this model.
Panel B) shows zoomed-in regions of the model together with a discretized version. This discretized image is analogous to MRI data.
Panel C) shows the segmentation required by LAYNIIs layering algorithm. Black voxels indicate the irrelevant voxels, blue voxels indicate the inner gray matter surface, red
voxels indicate the outer gray matter surface voxels, and green voxels indicate the pure gray matter voxels. Panel D) visualizes the spatial intuition behind measuring the
cortical depth together with showing the measured cortical depths. Note that here the cortical depths are only measured from the outer gray matter surface voxels (red),
however LAYNII also measures the cortical depth relative to the inner gray matter surface voxels (blue). Therefore, each pure gray matter voxel (green) is described by two
cortical depths. Also note that when added, these two cortical depths measure the cortical thickness.
Panel E) shows the unit columns defined by LAYNII’s algorithm. These unit columns are used to compute the equi-volume metric.

fault outputs. This is advantageous to allow the users
to choose their own quantization methods.

Layering in LAYNII works directly on 2D and 3D images.
In addition, it works equally well for partial coverage and
whole brain images. As an example, see top row of Fig. 3 for
layering applied on a 2D image; middle row for a 3D partial
coverage image (cut from respective whole brain data) and
bottom row for a whole brain image.
Since the LAYNII algorithms are operating directly in voxel
space, the layerification can be significantly faster than con-
ventional approaches. For instance, the duration for whole-
brain 0.5 mm iso. data processing on a single CPU takes
approximately 8 sec for equi-distancing and 48 sec for equi-
voluming. The corresponding computation times for 0.2
mm whole brain data (BigBrain) takes 2 and 12 min respec-
tively. For more information on the computation times, see:
https://thingsonthings.org/ln2_ layers/.
For a practical (video-) tutorial of performing layer-
ification directly on layer-fMRI EPI data see here:
https://layerfmri.com/analysispipeline/ and here:
https://layerfmri.com/quick-layering/. For an in-depth
discussion and comparison of equi-distance layering, equi-
volume layering and additional layering algorithms that are
implemented in LAYNII see: https://layerfmri.com/equivol/.

For more detailed explanations of the algorithm implemen-
tations see: https://thingsonthings.org/ln2_ layers/.

2.3. Estimation of columnar distances

While voxels with the same relative distance to the GM sur-
faces are collected into bins of layers, it can also be possible
to group voxels into bins of the same columnar distances,
in the orthogonal direction to layers, where the distances
are measured from specified landmarks. Such estimates of
columnar structures that span across all layers of the corti-
cal depth are also often needed for many steps of layer-fMRI
analysis . That is, in studies where layer-specific activity can-
not be assumed to be identical across large patches of GM,
it becomes necessary to perform simultaneous laminar and
columnar analyses (Hollander et al. 2020; Huber et al. 2020b;
Schneider et al. 2019). As such, estimates of cortical columns
are vital for research questions addressing the topographical
distributions of layer-dependent brain activation. Past exam-
ples are a) the primary motor cortex with tapping induces
activation patches that do not extend across a cortical patch
of few millimeters (Huber et al. 2020b), b) somatotopically
aligned body-part representations in the primary sensory cor-
tex (Yu et al. 2019), c) layer-dependent signal distribution
across visual eccentricity (Huber et al. 2019a)(p 25), d) for
columnar-specific functional hierarchy mapping (Huber et al.
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Figure 3. Layering metrics generated in LAYNII. The top row shows an application with a synthetic 2D image. The middle row shows the empirical layers from Ding et al.
(2016) (0.2 mm iso.). The bottom row shows BigBrain (0.1 mm iso., native space) (Amunts et al. 2013) with cortical borders provided in Wagstyl et al. (2020). The equi-distant
metric is shown in the middle column and equi-volume metric is shown in the right column for each image type.

2020a), e) or for cortical unfolding (Persichetti et al. 2020).
In LAYNII, columnar distances are calculated in a six-step
algorithm that is schematically illustrated in Fig. 4A:

1. In contrast to layer estimates, there is usually no
clear physiologically defined coordinate system ori-
gin. While layer distances are inherently normalized
to a coordinate system between WM and CSF borders,
the origin of columnar estimates is highly dependent
on the specific study and research question. Thus in
LAYNII, columnar estimates are generated based on a
manually set landmark (Fig. 4A). This is the starting
point of the algorithm (white arrow).

2. This landmark is used as the origin of a subsequence
growing algorithm. In order to account for the fact that
the GM of a neighboring sulcus can be closer than the
distance of a column within a sulcus of kissing gyri, the
distance is estimated here with a local grow-algorithm
that extends the local patch of columnar distances iter-

atively voxel-by-voxel (step-size=1 voxel).

3. Since the growing algorithm works in voxel space, it
can only estimate distances in units of integer multi-
ples of voxel distances. This means that a diagonal
voxel neighbour is estimated as being two steps away
(one step in each orthogonal direction), whereas the
Euclidean distance is actually smaller (square root of
two). The corresponding Pythagorean errors can be ac-
counted for with a local smoothing step along the layer
direction only. I

4. n the next step, the columnar distances are extrapolated
across layers. The columnar distance value of every
voxel is simply inherited from the next closest voxel
that has a determined distance estimate already. This
is done within the GM ribbon only (to avoid leakage
from neighboring sulci).

5. Again, this step comes along with Pythagorean errors
(mismatch of growing iteration steps and Euclidean
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distance) that can be accounted for with within-layer
smoothing.

6. Finally, the user can choose the desired column thick-
ness. This is done with the optional -Ncolumns flag
of the LAYNII program. When this parameter is not
specified by the user, the maximum number of columns
is used and the resulting columnar estimates are one
voxel thick. For smaller values of -Ncolumns, the
columns become thicker.

A more detailed explanation of the columnarization
in the LAYNII program LN_ 3DCOLUMNS, and
the unfolding program LN_ IMAGIRO is given here:
https://layerfmri.com/columns/.

2.4. Layer-specific smoothing

Due to the low tSNR in layer-fMRI, it can become ad-
vantageous to apply spatial smoothing. In order not to
compromise the locally specific layer-fMRI signal of in-
terest, the spatial smoothing kernel needs to be exclusively
applied in anatomically informed directions only. Spatial
smoothing in specific layer directions has been originally
proposed for vertex-based analyses in (Polimeni et al.
2015), re-implemented for voxel-based layer smoothing
in (Huber et al. 2017; 2018), and it has been ultimately
described in full depth later (Blazejewska et al. 2019).
This form of layer-specific smoothing is commonly applied
locally in a way that the signal leakage drops off based
on a Gaussian kernel of a given full-width-half-maximum
(FWHM), analogous to conventional isotropic smoothing.
In contrast to conventional isotropic smoothing (Stelzer
et al. 2014), however, the layer-specific smoothing has an
additional signal leakage drop off penalty perpendicularly
to the layer-direction. Thus, for layer-specific smoothing,
the signal leakage is restricted across voxels in different
layers, despite the case that they might be very close to
each other in Euclidean space. In the LAYNII program,
LN_ LAYER_ SMOOTH this is implemented as volume
smoothing in voxel space by restricting the smoothing
kernel across voxels whose centroids are located in the same
cortical depth. The smoothing is thus applied within masks
of previously defined layers only. When the smoothing
kernel sizes are particularly large and approach the spatial
scale of the distance between touching gyri, it becomes
necessary for the algorithm to consider signal leakage across
sulci in very close proximity (Fig. 5A). While the problem
of signal leakage across neighbouring gyri is inherently
avoided in surface-based smoothing approaches (Jo et al.
2007; Kiebel et al. 2000), it needs to be explicitly taken care
of in layer-specific volume smoothing programs of LAYNII.
In the LAYNII implementation of layer-specific smoothing,
a specific -NoKissing flag ensures that smoothing does not
occur blindly across all voxels in close proximity, but only in
those voxels that are connected to the same GM area.

While this form of intracortical smoothing requires accurate
knowledge of the local layer geometry within the cortex,

there are alternative approaches to apply layer-specific
smoothing in preferred layer-directions without the need to
have pre-defined layer labels available. For example, it has
been suggested to apply intracortical non-isotropic smooth-
ing based on the local functional activation (Lohmann et al.
2018; Smith and Brady 1997) or based on the non-isotropic
MRI signal intensity across the cortical depth. In LAYNII,
this form of smoothing is implemented in the program LN_
GRADSMOOTH by taking advantage of the fact that high-
resolution EPI intensities contain informative anatomical
information too. This form of smoothing estimates the signal
leakage kernel with two penalty functions; a) Gaussian
weighted Euclidean distance of seed and target voxel, and
b) local entropy weighted signal difference of the seed and
target voxel. Just like for isotropic and layer-smoothing,
the size of the Gaussian kernel can be adjusted by means
of a user-defined -FWHM parameter. The entropy weighted
signal difference can be adjusted by the user by means of
a -selectivity parameter. E.g., for a common -selectivity
parameter of 0.08, the signal leakage is restricted to the local
voxels that have a similar signal intensity, which differ from
the central voxel by less than 8% of the local signal variance.
For a more conservative -selectivity parameter of 0.04, the
signal leakage is restricted to the local voxels that have a
similar signal intensity, which differ from the central voxel
by less than 4% of the local signal variance (see examples
in Fig. 5B). Since the smoothing kernel is determined in a
data-driven way, its application is significantly more conve-
nient for the researcher to use. Labor intensive segmentation
is not necessary to be able to perform this way of smoothing.

This algorithm of intensity-based smoothing is very similar
to a large number of previously described edge-preserving
smoothing methods (Ding et al. 2005; Gerig et al. 1992;
Lohmann et al. 2018; Moraschi et al. 2010; Smith and Brady
1997; Weickert and Scharr 2002), which are implemented
in AFNI and FSL as 3danisosmooth, 3dBlurInMask, or
SUSAN, and are also referred to as diffusion filter. The
LAYNII implementation LN_ GRADSMOOTH differs from
those algorithms in the sense that it is optimized for appli-
cations in layer-fMRI. Since layer-fMRI data are usually
very noisy, the smoothing kernel should not be generated on
the actual time series data or the statistical activation data
themselves. Instead, the LAYNII implementation estimates
the smoothing kernel on an independent optimized input file,
e.g., an isotropically smoothed EPI with anatomical contrast.
This is readily doable in layer-fMRI data because of the
exquisite structural details visible in sub-millimeter EPI.
Furthermore, the LAYNII implementation can avoid signal
leakage of unconnected islands of similar signals intensities
across kissing gyri (Fig. 5A).
These forms of anatomically informed gradient smoothing
and layer smoothing are particularly beneficial in layer-
fMRI studies where it can be assumed that neighboring
columns perform the same neural task with the identical
layer-dependent activation signature ((Beckett et al. 2020;
Finn et al. 2019)).
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Figure 4. Estimating columnar units in voxel space with LAYNII.
Panel A) schematically described the underlying algorithm of LAYNII’s column estimation.
Panel B) depicts the corresponding MRI signal in two independent coordinate systems: a) the scanner coordinate system with folded GM and b) the unfolded cortical ribbon
with orthogonalized layers and columns.
Panel C) depicts a potential application study of the columnar coordinate system for topographic mapping of functional movement representations. The data presented in
panels A-B) are acquired with an 8 weeks old female cat, Varian 9.4T at CMRR, resolution: 0.125 x 0.125 x 0.5 mm3, Gradient Echo MultiSlice imaging sequence (GEMS,
Agilent technology, Inc.) sequence. The data presented in panel C) are acquired with VASO at a SIEMENS magnetom 7T at FMRIF/NIH with 0.8 mm3 resolution and have
been previously described in (Huber et al. 2020b).

Fig. 5C-G shows representative example results of anatomi-
cally informed smoothing applications. It can be seen that
the characteristic double peak in the primary motor cortex
is preserved across a wide range of algorithm parameters.
Furthermore, it can be seen that for larger smoothing kernels,
it becomes important to prevent signal leakage across kissing
gyri.

Additional descriptions of the smoothing algorithms

and their respective application in LAYNII is given
here: https://layerfmri.com/anatomically-informed-spatial-
smoothing/.

2.5. Time series quality measures

Rigorous quality assessment of fMRI time series has become
a fundamental pillar of any good code of conduct in fMRI re-
search. In conventional fMRI, a consensus about good prac-
tices has been found and these practices are implemented in
the major standardized analysis streams (Esteban et al. 2019).
In layer-fMRI, however, conventional QA metrics are not
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Figure 5. Layer-specific smoothing.
Panels A-B) describe two different algorithms of layer-specific smoothing. Panel A) depicts that for spatial smoothing in the folded cortex, an Euclidean distance metric
alone might not be a good enough estimate of columnar distances and cannot prohibit signal leakage across kissing gyri. Panel B) depicts example smoothing kernels in
contrast-specific smoothing (anisotropic smoothing a.k.a. diffusion filter). Here the mean VASO EPI signal intensity with its inherent T1-weighting is used as a reference to
generate the voxel-wise smoothing kernel. The elongated shapes of the smoothing kernels depict the weighted signal leakage to voxels with similar anatomical contrast for
two example voxels in green and red. The length of the kernel is determined by the FWHM parameter, while the width is determined by the selectivity parameter. Note that
those Kernels are highly anisotropic.
Panels C-G) exemplify the different results of the respective smoothing methods for an example dataset that comes with the software package. Here the characteristic
double-stripe pattern is used as a layer-specific feature that is aimed to be preserved. Panel G) depicts that for extensive signal smoothing with FWHM of 4mm, layer-specific
activation can leak across kissing gyri, if not explicitly prevented. Panel G) furthermore shows that the layer-specific double peak is only preserved for very conservative
selectivity values. Note that the contrast specific smoothing algorithm with conservative selectivity values preserves the double peak layer activation pattern even for FWHM
values of 4mm.

sufficient or can even be completely inapplicable. Examples
of metrics insufficient for layer-fMRI QA include a.) tSNR,
b.) motion displacement, or c.) variance explained of neural
ICA components.

• tSNR: Since tSNR is calculated by means and the
temporal standard deviation (STDEV), it cannot eas-
ily capture multiple sources of variance that are
adding non-linearly (sum of squares). Since layer-
fMRI is usually dominated by thermal noise, layer-
fMRI specific artifacts are not well captured in
tSNR maps. They are rather hidden in the ther-

mal noise (for more discussion and examples see
https://layerfmri.com/qa/).

• Motion displacement: While it is critically impor-
tant in layer-fMRI to manually check displacement
estimates like in conventional fMRI, it is not suffi-
cient. In layer-fMRI motion usually comes along with
higher-order EPI-Phase inconsistencies too. Namely,
even when the rigid head motion can be corrected for,
motion-related distortion changes and motion related
B0-changes cause intermittent artifacts. For example
illustrations see https://layerfmri.com/qa/.
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• Variance explained in neural ICA components:
While the relative variance explained by neural ICA
(independent component analysis) components is a
useful measure for conventional fMRI, it is limited in
layer-fMRI applications. ICA works best, if Gaus-
sian and non-Gaussian fluctuation sources can be sep-
arated from each other. Unfortunately however, in
layer-fMRI, the neurally-driven temporal fMRI sig-
nal fluctuations are deeply hidden in the dominating
Gaussian thermal noise and it is not uncommon that
there isn’t a single neural ICA component selectable
in layer-fMRI analyses. For example illustrations see
https://layerfmri.com/qa/.

Due to the limits discussed above, conventional QA metrics
in layer-fMRI data, additional and adapted metrics are
needed. Since most layer-fMRI data are acquired in the
thermal noise dominated regime, the noise can often be
considered to be Gaussian. This means that non-thermal
noise (e.g. artifact-induced signal clutter) can be identified
by its non-Gaussian characteristics. Two useful measures to
quantify how non-Gaussian a noise distribution is, are the
measures of kurtosis and skewness (Berman et al. 2019).
Fig. 6E,H depict a layer-fMRI example, where skew and
kurtosis maps can depict artifact affected areas that are not
clearly detectable in conventional tSNR maps.
While thermal noise is not coupled across space and time,
some forms of layer-fMRI artifacts result in strong noise
coupling. This noise coupling can be used to identify
artifacts and depict them despite the presence of dominating
Gaussian noise. Informative measures that can be estimated
on a voxel-wise level are: a) auto-correlation and b) the cor-
relation with the global signal. Fig. 6F,G depicts layer-fMRI
examples where these measures can isolate and depict phase
inconsistencies that arise from pushing the imaging gradients
to their limits.

While the above QA metrics are very useful to characterize
the time course quality of individual voxels, they cannot
easily capture spatio-temporal interactions. E.g. if neigh-
boring voxels share the same sources of noise (e.g. due to
spatial signal leakage), the above mentioned QA metrics are
ignorant to this. This is particularly problematic because
the EPI readout for layer-fMR is usually very long and
layer fMRI data are, thus, expected to suffer from unwanted
T ∗

2 -related temporal noise coupling between neighboring
voxels.

To characterize the strengths and the pattern of the temporal
correlation of neighboring voxels, a so-called noise kernel
calculation is implemented in LAYNII as described in Fig.
7A. The LAYNII program estimates the average temporal
correlation of neighboring voxels. In contrast to functional
smoothness estimations in alternative software suites, the
LAYNII implementation of the noise kernel estimation does
not simplify the noise coupling with individual Gaussian
FWHM values and/or exponential decay terms. Instead,
LAYNII also writes out the 3-dimensional noise kernel

as a volume nii file. This can be advantageous because
a full noise kernel can capture negative side lobes, anti-
correlations, as well as common saw-tooth patterns between
odd and even lines. Furthermore, it also provides estimates
along the diagonal directions, which can be helpful for
3D acquisition sequences (3D-EPI or 3D-GRASE). This
form of three dimensional noise-correlation kernel can be
used for data-driven deconvolution-based image sharpening
filters. Furthermore, such analyses could be applied across
layers and columns to estimate the topographical features
of functional connectivity within the cortex (see Fig. S8 in
(Huber et al. 2020b)).

Additional descriptions of the QA algorithms, the limits
of their interpretability and their respective application in
LAYNII is given here: https://layerfmri.com/qa/.

2.6. VASO specific programs

High-resolution GE-BOLD fMRI suffers from unwanted
signals of large draining veins. Due to this limitation, the use
of alternative functional contrasts has become popular (Chai
et al. 2019; Huber et al. 2019b). The fastest growing layer-
fMRI sequence in recent years is the SS-SI -VASO approach
(Huber et al. 2020a). The VASO (Vascular space occupancy)
contrast is based on the difference between longitudinal
relaxation times ( T1) of tissue and blood water (Lu et al.
2003). It is generated by applying an inversion pulse before
signal acquisition, so as to effectively null the contribution
of blood water magnetization at the time of signal excitation,
while keeping substantial tissue signal for detection. The
VASO signal is thus believed to be inversely proportional
to CBV changes and can non-invasively capture micro-
vascular layer-specific signal responses through selective
detection of signal changes in the extravascular compartment
concurrent with changes in the nulled blood compartment.
The specific UHF-optimized Slab-selective slice inversion
(SS-SI)-VASO approach acquires blood-nulled images and
GE-BOLD images concomitantly (Huber et al. 2014b). To
directly provide a CBV and BOLD contrast time course
comparable to conventional fMRI signal contrast analyses,
the raw VASO time series need to be temporally resorted and
orthogonalized into clean T ∗

2 -dependent and T1-dependent
functional contrasts. The corresponding preprocessing steps
are illustrated in Fig. 8A. To remove unwanted T ∗

2 -related
signal in CBV-time series, LAYNII assumes a simple mag-
netization model that obeys the Bloch equations (Fig. 8C).
According to the Bloch equations, T1 and T ∗

2 decays behave
like two independent relaxation effects that can be described
in a multiplicative fashion. This means that unwanted T ∗

2
contrast in the CBV-weighted signal can be canceled out by
means of dynamic division of MR images with and without
preceding T1-weighting (Fig. 8C).
Fig. 8D-E depicts a representative example of VASO and
BOLD data as they are generated from LAYNII. Note that
the VASO output is inversely correlated with dynamic CBV
changes.

For a hands-on example of how the application of
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Figure 6. Conventional and layer-fMRI-specific quality metrics of time series data.
Panels A-D) depict maps of conventional fMRI QA metrics of Mean, tSNR, and activation scores.
Panels E-H) depict higher-order QA metrics that can be informative in layer-fMRI. While the QA measures in the top row suggest that the underlying time series is of high
quality and that it is not severely limited by artifacts, higher-order QA measures in the bottom row show that there are indeed typical phase errors present in this example time
series.

Figure 7. Spatiotemporal noise kernel.
Panel A) depicts the major algorithm steps to estimate the noise kernel.
Panel B) depicts representative results of the noise kernel in the whole-brain VASO layer-fMRI. It can be seen that the PSF in the second phase encoding direction has
negative sidelobes, which suggests that the PSF is not well characterizable with FWHM estimates.
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Figure 8. VASO processing at high magnetic fields with the LAYNII program LN_ BOCO.
Due to the short T∗

2 at UHF and the long readout of high-resolution EPI, all VASO data are contaminated with unwanted BOLD contrast. In layer-fMRI application of VASO, this
is accounted for by concomitant acquisition of BOLD and VASO in the SS-SI-VASO approach, analogously to ASL-fMRI. The purpose of this figure is to illustrate the relevant
processing steps in the LAYNII program LN_ BOCO to correct for unwanted BOLD contamination in VASO. Panels A-B) depict how the original time series of alternating
images with and without blood nulling are temporally interpolated and sorted into two parallel time series of respective contrasts only. Panel C) depicts that in SS-SI-VASO,
the BOLD contamination is believed to be a multiplicative factor and be taken care of with a division operation. Panels D-E) depict a representative functional dataset of a
flickering checkerboard experiment. It can be seen in the time courses that VASO is anti-correlated to BOLD. While the BOLD signal shows a signal increase during activation,
upon BOLD correction, VASO shows a signal decrease. The data presented here have been acquired on a SIEMENS Terra in Glasgow with a segmented-EPI sequence from
Ruediger Stirnberg (Stirnberg et al. 2020).
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LAYNII works for layer-fMRI VASO applications see here:
https://layerfmri.com/analysispipeline/.

2.7. Model based deveining

Even though high-resolution GE-BOLD is known to suffer
from unwanted locally-nonspecific signals of large draining
veins, due to its exceptionally high sensitivity it is the most
popular acquisition method for layer-fMRI data. Due to the
directional blood drainage towards the cortical surface, the
unwanted GE-BOLD signal of large veins is known to in-
crease towards the cortical surface. Based on this knowledge
of the angioarchitecture, it has been proposed that the un-
wanted layer-specific venous signal bias in GE-BOLD can
be accounted for in retrospective model-based analysis steps.
There are multiple possible signal models becoming popular
in the field of layer-fMRI (Fig. 9A):

• The linear-offset model is based on the assumption
that the layer-specific microvascular signal is added on
top of a task-independent macrovascular signal. Thus,
it is assumed that a simple task-contrast subtraction or
a simple linear-trend-removal would get rid of the un-
wanted macrovascular component of the BOLD signal.
The linear offset model has been explicitly discussed
in the context of linear correlation analyses (Fracasso
et al. 2018) and in the context of layer-dependent shape
parameters (Gau et al. 2020). This linear model is fur-
thermore implicitly used for in countless task contrast
subtraction analyses of previous layer-fMRI studies.

• The scaling model is based on the assumption that
the layer-specific bias in GE-BOLD is driven by layer-
dependent variations of vein density. As such, it is
assumed that the superficial signal is larger than the
signal in deeper layers, simply because the amount
of venous blood volume is higher in superficial lay-
ers compared to deeper layers. Or in other words,
the macrovasculature acts like a layer-specific signal
amplification (gain). Thus, it is assumed that a sim-
ple multiplicative (or divisory) normalization can cor-
rect for the macrovascular signal bias. This layer-
dependent signal normalization has been proposed as
part of several layer-fMRI analysis strategies, includ-
ing:

a) scaling the layer-dependent signal with estimates
of layer-dependent venous CBV (Guidi et al.
2020),

b) normalizing the signal difference between differ-
ent task responses by the mean signal response
of all involved task responses (Kashyap et al.
2018a),

c) refraining to infer neuroscience conclusions
solely based on task response differences in
favour of focusing on task response ratios that are
normalized by the presumably vascularly driven
signal fluctuations (Lawrence et al. 2019).

• The leakage model is based on the assumption that the
BOLD signal in each layer constitutes a signal mixture

of neural activity from multiple layers. Namely, it is as-
sumed that a voxel in a given layer contains some neu-
ral signal from the layer of interest plus an unwanted
integrated activity signal of all the layers beneath. E.g.
it is assumed that the BOLD signal in a voxel of a su-
perficial layer contains both the desired superficial sig-
nal plus unwanted signal from the deeper layers. The
BOLD signal model in each layer is then usually pa-
rameterized as a weighted sum of the layer itself and
the signal from deeper layers. To ultimately use this
model to correct for unwanted leaked signals, a spatial
signal deconvolution approach is applied. (However,
note that some implementations of such deconvolution
models refrain from the term “deconvolution” in favor
of the terms ‘matrix inversion” or “consecutive signal
subtraction”). Very often, the leakage model is com-
bined with the scaling model. Layer-fMRI focused
implementations of BOLD signal models that are as-
suming spatial signal leakage across layers have been
described by a large number of research labs, includ-
ing models from Heinzle et al. 2016, Markuerkiaga
et al. 2016, Merola et al. 2018, Puckett et al. 2016,
Lacy et al. 2020 Corbitt et al. 2018, and Havlicek
et al 2019. All of these signal leakage models esti-
mate the signal in superficial layers as a sum of the
microvascular response within the given layer plus a
weighted sum of the signal from all other layers be-
low. The main difference between the various leakage
models comes from the procedure of how the respec-
tive summation weights are estimated. The model de-
scribed in (Lacy et al. 2020; Puckett et al. 2016) try to
describe the venous signal draining by means of travel-
ling wave equations. The models described in (Corbitt
et al. 2018; Markuerkiaga et al. 2016) are aiming to
perform forward simulations without the explicit aim
to invert the model for venous signal removal. The
models described in (Havlicek and Uludag 2019; Hein-
zle et al. 2016), proposes such a model inversion for
the removal of unwanted venous signal in layer-fMRI
signal processing. The newer model in (Havlicek and
Uludag 2019) entails more physiologically-informed
constraints than the initial model in (Heinzle et al.
2016).
In most of those models, the summation weights of
layer-dependent signal leakage are derived based on
more-or-less appropriate assumptions of the layer-
dependent blood vessel architecture and/or experimen-
tal data. The weights are usually dependent on resting
CBVv and CBF assumptions across cortical depth.

In current layer-dependent applications that use such
model-based vein removals, these models are applied on an
area-wide scale (e.g. (Marquardt et al. 2018)). I.e. usually,
fMRI signals are pooled from the layers of large cortical
patches and their effect is solely investigated in the form of
one-dimensional layer profiles. In LAYNII, however, the
various de-veining algorithms are implemented to work on
a voxel-by-voxel level. This allows the researcher to appre-
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ciate the signal distribution along the topographical space
across layers and columns, simultaneously. Furthermore, the
resulting signal maps provide an intuitive understanding of
the noise amplification that comes along with the various
de-veining algorithms of the respective models (See Fig. 9B
for examples).

Additional descriptions of the deveining algorithms and
their respective application in LAYNII is given here:
https://layerfmri.com/devein/

3. 3. Discussion

Here, we present an fMRI analysis toolbox that is specifi-
cally developed for layer-fMRI applications. It has minimal
requirements on the input data and works in the native data
format of voxels as they come off the scanner. Its application
ranges from layer/column assignment, over anatomically in-
formed smoothing and QA, up to vein removal and VASO
analyses.

3.1. What LAYNII does not contain

LAYNII is not designed to duplicate analysis features that
have already been implemented in alternative fMRI soft-
ware packages with the same capabilities. Even though
there are specific layer-fMRI demands for partial cover-
age image alignment, LAYNII does not perform it itself.
Since LAYNII also works in the native EPI-space, im-
age alignment is not absolutely necessary to begin with.
If a layer-fMRI user is interested in alignment constraints
that are specific to layer-fMRI data, we refer to the in-
structions of how to perform image alignment of layer-
fMRI data with ITK-snap (Yushkevich et al. 2006) and
ANTs (https://layerfmri.com/high-quality-registration/), or
with AFNI (https://blog.cogneurostats.com/aligning-partial-
volume-fmri-in-afni/). Furthermore, even though tissue
type segmentation is particularly important in layer-fMRI
analyses, LAYNII does not contain its own segmentation
tools. In layer-fMRI, GM borders commonly need to be
manually adjusted anyway, thus in layer-fMRI, it is often
most efficient to fully manually segment the areas of in-
terest within the limited EPI coverage without the neces-
sity of automated segmentation tools. For a rough first
estimate of GM borders as an input to LAYNII, alter-
native software packages can be used. E.g. the inter-
ested reader is referred to an instruction of how to use
FreeSurfer, nighres and SUMA to generate an input rim
file for LAYNII here: (https://layerfmri.com/getting-layers-
in-epi-space/), this segmentation can be further corrected
with the semi-manual segmentation tool Segmentator (Gul-
ban et al. 2018) (https://github.com/ofgulban/segmentator).
A collection of non-LAYNII scripts and programs that are
designed to work in tandem with LAYNII available to down-
load here: https://github.com/ofgulban/LAYNII_ extras.

3.2. Potential application of LAYNII outside of layer-
fMRI

Here, ‘layer-fMRI’ is used as an umbrella term
for depth-dependent fMRI, intra-cortical fMRI,
and sub-millimeter fMRI in general (footnote:
https://layerfmri.com/terminology/). This means that
LAYNII is also explicitly intended for activation analysis
for constant signal across cortical depth (Fig. 5) a.k.a.
columnar fMRI. LAYNII is originally intended -but not
limited to- functional MRI. In fact, layer-fMRI is applicable
and has been applied to high-resolution structural MRI, as
well as histology data with and without restricted field of
views (E.g. Fig. 3 and (Huber et al. 2017)). We believe
that LAYNII might also be specifically suited for in-vivo
sub-millimeter diffusion-weighted data. While LAYNII is
time-efficiently applicable to conventional high-resolution
whole brain anatomical data, it is not specifically advertised
for this purpose. Alternatively, analysis software packages
are more extensively tested, documented and supported with
exhaustive educational tutorials for this purpose.
While LAYNII is specifically designed for high-resolution
applications, individual programs can also be applied
as lower spatial resolution fMRI data too. Namely, the
VASO-specific analyses can -and have been- applied to
lower-resolution 3 mm data too (Huber et al. 2014b). And
similarly, the quality assessment metrics can also be benefi-
cial at lower resolutions (Kurban et al. 2020).
Since LAYNII works directly in voxel space without
imposing topological constraints, it can straightforwardly
generate layers and column estimates in 2D data. This allows
applications in common single slice data of preclinical MRI
in rodents, cats and monkeys, and it allows layer profile
extraction of figures from any electronic publication in-
cluding the seminal microscopy images of an entire century
of cyto-architecture (Brodmann 1909), myelo-architecture
(Vogt and Vogt 1919) and angioarchitecture (Pfeifer 1940)
research. Note, however, that in 2D, the equi-volume
layering approach converges with an equi-area approach.
For more information on how to generate layer-profiles of
literature figures see: https://layerfmri.com/how-to-convert-
any-paper-figure-into-a-layer-profile/.

3.3. Usage in the field

The LAYNII software suite has been used in multiple high-
resolution fMRI studies across the world. It’s Github site
welcomes >1400 unique visitors per year and its code is be-
ing cloned >100 times per month. It found particular applica-
tion for layer-fMRI studies in the motor cortex (Huber et al.
2017), in the sensory cortex (Yu et al. 2019), in DLPFC (Finn
et al. 2019), for columnar imaging in the motor cortex (Huber
et al. 2020b), in layer-specific functional connectivity map-
ping (Huber et al. 2020a), for mental imaginary layer-fMRI
(Persichetti et al. 2020), for methods development of new se-
quence concepts (Beckett et al. 2020; Chai et al. 2019; Guidi
et al. 2020), for visual layer-fMRI (Zamboni et al. 2020), and
for methods debugging of human 9.4T layer-fMRI (Huber
et al. 2018).
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Figure 9. Layer-dependent vein removal strategies.
The three most often used strategies of layer-dependent de-veining are based on a linear offset model, a scaling model, or a leakage model. The respective models are
illustrated in panel A. While all models can be used to predict the increasing GE-BOLD signal towards the cortical surface, their assumed physiological signal origin and the
corresponding de-veining algorithm is fundamentally different. Panel B exemplifies the application of layer-dependent de-veining in LAYNII and depicts representative results.
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3.4. How LAYNII’s evolved from other packages

All of the discussed LAYNII programs (BOLD correction,
equi-distance and equi-volume layering, etc.) have been ini-
tially implemented in the ODIN (Object-oriented Develop-
ment Interface for NMR) environment (Jochimsen and Von
Mengershausen 2004). This LAYNII predecessor software
suite was originally used in many initial layer-fMRI studies
(Guidi et al. 2017; 2020; Huber et al. 2014a; 2017; 2016a;b).
However, since this software package had more than 30 de-
pendencies, and required files to be located in certain root-
locations, it was not straightforwardly usable across various
operating platforms, nor was it installable on servers with
conservative user access. Thus, with guidance from the NIH
data science and sharing team (https://cmn.nimh.nih.gov/)
and the AFNI team (https://afni.nimh.nih.gov/), the layer-
fMRI algorithms were reimplemented outside of ODIN with
a data I/O that is inherited from the original NIFTI release
(https://nifti.nimh.nih.gov/). Thus, LAYNII does not have
any residual external dependencies of third-party software,
nor does it rely on internal or external libraries.

Conclusion
We developed a user-friendly and well-documented software
package that makes cutting-edge layer-fMRI image process-
ing tools available to the research community. The toolbox
is easy to install via source code or pre-compiled binaries
for Linux, Windows and macOS and provides a compre-
hensive set of advanced techniques for layer-fMRI analyses.
While the current functionality largely focuses on applica-
tions where the challenges of layer-fMRI data do not allow
the application of standard analysis pipelines of the major
software packages, we hope that the flexible and modular
framework encourages contribution of new tools, stimulates
collaboration, and accelerates progress in the promising field
of layer-fMRI neuroimaging.
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