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Abstract

Investigating variation in genes involved in the absorption, distribution, metabolism, and

excretion (ADME) of drugs are key to characterising pharmacogenomic (PGx)

relationships. ADME gene variation is relatively well characterised in European and

Asian populations, but African populations are under-studied – which has implications

for safe and effective drug use in Africa.

The genetic diversity of ADME genes across sub-Saharan African populations is large.

The Southern African population cluster is most distinct from that of far West Africa.

PGx strategies based on European variants will be of limited use in African populations.
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Although established variants are important, PGx must take into account the full range

of African variation. This work urges further characterisation of variants in African

populations including in vitro and in silico studies, and to consider the unique African

ADME landscape when developing precision medicine guidelines and tools for African

populations.

Author summary

The ADME genes are a group of genes that play a key role in absorption, distribution,

metabolism and excretion of drugs. Variations in these genes can have a significant

impact on drug safety and efficacy. Africa has a high level of genetic variation and is

under-studied in drug development, which makes study of variations in these genes in

African populations very important. Using a new data set of 458 high-coverage genomes

from across Africa, we characterise the extent and impact of variation in the ADME

genes, looking at both single nucleotide and copy number variations. We identified

343,368 variants, including 40,692 novel variants, and 930 coding variants which are

predicted to have high impact on function. Our discovery curves indicate that there will

be considerable value in sequencing more African genomes. Moreover, relatively few of

these novel variants are captured on common genotyping arrays. We show that there is

considerable diversity within Africa in some important genes, and this will have

significant consequences for the emerging field of precision medicine in Africa.

1 Introduction and background 1

Pharmacogenomics (PGx) aims to improve drug safety and efficacy using genomic 2

knowledge for genes involved in drug action [1] with a focus on genes that have 3

important roles in drug safety, pharmacokinetics and pharmacodynamics. Genes 4

involved in pharmacokinetics are typically defined by the role they play in the 5

absorption, distribution, metabolism and excretion (ADME) of drug molecules. 6

Variation in ADME genes play an important role in determining the response to drug 7

treatment in an individual patient. We characterise the extent and impact of variation in 8

these genes in a novel, high-coverage whole genome sequence dataset from a diverse 9
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group of Africans. 10

ADME genes have different functions: (1) phase I metabolising enzymes, (2) phase II 11

metabolising enzymes, (3) drug transporters and (4) modifiers. PharmaADME 12

(http://pharmaadme.org) classifies the ADME genes in two classes. The 32 core genes 13

have known biomarkers linked to ADME outcomes. For the 267 extended ADME genes, 14

there is weaker evidence of functional consequences in vitro or in vivo, or they are 15

important for a limited number of drugs only. 16

Rationale Currently the majority of patients studied in drug development programmes 17

are of European or Asian ancestry. The African continent is the cradle of human origin 18

and African populations are characterised by high genetic diversity and complex 19

population structure. Despite this genetic variation, drug efficacy and safety have not 20

been comprehensively studied in the populations of Sub-Saharan Africa (SSA) [2]. This 21

is of specific relevance to SSA, where high burdens of disease are amplified by 22

non-optimal treatment outcomes. 23

The particular diversity of ADME genes in SSA has been reported in some studies. 24

Hovelson et al. [3] and Lakiotaki et al. [4] found that the greatest levels of coding ADME 25

variation per personal haplotype were shown in some African populations sampled in 26

the 1000 Genomes Project (KGP) data. Examples of the impact of this variation can be 27

seen in CYP2B6 and CYP2D6 variation affecting efavirenz and primaquine respectively. 28

An efavirenz dosage reduction has been recommended for HIV patients in SSA due to 29

the high frequency of functional variants in the CYP2B6 gene that result in a higher risk 30

of adverse drug reactions [5]. Potential polymorphisms in the human cytochrome 31

CYP2D6 gene may negatively influence efficacy of primaquine, and significantly affect 32

malaria elimination strategies [6,7]. African specific variation in several genes may 33

impact the PK of rosuvastatin, a drug used to treat hypercholesterolemia [8]. While 34

these studies represent only a fraction of the continent, they serve to highlight the 35

importance of future studies which are aimed at providing a more comprehensive 36

overview of the landscape of ADME variation across Africa. 37

Therefore it is important to gain a better understanding of the variation that exists in 38

ADME genes, both within and between different SSA populations. This information 39

could be used to inform recommended drug dosage regimens for patients in SSA based 40
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on potential pharmacokinetic effects and consequently efficacy and safety. To date, no 41

studies have systematically investigated ADME variation within a diverse set of African 42

populations. We therefore aim to provide valuable information regarding the variation 43

that exists in ADME genes, both within and between different SSA populations. This 44

information could provide insight into drug efficacy and safety for patients in SSA and 45

play a role in ensuring safe and efficacious treatments for the high burden of diseases in 46

populations in SSA. We have characterised the extent and impact of variation in ADME 47

genes in a novel, high-coverage whole genome sequence dataset from a diverse group of 48

Africans. 49

2 Results 50

2.1 Description of Samples 51

Four hundred fifty eight high coverage whole genome sequences were used in the study 52

as the primary data set (we call this the high coverage African ADME Dataset – HAAD). 53

The foundation of this set were sequences generated by the Human Health and Heredity 54

in Africa (H3A) consortium [9,10]. The sources and countries of origins of the samples 55

can be found in Table 1 and Fig 1. The population structure of participants in this study 56

is broadly representative of speakers of Niger-Congo languages from West through South 57

Africa. Representation from Nilo-Saharan and Afro-Asiatic populations is sparse. There 58

also are few individuals of Khoe and San heritage, although significant admixture from 59

Khoe and San speakers is found in Bantu-speakers in Southern Africa [11]. 60

We supplement some analyses with African datasets from the KGP (we use KGA 61

specifically to refer to the African genomes in KGP). As the KGP datasets are low 62

coverage, not all analyses were performed with the KGA dataset in addition to HAAD. 63

2.2 Population structure 64

A principal component (PC) and structure analysis of our data shows high genome-scale 65

variation and that we have significant breadth and depth of coverage of African genomic 66

diversity across west, central and southern Africa, with lesser coverage in east Africa. 67

The PC analysis of our data shows a strong correlation to geographical location (Fig 2 68
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Fig 1. The geographic locations of the high coverage WGS data are shown on the map.
Countries are referenced by their ISO 3166-1 alpha-3 code: BEN: Benin; BFA: Burkina
Faso; BWA: Botswana; CMR: Cameroon; COD: Democratic Republic of the Congo; DZA:
Algeria; GHA: Ghana; GMB: Gambia; KEN: Kenya; NAM: Namibia; NGA: Nigeria; SDN:
Sudan; SEN: Senegal; ZAF: South Africa; ZMB: Zambia. The number of samples per
country is shown in parentheses.

and supplementary section 1). 69

To explore diversity between different African regions we clustered the studied 70

population together with reference data sets using PC data (see Methods, Table 2). The 71

PC analysis shows that the HAAD samples fall broadly into three groups: West (Ghana, 72

Burkina Faso, Nigeria), South/Central (Cameroon, Zambia, Botswana, South Africa), 73

South (Botswana, South Africa) African populations. The variability in the Southern 74

group primarily arises through differential admixture between Bantu, Khoe and San 75

speakers. There is a Far West group comprising individuals in HAAD and KGA from 76

Gambia, Senegal and Sierra Leone. There are also a few individuals from other African 77

regions. Note that there is significant diversity within countries; and in some cases 78

overlap between countries – e.g. some participants that we label as “South/Central” live 79

to the south of some participants in the “Southern” group. 80
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Table 1. Sources of high-coverage data sets used to form HAAD: 272 genomes were
generated by a supplementary grant from the NIH to the H3A Consortium [9] for the
primary purpose of designing a custom genotyping array; 140 were shared by African
collaborators; and the rest are publicly available, 15 genomes came from the South
African Human Genome Programme, and 31 genomes were from the Simons Genome
Diversity Project.

H3A Consortium Data: High Coverage
Benin University of Montréal 50
Burkina Faso AWI-Gen 33
Botswana BHP 47
Cameroon University of Dschang 26
Ghana AWI-Gen 26
Nigeria Institute of Human Virology 49
South Africa AWI-Gen 100
Zambia University of Zambia 41

African collaborators: High coverage
South Africa SA Human Genome Programme 15
South Africa Cell Biology Research Lab, NICD/Wits 40

Public data sets
Various Simons Foundation 31

Table 2. Clusters within Africa, including the number of individuals in each cluster.
Clusters include both HAAD and 1000 Genomes African population data.

Identifier Number Region
SA 166 Southern Africa
SC 172 South/Central Africa
KS 5 Khoe and San
FW 185 Far West Africa
WE 309 West Africa
O 5 Outliers

2.3 Overall Characterisation of ADME variation 81

Gene-based genetic variation for the core and extended ADME gene categories was 82

assessed for composition and type, including introns, upstream and downstream 83

flanking regions (Fig 3). Comparisons were made between the HAAD dataset and the 84

KGA dataset, which represent samples in the joint called HAAD and African 1000 85

Genomes Project populations respectively (Methods 5.3.1). In ADME core genes, we 86

counted a total of 40,714 and 36,088 variants for HAAD and KGA data respectively 87

while for the extended ADME genes there were 274,798 and 243,022 variants 88

respectively. Intronic variants are most common overall with about the same proportions 89

in both HAAD and KGA datasets of 80% and 77% (for both core and extended genes) 90

respectively. A significant number of variations appear in 3’ untranslated (3’ UTR) and 91

5’UTR regions. Coding region variants (non-synonymous and synonymous as annotated 92
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Fig 2. Principal component analysis of the HAAD (some outliers are omitted).
Abbreviations for sources used are H3A (Human Health and Heredity in Africa
Consortium), and SF (Simons Foundation Genome Diversity Project). The countries of
origin and source of the samples shown in the PCA are: BEN/H3A, BFA/H3A,
BWA/H3A+SF, CMR/H3A, COD/SF, GHA/H3A, GMB/SF, KEN/SF, NGA/H3A+SF,
SEN/SF, ZAF/H3A+Tiemessen Lab+SF+South African Human Genome Programme,
ZMB/H3A. Country codes given in Fig 1

by VEP v92.0) do not overlap completely between HAAD and KGA groups. For core 93

genes there were 423 coding variants common to both HAAD and KGA datasets, 288 94

coding variants unique to HAAD, and 252 unique to KGA. For extended genes, there 95

were 17,148 coding variants common to HAAD and KGA, 2,850 unique to HAAD, and 96

2,318 unique to KGA respectively. Care should be taken in comparing HAAD and KGA 97

data because of the different depth of sequencing. 98

The importance of using and generating African datasets like ours can be seen in our 99

discovery curves which show the increase in the number of variants found in the core 100

ADME genes as more genomes are included in the study (the results for the extended 101

genes are not shown but are similar). Fig 4 compares our data set to 1000 Genomes 102

African and European populations. The diversity of African populations compared to 103

European populations is clear and consistent with previous literature [3]. We believe 104

that the increased richness of our data compared to 1000 Genomes African data is 105

partially due to the fact that our data is high-coverage. This richness is also likely to be 106

driven by the significant numbers of southern African genomes that have significant 107

Khoe and San ancestry (see [11] for some discussion) as well some diverse samples from 108
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Fig 3. Distribution of variant types (as defined by SNPeff annotation) across core (A)
and extended (B) ADME gene regions. HAAD (N=458) represents those samples in the
jointly called set from the H3A Consortium data, Simons Foundation, SAHGP and
Tiemessen Labs, and KGA (n=506) represents the African 1000 Genomes Project
populations from the jointly called set. Upstream and downstream regions are
represented by 10kb flanks from gene start and end respectively.

the Simons Foundation. Fig 5 shows the discovery curve for the combined African 109

(HAAD and KGA) dataset. Although the curve has started to plateau, the results show 110

that combining the data sets has value and sampling more Africans and more diverse 111

African groups not yet properly captured will reveal considerably more variants. 112

2.4 Annotation of high impact coding variants 113

To annotate ADME genes we used the output of an ADME gene optimised annotation 114

schema. This schema uses five prediction tools, and variants meeting score cutoffs for all 115

five are of the highest confidence for functional impact. We identified 930 high impact 116

variants (HI-vars) for 247 ADME genes (from a total of 299 ADME genes) of which 29 117

are core genes and 218 are extended genes. Of the core genes, seven members of the 118

cytochrome P450 (CYP450) family (CYP1A1, CYP1A2, CYP2B6, CYP2C8, CYP2C19, 119

CYP2A6, CYP2D6) were among those with the highest count of high impact variants. 120

Highest counts of the CYP450 genes were seen in CYP1A1 and CYP2D6 with 12 and 10 121
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Fig 4. Comparative discovery curves of variants in the core ADME genes (including
flanks) for the HAAD, and the 1000 Genomes Africa and European data. The results
show for a given number of haplotypes the number of variants seen per kilobase. The
actual results are shown as a large dot, sub-samples by a solid line, and projections by a
dotted line. Sub-samples values are computed averaging over 50 different randomly
sampled subsets for intermediate values. Projection is computed using a 3rd order
jackknife projection [12].

HI-vars of respectively. The ATP-Binding Cassette (ABC) transporter gene, ABCB5 122

showed the highest number of HI-vars overall numbering 20. We also counted three 123

members of ABCC transporter family and three other members of the CYP450 family in 124

the 10 most variable genes. 125

The 930 HI-vars are mostly rare alleles, with most being singletons or doubletons. 126

There were only 93 variants with a frequency above 1% in the total joint called samples 127

(Fig 6). Overall, the frequency distributions for sub-populations (SA, SC, FW and WE) 128

are not uniform. The KS cluster (Khoe and San) is omitted due to low sample number. 129

We note the dissimilarity when we consider the granularity of the data. In fact, some of 130

the high impact variants tend to show a large disparity in frequency values between 131

some clusters. For example, the CYP27A1 rs114768494 variant (chr2:g.219677301C>T) 132

(28th index in Fig 6) is only present in SC and WE with respective frequencies of 1.1% 133

and 3.7%. Also, variants can exist in all the sub-populations but with significantly 134

different proportions. For instance, the CYP4B1 rs45446505 variant, 135
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Fig 5. Discovery curve of variants in the core ADME genes in the combined HAAD and
KGA datasets.

(chr1:g.47279898C>T) (52nd index) is present at frequencies of 9.5%, 2.3%,4.5% and 136

3.5% for SA, SC, FW, and WE respectively. Another variant: CYP4B1 rs3215983, 137

(ch1:g.47280747_47280747del) (47th index) is common in the SC population with a 138

10% frequency. This value is at least twice that of other clusters. Frequency differences 139

of ≈ 10% are observed in common high impact variants. 140

The regional overlap of the total HI-vars identified shows the majority of these 141

variants are appear in one population cluster only (Fig 7). There are only ∼100 variants 142

that overlap all African population clusters. These variants appearing in all regions have 143

widely ranging frequencies, with most falling between 1-20% for the total African 144

samples assessed. Each population cluster had >110 variants specific to it. Variants that 145

occur only in one cluster are mostly rare, with an average frequency of less than 1% in 146

their own respective cluster. Southern Africans have 20 cluster-specific variants with 147

frequencies above 1% (20 variant) – more than any other cluster. Relatively fewer 148

variants overlap between two clusters alone, with a trend of geographically close 149

clusters sharing more variants than those which are distant. 150

Fixation index (FST ) assessments revealed that there are inter-cluster differences 151

calculated for HI-vars (Figure 8 A), and also for all ADME gene variants (Fig 8 B). The 152
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Fig 6. Distribution and frequency of HI-vars across sub-populations. Only common
HI-vars (Frequency > 1% in the total joint called population dataset) are represented in
the figure. The frequency per variant is reported in the lower panel of the figure as a
line plot (indexed by frequency). The frequency of each of the variants in each
sub-population is given by each heatmap column, with white indicating 0% frequency.
See Table 2 for abbreviations

greatest FST of all ADME variants is observed between SA and FW populations (0.0125) 153

and the lowest FST is observed between SC and WE (0.003). For FST calculated across 154

HI-vars, these are specific to ADME HI-vars as compared to HI-vars identified in random 155

genes across the genome (n=2,000). This effect was significant between Far West 156

Africans and all other clusters. Interestingly, despite being geographically close and 157

having HI-vars in common, FW and WE clusters show an FST value of 0.0042, similar to 158

the FST between the Far West FW and SC cluster, which are geographically distant and 159

have no common variants – something meriting further study. Both of these differences 160

show significant p-values of 9× 10−4 and <10−4 between FW/WE and FW/SC 161

respectively. FST values for all ADME gene variants overall show higher levels of 162

differences, none of which, however, seem to be a property of these variants compared 163

to genetic variants from a random set of genes (all p-values are non-significant). 164

In summary, we note that HI-vars are not uniform across African clusters, and that 165

geographical proximity is not a proxy for genetic similarity in ADME genes. 166

2.5 CNVs 167

A copy number variant region (CNVR) is determined by aggregating overlapping CNVs 168

identified in different individuals. A total of 259 CNVRs were identified, consisting of 169

106 duplications, 106 deletions and 47 mixed CNVRs (i.e. a region that is deleted in 170

some individuals and duplicated in others) (Table 3). Duplications were further 171
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Fig 7. Characterisation of the HI-vars in clusters SA, SC, FW, and WE. (A) The Venn
diagram shows the overlap between the clusters for these variants. Distribution plots of
the frequencies of the common variants between the four clusters (B) and for the unique
variants found in each sub-population (C).

separated into biallelic duplications (3 or 4 copies) and multi-allelic duplications (> 4 172

copies). About 54% of CNVRs were unique, while the remaining CNVRs overlapped with 173

one or more of the other CNVRs identified. Of the 299 ADME genes that were analysed, 174

a total of 116 genes (38.8%) contained at least one CNV. These include some important 175

core pharmacogenes such as the CYPs, UGTs and GTSs. Furthermore, the number of 176

CNVs in ADME genes per individual ranged from four to 71, with the majority of 177

individuals (89.9%) harbouring between 11 and 30 CNVs. 178

Table 3. CNVs identified in core and extended ADME genes (percentages rounded to
closest integer).

ADME genes
CNV Category Total Core Extended

Deletions 106 (41%) 30 76
Biallelic duplications 71 (27%) 7 64
Multi-allelic duplications 35 (14%) 2 33
Mixed CNVs 47 (18%) 16 31
Total 259 55 (21%) 204 (79%)
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Fig 8. Calculation of Fixation index (FST ) between the population clusters. We used
HI-vars (A) and all ADME variants (B) to compute the weighted FST value between
each pair of populations using PLINK (version v1.90b6.3). The populations (SA-5) are
represented by the geographical centroid of the ensemble of country centroids
constituting each cluster. Dashed lines link the centroids of the countries to the cluster
centroid. Node radii are proportional to the size of each sample. P-values were
calculated from a random FST distribution by sampling 917 and 32,0983 variants of a
random set of genes (n=2,000) for high impact variants and all ADME variants
respectively.

2.6 Novel and highly differentiated variants 179

A novel variant in the context of this study is an SNV that is identified in the high 180

coverage African population datasets, and not present in dbSNP (version 151) [13] 181

which aggregates variants from various data sources that include the 1000 Genomes 182

consortium [14,15], GO-ESP [16], ExAC consortium [17], GnomAD [18] and 183

TOPMED [19]. 184

A total of 343,606 SNVs were called for the ADME genes from the HAAD set of 458 185

samples, with 12% classified as novel SNPs (Table 4). For the 32 core ADME genes, 186

5,818 novel variants were identified and a further 34,874 novel variants were identified 187

in the 267 extended ADME genes within the HAAD. The majority of these variant types 188

are intronic or intergenic variants (Fig 9). Of the novel coding variants, 8 were 189

identified as HI-vars in core genes and 88 in extended genes. 190

The largest number of novel SNVs identified were from populations sampled from 191
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Fig 9. Distribution of ADME novel variant type by overall count.

Table 4. Summary of known and novel variants called from the HAAD for the ADME
core and extended genes.

HAAD ADME called datasets Number of SNVs
Known ADME variants called 304,666
Novel ADME variants called 40,692
Core variants called – known 44,039
Core variants called – novel 5,818
Extended variants called – known 260,627
Extended variants called – novel 34,874

the Southern African region (not unexpected as there are no southern African 192

populations in the KGP). Novel variants in each regional population cluster were 193

characterised according to their effect as summarised in Table S1. 194

We compared the frequencies of ADME variants seen in the HAAD set as well as in at 195

least one of the other large databases including 1000 Genomes Consortium, ExAC, 196

gnomAD and TOPMED. Any variant with a frequency two-fold more or two-fold less in 197

the HAAD set than in the other datasets was considered as highly differentiated. 198

Approximately 1,957 ADME variants were highly differentiated in the HAAD data 199

compared to 1000 Genomes consortium, ExAC, gnomAD and TOPMED datasets. Sixteen 200

common variants with Minor Allele Frequency (MAF) ≥ 1% in eight core genes were 201

more frequent in HAAD than in the KGP including African populations in those datasets. 202

One variant in one of the core genes (rs3017670, SLC22A6) was seen more commonly in 203

the other datasets than in the HAAD data (Table S2). In total, 251 core and extended 204

ADME genes harboured highly differentiated variants, with about 80% of them having at 205

least 2 highly differentiated variants. 206

We performed a structural analysis of four rare novel HI-vars belonging respectively 207
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to CYP2A13, CFTR, ABCB1, and NAT1 genes, all having an available protein structure 208

from the Protein Data Bank (Fig 10). A variant chr19:g.41595975C>G causes a 209

substitution p.Arg123Gly on CYP2A13 (PDB code 2PG5) [20]. Mapping this variant on 210

the structure shows a position close to the interaction site belonging to a rigid alpha 211

helix which might affect the binding properties and the local folding integrity. 212

Fig 10. The number of novel high impact variants in ADME protein families.
Abbreviation for Protein families: CYP450: cytochrome P450, OCTF: organic cation
transporter family, UDPGT: UDP-glycosyltransferase, AD: aldehyde dehydrogenase, SDR:
short-chain dehydrogenases/reductases, DADA: DAMOX/DASOX, GPER: glutathione
peroxidase, DASS: SLC13A/DASS transporter, NHRF: nuclear hormone receptor family,
GSTA: GST alpha, SUGT: Sugar transporter, PEROX: peroxidase, ANA: arylamine
N-acetyltransferase, NCYP450: NADPH–cytochrome P450 reductase, EPH: Epoxide
hydrolase, ST2: Sulfotransferase 2, CATA: cation transport ATPase, ATPDABZ:
ATP-dependent AMP-binding enzyme, ICAD: iron-containing alcohol dehydrogenase,
LAAT: L-type amino acid transporter, SULF1: sulfotransferase 1, GSTM: GST Mu. ABCC,
ABCB, ABCA, FMO, ABCG are not abbreviated.

For the CFTR gene, a chr7:g.117250690A>G causes a substitution p.Thr1036A which 213

is involved in the interaction of the Lasso domain of the protein serving as a critical 214

interaction segment of CFTR with other proteins (PDB code 6MSM) [21,22]. In 215

addition, this threonine appears to form a pseudoproline-like structure in which the side 216

chain OH is hydrogen bonded to its own backbone NH. This may contribute to the 217

bending of the helix in which this residue is found. Mutation to Ala removes this 218

hydrogen bond and may therefore influence the degree of bending of this helix. 219
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A p.H1232Q protein variant in ABCB1 could affect the interactions of this residue 220

with the ATP molecule required for the active transport process(PDB code 6C0V) [23]. 221

In the structure His 1232 lies in a site to which an ATP is bound approximately 5 Åfrom 222

the ATP gamma phosphate. Although not in direct contact with the ATP, it could interact 223

with it via a network of hydrogen bonds involving water molecules or, if the histidine is 224

protonated, via an electrostatic interaction with the ATP phosphates. A mutation to Gln 225

could affect both types of interaction with the ATP. 226

The chr8:g.18079983C>T variant creates a premature stop codon in NAT1 gene 227

(PDB code 2IJA). The variant corresponds to the position p.Q143 which is close to the 228

catalytic site of the protein. 229

We analysed the distribution of the novel variants for the HAAD population cluster 230

(Fig 11). The shared variants are generally exclusive for higher index values, which 231

correspond to higher allele frequencies (Fig 11 A, B) in their respective cluster for both 232

core (Fig 11 C) and extended genes (Fig 11 D). Moreover, we noted that the cluster 233

specific variants cover a big portion of the frequency spectrum: most of them are rare 234

(lower limit of the frequency spectrum). 235

2.7 Potential translational impact of ADME pharmacogenomic 236

variants with known clinical effects 237

To assess the transferability of variants with known pharmacogenomic effect, we focused 238

on variants with PharmGKB level 1A and 1B clinical annotations. A level 1A annotation 239

denotes a variant-drug combination published as a CPIC guideline or known clinical 240

implementation in a major health system, while a level 1B annotation denotes a 241

variant-drug combination for which a large body of evidence shows an association in the 242

context of altering drug response [24]. (Note that the absence of level 1 annotation may 243

be evidence of lack of study of a variant, especially for African-specific variants, rather 244

than evidence against clinical relevance.) In the entire HAAD set, we identified a total of 245

21 clinical variants (PharmGKB 1A/B) in 11 ADME genes. Nine of these variants had AF 246

≥ 0.05 in HAAD, while 12 are rarer (AF < 0.05). We next compared the frequency of 247

the clinically actionable ADME gene variants in the combined HAAD population with 248

that in the 1000 Genomes super populations as well as gnomAD (Table 5). Notably, two 249
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Fig 11. Characterisation of novel variant distribution across the ADME genes in HAAD.
Variants are indexed by descending MAF for core genes (A) and extended genes (B) for
the total population of HAAD samples. Circular plots for core (C) and extended genes
(D) show the position of the unique variants per each cluster across the index axes
represented by points. The index represents the MAF of the variant in the total HAAD
dataset. A link is established if two clusters share the same variant. The FW cluster has
fewer variants in common with other clusters in this figure due to low sample number
used to generate this figure

variants i.e. CYP2D6*17 (rs28371706, AF = 0.2306) and the CYP3A5*3 (rs776746, AF 250

= 0.8315), had much higher frequencies in the African populations compared to the 251

non-African KGP super populations as well as the combined gnomAD population. 252

CYP2D6*17 has been associated with decreased CYP2D6 enzymatic activity in African 253

Bantu populations [25]. 254

Some clinically-actionable ADME gene variants common in the non-African KGP 255

super-populations are rare in the HAAD set. These include the variants SLCO1B1 256

rs4149056 (SLCO1B1*6 ), CYP4F2 rs2108622, CYP2D6 rs3892097, CYP2C9 rs1799853 257

and CYP2C9 rs1057910. (Table 5). 258

Furthermore, we evaluated the distribution of level 1A/B PharmGKB variants within 259

the African populations (HAAD and KGP) grouped according to the PCA clusters. 260

Variants which show considerable frequency differences among clusters (SA, SC, FW, 261
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and WE) include CYP2B6*6 (rs3745274), and CYP2D6*17 (rs28371706) (Fig 12A). The 262

number of level 1A/B PharmGKB variants per individual ranged from 0 to 15 (median of 263

6, 5, 5, and 6 in SA, SC, FW, and WE respectively) (Fig 12B), with 99.8% of individuals 264

carrying at least one such variants. 265

Fig 12. Distribution of pharmacogenomic variants with a high level of clinical
annotation (PharmGKB level 1A/B). (A) Scatter plot of allele frequency of clinically
relevant variants in the PCA clusters. (B) Violin plot of the number of clinically relevant
variants carried per individual grouped by the population clusters.

Table 5. Allele frequency of the clinically actionable variants (PharmGKB 1A/B) in the
combined HAAD dataset compared to the KGP super populationsk as well as gnomAD.
AFR: African, European: EUR, AMR: Ad Mixed American, EAS: East Asian, SAS: South
Asian.

dbSNP ID Gene/Star allele Variant type Allele Frequency

HAAD kAFR kAMR kEUR kEAS kSAS gnomAD

rs35742686 CYP2D6 (*3) Frameshift 0,00 0,00 0,01 0,02 0,00 0,00 0,01
rs3892097 CYP2D6 (*4) Splice acceptor 0,04 0,06 0,13 0,19 0,00 0,11 0,14
rs5030655 CYP2D6 (*6) Frameshift 0,00 0,00 0,00 0,02 0,00 0,00 0,01
rs1065852 CYP2D6 (*10) Missense 0,08 0,11 0,15 0,20 0,57 0,17 0,21
rs28371706 CYP2D6 (*17) Missense 0,23 0,22 0,01 0,00 0,00 0,00 0,01
rs28371725 CYP2D6 (*41) Intron variant 0,01 0,02 0,06 0,09 0,04 0,12 0,08
rs1799853 CYP2C9 (*2) Missense 0,00 0,01 0,10 0,12 0,00 0,03 0,09
rs1057910 CYP2C9 (*3) Missense 0,01 0,00 0,04 0,07 0,03 0,11 0,06
rs12777823 Intergenic Intergenic 0,25 0,25 0,11 0,15 0,31 0,36 0,19
rs12769205 CYP2C19 (*2) Intron variant 0,18 0,20 0,11 0,15 0,31 0,36 0,18
rs4244285 CYP2C19 (*2) Synonymous 0,15 0,17 0,11 0,15 0,31 0,36 0,18
rs4986893 CYP2C19 (*3) Stop gained 0,00 0,00 0,00 0,00 0,06 0,01 0,01
rs28399504 CYP2C19 (*4) Start lost 0,00 0,00 0,00 0,00 0,00 0,00 0,00
rs56337013 CYP2C19 (*5) Missense 0,00 - - - - - «0,001
rs72552267 CYP2C19 (*6) Missense 0,00 - - - - - «0,001
rs41291556 CYP2C19 (*8) Missense 0,00 0,00 0,00 0,00 0,00 0,00 0,00
rs12248560 CYP2C19 (*17) Upstream gene variant 0,20 0,24 0,12 0,22 0,01 0,14 0,21
rs776746 CYP3A5 (*3) Splice acceptor 0,83 0,82 0,20 0,06 0,29 0,33 0,26
rs3745274 CYP2B6 (*6) Missense 0,37 0,37 0,37 0,24 0,22 0,38 0,27
rs2108622 CYP4F2 Missense 0,04 0,08 0,24 0,29 0,21 0,41 0,27
rs3918290 DPYD Splice donor 0,00 0,00 0,00 0,01 - 0,01 0,01
rs115232898 DPYD Missense 0,02 0,02 0,00 0,00 0,00 0,00 0,00
rs116855232 NUDT15 Missense 0,00 0,00 0,04 0,00 0,10 0,07 0,03
rs1800462 TPMT (*2) Missense 0,00 0,00 0,01 0,01 0,00 0,00 0,00
rs1142345 TPMT (*3A & C) Missense 0,04 0,07 0,06 0,03 0,02 0,02 0,04
rs1800460 TPMT (*3A & B) Missense 0,00 0,00 0,04 0,03 0,00 0,00 0,03
rs1800584 TPMT (*4) Splice acceptor 0,00 - - - - - <0,00
rs887829 UGT1A1 Upstream gene variant 0,49 0,49 0,38 0,30 0,13 0,44 0,36
rs4149056 SLCO1B1 Missense 0,00 0,01 0,13 0,16 0,12 0,04 0,13
rs115545701 CFTR Missense 0,01 0,02 0,00 0,00 0,00 0,00 0,00
rs11971167 CFTR Missense 0,01 0,02 0,00 0,00 0,00 0,00 0,00
rs202179988 CFTR Missense 0,00 0,00 0,00 0,00 0,00 0,00 <0,00
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2.8 Regulatory variation 266

There were 54 genetic variants across our African data sets in non-coding regions that 267

have significantly higher prevalence than in the KGP overall data set (Table S3). 268

Fig S3 illustrates differences between population cluster pairs using FST scores. In 269

most cases, the variability is not greater between pairs of population clusters (FST close 270

to zero). We omit KS (Khoe and San) due to low sample size in this cluster. 271

2.9 Runs of homozygosity 272

Runs of homozygosity (ROH) are areas in the genome where an individual has two 273

identical copies of the genome due to shared ancestors on the maternal and paternal 274

lines. The size of the ROH correlates with how recent the shared ancestor was. With 275

high coverage data, we are able to detect ROHs of at least 300kb in size. High ROH is a 276

measure of inbreeding decreased fitness and may be associated with ill health [26,27]. 277

However, ROH are not randomly distributed across the genome and islands of 278

homozygosity (ROHi) are known to exist: regions where the ROH of several individuals 279

within a population overlap [28]. There is some evidence that these islands are found as 280

a result of positive selection. 281

There are a total of 634 ROH in the sample. The key metrics we use are the size of 282

ROHi (that is, how many individuals are in the ROHi) and size normalised by size of 283

gene (ROHi/kb). The genes which have largest ROHi and ROHi/kb are CYP1A1, 284

CYP1A2. The ABCB1 and DPYD genes are relatively large genes and have a large ROHi. 285

Tables S4 and S5 show a summary of the ROH found in the core and extended genes in 286

our data sets. The range of ROHi/kb varies significantly across all genes in the genome. 287

Fig S4 shows a violin plot of the range of ROHi/kb in the core, extended, and all other 288

genes in the genome. Statistical comparison is difficult because ranges are not normally 289

distributed and a small number of extreme values skew the averages. 290

2.10 Coverage of ADME variants on SNV genotyping arrays 291

To evaluate whether genotyping array chips are suitable for detection of relevant ADME 292

variants in African populations, we compared our whole genome sequencing variants 293

with those captured by current arrays. Table 6 on page 21 shows the coverage of the 294
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Table 6. Variant coverage and overlap for core gene variants detected in HAAD whole
genome sequencing datasets vs those captured by the Omni and the MEGA arrays.
WGS=number of variants in the whole-genome data, Chip=number of variants in the
chip, % cov= the percentage of SNPs at that MAF in WGS data that are covered by the
array.

Omni MEGA
MAF WGS Chip % cov % cov

1 18660 640 3.4 349 1.9
2 13835 574 4.1 298 2.2
3 11335 522 4.4 242 2.1
4 9714 457 4.7 204 2.1
5 8886 409 4.6 179 2.0

10 6271 262 4.2 135 2.2

Table 7. Variant coverage and overlap for extended gene variants detected in HAAD
whole genome sequencing datasets vs those captured by the Illumnia Human Omni
2.5.8 array

Omni MEGA
MAF WGS vars Chip % cov Chip % cov

1 120660 11457 9.5 5743 4.8
2 94651 11031 11.7 5256 5.6
3 80585 10588 13.1 4937 6.1
4 71480 10220 14.3 4638 6.5
5 64475 9859 15.3 4414 6.8

10 43228 8069 18.6 3555 8.2

variants that we detected in the core ADME genes in the WGS data compared to the 295

Illumina Human Omni 2.5.8 (Omni) and the Illumina Infinium Multi-Ethnic AMR/AFR-8 296

Kit (MEGA). The Omni is a 2.39 million SNP array commonly used in human GWAS 297

work – previous unpublished work shows that this is one of the best performing arrays 298

on African populations. The MEGA array is 1.43 million SNP array optimised for African 299

and Hispanic American populations (and can be augmented with approx. 200k user 300

selected SNPs). For different minor allele frequencies of variants we detected (MAF) we 301

show the number of variants that are at least at that threshold, the number of those 302

variants captured by probes by the two arrays, and the percentage of the variants that 303

are captured. As can be seen, even at relatively high frequencies, less than 5% of the 304

variants are captured by the array for core genes, and less than 8% for extended genes. 305

As expected the larger Omni does a better job. However, of the 93 common HI-vars, only 306

19 (20%) are on the Omni chip whereas 50 (54%) are on the MEGA. 307

308
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3 Discussion 309

Next generation technologies have provided pharmacogenomics and precision medicine 310

a major increase in their application for disease treatment and drug safety [29]. ADME 311

genes have been a focus due to their critical role in pharmacodynamics and 312

pharmacokinetics. Our work presents the first study characterising the 313

pharmacogenomics landscape of ADME genes in sub-Saharan Africa using high coverage 314

whole-genome sequencing data which has been collected from different sources. The 315

study’s main aim was to assess the variability of ADME genes across Africa and if this 316

could have a significant impact on protein function and other pharmacologic properties 317

and thus the potential impact on drug response. 318

We focus mainly on four African clusters distinguished geographically and genetically 319

as shown by the PC whole-genome analysis. Overall assessments of structural and 320

regulatory variation were evaluated across the complete dataset, while coding variants 321

were assessed for functional impact. The applicability of known clinical variants and 322

current genotyping technologies was also assessed. 323

In both novel variant and HI-vars analysis, our study demonstrates a significant level 324

of variability. Most of the variants are rare and are population-specific in accordance 325

with previous studies due mainly to increased population size and to a weak negative 326

selection [24,30–32]. Our high coverage data are adequate to genetically characterise 327

these types of variants at high confidence levels. Evaluations of the false discovery rate 328

of rare variants were previously estimated between 3.6% to 6.3% depending on the 329

platform [33]. Therefore a broad extrapolation from our results is that there are 330

between 30 to 60 false positive variants in our HI-vars. In the context of ADME 331

pharmacogenes, although not all variants identified may prove to have functional 332

impact, those that do may have significant consequences in dictating the drug-host 333

response for individuals. 334

Our FST calculation highlights the differences between clusters. Calculation using all 335

ADME variants led to values similar to results obtained for multiple sub-Saharan African 336

ethnic groups that used 328,000 independent SNPs [34]. Genetic distance did not 337

always correlate with geographical distance and in some pairs of clusters, the distance 338

seems to be more significant in ADME genes. In the absence of clear evidence, it is not 339
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trivial to explain why two geographically close clusters like FW and WE, share a 340

comparable degree of divergence like the pair FW-SC. Therefore, using 341

ethno-geographical properties as a proxy to discriminate the pharmacogenomics 342

landscape might be inaccurate. 343

In addition, the important number of cluster-specific novel and high impact rare 344

variants suggest that strategies limited to studies of high-frequency alleles might be 345

considered as an over-generalisation to a more complex pharmacogenomic landscape in 346

sub-Saharan Africa. In fact, our work highlights a “genetic diversity bottleneck” for 347

precision medicine applications, requiring a balance between variants useful for 348

population-based applications (for a particular cluster of Africans) and between the 349

potential impact posed by variants unique to the individual. Therefore, the complexities 350

of variant interpretation and reporting in PGX testing [35] may be exacerbated by the 351

complex African ADME landscape. 352

While some variants have similar frequencies in European and African populations, 353

our assessment of the top-level clinically validated variants shows that these variants are 354

more common in European populations than in African populations. This trend may be 355

the result of the PGx knowledge bias towards European populations, with most variation 356

in African and other global populations still largely uncharacterised in terms of PGx 357

effect. Some variants show an opposite trend, such as the CYP3A5*3 rs776746 and 358

CYP2D6*17 rs28371706, which are much more common in Africans than Europeans. 359

These enzymes are known to be key metabolisers of a large number of drugs, and these 360

two variants (as they are common) will impact the reliability of using a European based 361

PGx strategy in African populations. Key drugs that may be affected by those variants 362

are codeine [36], primaquine [7] (CYP2D6), and tacrolimus [37] (CYP3A5). We also see 363

an interesting example of SLCO1B1 rs4149056, which was seen in the KGP African 364

populations (albeit rarely), which is not seen in the HAAD samples. This further 365

reiterates the need for additional African sequences, as publicly accessible African 366

genomic data cannot remain represented by the KGP alone. The greatest genomic 367

coverage of African populations to date is available in genotyping array format [38]. 368

These methods are unable to adequately characterise rare ADME variants at high 369

confidence levels compared to high coverage WGS datasets. Moreover, we have also 370

detected a large number of copy number variants, and were able to do so robustly with 371

June 14, 2020 23/38

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 14, 2020. ; https://doi.org/10.1101/2020.06.14.108217doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.14.108217
http://creativecommons.org/licenses/by-nd/4.0/


our high coverage sequencing data as compared to other methods [39]. The distribution 372

of copy number variants and their impact on the ADME landscape in Africans is 373

currently ongoing and will be available in a separate publication. As the state of data 374

availability and type remains in flux, precision medicine approaches in Africa will be 375

limited. In an ideal scenario, high coverage long read WGS will be used for more African 376

samples undergoing clinical trials, as this allows for accurate resolution of haplotypes 377

(including novel haplotypes), and thus, clearer interpretations of their potential impact 378

on drug response. 379

4 Conclusion 380

Our work highlights that the ADME landscape in African populations is diverse, and 381

shows the importance of rare variation held within individual population clusters. 382

Therefore current array-based genotyping technologies have severe limitations to be 383

applied as the high throughput method in precision medicine applications. As 384

sequencing technology becomes more accessible and cheaper, characterisation of rare 385

variants would benefit from the ongoing progress. Targeted sequencing and 386

whole-exome sequencing would be better suited for characterising ADME genes. 387

Moreover, a previous suggestion to consider intra-ethnic genetic characterisation in 388

drug-development [8] might not be appropriate for sub-Saharan Africa due to the 389

important presence of singletons and the subjective assigning of ethnicity for individuals. 390

The “genetic diversity bottleneck” in precision medicine might increase the burden of 391

developing targeted therapies at sub-population levels because of the weak presence of 392

common genetic patterns. However, these patterns might exist at the functional and 393

phenotypic levels which might help to stratify the populations to clusters sharing 394

common pharmacokinetic properties for a given drug. In this context, a proposed plan 395

would integrate genotypic and phenotypic data into predictive models to unveil these 396

patterns. 397

Capacity building efforts for pharmacogenetics and pharmacogenomics research in 398

Africa is important. Strategies and policies for development of science and technology 399

must ensure a future where Africa can take an active role in harnessing the power of 400

genomic research in addressing its healthcare challenges. Promising positive steps are 401
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being taken with the establishment of initiatives such as the Human Heredity and Health 402

in Africa project (http://h3africa.org/) that aims at strengthening research capacity 403

for genomics in Africa. 404

Limitations There are many limitations of our work. The most obvious is the need for 405

significantly more genomic data from Africa. Although, more samples are necessary 406

generally, there is a particular need for more diverse sampling. We focus on sub-Saharan 407

Africa, omitting northern Africa completely. We only had limited numbers of samples 408

from Nilo-Saharan and Afroasiatic language speakers as well as speakers of non-Bantu 409

languages in central, southern and eastern Africa (such as San and Khoe speakers). 410

However, with more samples, we expect our conclusions to hold and the additional 411

benefit would be a clearer resolution of the PGx landscape in diverse sub-clusters. 412

Ideally, we would have merged the 1000 Genomes African data and the HAAD data set 413

and done a combined analysis. However, the bulk of the 1000 Genomes WGS is 414

low-coverage while the HAAD set is high-coverage which complicates comparative work 415

significantly. As more data becomes available, this challenge will become easier. The 416

discovery curve shown in Fig 5 shows we can expect to find many more variants when 417

they are sequenced. Besides lack of genomic data, despite the effects of groups of 418

excellence across Africa we have cited there is very little clinical and drug response data 419

for African populations. Without this it will be difficult to associate the functional effect 420

of variants to the clinical phenotypes. All of this costs money and requires scarce skills. 421

Collaborations like ours, which has brought a diverse group of African scientists together 422

show the potential of what can be done. 423

Strengths Our work investigates novel African datasets and combines these with 424

established African sequences to assess as broad an overview of African ADME variation 425

as possible. This work could lay the foundations for motivation of more PGx related 426

studies in Africans. We applied diverse computational assessment methods to mine the 427

data and retrieve valuable genomic information. This can assist in guiding future 428

research in resource scarce environments. 429
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5 Methods 430

5.1 Data 431

H3A Consortium set contains 272 samples selected and sequenced for the Human 432

Heredity and Health in Africa (H3Africa) project. Samples cover populations from Benin, 433

Burkina Faso, Botswana, Cameroon, Ghana, Nigeria and Zambia. Samples were shipped 434

to the Human Genome Sequencing Center (HGSC) at Baylor College of Medicine (BCM), 435

Houston, USA, under signed material transfer agreements from each project. Samples 436

were prepared using the TruSeq Nano DNA Library Prep Kits and underwent whole 437

genome sequencing on an Illumina TenX (150 bp) to a minimum depth of coverage of 438

30×. 439

AWI-Gen set consists of 100 South Eastern Bantu-Speakers (40× coverage). 440

Cell Biology Research Unit, Wits set consists of 40 samples from Soweto/Johannesburg 441

South Africa (39 black and 1 mixed ancestry). Library preparation and sequencing was 442

done at Edinburgh Genomics, Edinburgh, Scotland. Library preparation was done using 443

the TruSeq Nano protocol and high coverage sequencing (∼30×) was done utilising the 444

Illumina SeqLab workflow system and the Illumina HiSeqX platform. 445

The SAHGP set is a collection of 15 samples from the South African Human Genome 446

Programme [11]. Two main Bantu-speaking ethno-linguistic groups were included: The 447

Sotho (Sotho-Tswana speakers; n=8) and the Xhosa speakers (Nguni language; n=7 448

recruited from the Eastern Cape Province). The DNA samples were normalised to ∼60 449

ng/µl and ∼5 µg DNA was submitted to the Illumina Service Centre in San Diego, 450

California, for sequencing on the Illumina HiSeq 2000 instrument (101 bp paired-end 451

reads, ∼314 bp insert size) with a minimum read depth of coverage of 30× [11]. 452

SGDP set contains 34 African samples selected from 300 individuals from the Simons 453

Genome Diversity Project. Samples include populations from Congo, Namibia, Kenya, 454

Senegal, Algeria, Nigeria, Gambia, Sudan and South Africa. Samples were sequenced at 455

an average depth of 43× at Illumina Ltd; almost all samples were prepared using the 456

same PCR-free library preparation [40]. 457

1000 Genome African set consists of 507 African samples from 1000 Genomes Project. 458

These samples include Gambian Mandinka, Mende from Sierra Leone, Yoruba from 459
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Ibadan, Nigeria, Esan from Nigeria and Luhya from Webuye, Kenya. Libraries were 460

constructed on either Illumina HiSeq2000 or GAIIX with the use of 101 base pair end 461

reads. Sequencing was done at an average depth of 4× [15]. 462

The only phenotype made available to us was sex.In particular, self-identified 463

ethnicity, location in the country, and disease status were not revealed. 464

5.2 Data processing 465

Table 8 shows the individual steps involved in creating the final joint called VCF of 966 466

samples. 467

Table 8. Processing done on individual samples and jointly. Tool versions are included.
BAM GVCF CombineGenome
creation creationGVCF calling

Tiemessen
Lab

bwa-0.7.17, samtools-1.9, GATK v4.0.8.1

GATK
v4.0.8.1

GATK
v4.0.8.1

GATK
v4.1.3.0

AWI-Gen bwa-0.7.17, samtools-1.9, GATK v4.0.8.1
H3Africa Con-
sortium

bwa-0.7.10, samtools/0.1.19/ picard-
tools-1.119, GATK v3.3-0

1000
genomes
African

bwa-0.5.9, picard-tools-1.53, samtools-
0.1.17, GATK v1.2-29

SAHGP bwa-0.7.10, samtools/0.1.19/ picard-
tools-1.119, GATK v3.3-0

SGDP bwa-0.7.10

Most of the datasets mentioned had BAMs mapped against GRCh37 (also known as 468

hs37d5) available. If BAMs were not available mapping was done from Fastqs. For all of 469

the BAMs bwa-mem was used to do the alignment and Picard or GATK was used to 470

MarkDuplicates and GATK was used to do Base Quality score recalibration for most of 471

the cases. The only difference was the version of the specific tools being used in the 472

alignment process. 473

From the BAMs we called gVCFs using HaplotypeCaller in gVCF mode using GATK 474

v4.0.8.1. We combined all the gVCFs into one combined gVCF using GATK’s 475

CombineGVCF (v4.0.8.1). From the combined gVCF we did joint calling using 476

GenotypeGVCFs (v4.1.3.0) and followed GATK’s best practice for variant quality score 477

recalibration for SNPs and INDELs. After applying VQSR we filtered for all the high 478

quality (PASS) sites and used the VCF. The final VCF was used for downstream analysis. 479

All code can be accessed at https://github.com/h3abionet/recalling. 480
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5.3 Population structure 481

Population structure was computed using the autosomal data in our samples together 482

with reference data sets in order to ensure a relatively unbiased structure. We included 483

all 1000 Genomes Project African data, and two non-African 1000 Genomes Project sets 484

(Utah residents (CEPH) with Northern and Western European ancestry – CEU – and 485

Bengali in Bangladesh – BEB) and some chip data from various projects. Only 486

unambiguous, biallelic SNPs (A/C, A/G, C/T, G/T) common in all data sets were used. 487

The data was merged and pruned using PLINK [41], leaving 401k SNPs for analysis. 488

Principal components were computed using PLINK and structure charts were produced 489

using ADMIXTURE [42] (30 independent runs for each value of k) and averaged using 490

CLUMPP [43]. All charts were produced with Genesis [44]. 491

Population clusters were determined from the PCA values rather than from the 492

project and self-identification labels due to overlapping data. The optimal number of 493

clusters was determined using the method of Solovieff et al. [45], and clusters 494

determined using k-means clustering with the R MASS package [46]. In analyses in 495

which population clusters were compared, we only used the samples that appeared in 496

the clusters (e.g., excluding Algerian, San samples). In all other analyses all the data 497

was used. Choudury et al. [9] discusses the population structure of the H3A data in 498

more detail. 499

5.4 ADME gene selection 500

ADME genes as defined by PharmADME (http://pharmaadme.org) (both core and 501

extended definitions) were extracted using current genomic co-ordinates for 502

GRCh37.p13, as obtained through BioMart [47]. Gene flanking regions were included in 503

the extraction (10 000 bp upstream from gene start and downstream from gene end). 504

5.5 Annotation and Functional Prediction 505

Variants were classified and typed using SnpEff v4.3t [48] with the GR37Ch base 506

reference for canonical gene transcripts. Variant Effect Predictor (VEP) v92.0 [49] was 507

used for functional prediction based annotation. VEP was configured with dbNSFP 508

v3.0 [50], a large database used to retrieve functional prediction scores for coding 509
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variants. The annotation analysis is implemented in g_miner workflow 510

(https://github.com/hothman/PGx-Tools/tree/master/workflows/g_miner). An 511

optimised model for functional prediction of pharmacogene variants produced by Zhou 512

et al [51] was used as the basis for high impact classification of missense variants. The 513

model uses five toolsets (LRT, MutationAssessor, PROVEAN, VEST3 and CADD). Loss of 514

Function variants were classified as high impact if they were present in the canonical 515

transcript of the gene. Singleton or doubleton high impact variants were filtered based 516

on their VCF QUAL scores, using a cutoff of > 50. Any variant that did not match such 517

criteria was removed prior to subsequent analyses with bcftools v1.9 [52]. Three HI-vars 518

were not displayed in Fig 6 due to incorrect reference alleles inducing an erroneous 519

frequency: ALDH3B1 rs11433668 and rs58160034; and ADH1C – rs283413. We have 520

checked these variants in 1000 Genomes Project and gnomAD datasets to validate the 521

error. 522

5.6 Fixation Index (FST) analysis between population clusters 523

Differences between African subgroups were calculated by PLINK v1.9 [41], using mean, 524

weighted FST between each pair of the population clusters. Prior to the calculation we 525

applied linkage disequilibrium (LD) based pruning using PLINK v1.9 for different sets of 526

variants: High Impact ADME, High Impact non-ADME, all ADME gene regions, and a set 527

of 2000 random non ADME genes. The parameters used for this step are as follows: 528

window size = 1000; step size = 5 and variance inflation factor = 2. 529

5.7 CNVs 530

Discovery and genotyping of CNVs was performed using GenomeSTRiP’s 531

SVPreprocessing and CNVDiscovery (svtoolkit 2.00.1918) pipelines using the default 532

parameters for genomes sequenced at 30-40× coverage [53]. 533

5.8 Regulatory analysis 534

Genetic variants from ADME core genes were filtered for those meeting all the following 535

criteria: in any non-coding region (10,000 bp up and downstream from canonical 536
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transcript); MAF >0.01; CADD-PHRED score ≥ 10 [54]; and binomial p-value compared 537

with the entire 1000 Genomes Project data set < 0.05. 538

We compared these genetic variants (Table S3) for variability within pairs of 539

populations as compared with the entire 1000 Genomes data set using FST scores [55]. 540

Since the number of genetic variants is small, we do not stratify it further into specific 541

regulatory elements. 542

5.9 Runs of Homozygosity 543

Regions of homozygosity in core and extended gene sets were identified with using 544

PLINK [41], using settings consistent for high-coverage data [26], viz. :–homozyg-snp 545

30:, :homozyg-kb 300:, :–homozyg-window-snp: :30:, :–homozyg group-verbose:. 546

Ethics approval and consent to participate 547

No new data was generated specifically for this project – this is secondary analysis of 548

data that had been generated and studied for other purposes. The H3A AWI-Gen Study 549

(H3A data from Ghana, Burkina Faso and South Africa) was approved by the Human 550

Research Ethics Committee (Medical) of the University of the Witwatersrand (Wits) 551

(protocol numbers M121029 and M170880), and each contributing Centre obtained 552

additional local ethics approval, as required. The H3A Benin study was approved by the 553

Comité d’éthique de la recherche, Université de Montréal. The H3A CAfGEN study 554

(Botswana) was approved by the IRB of the Ministry of Health of the Republic of 555

Botswana (PPPME-13/18/1). The H3A TrypanoGEN Study (Cameroon component) was 556

approved by the Comité National D’Ethique de la Recherche pour la Santé Humaine of 557

the Republic of Cameroon (No 2013/11/364/L/CNERSH/SP). The H3A ACCME Study 558

(Nigeria) was approved by the National Health Research Ethics Committee of Nigeria 559

(NHREC/01/01/2007-29/11/2016). The H3A TrypanoGEN Study (Zambian 560

component) was approved by the Biomedical Research Ethics Committee of the 561

University of Zambia (FWA00000338). The data from the Cell Biology Research Lab, 562

NICD/Wits was generated by a study approved by the Wits Human Research Ethics 563

(Medical) Committee (protocol number M140926). 564
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Availability of data and materials 565

The data from the 1000 Genomes Project is publicly accessible from 566

https://www.internationalgenome.org/data/. The Simons Genome Diversity 567

Project data is available from EGA EGAS00001001959 and the Southern African Human 568

Genome Project is available at EGAS00001002639 in EGA. The data from the Cell 569

Biology Research Lab, NICD/Wits is available from Caroline Tiemessen 570

(carolinet@nicd.ac.za) on reasonable request, subject to ethics approval. The South 571

African data from the AWI-Gen project is available from Michèle Ramsay 572

(michele.ramsay@wits.ac.za) on reasonable request (and will be deposited in EGA). All 573

other datasets used in this study are available from the Human Heredity and Health in 574

Africa (H3Africa) submission to EGA – EGAC00001000648. 575
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