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ABSTRACT 18 

How anesthesia affects cortical neuronal spiking and information transfer could help understand the 19 

neuronal basis of conscious state.  Recent investigations suggest that global state of the anesthetized 20 

brain is not stationary but changes spontaneously at a fixed level of anesthetic concentration.  How 21 

cortical unit activity changes with dynamically transitioning brain states under anesthesia is unclear.  We 22 

hypothesized that distinct cortical states are characterized by distinct neuronal spike patterns.  23 

Extracellular unit activity was measured with sixty-four-channel silicon microelectrode arrays in cortical 24 

layers 5/6 of primary visual cortex of chronically instrumented, freely moving male rats (N = 7) during 25 

stepwise reduction of the anesthetic desflurane (6, 4, 2, and 0%).  Unsupervised machine learning 26 

applied to multi-unit spike patterns revealed five distinct brain states of which four occurred at various 27 

anesthetic concentrations and shifted spontaneously.  In deeper anesthesia states, the number of active 28 

units and overall spike rate decreased while the remaining active units showed increased bursting 29 

(excitatory neurons), spike timing variability, unit-to-population correlation and unit-to-unit transfer 30 

entropy, especially among putative excitatory units, despite the overall decrease in transfer entropy.  A 31 

novel desynchronized brain state with increased spike timing variability, entropy and electromyographic 32 

activity that occurred mostly in deep anesthesia was discovered.  These results provide evidence for 33 

distinct unit activity patterns associated with spontaneous changes in local cortical brain states at 34 

stationary anesthetic conditions.  The appearance of a paradoxical, desynchronized brain state in deep 35 

anesthesia contends the prevailing view of monotonic dose-dependent anesthetic effects on the brain.  36 
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SIGNIFICANCE STATEMENT 37 

Recent studies suggest that spontaneous changes in brain state occur under anesthesia. However, the 38 

spiking behavior of cortical neurons associated with such state changes has not been investigated. We 39 

found that local brain states defined by multi-unit activity had non-unitary relationship with the current 40 

anesthetic level.  A paradoxical brain state displaying asynchronous firing pattern and high 41 

electromyographic activity was found unexpectedly at high-dose anesthesia.  In contrast, the 42 

synchronous fragmentation of neuronal spiking appeared to be a robust signature of the state of 43 

anesthesia.  The findings challenge the assumption of monotonic, anesthetic dose-dependent behavior of 44 

cortical neuron populations.  They enhance the interpretation of neuroscientific data obtained under 45 

anesthesia and understanding of the neuronal basis of anesthetic-induced state of unconsciousness. 46 

  47 
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INTRODUCTION 48 

Recent studies of large-scale brain activity found that multiple brain states appear at a constant 49 

anesthetic concentration and conversely, one brain state can be observed at different anesthetic levels 50 

(Chander et al., 2014; Hudson et al., 2014; Hudson, 2017; Li et al., 2019).  The degeneracy in the 51 

relationship between brain state and anesthetic concentration suggests that the neuronal network 52 

spontaneously shifts between two or more transient attractors (metastability) or switches multiple stable 53 

attractors via external perturbation or noise (multistability) (Hudson et al., 2014; Hudson, 2017; Li et al., 54 

2019).     55 

Despite these observations, most studies of unit activity assume a one-to-one relationship between brain 56 

state and anesthetic concentration and investigate dose-dependent changes of neuronal activity (Vizuete 57 

et al., 2012; Sellers et al., 2013; Vizuete et al., 2014).  This would be surprising and suggests that the 58 

spiking dynamics of individual unit activities in different brain states under anesthesia has been poorly 59 

explored.  Detailed information about the spiking dynamics during shifting brain states is arguably 60 

important for interpreting neuroscientific data obtained under anesthetized conditions and to understand 61 

the neuronal mechanisms of changing states of consciousness. 62 

In an attempt to fill this gap of knowledge, we measured single unit spiking patterns of neuronal 63 

populations in chronically instrumented rodents subjected to multiple levels of anesthesia and applied 64 

machine learning to identify brain states independent of the actual anesthetic concentration.  We 65 

hypothesized that brain states identified by specific features of population (multi-unit) activity will show 66 

degeneracy in the relationship with anesthetic concentration and that these states will be characterized 67 

by distinct spike activity patterns.   68 
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METHODS 69 

Electrode implantation 70 

The study was approved by the Institutional Animal Care and Use Committee in accordance with the 71 

Guide for the Care and Use of Laboratory Animals of the Governing Board of the National Research 72 

Council (National Academy Press, Washington, D.C., 2011).   73 

Eight adult male Long-Evans rats (300-350 g weight) were housed in a reverse light-dark cycle room for 74 

5-7 days prior to surgical implantation.  Ad libitum access for food and water was provided while the 75 

animals remained in the room for the duration of the experiment.  A multi electrode array consisting of 76 

64-contact silicon probes (shank length 2 mm, width 28-60 µm, probe thickness 15 µm, shank spacing 77 

200 µm, row separation 100 µm, contact size 413 µm2; custom design a8x8_edge_2mm100_200_413, 78 

Neuronexus Technologies, Ann Arbor, MI) was chronically implanted in the primary visual cortex of 79 

each rat.  A pair of insulated wires (PlasticsOne, Inc., Roanoke, VA), exposed at the tips, was positioned 80 

bilaterally into the nuchal muscles to record electromyogram (EMG). 81 

A craniotomy of rectangular shape of approximately 2 × 4 mm was prepared, the exposed dura mater 82 

was resected, and the electrode array was inserted using a micromanipulator to the final position 1.6 mm 83 

below the pial surface.  The perimeter was covered with silicone gel (Kwik-Sil, World Precision 84 

Instruments, Sarasota, FL).  Additional sterilized stainless-steel screws were used to secure the electrode 85 

to the cranium.  The assembly was embedded with Cerebond (MyNeurolab, Saint Louis, MO).  86 

Carprofren (5 mg/kg s.c. once daily) was administered for 2 and 7 days, respectively.  The animals were 87 

observed for 7–10 days for any infection or other complications. 88 

Experimental design 89 
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One to eight days after surgery, the animals were placed in a closed, ventilated anesthesia chamber for 90 

continuous recording of extracellular potentials in dark environment.  Desflurane was administrated with 91 

a stepwise decreasing concentration, 6%, 4%, 2%, and 0%.  Between every concentration levels, there 92 

was a 15 minutes of transient period which allowed to reach equilibrium concentration (Fig. 1A).  Each 93 

concentration level comprised of resting state and visual stimulation sessions, during which light flashes 94 

of 1 and 10 ms durations were delivered to the retina by transcranial illumination with randomized 95 

intervals (2-4 seconds).  Neural response to visual flashes is beyond the scope of the study and thus the 96 

electrophysiological recordings during the visual stimulation session were not used in this study.  97 

Spontaneous activity during resting state session was recorded for twenty minutes per each desflurane 98 

level.  For one experiment which was performed in the beginning of the study, only forty minutes of 99 

spontaneous activity was recorded (ten minutes per anesthetic concentration).  Because all 100 

measurements of neuronal activity (spike rate, burst ratio, etc.) were quantified from 10 second epochs, 101 

ten minutes data length per desflurane concentration should not affect the final conclusions and the data 102 

was kept for the analysis.  Anesthetic concentration in the holding chamber was continuously monitored 103 

(POET IQ2 monitor; Criticare Systems, Inc., Waukesha, WI).  Core body temperature was maintained at 104 

37°C by subfloor heating.   105 

 106 

Electrophysiological Recording and identification of single units 107 

Extracellular potentials were recorded using SmartBox (Neuronexus Technologies, Ann Arbor, MI) at 108 

30 kHz sampling rate.  The data were used for both detecting unit activities (high frequency 109 

components; > 300 Hz) and for local field potentials (low frequency components; < 100 Hz).  To 110 

investigate unit activities, the sixty-four signals were median-referenced.  For every time stamp with 111 

signal amplitude larger than 10 SD, the periods ± 1 second of those time stamps were removed.  The 112 
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records were also visually inspected for noticeable noise episodes that were manually excluded from the 113 

analysis.  One experiment was excluded from the analysis due to severe noise contamination (n = 7).  114 

Single unit activity (SUA) was identified using the clustering software Spiking Circus, a template-based 115 

spike sorting method (Yger et al., 2018).  On average, 36 ± 14 (mean ± SD) single units were obtained 116 

per animal.  The SUAs were further classified into putative excitatory (pE) and inhibitory (pI) units 117 

based on the spike waveform, autocorrelogram and cross-correlogram.  Units with short half-amplitude 118 

width, short trough-to-peak time, and fast-spiking pattern (a prominent peak near 10-30 ms of 119 

autocorrelogram) were manually selected as a pI (Csicsvari et al., 1998; Sirota et al., 2008) (Fig. 1B-C).  120 

The rest of the units were classified into PE.  Cross-correlogram can be used to identify putative 121 

monosynaptic connections (Vizuete et al., 2012) but the chance of finding connections is small when the 122 

recording sites are relatively far from each other.  As an alternative, we calculated cross-correlogram 123 

between individual units (reference unit) and multi-unit activity (MUA; the summation of SUAs), then 124 

compared the level of MUA before and after spike events of individual units (Fig. 2D).  That is, our 125 

approach is based on a conjecture that pI (pE) units, on average, inhibit (excite) other units resulting in a 126 

negative (positive) asymmetry in cross-correlogram; the asymmetry of cross-correlogram was defined as 127 

(X-Y)/(X+Y), where X (Y) is the number of spike events of all the other units 1 to 5 second after 128 

(before) the spike of the reference unit.  All properties of local field potential (LFP) and spikes were 129 

calculated for non-overlapping 10 second epochs by assuming stationarity over the timescale of 130 

anesthetic-induced slow oscillations and burst-suppression pattern. 131 

 132 

Spectral analysis of LFP 133 

LFP signals were median-referenced, and one high-quality channel was chosen for the spectral analysis.  134 

For every time stamp with signal amplitude larger than 5 SD, the periods ±1 second of those time 135 
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stamps were removed.  Power spectral density (PSD) of LFP in each epoch was obtained by Welch’s 136 

method; the 10 second epochs were divided into 4 second windows with 50% overlap, and time series 137 

data in each window was multiplied with Hanning window to perform the fast Fourier transform.  A 138 

function “welch.py” in Python SciPy library (http://www.scipy.org) was used.  The calculated PSDs 139 

from each epoch were concatenated in order to visualize the time-varying pattern of PSD (spectrogram).  140 

For the comparison of PSDs between different brain states, PSDs from epochs in each brain state were 141 

averaged. 142 

 143 

EMG activity 144 

EMG signal was recorded with 1–500 Hz analog band-pass filter and 30 kHz sampling rate, and was 145 

used as a surrogate measure of the vigilance level.  EMG signal was first down-sampled to 3 kHz and 146 

PSD was calculated using the same parameters with the PSD calculation of LFP signal.  The PSD values 147 

with frequencies lower than 250 Hz were discarded due to cardiac artifact contamination.  Next, overall 148 

EMG activity level at each of the consecutive epochs was estimated by the sum of the log-transformed 149 

PSD values.  For a comparison across different animals, EMG activity was to a range between zero and 150 

one.   151 

 152 

Single-unit spike properties 153 

Spike rate (SR)  Because SR is known to follow lognormal distribution, linear-scale SR values were log-154 

transformed (Buzsáki and Mizuseki, 2014), and averaged for nonoverlapping consecutive 10-second 155 

epochs.  Zero spike rates were substituted by SR = 10-2 Hz before the log-transformation.   156 
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Gini coefficient  The Gini coefficient was used to estimate the dispersion of the SR distribution.  It was 157 

originally intended to represent the income or wealth disparity, and is commonly being used in 158 

measurement of inequality.  For non-negative values, the Gini coefficient can theoretically range from 159 

zero to one, zero being complete equality and one being complete inequality.  Gini coefficient was 160 

calculated from raw (not log-transformed) SR data, by plotting the neuronal population sorted by SR on 161 

the x-axis and cumulative SR on the y-axis (Lorenz curve, (Lorenz, 1905)).  The area below the Lorenz 162 

curve of the empirical SR data (area A) is then compared to the area below the Lorenz curve of an ideal 163 

SR data (area B), in which all neurons have an equal SR value.  The Gini coefficient value is finally 164 

defined as a ratio, (B-A)/B. 165 

Burst ratio (BR) Two spikes with short inter-spike intervals (ISI) (<10 ms) were considered as an 166 

indication of bursting spike.  BR was defined as the number of ISIs shorter than 10 ms (bursting spikes) 167 

divided by the total number of ISIs in each epoch.  Units with SR < 1 Hz in each epoch were considered 168 

as inactive units and excluded from the BR calculation.  BR values were log-transformed and averaged 169 

for consecutive 10-second epochs. 170 

Local variation (LV) Spike timing variability, or spike irregularity was estimated by local variation 171 

(Shinomoto et al., 2003) from each spike train of SUA.  LV was defined as, 172 

𝐿𝑉 =  
1

𝑛𝑖𝑠𝑖 − 1
∑

3(𝑇𝑖 − 𝑇𝑖+1)2

(𝑇𝑖 + 𝑇𝑖+1)2

𝑛−1

𝑖=1

, 173 

where 𝑇𝑖 is the duration of 𝑖th ISI and 𝑛𝑖𝑠𝑖 is the number of ISIs.  LV is zero for constant 𝑇𝑖, and 174 

approaches one for a sufficiently long Poisson ISI sequence.  LV is thought to differentiate the degree of 175 

intrinsic spiking randomness of individual neurons more effectively than the other measures, such as 176 
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coefficient of variation of ISI (Shinomoto et al., 2003).  LV values were not log-transformed because it 177 

did not show lognormal distribution.   178 

Transfer entropy (TE) was used to estimate directional functional connectivity among individual units 179 

(Schreiber, 2000; Ito et al., 2011).  For two spike trains of units x and y, TE can be estimated as 180 

𝑇𝐸𝑦→𝑥 =  ∑ 𝑝(𝑥𝑡+1, 𝑥𝑡
(𝑚)

, 𝑦𝑡
(𝑚)

)

𝑥𝑡+1,𝑥𝑡
(𝑚)

,𝑦𝑡
(𝑚)

log
𝑝(𝑥𝑡+1|𝑥𝑡

(𝑚)
, 𝑦𝑡

(𝑚)
)

𝑝(𝑥𝑡+1|𝑥𝑡
(𝑚)

)
, 181 

where 𝑚 denotes embedding dimension (pattern size), and p(∙) implies probability.  𝑥𝑡
(𝑚)

 denotes 𝑚 size 182 

spike pattern.  For example, for 𝑚 = 3 cases, there are 8 (=23) possible spike patterns ([0,0,0], [0,0,1], 183 

…, [1,1,1]).  TE𝑦→𝑥 (TE𝑥→𝑦) measures the statistical influence of unit y (x) on unit x (y).  TE𝑦→𝑥 is the 184 

reduced amount of uncertainty in future of x by knowing the past of y given past of x.  TE can also be 185 

thought of a mutual information (𝐼) between 𝑥𝑡+1 and 𝑦𝑡
(𝑚)

 given past of 𝑥𝑡
(𝑚)

: 186 

𝑇𝐸𝑦→𝑥 =  𝐼(𝑥𝑡+1;  𝑦𝑡
(𝑚)

|𝑥𝑡
(𝑚)

) 187 

We used 𝑚 = 3, and all spike trains were down-sampled to 125 Hz before calculation of TE; that is, the 188 

individual value in each bin of the spike train is one if there is one or more spikes within the 8 ms bin 189 

and zero otherwise.  190 

 191 

Multi-unit spike properties 192 

Three measures, the total number of spikes (TNS), longest period below mean (LPBM), and sample 193 

entropy (SpEn), were calculated with MUA signal (i.e., sum of all SUAs).  TNS represents the amount 194 

of total spike events occur in a sampled neural network.  For the calculation of LPBM and SpEn, the 195 

MUA signal was convolved with Gaussian kernel with standard deviation of 25 ms (Vyazovskiy et al., 196 
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2011), and continuous spike signal was obtained.  Details of LPBM and SpEn estimation are described 197 

below. 198 

Longest period below mean (LPBM) LPBM measures the time length of the longest inactive periods (or 199 

active periods depending on the time series characteristics) in a given time series (Lubba et al., 2019); 200 

first, the time lengths of all consecutive values below the mean of time series are calculated and then the 201 

maximum of the time lengths are obtained as a LPBM value.  LPBM is known to be one of the 202 

important temporal statistics in time series analysis (Lubba et al., 2019), and was used in this study to be 203 

a measure of persistent inactiveness of spike activity.  A high LPBM value in MUA signal implies an 204 

existence of long inactive period suggesting synchronous fragmentation of spike activities, whereas a 205 

low LPBM indicates more continuous activity suggesting an irregular and asynchronous spiking pattern.  206 

Therefore, LPBM is expected to yield a high value when spikes are synchronously fragmented in time 207 

(e.g., slow oscillation and burst-suppression).  In addition, LPBM will further increase as burst-208 

suppression ratio increases with deepening of anesthesia. 209 

Sample entropy (SpEn) SpEn was used to estimate the statistical irregularity of MUA as a time series.  210 

SpEn is an approximation of Kolmogorov entropy that measures the predictability of consecutive time 211 

series values based on their past values (Richman et al., 2000).  A high SpEn value implies random or 212 

unpredictable dynamics while a low SpEn value indicates regular or deterministic dynamics.  SpEn has 213 

been used to quantify depth of anesthesia and the level of consciousness in EEG studies (Liang et al., 214 

2015; Liu et al., 2018), and it generally decreases as anesthetic deepens.  To calculate the SpEn, first an 215 

embedded time series is obtained, 216 

𝑋𝑡  =  {𝑥𝑡, 𝑥𝑡+1, … 𝑥𝑡+(𝑚−1)}, 𝑡 =  1, 2, … , 𝑁 − (𝑚 − 1), 217 
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where 𝑥𝑡 is time series value (convolved MUA signal in this study) at time 𝑡, and 𝑚 is embedding 218 

dimension (pattern size).  Second, the correlation sum is calculated from the embedded time series, 219 

𝐶𝑖
𝑚(𝑟) =  

1

𝑁 − 𝑚 − 1
∑ Θ(𝑟 − ‖𝑋𝑖, 𝑋𝑗‖)

𝑁−𝑚−1

𝑗=1

. 220 

where Θ(∙) denotes a Heaviside step function and ‖∙‖ implies Euclidean distance between two vectors, 221 

and r represents the distance criteria.  We used 𝑚 = 3, and r = 0.2 standard deviation of amplitudes 222 

within each epoch following previous literature (Liang et al., 2015; Liu et al., 2018).  Finally, the SpEn 223 

is defined as, 224 

SpEn (𝑚, 𝑟, 𝑁) =  log ∑ 𝐶𝑖
𝑚(𝑟)

𝑁−𝑚

𝑖=1

−  log ∑ 𝐶𝑖
𝑚+1(𝑟)

𝑁−𝑚

𝑖=1

. 225 

Before the SpEn calculation, the MUA signal was convolved as in the case of LPBM calculation, and 226 

down-sampled to 125 Hz.  227 

 228 

Classification of brain states 229 

The primary focus of the study was to examine brain state-dependent changes in spike activity patterns 230 

during and after anesthesia.  To this end, spike train data was first segmented into 10 second 231 

nonoverlapping epochs.  Then five features from population level spike activity, that is, the total number 232 

of spikes (TNS), mean of log-transformed spike rate (SRm), mean local variation (LVm), longest period 233 

below mean (LPBM), and sample entropy (SpEn) were measured in each epoch.  The five features have 234 

different ranges with each other, and different animals often show different ranges for a single feature.  235 

Therefore, to normalize the feature values and mitigate the effect of outliers, the feature data were 236 
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divided into sextiles in each animal, and were transformed by linearly scaling to a given range (0-1); that 237 

is, the median of the data in the first sextile was considered zero and the median of data in the last sextile 238 

was considered one in each experiment.  This procedure is based on an assumption that the range of 239 

each of the five features is similar across different experiments with the same anesthetic protocol. 240 

The five features were then used for unsupervised clustering to delineate distinct brain states. 241 

Hierarchical agglomerative algorithm with Ward’s linkage method were applied for the clustering of 242 

brain states, using Python package Scikit-Learn (www.scikit-learn.org).  Each data point of a 10 second 243 

epoch was first treated as a single cluster in feature space, then the points were successively merged 244 

until all clusters merged into a single cluster.  The method does not require a specific number of clusters 245 

(K) at the beginning step, and the clusters can be easily identified from the hierarchy tree (dendrogram) 246 

that is built from the algorithm.  We determined the optimal number of clusters based on the dendrogram 247 

and so-called elbow method.  A within-cluster distance was plotted against the number of clusters, and 248 

the point where the curve sharply bends was chosen as an “elbow” point.  We used the maximum of the 249 

2nd order difference of the distance-K curve to find the elbow point.  We neglected the K = 2 cases, in 250 

which the brain state simply represents anesthetized (6-2% desflurane) and waking state (0% 251 

desflurane).  In our preliminary studies, adding more features and performing principal component 252 

analysis barely changed the clustering results.  253 

 254 

Statistical analysis 255 

All statistical analyses were conducted using StatsModels library (www.statsmodels.org) in Python 3.7.  256 

For all measures, to test the difference across the brain states, statistical comparisons were first 257 

performed using linear mixed models (LMM) based on restricted maximum likelihood estimation.  For 258 
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all LMMs, the brain states (categorical independent variable) were used as a fixed effect.  For the 259 

properties of population activity (i.e., PSD of LFP, the five input features, and EMG), the random effect 260 

included the seven animals.  For the individual unit properties such as SR and LV, the random effect 261 

included the different animals and units.  Post-hoc pairwise comparisons were made between the brain 262 

states using a Bonferroni adjusted p-value < 0.05 (number of hypotheses = 10).   263 
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RESULTS 264 

Cross-correlogram between SUA and MUA 265 

The classification of putative excitatory (pE) and inhibitory (pI) units was conducted based on spike 266 

waveform and autocorrelogram as described in method section.  36 out of 251 units were classified as pI 267 

unit (14.4%).  We further confirmed the classification by examining the asymmetry of cross-268 

correlogram between SUA and MUA.  As predicted, the asymmetry of pI (pE) units showed negative 269 

(positive) values on average (Fig. 2E); statistical significance was seen both in pE and pI units (one 270 

sided t-test with Bonferroni correction, p = 0.045 for pE, and p < 10-6 for pI).  This suggests that pI (pE) 271 

units on average, tend to inhibit (promote) population activity, reassuring the classification of neuronal 272 

types. 273 

 274 

Brain state shifts during anesthesia 275 

In order to identify local brain states from the electrophysiological recording independent of the nominal 276 

anesthetic concentration, we visualized how LFP spectrogram and MUA characteristics change over 277 

time during the experiment.  In all animals, the LFP spectrogram, total number of spikes (TNS), mean of 278 

log-transformed spike rate (SRm), mean of local variation (LVm), longest period below mean (LPBM), 279 

and sample entropy (SpEn) profoundly changed during (6,4, and 2% desflurane) and after (0% 280 

desflurane) anesthesia.  Figure 2A illustrates the time course of these variables in one animal as an 281 

example.  Importantly, both the spectrogram and the MUA features change not only between but also 282 

within each recording period at constant anesthetic concentration.  For instance, in the middle of the 283 

recording at 6% desflurane, low frequency (< 4 Hz) power in the LFP spectrogram and LPBM abruptly 284 

increased for no evident reason.  The additional abrupt transitions are seen at 2% desflurane.  Other 285 
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animals also showed similar transitions, with either positive or negative sign, at various anesthetic levels 286 

(data not shown).  This example demonstrates that a simple one-to-one relationship between the chosen 287 

LFP/MUA variables and the anesthetic concentration does not exist suggesting the need for a more 288 

nuanced identification of brain states from these variables. 289 

To achieve this goal, we used agglomerative clustering on the five MUA variables as input features from 290 

data pooled from all animals to identify distinct, unitary brain states.  The scatter plots in Fig. 2B 291 

illustrate pairwise relationships of the five MUA features in 5 clusters.  The choice of 5 clusters could be 292 

justified by the dendrogram (Fig. 2C), which illustrates that between-cluster distances were large and 293 

within-cluster distances were small at K = 5.  We also calculated a within-cluster distance as a function 294 

of K (Fig. 2D).  The 2nd order difference of the distance curve was maximized at K = 5, suggesting it was 295 

an optimal choice consistent with the dendrogram distances. 296 

The five clusters identified by unsupervised clustering were designated as brain states S1 to S5 and the 297 

mean values of MUA variables among these states were statistically compared (Fig. 2E; Table 1).  As 298 

found, S1 was characterized by the lowest TNS, SRm, and SpEn and the highest LPBM indicating that 299 

S1 corresponded to burst-suppression (see Fig. 3A) typical to deep anesthesia.  In fact, S1 was mostly 300 

observed at 6% desflurane (Fig. 2F-G).  S5, on the other hand, was mostly observed at 0% desflurane 301 

(Fig. 2F).  It was characterized by high spike activity (high TNS and SRm) and asynchronous firing 302 

patterns (high SpEn and low LVm).  S2 and S4 had intermediate feature values between those of S1 and 303 

S5.  S2 was mostly observed at 4% desflurane and S4 was mostly seen at 2% desflurane (Fig. 2F). 304 

Interestingly, S3 was mostly found in 6% desflurane (Fig. 2F) similar to S1.  However, S3 showed a 305 

distinct pattern from S1.  It was characterized by high SpEn, relatively low SRm and very low LBPM.  306 

TNS was not reduced as much as SRm; Notice that TNS indicates total number of spikes in the neuronal 307 

population and SRm is the mean of log-transformed individual spike rates.  The discrepancy suggests 308 
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that in S3, some neurons are inactive, but a few neurons emit a large number of spikes whereas these 309 

outliers are absent in S1.  The details of spike rate distribution of neuronal population are analyzed 310 

further in the next section.  The low LPBM indicates no clear distinction of active and inactive period in 311 

S3.  The low LPBM, together with the high SpEn, implies that spiking pattern in the S3 was 312 

asynchronous.  313 

Although brain state and anesthetic concentration were not uniquely related, a general trend of the 314 

occurrence probability of brain states with anesthetic level was evident; the S1, S2, S4, and S5 in order 315 

occurred mostly at correspondingly decreasing desflurane concentration.  Therefore, it is reasonable to 316 

surmise that the occurrence probability of brain states, with an exception of S3, generally reflected the 317 

depth of anesthesia.  Interestingly, however, they were also observed in other concentrations (Fig. 2G-318 

F).  For instance, at 6% desflurane, S1 was present 61% of the time, whereas at 4% desflurane, S1 was 319 

present 39% of the time; with the balance occupied by other brain states.  Generally, several different 320 

brain states occurred at each constant anesthetic concentration.  For example, at 6% desflurane, S1, S2, 321 

S3, and S4 appeared in non-negligible proportion (Fig. 2G).  The many-to-many relationship between 322 

brain state and anesthetic concentration suggests a general need for brain state-dependent investigation 323 

of unit activity. 324 

 325 

LFP properties of the five brain states 326 

Because local field potentials (LFP) generally reflect the state in anesthesia, we examined LFP patterns 327 

and power spectral density (PSD) in each brain state.  Typical LFP traces in five brain states are shown 328 

in Figure 3A from the same animal as in Fig. 2A.  The LFP in S1 exhibited burst-suppression.  S2 and 329 

S4 revealed relatively high amplitude, slow activity as generally expected in anesthesia.  In contrast, S3 330 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 14, 2020. ; https://doi.org/10.1101/2020.06.13.150235doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.13.150235
http://creativecommons.org/licenses/by-nc-nd/4.0/


18 
 

showed low amplitude, desynchronized LFP pattern similar to S5 corresponding to the awake state.  The 331 

PSD averaged over all animals showed a power law relationship with frequency (Fig. 3B).  The slightly 332 

higher slope in S2 and S4 was associated with the increased low-frequency (< 4 Hz) and decreased high-333 

frequency (> 30 Hz) PSD (Fig. 3C) consistent with the anesthetic-induced suppression of high frequency 334 

gamma power and enhancement of delta and slow oscillation in EEG/LFP.  S5 was characterized by 335 

increased theta (5-9 Hz) and high-frequency (> 20 Hz) power, the typical signatures of EEG/LFP in 336 

wakefulness.  For a quantitative comparison we calculated the L/H ratio as log10{(PSD at 0.25-4 Hz)/ 337 

(PSD at 30-59 Hz)} (Li et al., 2009). S2 and S4 showed significantly higher L/H ratio than S5 (p<0.001; 338 

Fig. 3E).  In sum, the brain states, S1, S2, S4 are consistent with known LFP features of deep, moderate 339 

and light anesthesia, respectively; however, the LFP in S3 is unexpected and contrary to the generally 340 

presumed dose-dependent effect of anesthesia. 341 

 342 

High EMG activity in paradoxical desynchronized state  343 

The asynchronous firing pattern and relatively high LFP gamma power found in S3 raises the question 344 

whether the systemic arousal level may also be elevated in S3 as it is in S5.  Generally, the EMG follows 345 

the level of arousal; therefore, the vigilance state of animals was estimated by EMG activity.  Although 346 

both S1 and S3 occurred mostly in 6% desflurane, EMG of S3 was substantially higher than that of S1.  347 

The rescaled EMG traces from each animal exhibited higher muscle activity in S3 than in S1 and 348 

sometimes even higher than in S2 (Fig. 3F).  Statistically significant differences in the rescaled EMG 349 

were found for S3 vs. S1 and S3 vs. S5 (p < 0.024 and p < 10-6, respectively with Bonferroni correction; 350 

Fig. 3G). 351 

 352 
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Spike rate distribution across brain states and neuron types 353 

We compared the five brain states in terms of both the number of emitted spikes and the average spike 354 

rate of individual units.  Generally, desflurane suppressed spike activity (Fig 4A-B).  Figure 4A 355 

illustrates the time course of SRm (average of log-transformed spike rate) and total spike number TNS 356 

from the same animal as in Figure 2A and 3A.  As seen there, the traces of SRm and TNS deviated from 357 

each other, especially at 6% desflurane.  The TNS showed a pronounced decrease when the brain state 358 

transitioned from S3 to S1, whereas the SRm remained the same.  In S3 many units were inactive, even 359 

more than in S1 and S2, but there were a few units with very high SR (Fig. 4C).  Accordingly, the 360 

variation of SR across individual units was the highest in S3.  The variation in SR distribution was 361 

quantified by the Gini coefficient and the value of S3 was significantly larger than all others (Fig. 4D; 362 

Table 2).  Specifically, Figure 4E implies that the highly active units in S3 are putative excitatory (pE) 363 

units.  SR of active units in S3 was comparable to that in S5 (left panel in Fig. 4E) for pE units; 364 

however, SR of putative inhibitory (pI) active units in S3 was lower than that of pI units in S5 (right 365 

panel in Fig. 4E).  For the mean SR of pE units, there were significant differences among the states 366 

except S1 vs. S3; SRm increased from S1 or S3 through S2 and S4 to S5 (Fig. 4E; Table 2).  For pI units, 367 

SRm was significantly higher in S5 than in all other states.  Thus, in general, desflurane profoundly 368 

suppressed SR of both pE and pI units, but a few pE units in S3 remained highly active resulting in very 369 

high SR variation in this brain state. 370 

A decrease in average firing rate could be generalized across all units or selective to specific units; e.g. 371 

due to a slowing of high-firing neurons.  Therefore, we tested if units had a tendency to preserve their 372 

firing rate rank across brain states. SR similarity between any two epochs was estimated by calculating 373 

the Pearson correlation, and is presented in Figure 4G.  The correlation matrix for individual units 374 

showed high within-state similarity and relatively low between-state similarity.  The results from 375 
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correlation analysis of all units from all animals (n = 251; Fig. 4G) were consistent with the result from 376 

the representative animal.  Within-state comparisons of SR between the first half of the state and the 377 

second half of the same state are shown in the diagonal panels of Fig. 4G.  Between-state comparisons 378 

between different states are shown in the off-diagonal panels of Fig. 4G).  Orthogonal linear regression 379 

indicated that within-state similarity of SR (R > 0.93 for all the five states) is generally higher although 380 

still significant (p < 0.001) than between-state similarity except S1 vs. S2 (upper right inset in Fig. 4G).  381 

These findings indicate that SR profiles of individual units are preserved both within and between brain 382 

states. 383 

  384 

Temporal dynamics of spike activity 385 

Anesthesia not only suppresses the average spike rate as reported in the previous section (Fig. 4) but also 386 

modulates the temporal dynamics of spike activity (Vizuete et al., 2014).  Raster plots in Figure 5A 387 

illustrate the changing temporal dynamics of spike activity.  Note that in S1, S2, and S4, but not in S3, 388 

spike activity is more synchronized and temporally fragmented as compared to S5. Figure 5B displays 389 

raster and distribution of ISIs in seven representative units (four pE and three pI) from the same animal 390 

at different desflurane concentrations.  The shape of ISI distribution was profoundly altered by the 391 

anesthetic.  In wakefulness (S5) the ISI distribution was unimodal, whereas in the other four states it was 392 

bimodal or multimodal.  This was partially due to the silent periods in spike activity; the large ISI values 393 

in the raster plot (ISI ~ 103 ms) in Figure 5B (especially, S1 and S2) correspond to silent periods that 394 

contribute to a second peak in ISI histogram (Fig. 5B).  In addition, some pE units in S1 and S2 tended 395 

to fire in brief bursts that were associated with short ISI (ISI < 101 ms; Fig. 5B).  Burst activity had also 396 

contributed to a peak near ISI ~ 10 ms in the ISI histograms (Fig. 5B).  In S3, two pE units exhibited 397 

very high SR (represented by dense points, asterisk in Fig. 5B) that was comparable to the SR in S5, 398 
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consistent with the findings in the previous section (Fig. 4E).  Both units showed unimodal ISI 399 

distribution as in S5. 400 

To determine if burst activity and long silence periods generally occurred in all units and all animals, 401 

autocorrelogram was calculated from all active units (SR ≥ 1 Hz).  The averaged autocorrelogram 402 

showed a gradual increase of burst activity (ISI < 10 ms) in pE units under anesthesia from S5 to S1 (left 403 

panel in Fig. 5C).  A prominent peak was observed near at 6 ms that progressively decreased from S1 to 404 

S5 (left panel in Fig. 5C).  As expected, autocorrelogram showed little or no evidence of bursting of pI 405 

units.  Another measure of bursting of pE units, the burst ratio (BR) generally decreased from S1 to S5 406 

(Fig. 5D-E).  Note that inactive units (SR < 1 Hz) were excluded from the autocorrelogram and BR 407 

calculation.  Similar to the SR distribution, BR did not follow normal distribution but skewed to the 408 

right, and thus it was log-transformed.  Statistically significant difference in BR of pE units was found 409 

for all pairwise comparisons of brain states except S4 vs. S2, and S3 (Fig. 5E; Table 2).  The increases in 410 

BR of pI units were less pronounced (right panel in Fig. 5C; Fig. 5E).  For pI, BR of S3 was 411 

significantly lower than that of S1 and S5.  The suppression in SR (Fig. 4), together with the changing 412 

temporal pattern of spiking indicates that neurons were either inactive or bursty at deeper levels of 413 

anesthesia.  As the brain state changed from S1 to S5, more units became active and burst activity of 414 

active units in anesthesia was reduced in S5 (Fig. 5F).  Again, S3 was an exception; BR of pE units in 415 

S3 was comparable to BR in S4. 416 

The state-dependent changes of ISI distribution were also characterized by local variation (LV), a 417 

measure of spike timing variability - a measure that is sensitive to changes in both burst activity (small 418 

ISI) and to the presence of long silent periods (large ISI).  LV showed a similar trend to BR across brain 419 

states but more effectively distinguished the five brain states especially for pI units (inset in Fig. 5E, H).  420 

LV of both pE and pI units decreased from S1 through S2 and S4 to S5.  All pairwise comparisons 421 
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except S1 vs. S2 were statistically significant for pE units and all pairwise comparisons except S1 vs. 422 

S2, and S3 were significant for pI units (Fig. 5H; Table 2). 423 

In summary, spiking activity of most units was profoundly inhibited by desflurane and the remaining 424 

active units showed an enhanced burst activity (for pE) and prolonged silence period (both pE and pI).  425 

In the paradoxical state S3 these effects were marginal such that units exhibited an irregular spiking 426 

pattern similar to that seen in wakefulness or S5. 427 

  428 

Individual neurons conform to population activity 429 

It is well known that desflurane, as well as other anesthetics, enhances spike-field correlation (Vizuete et 430 

al., 2014).  We re-examined this effect as a function of brain state and found that desflurane increases 431 

spike-LFP correlation in all anesthetized states except S3.  Specifically, the spike-triggered LFP 432 

amplitude decreased from S1 through S2, and S4 to S5 but not in S3 (Fig. 6A).  We also examined 433 

spike-triggered MUA (Fig. 6B).  The MUA in S5 was high and relatively flat across time lags, with a 434 

small oscillatory pattern in theta frequency range (5-9 Hz).  From S4 through S2 to S1, the overall MUA 435 

level gradually decreased indicating a suppression of overall spike activity, while the MUA peak near 0 436 

ms remained almost the same indicating synchronous firing.  In addition, the “dip” in MUA observed 437 

before and after spike events became deeper and wider as brain state moved from S4 through S2 to S1.  438 

Notice that in S1, the number of spikes near ± 500 ms to spike events is close to zero, consistent with the 439 

near-silent periods of LFP burst-suppression.  Again, distinct from the other three anesthetic states, S3 440 

did not have a large trough on either side of spike events; whereas the MUA was substantially lower 441 

than in S5. 442 
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To evaluate the extent to which individual neurons conform to population activity, we quantified SUA-443 

MUA correlation.  Both spike train of individual single units and MUA signal were convolved with 444 

Gaussian kernel (SD = 25 ms), then the Pearson correlation between the two convolved signals was 445 

calculated.  A substantial change in correlation was observed in both pE and pI units (Fig. 6C); all 446 

pairwise comparisons were statistically significant for pE units and all pairwise comparisons except S3 447 

vs. S5 were significant for pI units (Table 2). 448 

 449 

Information transfer depends on spike rate  450 

The correlation results described so far indicate a nondirectional relationship between convolved SUA 451 

and MUA signals.  In order to estimate directional functional connectivity of neuronal interaction, TE 452 

between individual binary spike trains (SUAs) was calculated.  Because spike activity itself is in part a 453 

result of neural communication, TE is presumed to depend on the degree of overall spike activity.  In 454 

fact, TE was high for units with high SR and low for units with low SR (Fig. 6D).  However, for a same 455 

range of SR, TE in anesthesia was higher than that in wakefulness.  For example, for units having SR in 456 

a range of 100 to 101 Hz (the colored points inside the black squared box in each panel in Fig. 6D), TE 457 

values in S1 were higher than TE values in S5. 458 

 459 

Synchronous firing correlates with enhanced information transfer 460 

The sum of TE values (TEs) for active units was highest in S5 and lowest in S1 and S3 (Fig. 6E left 461 

panel; Table 2), which is consistent with the general reduction of SR in anesthesia.  However, the mean 462 

TE (TEm; the mean of TE values for active units) showed an opposite trend as it was the highest in S1 463 

(Fig. 6E, second panel from the left; Table 2).  Note that inactive units (SR < 1 Hz) were excluded from 464 
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all results in Figure 6E and the averaging was done across animals (n = 7).  To see if the SR exclusion 465 

threshold had any effect, TE results with different SR thresholds were compared in Figure 6F.  When all 466 

units were included (SR threshold = 0 Hz), the TEm was the highest in S5 (Fig. 6F, second panel from 467 

the left) as it should be qualitatively the same as in TEs with SR threshold = 0 Hz (Fig. 6F, first panel 468 

from the left).  However, as the SR threshold increased, TEm of S5 became the lowest and that of S1 the 469 

highest (Fig. 6F, second panel from the left).  Figure 6G illustrates that this differences among brain 470 

states do not merely reflect the SR changes; that is, the mean SR in S5 was the highest of all states 471 

across all SR thresholds, distinct from the TEm for both pE and pI units. Note that for pE units, SR of S3 472 

was comparable to that of S5 when SR threshold > 0 Hz. 473 

The variation of all pairwise TE values (including inactive neurons) estimated by Gini coefficient was 474 

higher in anesthesia (S1-4) than wakefulness (S5) (Fig. 6H).  This is because in anesthesia, many of the 475 

units were silent or inactive; thereby these units had very low TE, while the remaining active units had 476 

relatively high TE.  Statistically significant differences in the Gini coefficient were found for S5 vs. S1, 477 

S2, S3, and S4 and S4 vs. S1, and S3 (Fig. 6I; Table 2). 478 

The reason for the difference in change across brain states between the TEs and TEm can be attributed to 479 

(1) the number of active neurons and (2) synchronous activity (Fig. 4C), and explained by Venn diagram 480 

of information in Figure 6J.  In wakefulness, there are many active neurons; therefore, the sum of 481 

transfer entropies of active neurons (TEs) is high (left in Fig. 6J).  In anesthesia, on the other hand, there 482 

are far less number of active neurons (Fig. 4B-C); therefore, the sum of transfer entropies of active 483 

neurons (TEs) is relatively small.  For the small number of active neurons (upper right in Fig. 6J), the 484 

enhanced synchronization in anesthesia produces a large value of transfer entropy; this contributes the 485 

high value of the mean transfer entropy between active neurons (TEm).  For inactive neurons, however, 486 
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there is few information to be transferred, so that transfer entropy is extremely small (lower right in Fig. 487 

6J). This also explains why the variation in transfer entropy is high in anesthesia (Fig. 6H-I).   488 

 489 

Information transfer along different connection types is state-dependent 490 

We further investigated whether desflurane differentially affects different connection types, by 491 

examining TE of neurons pairs, pE-to-pE, pI-to-pE, pE-to-pI, and pI-to-pI (Fig. 6E-F).  The most 492 

pronounced change with state was observed in pE-to-pE connectivity indicated by a gradual decrease of 493 

TE from S1 to S5 (Fig. 6E).  Statistical significance was seen in S1 vs. all the other states and S2 vs. S5 494 

(Table 2).  The pI-to-pE connectivity was also higher in S1 vs. all the other states.  The increase of TE in 495 

pE-to-pI and pI-to-pI connections was not as pronounced as in pE-to-pE and pI-to-pE cases.  S3 showed 496 

relatively low TE such that pE-to-pI of S3 was lower than that of S1 (Fig. 6E, fifth panel from the left; 497 

Table 2) and pI-to-pI of S3 was lower than that of S4 (Fig. 6E, sixth panel from the left; Table 2).  The 498 

findings suggest that desflurane exerts a more substantial effect on pE-to-pE and pI-to-pE connections 499 

than pE-to-pI and pI-to-pI connections.  500 
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DISCUSSION 501 

The main goal of this work was to determine how cortical unit activity changes with dynamically 502 

transitioning brain states under anesthesia.  Using unsupervised machine learning method, we identified 503 

five brain states with distinct neuronal spiking behavior.  Multiple brain states were observed at a 504 

constant anesthetic concentration, and conversely, the same brain state occurred at different anesthetic 505 

concentrations.  The spontaneous shift of brain states at fixed anesthetic level suggested that the 506 

neuronal network underwent metastable (Bovier, 2006) or multistable state changes due to external 507 

perturbation or noise (Scott Kelso, 2012; Golos et al., 2015).  Recent anesthesia studies of large-scale 508 

brain activity argued that neuronal dynamics may be at equilibrium on short timescales (seconds) but 509 

shows state switching at longer timescales (minutes) (Hudson et al., 2014; Hudson, 2017).  Our results 510 

are consistent with these findings while providing additional insight into the spiking behavior of 511 

individual neurons in dynamically transitioning brain states. 512 

 513 

Spikes are synchronously fragmented in anesthesia 514 

The intermittent firing pattern observed in anesthetized brain states (i.e., the increased LV and bimodal 515 

interspike intervals distribution) was synchronous among the neurons and therefore which was also 516 

reflected in the MUA, by an increase in LPBM.  This synchronized fragmentation of spike activity 517 

estimated by the increase of individual-to-population correlation was more effective in distinguishing 518 

the four brain states (except S3) than all the other examined properties of spike dynamics suggesting that 519 

the synchronously fragmented spike activity is the most pronounced effect of anesthesia (Fig. 6C).  A 520 

higher value of individual-to-population coupling implies that the spike activity of each neuron is 521 

constrained to the population activity.  From the perspective of information processing, this must be an 522 
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undesirable condition.  Because the entire population acts like a single neuron, information capacity of 523 

the population is very low (Tononi, 2004; Izhikevich, 2006).  Although high individual-to-population 524 

coupling suggests an increase of shared information among neurons, because information content of a 525 

single neuron is extremely limited, one could surmise that in such condition, the animal would be 526 

unconscious.  This also explains why surgery is preferred in anesthetic states when EEG displays slow 527 

oscillations.  Synchronized fragmentation of spike activity has also been reported with other anesthetics, 528 

such as ketamine/xylazine (Compte et al., 2003), urethane (Steriade et al., 1993; Kasanetz et al., 2002; 529 

Clement et al., 2008), propofol (Lewis et al., 2012), in addition to desflurane (Vizuete et al., 2014) 530 

despite the agents’ diverse molecular structure and pharmacological targets.  Thus, our study suggests 531 

that synchronously fragmented spike pattern seen with most anesthetics is a common signature of 532 

impaired information processing closely associated with loss of consciousness. 533 

 534 

Unlike sleep, anesthesia may disrupt sensory functions 535 

We found that desflurane reduced the spike rate of most neurons regardless of their wakeful firing rate 536 

unlike sleep that was found to differentially alter high-firing and low-firing neurons (Miyawaki and 537 

Diba, 2016).  In natural sleep, the spike rate of high-firing neurons substantially decreased while the 538 

spike rate of low-firing neurons was enhanced (Watson et al., 2016).  It has been suggested that high-539 

firing neurons appear to be comprised of so-called choristers, which conform to the mean spike rate of 540 

the neuronal population, while the low-firing neurons called soloists respond to stimulation with firing 541 

rate changes distinct from that of the population (Bachatene et al., 2015).  Specifically, the preferential 542 

augmentation of spike rate of low-firing, stimulus-selective neurons during rapid eye movement sleep 543 

has been thought to contribute to an increase of the signal-to-noise ratio of sensory processing.  The fact 544 
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that desflurane decreased the spike rate of virtually all neurons, including those with low baseline firing 545 

rate, may be one of the reasons why sensory functions fail in anesthesia. 546 

 547 

Anesthesia facilitates bursting of excitatory neurons 548 

A recent modeling study of spiking neuronal network demonstrated that burst-spikes of individual 549 

neurons is more influenced by their presynaptic environment than by their cell type (Tomov et al., 550 

2016).  For example, regular spiking neurons could exhibit burst firing by network-mediated effect.  551 

Burst-spikes of individual neurons can also shape global network dynamics.  In urethane anesthetized 552 

rats, burst-spikes induced by electrical stimulation of a single cortical neuron could switch global 553 

cortical state from slow oscillation (synchronized activity) to persistent UP state and vice versa (Li et al., 554 

2009).  Nevertheless, the causal relationship between the intrinsic spiking pattern of individual neurons 555 

and network synchronization has yet to be fully elucidated.  While some neurons showed bursting, about 556 

three quarter of neurons were essentially inactive (fired at < 1 Hz) in deep anesthesia.  Several modeling 557 

studies postulated the suppression of metabolic rate in the brain as a key mechanism of anesthetic-558 

induced low frequency oscillations and burst-suppression (Cunningham et al., 2006; Ching et al., 2010, 559 

2012).  Another study reported the occurrence of burst-spikes is highly associated with suppression of 560 

spike activity, such that hyper-excitable state at the end of suppression period enables an emission of 561 

burst-spikes (Kroeger and Amzica, 2007).  However, it remains uncertain how anesthesia almost 562 

completely suppresses majority of neurons while causing burst and synchronized activity in the 563 

remaining active neurons.  Synchronous firing may be the only way for a neuronal network to maintain 564 

its activity under synaptic inhibition in anesthesia (Lukatch and MacIver, 1996); synchronous firing 565 

allows neurons to receive enough number of spikes from connected neurons within a short time period, 566 

thereby preventing from a decay of spike activity.  In this scenario, neurons with many and strong 567 
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synaptic connections would generate a large number of action potentials with high synchronization, and 568 

vice versa.  According to recent study, neurons with strong population coupling (choristers) receive 569 

many synaptic inputs from their neighbors, and show high firing rate both in wakefulness and anesthesia 570 

(Okun et al., 2015).  However, the existence of a paradoxical desynchronized state in deep anesthesia 571 

suggests the possibility of an alternative scenario in which neurons fire asynchronously while the mean 572 

firing rate is profoundly suppressed comparable to an averaged firing rate during burst-suppression 573 

period.  Future modeling study of anesthesia which considers spike rate distribution and synaptic 574 

connections as well as the anesthetic-induced brain states may be able illuminate the possible causal 575 

relationship of spike rate distribution, burst activity, and synchronization. 576 

 577 

The paradoxical desynchronized state and consciousness 578 

In the paradoxical desynchronized state (S3) which was mostly found during deep anesthesia (6% 579 

desflurane), the mean spike rate was as low as in S1 (burst-suppression period), however a small portion 580 

of neurons showed distinctly high spike rate (Fig. 4B-C).  Interestingly, the firing pattern of neural 581 

population was asynchronous, similar to wakefulness (Fig. 5).  Together with the relatively high EMG 582 

activity (Fig. 3F-G), this suggested that S3 could be considered a paradoxically aroused state.  It can be 583 

surmised that there was at least a theoretical possibility of transient awareness in this state.  A similar 584 

proposal has been put forward for the UP states in slow-wave sleep (Destexhe et al., 2007).  Given the 585 

unexpected nature of this paradoxical state, replication of this finding together with a more systematic 586 

behavioral assessment or level of consciousness will offer a more significant clinical implication and 587 

advance the general understanding of the neuronal network dynamics. 588 

 589 
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Spiking behavior changes monotonically with brain state 590 

It has been widely reported that most properties of large-scale brain activity (EEG, LFP) exhibit a 591 

biphasic pattern with anesthetic depth; i.e., an initial increase (decrease) of EEG/LFP variable is 592 

followed by decrease (increase) as anesthesia deepens. (Borgeat et al., 1991; Kuizenga et al., 1998, 593 

2001; Lee et al., 2017).  In agreement, in our study, the low-frequency dominance of LFP (L/H ratio) 594 

first increased then decreased (ignoring S3) as the anesthetic was stepwise withdrawn.  Unexpectedly, 595 

the spiking behavior did not follow this biphasic pattern; the changes were always monotonic for all 596 

spike properties from burst-suppression (S1) to full wakefulness (S5) (again, ignoring S3).  The reason 597 

for this discrepancy is not known but it may be due to a limitation of measurements at large-scale level.  598 

For example, spike rate decreases monotonically as the anesthesia deepens but this cannot be measured 599 

directly by EEG or LFP because these measurements mostly reflect synchronous population activity.  In 600 

addition, the theory of complex system predicts that for a system consisting of many interacting 601 

elements such as the neuronal network, an incremental change local variables can lead to abrupt, 602 

qualitative change in macroscopic variables; in this case, leading to biphasic macroscopic behavior. 603 

 604 

Conclusions 605 

We identified five distinct brain states during stepwise changes of the anesthetic state.  The identified 606 

brain states displayed degeneracy in their relationship with anesthetic concentration suggesting the 607 

presence of metastable or multistable dynamics with specific, transient patterns of neuronal spiking.  A 608 

previously unidentified paradoxically desynchronized state was found during deep anesthesia.  The 609 

synchronously fragmented spiking in anesthesia appears to be a robust signature of the state of 610 

unconsciousness.  611 
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FIGURE LEGENDS 715 

 716 

Figure 1. Anesthetic procedure and identification of excitatory and inhibitory units  (A) Schematic 717 

representation of the anesthesia protocol.  The volatile anesthetic desflurane was administered at steady state 718 

concentrations and decreased in a stepwise manner.  This study used spontaneous activity data only.  (B) Putative 719 

excitatory (pE) and inhibitory (pI) units were classified based on spike waveform features and the 720 

autocorrelogram (not shown).  (C) Average spike waveform of pE (n=215) and pI (n=36) units.  (D) Average 721 

cross-correlogram (CCG) between single unit activity and multi-unit activity (MUA).  The cross-correlogram was 722 

normalized by dividing the number of units in MUA.  (E) Asymmetry of CCG confirms the identification of pE 723 

and pI units.  Error bar indicates 95% confidence interval across units (*p<0.05, ***p<0.001; one-sided t test with 724 

Bonferroni correction).   725 
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 726 

Figure 2. Classification of brain states  (A) Local field potential spectrogram and traces of five features from a 727 

representative animal; TNS: total number of spikes, SRm: mean of log-transformed spike rate, LVm: mean local 728 

variation, LPBM: longest period below mean, SpEn: sample entropy.  Colors in the horizontal bar above the 729 

spectrogram indicate different brain states (S1 through S5) as classified by clustering.  (B) Scatter and histogram 730 

plots of the five features used for state clustering from pooled data.  (C) Dendrogram generated from hierarchical 731 

agglomerative clustering.  (D) Elbow method suggests the optimal number of clusters as K=5.  (E) Brain state-732 

dependent changes of the five features.  Error bar indicates 95% confidence interval across animals.  The inset in 733 

each panel represents statistically significant difference between pairs of brain states.  (F) Relative frequency of 734 

four anesthetic concentrations supporting each brain state; pooled data from seven animals.  (G) Relative 735 

frequency of five brain states at each anesthetic concentration; pooled data from seven animals.  736 

  737 
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 738 

Figure 3. Local field potential (LFP) and electromyography (EMG) in five brain states  (A) Example LFP 739 

traces from one animal.  (B) Power spectral density (PSD) vs. frequency plot shows power-law relationship in the 740 

five brain states.  Data were averaged from the seven animals.  (C) Relative PSD vs. frequency plot in a linear 741 

scale. (D) Log-scale representation of the PSD-frequency plot.  (E) L/H power ratio across five brain states.  The 742 

L/H ratio is defined as log10{(PSD at 0.25-4 Hz)/ (PSD at 30-59 Hz)}.  Error bar indicates 95% confidence 743 

interval across animals (***p<0.001 compared to S5).  (F) EMG activity (black trace) during 6-4% desflurane in 744 

four animals.  Horizontal bars with different colors indicate different brain states; magenta, yellow, cyan, and 745 

green for S1, S2, S3, and S4, respectively.  (G) EMG in S3 is significantly higher than that of S1 and lower than 746 

that of S5.  Error bar indicates 95% confidence interval across animals (*p<0.05, ***p<0.001 compared to S3). 747 

  748 
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 749 

Figure 4. Spike rate properties of five brain states.  (A) Example trace of mean spike rate (SRm, black) and 750 

total number of spikes (TNS, blue) from one animal.  SRm is the average of log-transformed spike rates.  Black 751 

shaded area represents 25th and 75th percentiles of log-transformed spike rate distribution.  The horizontal bars 752 

with different colors indicate different brain states.  (B) Log-transformed spike rate distribution in five brain states 753 

from all individual units.  (C) Frequency distribution of untransformed spike rate (SR) in five states. Color code is 754 

the same as in panel A and B.  (D) Gini coefficient of untransformed spike rate distribution. Error bar indicates 755 

95% confidence interval across units.  The inset represents pairwise statistical significance.  (E) Average log-756 

transformed spike rate as a function of SR threshold for pE (left) and pI (right) units.  (F) Comparison of SRm 757 

across five states.  The inset shows statistically significant difference for pairs of brain state.  (G) Pairwise spike 758 

rate correlation among all epochs from the same animal in panel A.  Two color bars above and right of the matrix 759 
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indicate the five brain states (same color code as before).  (H) Orthogonal linear regression of log-transformed 760 

spike rates between brain states. The inset in the upper right corner represents Pearson correlation values for 761 

within- and between-brain states. 762 
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 764 

Figure 5. Temporal dynamics of individual units  (A) Example local field potential trace and corresponding 765 

raster plot of single units in one animal in brain states S1 through S5.  (B) Raster plot and frequency distribution 766 

of inter-spike interval (ISI) of seven units from the same animal in panel A;  red histograms: pE units, blue 767 

histograms: pI units.  (C) Average normalized autocorrelogram on log-scale calculated from all active units (SR≥1 768 

Hz). Inset: the same autocorrelogram on linear scale for short time lags (-50 to 50-ms).  (D) Distribution of burst 769 
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ratio (BR) of active units (SR>1 Hz).  (E) Comparison of BR across five states.  Error bar indicates 95% 770 

confidence interval across units.  The inset shows statistically significant pairs of brain state.  (F) An illustration 771 

of the change of BR and in(activeness) with brain state in individual pE units shows that pE units become either 772 

bursty or inactive under anesthesia; each line connects data from the same unit.  A dark (light) colored line 773 

indicates low (high) BR value in S5.  Inactive units (SR<1 Hz) are shown at the bottom of each panel.  For better 774 

visualization of the gradual change from S1 through S2 and S4 to S5, data in S3 were separated to the left.  The 775 

right panel emphasizes two extreme cases (S1 and S5).  (G) Distribution of local variation (LV) of active units 776 

(SR<1 Hz) only. (H) Comparison of LV across five states.  Error bar indicates 95% confidence interval across 777 

units.  The inset represents statistically significant difference for pairs of brain state. 778 
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 780 

Figure 6. Functional connectivity in five brain states  (A) Spike-triggered average local field potential (LFP) in 781 

brain states S1 through S5. (B) Same for spike-triggered average multi-unit activity (MUA).  (C) Pearson 782 

correlation between single-unit activity (SUA) and MUA.  Error bar indicates 95% confidence interval across 783 
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units.  The inset represents statistically significant difference for pairs of brain state.  (D) All pairwise transfer 784 

entropy (TE) of individual units from all animals on the axis of spike rate of individual units.  The color of each 785 

dot in each panel represents TE value between two units (red for high TE, blue for low TE).  The x-axis (y-axis) 786 

corresponds to spike rate of information-receiving (-sending) unit.  (E) Comparison of TE of active units (SR≥1 787 

Hz) across five brain states.  Error bar indicates 95% confidence interval across animals.  The inset represents 788 

statistically significant difference between brain states.  (F) TE as a function of spike rate threshold; i.e., TE 789 

values of active units are averaged while criteria for active and inactive units varies. States correspond to those as 790 

in the panel above.  (G) Average log-transformed spike rate pf pE and pI units as a function of spike rate 791 

threshold.  (H) Lorenz curve of pairwise TE (including inactive units) from pooled data.  (I) Gini coefficient of 792 

the TE distribution.  Error bar indicates 95% confidence interval across animals.  The inset represents statistically 793 

significant pairs of brain state.  (J) Information Venn diagram to illustrate the relationship between two neurons, X 794 

and Y in wakefulness and anesthesia.  The yellow area indicates the amount of information transfer from Y to X 795 

(𝑇𝐸𝑦→𝑥).  High spiking activity in wakefulness suggests high TE (left).  In anesthesia, neurons are either inactive 796 

or intermittent/burst firing with enhanced synchronization.  TE between inactive neurons is extremely small, 797 

whereas TE between active neurons is larger than the TE in wakefulness. This results in a large variation of TE 798 

values as seen in (H, I).   799 
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TITLE LEGENDS 800 

 S1-S2 S1-S3 S1-S4 S1-S5 S2-S3 S2-S4 S2-S5 S3-S4 S3-S5 S4-S5 

TNS < 10-9 < 10-25 < 10-36 < 10-99 < 10-3 < 10-8 < 10-46 0.295 < 10-24 < 10-15 

SRm < 10-3 0.578 < 10-22 < 10-56 0.135 < 10-6 < 10-30 < 10-14 < 10-44 < 10-7 

LVm 2.621 < 10-18 < 10-13 < 10-61 < 10-13 < 10-9 < 10-53 1.900 < 10-12 < 10-17 

LPBM < 10-19 < 10-59 < 10-26 < 10-37 < 10-11 0.750 0.002 < 10-6 0.007 0.451 

SpEn < 10-3 < 10-55 < 10-25 < 10-76 < 10-30 < 10-9 < 10-45 < 10-5 0.068 < 10-13 

Table 1.  P-values of post hoc test for the five features. These features were used as an input to the clustering 801 
algorithm for the brain state classification.  P-values were Bonferroni corrected. 802 

 803 

  804 

 805 

 806 

 807 

 808 

 S1-S2 S1-S3 S1-S4 S1-S5 S2-S3 S2-S4 S2-S5 S3-S4 S3-S5 S4-S5 

SR (pE) < 10-6 1.164 < 10-30 < 10-81 < 10-3 < 10-8 < 10-40 < 10-23 < 10-69 < 10-12 

SR (pI) 0.875 8.112 < 10-3 < 10-16 1.416 0.108 < 10-10 < 10-3 < 10-15 < 10-3 

Gini coef. 5.108 < 10-3 2.526 1.433 < 10-4 6.267 4.202 < 10-5 < 10-6 7.493 

BR (pE) 0.001 < 10-13 < 10-8 < 10-26 < 10-3 0.089 < 10-12 0.695 0.013 < 10-6 

BR (pI) 1.170 0.003 2.359 4.400 0.260 6.570 3.690 0.055 0.012 6.339 

LV (pE) 0.350 < 10-36 < 10-22 < 10-114 < 10-30 < 10-16 < 10-111 0.003 < 10-22 < 10-47 

LV (pI) 5.354 0.157 < 10-6 < 10-13 0.013 < 10-9 < 10-18 0.014 < 10-7 0.046 

Corr (pE) < 10⁻²⁰ < 10⁻¹⁵⁹ < 10⁻⁹⁶ <10⁻²⁴³ < 10⁻⁷⁷ < 10⁻³² < 10⁻¹⁴⁴ < 10⁻¹² < 10⁻⁷ < 10⁻⁴⁵ 

Corr (pE) 0.006 < 10⁻³⁵ < 10⁻⁸ <10⁻⁴⁰ <10⁻²¹ 0.018 < 10⁻²⁵ <10⁻¹¹ 7.046 < 10⁻¹⁴ 

TEs 1.132 8.272 0.003 < 10⁻¹² 0.715 0.434 < 10⁻⁷ 0.001 < 10⁻¹³ 0.001 

TEm 0.059 < 10⁻⁴ 0.001 < 10⁻⁶ 0.457 1.505 0.075 5.753 4.999 2.169 

TEm (pE-to-pE) 0.017 < 10⁻⁴ < 10⁻⁵ < 10⁻⁸ 1.633 0.334 0.016 4.639 0.775 3.018 

TEm (pI-to-pE) 0.002 < 10⁻⁸ 0.001 < 10⁻⁵ 0.094 8.457 1.205 0.163 2.966 1.744 

TEm (pE-to-pI) 0.102 < 10⁻⁵ 0.094 0.031 0.115 9.764 6.852 0.125 0.338 7.07 

TEm (pI-to-pI) 3.434 0.071 5.831 3.411 0.645 1.126 9.968 0.006 0.604 1.086 

Gini coef. (TE) 2.576 2.462 0.002 < 10⁻¹³ 0.219 0.093 < 10⁻⁹ < 10⁻⁵ < 10⁻¹⁷ 0.001 

Table 2.  P-values of post hoc test for all SUA features.  P-values were Bonferroni corrected. 809 

 810 
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