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Highlights 

 

 First intracerebral recordings in humans performing an oculomotor decision-making task  

 Machine learning analytics unravel underlying spectral and temporal brain dynamics 

 Free choice trials exhibit sustained fronto-parietal high gamma (HG) activity during the delay 

 Making a decision and maintaining it in working memory are associated with distinct 

sustained HG dynamics 
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Summary 

 

How do we choose a particular action among equally valid alternatives? Non-human primate 

findings have shown that decision-making implicates modulations in unit firing rates and local 

field potentials (LFPs) across frontal and parietal cortices. Yet the electrophysiological brain 

mechanisms that underlie free choice in humans remain ill defined. Here, we address this 

question using rare intracerebral EEG recordings in surgical epilepsy patients performing a 

delayed oculomotor decision task. We find that the temporal dynamics of high gamma (HG, 60-

140 Hz) neural activity in distinct frontal and parietal brain areas robustly discriminate free 

choice from instructed saccade planning at the level of single trials. Classification analysis was 

applied to the LFP signals to isolate decision-related activity from sensory and motor planning 

processes. Compared to instructed saccades, free choice trials exhibited delayed and longer-

lasting HG activity. The temporal dynamics of these sustained decision-related responses 

distinguished deliberation-related from working memory processes. Taken together, these 

findings provide the first direct electrophysiological evidence in humans for the role of sustained 

high-frequency neural activation in fronto-parietal cortex in mediating the intrinsically driven 

process of freely choosing among competing behavioral alternatives. 
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Introduction 

 

Deciding where to look to explore the visual world, i.e. picking one out of many alternative 

targets is a crucial aspect of our daily interactions with the environment. Exploring the neural 

mechanisms underlying eye movement control provides a promising approach for learning about 

sensorimotor and cognitive aspects of voluntary action selection and planning (1). Studies in non-

human primates have extensively described the temporal dynamics of spiking activity and local 

field potentials (LFPs) in frontoparietal areas when animals perform delayed oculomotor 

response tasks. Planning an instructed saccade involves the same effector specific circuits that 

execute eye movements, namely the frontal eye fields (FEF), (2,3) and the lateral intraparietal 

area (LIP), (4–8), as well as a characteristic sustained neuronal activity in frontal areas, 

representing information about stimuli maintained in working memory during the delay period 

(9–11). On the other hand, while monkey studies have demonstrated that free choice decision 

processes (e.g, choosing between two equal reward options, neither in the context of perceptual 

nor value-based decision-making) appear to be represented in an effector specific frontoparietal 

network (12–17), the temporal dynamics of the neural correlates of free choice decisions 

compared to those underlying instructed planning are poorly understood. 

 

In humans, behavioral and neural signatures of voluntary, free choice have been studied 

extensively (see reference (18) for review). Converging evidence from neuroimaging studies 

suggests that the neural processes which mediate saccade decisions, planning and execution arise 

across large-scale brain networks that involve parietal, frontal, and motor cortices (1,19–21). A 

parietal oculomotor field (PEF), located in the posterior part of the parietal cortex (which is 

thought to correspond to LIP in monkeys) (22), seems to be principally implicated in triggering 

reflex saccades. By contrast, the FEF is thought to play a central role in preparation of the saccades 

by coding both the motor preparation and the intention to make a saccade (23–29). Lastly, 

functional magnetic resonance imaging (fMRI) studies have shown that internally driven 

decisions were associated with greater activation of a neural system involving premotor (and 

particularly the caudal pre Supplementary Motor area, preSMA) and prefrontal areas such as the 

medial and dorsolateral prefrontal cortex (30–33). In a study by Rowe and colleagues, the authors 

showed that the prefrontal cortex was involved in both response selection and maintenance 

within working memory during a ‘’free-selection’’ task (34). Importantly, two fMRI studies using 

the same delayed saccade task used in this article have specifically shown that voluntary saccades 

were preceded by activation in the dorsolateral prefrontal cortex (DLPFC) and in the frontal eye 

fields, suggesting the involvement of these areas in the process of choosing where to look when 

facing two possible visual targets (35,36). However, fMRI can unfortunately not resolve the 
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precise temporal dynamics of activity in these brain areas, neither can it probe the role of 

rhythmic brain activity. To address these questions, electrophysiological investigations are 

required. 

 

Non-invasive electrophysiological studies have demonstrated the involvement of high-

frequency neuronal oscillations in several areas (“eye or oculomotor fields”) of the cerebral 

cortex during saccade planning and execution using techniques such as MEG (37–42) and EEG 

(43,44). Of note, two MEG studies showed increased medial frontal gamma power during the 

response competition in delayed motor tasks (37,45), and one EEG study found differences in the 

P300 event-related component during action selection when comparing free choice and 

instructed planning (46). Despite being extremely insightful, non-invasive techniques have 

several limitations in terms of signal quality, spatial resolution and sensitivity to artefacts. 

Fortunately, it is possible in some rare cases to access invasive electrophysiological recordings in 

humans (e.g. surgical epilepsy patients) and thus probe task-based changes via direct LFP 

recordings. The latter reflect the synchronized postsynaptic potentials of local populations of 

neurons (47,48) and allow for direct comparisons between invasive recordings of population-

level activity in human and non-human primates. A handful of studies have benefited from direct 

recordings of neural activity (e.g.  in human FEF and DLPFC) to probe neural activation in the 

frontal eye fields during saccade execution (peri-saccade activity) in humans using intracranial 

EEG (49–51). Importantly, Lachaux and colleagues (2006a) found that the preparation and the 

generation of saccades were subserved by focal and transient increases in high gamma (HG) 

activity (above 60 Hz) in the FEF. Yet, to our knowledge, no study has so far investigated the 

neural correlates of oculomotor decisions (i.e. free choice saccades) using direct intracranial 

recordings in humans. 

 

Taken together, previous findings from oculomotor and decision-making studies in human 

and non-human primates provide converging evidence for the central role of high-frequency LFP 

components in eye movement selection and execution. Although, some evidence from non-

invasive studies partly support these observations in humans, direct electrophysiological 

measurements are necessary to bridge the gap between human and non-human primate 

literature on oculomotor decision-making. In the present study, we probe for the first time the 

temporal, spectral and spatial characteristics of human cortical networks engaged in the 

selection, planning and execution of saccades with unprecedented resolution thanks to multi-site 

intracerebral EEG (iEEG) recordings. In particular, we set out to test the predictions that (i) the 

temporal dynamics of delay-period LFP would differ between instructed and self-chosen saccade 
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trials, and that (ii) the most prominent differences will be visible in high-frequency LFP 

components in key frontal and parietal areas.  

 

In brief, we found that the intrinsically driven process of selecting among competing 

behavioral alternatives during free-choice decisions is associated with sustained increases of 

broadband high gamma (HG) (60-140 Hz) activity in distinct frontal and parietal areas. Further 

investigation of the temporal dynamics of these sustained decision-related HG responses during 

the delay period revealed a distinction between an early response selection component and a 

persistent working memory processes that was maintained until the execution cue. By contrast, 

instructed saccade trials were associated with short-lived transient HG increases. The unique 

intracerebral recordings reported here provide important insights into the spatio-temporal 

characteristics of the neural patterns underlying free choice and help bridge the gap with 

previous animal electrophysiology and non-invasive studies in humans.   

 

 

Results 

 

Six participants (4 females, mean age 30.3 ± 9.6, see Methods and Figure 1B, C) performed a 

delayed saccade task (Figure 1A) while electrophysiological data were recorded from multi-lead 

EEG depth electrodes. In each trial, participants were instructed to perform horizontal saccades 

toward one of two targets, but only after a variable delay period. The information about saccade 

direction was indicated by a visually presented central cue (Cue 1), followed by a saccade 

execution Go signal (Cue 2). The task consisted of three interleaved experimental conditions 

(Figure 1A): In the Free condition, a diamond at Cue 1 prompted the participants to freely choose 

the direction of the forthcoming saccade. In the Instructed condition, an arrow pointing left or 

right indicated to the participants the direction of the saccade they were to prepare. After a 

variable delay (3.5-7.75 seconds) during which the participants prepared the adequate saccade 

while fixating the central fixation point, a GO signal (Cue 2) prompted the participants to 

immediately execute the saccade. In the Control condition, participants were presented with a 

square at Cue 1, indicating that they would need to wait for the GO signal (Cue 2) to find out the 

required saccade direction and execute it immediately. Behavioral saccade onset latency data 

were collected, and spectral power features were extracted from the iEEG data across multiple 

time windows and all electrode sites. Power features were computed in five standard frequency 

bands: theta (θ) [4–8 Hz], alpha (α) [8–15 Hz], beta (β) [16–30 Hz], low-gamma (low γ) [30–60] 
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and high gamma (high γ, HG) [60-140 Hz]. A supervised machine learning framework was 

implemented to decode (through space, time and frequency) the experimental conditions (free, 

instructed and control), and thereby identify the most discriminant neural patterns that 

distinguish between free-choice and instructed actions during saccade planning and execution 

(see Methods for details). 

 

 

 

Behavioral results 

 

We computed the mean reaction times (RTs, i.e., saccade onset latency, see  Methods) for 

each experimental condition across all participants, and found that mean RTs were significantly 

longer for the Control condition (mean RT = 466 ± 71ms) condition compared to both Free (mean 

RT = 334 ± 36ms; t(6) = 2.65, p = 0.045) and Instructed (mean RT = 321 ± 33ms; t(6) = 2.59, p = 

0.049) conditions (see Figure 1D). No significant differences were found between Free and 

Instructed conditions (t(6) = 1.32, p = 0.24). These results were also observed at the single 

participant level in 5 out of 6 participants (see Material and Methods section). These results are 

consistent with the fact that the availability of saccade target information (whether self-

generated or instructed) during the delay period allowed the participants to plan the upcoming 

saccades, and hence execute them faster upon the Go signal compared to the Control condition 

where no directional information was available during the delay period. Mean saccade duration, 

saccade speed, mean latency and the number of saccades executed per condition by each 

participant are reported in the supplementary Table S2. 
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Figure 1. Experimental design and distribution of intracranial electrode contacts across 

participants. A. Experimental design of the delayed motor task. For each trial, participants were instructed 

to perform horizontal saccades toward one of two targets after a delay of 3750 ms, 5750 ms or 7750 ms, 

depending on a visually presented central cue appearing briefly for 250 ms. B. Top, left and right views of 

the number of recording sites that contribute to each vertex (i.e. spatial density) projected on a standard 

3D MNI brain. Electrodes contribute to a location when they are within 10 mm of a given site on the brain 

surface. In all brain images, right side of the image is the right side of the brain. C. Top, left and right view 

of the depth-electrode recording sites, projected on a standard 3D MNI brain. Each color represents a 

participant. Left: Rostral is up, Right: medial views. D. Barplot of mean reaction times for the three 

conditions across all participants (Control, Instructed, Free). Each triangle represents the mean reaction 

times for one participant. 
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Figure 2. Illustrative time-frequency maps and single-trial high gamma (HG) activity in FEF and IPS. 
Time-frequency maps (left) and single-trial high gamma plots (right) from two recording sites in an 
illustrative participant (P2). Data are shown for the three experimental conditions (Control, Instructed and 
Free), during planning (Cue 1, stimulus onset) and execution (Cue 2, go signal). Trials in the single-trial 
gamma plots are sorted according to saccade onset latencies (IPS: intraparietal sulcus, FEF: Frontal Eye 
Field). 

 
 

To assess modulations of the neural activity across the three delayed saccade trial types (i.e. 

Free, Instructed and Control) over space, frequency and time, we computed time-frequency 

representations (locked either on stimulus onset, i.e. Cue 2, or saccade execution cue, i.e. Cue 2), 

as well as single-trial spectral amplitude envelopes in multiple frequency bands (theta (θ) [4–8 

Hz], alpha (α) [8–15 Hz], beta (β) [16–30 Hz], low-gamma (low γ) [30–60] and high gamma (high 
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γ, HG) [60-140 Hz]). Figure 2 illustrates these feature computations and the high quality of the 

intracranial data by showing time-frequency maps derived from electrodes in FEF and IPS in 

participant 2, as well as single-trial high-gamma activity, aligned to stimulus presentation and to 

saccade Go signal (ordered by saccade onset latencies). In addition, we used Linear Discriminant 

Analysis (LDA) to probe the ability of these spectral features to decode experimental conditions 

from single trial data. Importantly, we applied this machine learning framework individually to 

data from each recording site and in a time-resolved manner over the course of the task (see 

Material and Methods section for details). 

 
 

Decoding delay-period neural activity in free choice vs. instructed saccade trials 

To identify the neural patterns related to making autonomous choices, we first compared the 

delay-period neural responses observed during free choice saccade trials to those recorded 

during instructed saccade trials. This was conducted by applying LDA to classify Free vs 

Instructed saccade trials based on spectral amplitude estimated during the delay interval in all 

five frequency bands (Figure 3, see also supplementary Figure S4). Panels A-C of Figure 3 show 

that, among all frequency bands, HG activity was the neural feature that provided the highest 

decoding accuracy and largest number of significantly decoding sites when classifying Free vs 

Instructed trials, during the delay period ([0 ; 3000ms] after Cue 1). The HG activity led to 

statistically significant classification in 61 sites (4 out of 6 participants) and yielded a maximum 

DA of 92.9 % and a mean DA of 79 % (Figure 3A-C).  

 

We then used a multi-feature classification approach (Free vs Instructed trials) where 

observations across all electrode sites were now included simultaneously in the decoding feature 

space (repeated for each frequency band).  We assessed the statistical significance of time-

resolved decoding accuracy using permutation tests, corrected for multiple comparisons across 

participants, electrodes, frequencies and time points). As shown in Figure 3E, the multi-site 

decoding accuracy was highest for HG activity, reaching 86.8 %. Given that both single and multi-

site classification results (Figure 3A-C,E) indicate that HG amplitude is the most prominent 

predictor of target class (Free vs Instructed), the next sections of the results focus on the 

characterization of the fine-grained temporal and spatial profiles of HG neural decoding.   

 

Averaging the HG data across all trials from all significantly decoding sites illustrates the 

temporal dynamics of delay HG activity that distinguish between Free and Instructed saccade 

trials (Figure 3D). The associated time-resolved mean decoding accuracy is shown in Figure 3H. 

Because the analysis is based on averaging across all sites, panels D and H only provide a 
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schematic representation of the temporal dynamics, without statistical assessment.  Thus, we 

conducted standard paired t-tests to further quantify the difference in HG peak amplitudes and 

latencies between Instructed (mean peak HG amplitude = +39%  ± 0.74 ; mean peak latency = 

475ms  ± 14) and Free (mean peak HG amplitude = +24% ± 1.18 ; mean peak latency = 812ms  ± 

97) conditions from all 61 significantly decoding sites (in 4 out of 6 participants). The results 

revealed significant differences (peak amplitude: t(4) = 8.34, p < 0.003, Figure 3F ; peak latency :  

t(4) = 21, p < 0.0002, Figure 3G) and were also confirmed in single-trial analyses performed 

individually in each of the 4 participants (p < 0.05, see Material and Methods). All the statistical 

results within and across participants are listed in supplementary Table S3. 

 

While informative these analyses ignore the spatial specificities. By contrast, Figure 3I-J 

represent HG decoding dynamics resolved across both space and time: In the early part of the 

delay period, significant decoding electrodes are associated with stronger HG power in the 

Instructed than in the Free condition. But over time, HG power then becomes higher for the Free 

saccade planning than for Instructed saccade planning during later stages of the delay period in 

fronto-parietal brain areas. More specifically, we show that all significant electrodes in the [0, 

500ms] time-window after Cue 1 during the delay period are associated with higher HG activity 

in the Instructed condition (Figure 3 I-J, [0, 500ms]). On the other hand, as time goes by, 

significant electrodes begin to become more associated with higher HG activity in the Free 

compared to Instructed condition. From 1000 to 2000ms after Cue 1, we see that all significant 

electrodes are now associated with higher power in the Free condition (Figure 3I-J, [1000, 

1500ms], [1500, 2000ms]). Additionally, we find that from 1500ms to 2000ms after Cue 1, the 

only electrodes that still significantly decode Free from Instructed conditions are located in 

frontal regions (Figure 3 I-J; [1500, 2000ms]).  Interestingly, we also found sites for which HG 

activity was still significantly stronger in Free than Instructed, at the end of the delay period, 

from -2000 to 0 ms before Cue 2 (Figure 3I-J). This suggests that some electrodes may display 

persistent activity lasting throughout the whole delay period and led to subsequent analyses 

described in more detail below.  
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Figure 3. Single-trial classification of Free vs Instructed trials based on delay-period HG activity.  
A. Summary of all significant electrodes by participant across frequencies showing that the largest clusters 
were found in the HG frequency band. B. Mean and C. Maximum decoding accuracies across participants 
and significant electrodes for each frequency band for Free vs Instructed classification (error bars represent 
s.e.m.). D. Time course of baseline corrected (-500 to -100 ms) HG activity aligned on Cue 1, for all 
electrodes that significantly classify Free vs Instructed conditions and H. its associated mean decoding 
accuracy across significant electrodes. E. Maximum decoding accuracies across participants and significant 
electrodes for each frequency bands for Free vs Instructed multi-electrode classification. F. Relative mean 
HG peak activity (in %) and G. latency (in ms) for electrodes significantly decoding Free vs Instructed 
conditions during the delay period (from 0 to 3000ms after Cue 1). I.  Decoding Free vs Instructed 
conditions with HG activity in 5 successive time windows during the delay period (0 to 500 ms; 500 to 1000 
ms; 1000 to 1500 ms ; 1500 to 2000 ms ; 2000 to 3500 ms after Cue 1 and -2000 to 0 ms before Cue 2). 
Only sites with significant decoding accuracies are shown (p < 0.01, with max stats correction across 
electrodes, time, and frequency bands). J. Percent relative power change ([Free - Instructed]/Instructed) 
for all significant sites shown in panel I.  
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In order to further characterize the temporal HG dynamics specific to Free and to Instructed 

saccades (beyond the strict difference between the two) while also taking into account low level 

stimulus-related processes, we replicated the same decoding framework as above but now with 

the goal of distinguishing each of the main two conditions from the Control condition  (i.e. 

Instructed vs Control, and Free vs Control, see Figure 4). First, we found that over the first 

3000ms after Cue1, there was an overlap of 56 electrodes between the electrodes that 

significantly classify Instructed vs Control trials as well as Free vs Control trials. In other words, 

82.4 % of the sites that significantly discriminate Free vs Control conditions also significantly 

discriminate Instructed vs Control conditions (Figure 4A). Furthermore, we found that when 

participants freely chose the saccade direction, the delay HG activity lasted on average 618ms ± 

57, while the instructed saccade condition displayed mean HG durations of only 368ms ± 60. The 

difference was statistically significant (length of time points above the significance threshold in 

Free vs Control compared to Instructed vs Control classifications, t(4) = 3.52, p < 0.04 across 4 

participants and confirmed in intra-participant analysis in 1 individual with p < 0.05, see Figure 

4B). We also found that HG activity during Instructed saccade planning (mean onset = 152ms ± 

39) reached significant classification earlier than HG activity in the Free choice condition (mean 

onset = 465ms ± 49) when compared to the control (latency of first significant decoding 

accuracies in Free vs Control compared to those associated with Instructed vs Control 

classifications, t(4) = 7.09, p < 0.006 across 4 participants, see Figure 4C). This difference was 

confirmed with intra-participant analyses in 3 out of 4 participants with p < 0.05. Lastly, we show 

that decoding accuracy peaked significantly earlier in the Instructed condition (mean onset = 

527ms ± 61) than in the Free condition (mean onset = 822ms ± 70) when compared to the Control 

condition (Peak decoding accuracy latencies in Free vs Control compared with Instructed vs 

Control classifications, t(5) = 3.39, p < 0.03 across 5 participants, confirmed with intra-participant 

analyses in 4 out of 5 participants with p < 0.05, see Figure 4D). All the statistical results within 

and across participants are listed in supplementary Table S3. 

 

Probing HG delay temporal dynamics via temporal generalization 

 

In order to further characterize the fine temporal organization of information-processing 

during the delay period in the Instructed and Free choice conditions, we probed cross-temporal 

generalization (17,51) of decoding Instructed vs Control and Free vs Control conditions using 

HG activity (Figure 4I). In brief, temporal generalization consists in training a classifier with data 

from one time point t1 and testing it on data from a different time point t2. In principle, cross-

temporal generalization indicates that the neural code identified at t1 also occurs at t2 (see 

Material and Methods). More specifically, we used temporal generalization to better characterize 
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short-lived (transient) and longer lasting (sustained) HG activity processes underlying Free and 

Instructed planning. Our findings show that HG activity during instructed saccade planning yields 

a generalization pattern typical of transient coding  (see the first column of Figure 4I), while free 

choice is characterized by a HG decoding process that is more sustained in time (second column 

of Figure 4I). Taken together, the observed cross-temporal decoding patterns and their accuracies 

are consistent with the view that decision-related discriminant HG activity during the delay 

period is more sustained and starts later in Free choice trials compared to Instructed saccade 

trials. In contrast, when no choice is involved, task-related information reflected in HG activity is 

more transient and most relevant shortly after stimulus onset. Importantly, the cross-temporal 

generalization results also highlight that although HG decoding in the Free choice is more 

sustained, it does not last systematically the entire duration of the delay period until the GO signal 

(Cue 2). This is consistent with our earlier observations in Figure 3I-J, that over the course of the 

delay period, less sites discriminate between free and instructed trials. This may suggest that 

while several sites display sustained HG activity for free choice saccade trials, only a few actually 

display persistent increases up until saccade execution. This important distinction is probed in 

the next section. 
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Figure 4. Temporal dynamics of HG activity during Free and Instructed (vs Control) conditions 
during the delay period. A. Location of electrode sites where HG activity discriminates Free vs Control 
and/or Instructed vs Control mapped on transparent 3D brain images for all participants (p<0.01, 
corrected). Left: electrodes colored in green, blue and yellow respectively indicate sites that discriminate 
Free vs Control trials only, Instructed vs Control only, or both Free vs Control and Instructed vs Control during 
the delay period (0 to 3000 ms after Cue 1). Right: colors indicate different participants. B. Duration (length 
of time points) above the significance threshold C. Decoding onset (i.e. Latency of first significant decoding 
accuracies) D. Latency of the peak decoding accuracies (in ms) for sites significantly decode Free vs Control 
(in green) and Instructed vs Control (in blue) across participants. E, F. Time course of baseline corrected (-
500 to -100 ms) HG activity aligned on Cue 1, for all electrodes that significantly classify Instructed vs 
Control (E) and Free vs Control (F) conditions, and G, H. Their associated mean decoding accuracy across 
significant electrodes in time, respectively. I. Temporal generalization of trial-type decoding using HG 
activity across significant sites derived from the previous analyses (Free vs Control and Instructed vs 
Control) during the delay period (0 to 3000ms after Cue 1) for 4 participants. Generalization matrices show 
decoding performance plotted as a function of training time (vertical axis) and testing time (horizontal 
axis). Decoding of Instructed vs Control (left column) trials illustrates the expected profile for transient 
coding, while decoding of Free vs Control (right column) trials leads to smoother and extended decoding 
patterns, typical of a single process that is sustained over time.  

 
 

 
 
Spatial distribution of early vs late delay HG activity during free choice 

 

To specifically isolate the brain areas where HG increases index neural processing specific to 

free saccade decisions, we used a conjunction analysis (Free > Control Ո Free > Instructed) 

applied to all electrode sites with significant classification of Free vs control and Free vs 

Instructed trials. Importantly, we conducted this conjunction analysis in two distinct time 

windows during the delay period: An EARLY window defined as the first 2000 ms after Cue1, and 

a LATE window from -2000 to 0 ms before Cue 2. Figure 5A depicts for both time windows the 

sites with significant decoding accuracies for all participants where the increase in HG activity 
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was stronger during free choice compared both to control (Free > Control) and instructed (Free 

> Instructed) trials (see also supplementary Figure S5 for more details). Figure 5B combines the 

results for EARLY and LATE into a common representation (35 electrodes, 4 participants) 

indicating thereby for each free-choice specific site whether it showed HG increases only in the 

EARLY  (0 to 2000 ms after Cue 1), only in LATE (-2000 to 0 ms before Cue 2) or in both EARLY 

and LATE intervals. We found that most free-choice specific sites exhibited enhanced HG activity 

only during the EARLY part of the delay period (29 electrodes, 3/4 participants) in a network of 

regions including SFG, MFG, SMA, IPS and FEF (see Figure 5C,D, first two rows for illustrative 

EARLY electrodes in IPS and SFG). However, for 5 sites (in 2/4 participants) located in SFG (2 

electrodes), MFG (2 electrodes) and FEF (1 electrode), significant decoding accuracies were found 

both in the EARLY and LATE parts of the delay period, indicating HG activity spanning the entire 

duration of the delay period (see Figure 5C, D, last row for an illustrative EARLY+LATE electrode 

in SFG). The localization details of all 35 electrodes depicted in Figure 5B are provided in the 

supplementary Table S4. Note that, among all participants, the electrode site with maximum HG 

decoding accuracy for both Free vs Control (86.1 %) and Free vs Instructed (91.4 %) was located 

in the right intraparietal sulcus (IPS) (P2, electrode derivation p9-p8, see Figure 5, last row of C, 

D).  
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Figure 5. Early and late free choice specific HG activity. A, Electrode sites with significant decoding 
accuracies (p<0.01, corrected) for all participants mapped on transparent 3D brain images when HG activity 
is significantly stronger in the Free condition than in the Control condition (first row), and when HG activity 
is significantly stronger in the Free condition than in the Instructed condition (second row) during the 
delay period, from 0 to 2000 ms after Cue 1 (first column, EARLY) and from -2000 ms before Cue 2 (second 
column, LATE). B. Electrode sites where HG is higher in Free compared to Instructed and Control, 
determined by a conjunction analysis (Free > Control U Free > Instructed). Free choice specific sites are 
colored in blue if significant decoding was observed in the EARLY part of the delay ; in yellow if significant 
decoding was found in the LATE part; and in green for sites that survived the conjunction analysis both in 
EARLY and LATE phases of the delay period. For three individual electrodes, we plotted HG activity over 
time (C), single-trial plots (D, upper row) and time-frequency-maps (D, lower row) for Free, Instructed 
and Control conditions.  
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To further appreciate individual participant contributions to the global findings, we also 

analyzed all electrode sites that survived the conjunction analysis in Figure 5B, grouping the data 

either by ROI or delay period window (EARLY or LATE). The results (Figure 6) largely speak to 

the similarity of temporal HG dynamics across regions and conditions. Data from P2 indicate that 

the Control condition elicits HG responses in IPS but not in MFG, and that the strongest and 

longer-lasting HG responses in MFG comes from the Free choice trials (Figure 6A). This is 

consistent with an involvement of parietal regions –among other things- in low-level sensory 

processing, and a prominent role of frontal HG activity in deliberation. Lastly, the distinction 

between merely “longer-lasting” HG activity (EARLY) and “persistent” HG activity throughout the 

delay period (EARLY and LATE) is obvious in Figure 6B. Importantly, to verify whether our 

findings could be confounded by lateralization effects in the delay period we replicated the 

classification analyses separately for left and right saccade trials. However, no significant delay 

period HG decoding was found in the Free, Instructed and Control conditions (see 

supplementary Figure S6). More specifically, the three illustrative sites shown in Figure 5C-D did 

not show statistically significant differences when trials for left and right saccades were 

investigated separately (see suppelementary Figure S6B-D). Additionally, we also ruled out the 

possibility that our findings were confounded by involuntary saccades made in response to the 

presentation of Cue 1 by contrasting mean EOG traces for left and right trials, and for Free and 

Instructed conditions (see supplementary Figure S3). 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted June 14, 2020. ; https://doi.org/10.1101/788091doi: bioRxiv preprint 

https://doi.org/10.1101/788091


19 
 

 
 

Figure 6. Mean HG activity time courses for free choice specific sites grouped here by (A) ROIs, and (B) 
EARLY / LATE. Mean time course of baseline corrected (-500 to -100ms) HG activity for Free, Instructed 
and Control conditions aligned on Cue 1 (first columnn) and Cue 2 (second columns) in electrodes that have 
enhanced HG in the free choice condition compared to both control ad instructed saccade conditions (i.e 
determined by a conjunction analysis (see Figure 5B).  

 
 
 
Disentangling the correlates of oculomotor execution and oculomotor planning 

Previous reports using intracranial EEG in humans have shown that saccade execution in 

response to a go signal is associated with distributed increases in high gamma power (49). Yet, it 

has been so far hard to determine whether such gamma activity reflects target selection, motor 

planning, actual oculomotor commands or a combination thereof. Analyzing the execution 

component (cue 2) of the delayed saccade paradigm in the present study provides an opportunity 

to address some of these questions. Therefore in the final analysis, we set out to compare HG 

responses induced by the Go signal in conditions where target selection already occurred in the 

delay period (i.e. Free and Instructed) to the Control condition, in which participants were given 

no information on saccade target before the Go signal . To achieve this, we conducted a supervised 
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classification analysis on Free, Instructed and Control conditions as above, but this time using 

data collected during saccade execution (0 to 2000 ms after Cue 2). We found that, during saccade 

execution, the HG power modulations were similar whether the saccade was instructed or self-

chosen (i.e. no significant classification between Free and Instructed). However, HG activity 

associated with saccade execution in the Control condition was significantly different from both 

Free and Instructed saccades (Figure 7A). These results are consistent with the fact that no 

significant difference in reaction time (saccade onset latency) were found between Free and 

Instructed conditions, while mean reaction time across participants was significantly longer for 

the Control condition compared to both Free and Instructed trials (see Figure 1D).  

Next, we examined the trial-by-trial relationship between saccade onset latency and neural 

activity specifically in areas that exhibit these significant HG differences between the Control 

condition and the Free and Instructed conditions. To this end, we first used a conjunction analysis 

to identify the sites of interest defined as sites for which significant classification was mediated 

by HG power in the Control condition being higher than in the other two conditions (Figure 7B).  

This identified 28 electrodes in parietal and frontal regions (2/6 participants at p < 0.01). 

Interestingly, in 43 % of these significant sites, the reverse pattern was true during the delay 

period: HG activity was significantly stronger in the Free and the Instructed conditions compared 

to the Control condition during the delay. Three representative examples of this task-specific HG 

pattern inversion between delay and execution windows are shown in Figure 7C (first column). 

This suggests the involvement of these HG responses in action selection processes: When such 

processes are engaged during the delay period during Free and Instructed conditions, they do 

not need to be repeated during the execution period. By contrast, in the Control condition, no 

action selection processes were possible during the delay period (hence the weaker HG activity) 

but they were recruited at execution.  

By plotting the mean time courses of HG power (Figure 7C), as well as mean time-frequency 

representations and single trial HG power plots, sorted according to RT (Figure 7D), it becomes 

clear that the temporal dynamics of HG power differ quite substantially depending on electrode 

location and trial type. In order to probe the various relationships between saccade onset and HG 

activity in these areas in a quantitative manner, we computed Pearson's rank correlation 

coefficients between saccade onset latency and HG onset latency across trials in each of the three 

experimental conditions (see Material and methods). Significant correlations were observed in a 

limited number of sites, and the results need to be interpreted with caution. This said, we 

observed three correlation patterns that we considered to be of interest: For some sites, the onset 

of HG activity after the Go signal did not correlate with saccade onset in any of the three conditions 
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(pattern 1 / execution independent). Other sites exhibited correlations between HG onset and 

saccade onsets across all conditions (pattern 2 – oculomotor execution). Finally, in the third 

pattern, correlations between HG onset and saccade onset latencies were only observed in 

Control trials (pattern 3 / oculomotor planning).  The recording sites that displayed these 

patterns came from distinct brain areas; We found evidence for pattern 1 (i.e. no correlation with 

saccade onsets in any condition) for the electrodes located in the intraparietal sulcus (IPS, 4 sites, 

1 participant) (e.g. Figure 7C, D, first row and Figure S7) (e.g. Electrode p9-p8; Control [p = 0.62, 

r =-0.06], Free [p = 0.69, r = - 0.06] and Instructed [p = 0.43, r =- 0.12]). Next, pattern 2 (i.e. 

saccade and HG onset latencies significantly correlated in all three conditions) was observed in 

SMA (1 out of 4 electrodes) (e.g. Figure 7C, D second row and Figure S7; Electrode b3-b2; Control 

[p = 0.001, r =0.32], Free [p = 0.003, r =0.29] and Instructed [p = 0.041, r =0.2]). The fact that 

these correlations were present in the three conditions is consistent with the involvement of SMA 

in oculomotor execution. Thirdly, in the middle frontal gyri (1 out of 3 electrode), we observed 

the third pattern 3, namely that HG onsets were correlated with saccade onset latencies only in 

the Control condition (e.g. Figure 7C, D, last row and supplementary Figure S7: Electrode m13-

m12; Control [p = 0.04, r =0.26], Free [p = 0.13, r = 0.26] and Instructed [p = 0.67, r = -0.07]). 

Despite being of interest, this observation is not surprising given that the relevant sites did not 

have significant HG response after cue 2 in the Free and instructed conditions (e.g. third row of 

Figure 7C, D). The detailed list of HG and saccade onset correlations across the three conditions 

are available in Table S5.  
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Figure 7. Single-trial HG activity decoding during saccade execution. A. electrodes with significant 

decoding accuracies (p<0.01, corrected) for all participants are mapped on transparent 3D brain images 

when HG activity is significantly stronger in the Control condition than in the Free condition (first row), 

and when HG activity is significantly stronger in the Control condition than in the Instructed condition 

(second row) in the interval from 0 to 2000 ms after Cue 2. B. using a conjunction analysis (Control > Free 

Ո Control > Instructed), we show sites in which HG is stronger in the Control condition than in the Free 

and Instructed conditions. Colored sites correspond to three individual electrodes, for which we plotted 

HG activity over time (C), single-trial HG plots (sorted according to RTs) (D, upper row) and time-

frequency-maps (D, lower row) for Free, Instructed and Control conditions.  

 

Discussion 

The present paper provides, to the best of our knowledge, the first investigation of the neural 

dynamics underlying oculomotor decision-making in the human brain using intracranial EEG. Our 

results confirm the hypothesis that oculomotor decision processes (free choice saccades) in 
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humans are associated with sustained enhances in the high frequency component of population-

level neuronal activity across a parieto-frontal circuit. Single-trial classification allowed for a fine-

grained investigation of the spatial, temporal and spectral properties of the neural dynamics 

underlying free choice saccades. In particular, compared to lower frequency components, 

broadband high frequency (60-140Hz) activity in parietal and frontal brain areas yielded the 

highest classification between free choice and instructed saccade trials. Importantly, while the 

brain regions associated with both conditions were largely shared, the temporal dynamics of the 

HG activity during the delay period were distinct. The free choice trials were associated with a 

delayed and more sustained induced HG response, while instructed saccade trials were 

characterized by an earlier transient HG response. Critically, the longer-lasting HG response in 

free choice trials did not systematically persist throughout the duration of the delay period. This 

stands in stark contrast to the well-established dynamics of persistent neural activity typically 

associated with working memory during delayed motor tasks. As will be discussed in more detail 

below, these findings expand previous non-invasive human studies and bridge the gap with 

animal investigations of free choice tasks. 

 

Broadband HG activity in fronto-parietal areas tracks free choice processes 

 

Compared to planning an instructed saccade, we found that freely deciding where to look is 

associated with a longer-lasting augmentation of broadband HG activity in the delay period. The 

enhanced HG activity induced in the free choice trials spans a decision circuit that consists 

primarily of frontal and parietal brain areas. The large frequency bandwidth of the observed HG 

responses reported here (60-140 Hz) distinguishes the present results from investigations of 

narrow-band gamma oscillation. Broadband HG activity has been suggested to reflect a global 

enhancement of the local neuronal firing in the underlying cortical tissue, and has been 

occasionally described as a “spike bleedthrough” in the power spectrum of the LFP signals (53–

58). Consistent with previous work, the HG activity reported here most likely reflects the 

cumulative discharge of local neuronal networks in superficial cortical layers (54,55,57–59). 

Given previous reports showing tight correlations between neuronal firing and high frequency 

components of the LFP (53-58), it is tempting to consider the observed HG activity in our study 

to be a marker of local neural activation, or a correlate of neuronal firing. As such, the sustained 

HG activity specifically observed during the free choice trials probably indexes an extended active 

deliberation process. 
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Sustained HG delay activity: Decision-making or working memory? 

 

Both the trial-by-trial classification framework, as well as standard trial-by-trial statistical 

tests, indicate that what we refer to as longer-lasting or sustained HG activity (in free choice trials) 

is not maintained up to saccade execution. In fact, in most of the probed parietal and frontal areas, 

the elevated HG activity ceases to be significant around 2000ms after Cue 1, irrespective of the 

total duration of the delay period (3750, 5750 or 7750ms). As revealed by our analysis 

contrasting EARLY versus LATE delay period activity, out of 34 sites that exhibited decision-

specific HG enhancements within the first 2 seconds following stimulus onset, only 5 sites still 

showed significant HG increases in the last 2 seconds leading up to the Go cue. We argue therefore 

that the early “sustained” HG activity reported here differs from the more persistent patterns of 

neuronal responses reported in parietal and prefrontal areas in humans and monkeys performing 

working memory tasks, and which generally remain elevated until movement execution (e.g. 9–

11,59). Rather than reflecting information maintenance, we believe that the extended HG activity 

reflects an internally driven action selection process which extends over time but is generally 

completed within the first 2000ms. Moreover, cross-temporal generalization decoding confirmed 

that HG activity during free choice trials reflects a single, sustained process, rather than a dynamic 

coding phenomenon (11). In other words, the off-diagonal cross-temporal decoding results argue 

against the view that the reported sustained HG activity actually reflects multiple, distinct 

successive processes (61). More generally, we propose that the sustained HG response reported 

here is related to an ongoing free choice process rather than to working memory. This is in line 

with the increasingly accepted view that persistent neuronal firing is a ubiquitous phenomenon 

observed broadly across many cortical and subcortical areas and that it reflects not only working 

memory maintenance, but also a variety of other cognitive processes, including decision making 

(62–65). In the light of the aforementioned findings and existing theories of action selection 

(17,75–81), we argue that the observed sustained HG activity in frontal and parietal areas during 

free saccade trials in the present task may reflect sustained neuronal firing that helps maintain 

enhanced competition between various potential movement plans with equal rewarding 

outcomes compared to a single movement plan in instructed saccades (cf. 82), until commitment 

to a particular choice. This interpretation is consistent with the involvement of the fronto-parietal 

network in implementing action selection (free choice) when maximally competing alternatives 

are present, both in humans (36,83–85) and in monkeys (5,16).  

 

 

 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted June 14, 2020. ; https://doi.org/10.1101/788091doi: bioRxiv preprint 

https://doi.org/10.1101/788091


25 
 

 

Relationship to previous delayed saccade tasks in humans 

 

The present study provides the first account of the neural dynamics underlying free choice 

saccades using invasive recordings in humans. While some of our findings provide critical 

confirmation of previous non-invasive research in this field, other observations extend or stand 

at odds with the non-invasive literature. First of all, an fMRI study based on the exact same 

paradigm used here, found that the free choice condition specifically activated DLPFC, alongside 

supplementary eye fields (SEF), FEF and IPS (34, 35). This spatial correspondence between these 

BOLD responses and our iEEG HG activity in an identical task is expected and consistent with the 

view that broadband HG activity band modulations largely co-localize with BOLD variations in 

humans (54,67,88–92). In addition to corroborating BOLD localization results through 

electrophysiological evidence, our findings expand the fMRI account by incorporating the 

temporal and frequency dynamics in key parietal and frontal nodes of the decision circuit. Our 

findings are also consistent with an event-related fMRI study by Curtis et al. (65) where the 

authors found sustained BOLD responses in parietal and frontal areas during a delayed pro and 

anti-saccade task. Importantly, the deferred saccade task they used eliminated the memory 

maintenance component inherent in memory-guided saccade tasks by keeping the visual cue 

present throughout the preparation interval. Their interpretation of the parieto-frontal BOLD 

responses as reflecting spatial selection and preparation of saccades, rather than working 

memory, is in line with our interpretations. However, the fact that their task did not include a free 

choice saccade condition and the sluggish and delayed nature of the haemodynamic response 

(which peaks seconds after the neuronal response) limit direct comparisons between the 

temporal dynamics reported in their study using fMRI and the ones reported here using iEEG. 

 

Investigating the electrophysiological correlates of oculomotor behavior with non-invasive 

methods is challenging because eye movements generate artefacts in EEG and MEG signals. 

However, by focusing on the delay activity preceding execution, a few MEG studies have reported 

compelling evidence for enhanced parieto-frontal gamma oscillations during saccade planning 

(e.g., 39,40,36). Compared to guided saccades, autonomously choosing between competing 

alternatives has been shown with MEG to yield stronger sustained gamma increases that persist 

until movement execution (37). Our findings are, in part, consistent with these MEG results. 

However, a notable difference with the latter findings is that their delay period was fixed and 

short (1 s), while our delay period varied from 3,75 s to 7,75 s. This discrepancy probably explains 

why the gamma increase they report lasted the entire duration of the delay period, while we 

found that it drops around 2 to 2,5 s after stimulus onset. In fact, these important differences 
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emphasize the importance of using long and variable delay periods to disentangle interpretations 

based on motor preparation or memory maintenance (9–11, 59–61) from processes directly 

involved in choosing between alternatives. Further differences between previous MEG 

investigations and the present results can be due to the differences in number of alternative 

saccade targets. Arguably, with only left or right saccade choices, our experimental design places 

less emphasis on memory maintenance during the delay, than tasks that involve for example 16 

targets (37). Moreover, the absence of a pure sensory control condition in other studies may also 

be a limiting factor that we were able to overcome in this study. The Control condition used here 

allowed us to disentangle low-level stimulus processing from internally generated plans. Overall, 

compared to previous non-invasive human studies, the spatial and temporal resolution of iEEG 

and its high signal-to-noise ratio allowed for a fine-grained investigation of the temporal, spectral 

and spatial dynamics of the brain responses at play. Our ability to conduct these analyses up to 

frequencies of 140Hz and at the single-trial level is an important advantage when it comes to 

bridging the gap with animal research. 

 

Comparing saccade execution-related HG activity across conditions 

 

Comparisons of HG activity across trial types and correlation analyses between saccade onset 

and HG onset latencies revealed region-specific temporal patterns of activity during the execution 

period (Figure 7). We found an increase in HG activity specific to Control trials (i.e., the only 

condition during which subjects did not plan a decision during the delay period) when compared 

to both Free and Instructed trials during the execution period. This finding implies the 

involvement of HG in oculomotor planning processes (including action selection and oculomotor 

preparation). Furthermore, we probed potential correlations between single-trial HG response 

onsets and saccade onsets. Significant correlations were scarce and the results, although 

interesting, need to be considered with caution; In all IPS sites, HG power onset did not correlate 

with saccade onset latency in any of the three experimental conditions. These analyses and the 

single-trial maps (sorted by RT) suggest that HG in IPS was not locked to oculomotor execution 

but was rather aligned to the Go stimulus onset. This is consistent the role of the intraparietal in 

preparing and redirecting movements and movement intentions (i.e., motor attention, see 67). By 

contrast, in SMA (BA6), a significant correlation between HG onset and saccade onsets was 

observed in all three conditions. This may reflect SMA involvement in eye movement execution 

(68), irrespective of whether target information was present prior to cue 2. Interestingly we also 

found evidence for correlations between HG onset and saccade onsets that only occurred for 

Control trials (i.e., when no action selection processes were engaged during the delay period), 

but neither for the Free nor Instructed trials. This occurred for instance in right MFG and thereby 
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suggests that this area is involved in saccade execution only when the participants could not plan 

the direction of their saccades during the delay period. This view is consistent with previous 

findings in humans that suggest that the DLPFC is necessary for the executive control of saccades 

(69). 

 

Limitations and open questions 

 

Participants in our study were neurosurgical patients with drug resistant epilepsy. To 

minimize the effect of epilepsy-related alterations and artefacts we followed strict data exclusion 

procedures in line with our previous intracranial EEG work (70–73). These consist primarily of 

systematic inspection of the data and exclusion of signals showing typical epileptic waveforms 

(e.g., epileptic spikes). In addition, we excluded data from any electrode subsequently identified 

by the clinical staff as being part of the resection area. Moreover, it should also be noted that the 

advantages of depth S-EEG recordings (incl. high spatial and temporal resolution, high signal-to-

noise ratio across a wide range of frequencies up to 140 Hz, 68), come at the cost of heterogenous 

spatial sampling among participants. This limitation is inherent to all iEEG studies. The electrode 

implantation across the six participants (see Figure 1B,C) yielded a reasonable coverage (a total 

of 778 intracerebral sites) of frontal and central areas, but the posterior parietal cortex was 

under-represented and none of our participants were implanted in the occipital cortex for 

instance. Furthermore, we and others have shown that unwanted eye movements can potentially 

lead to artefacts in iEEG due to saccadic spike potentials in extra-ocular muscles (74,75). These 

eye-movement artefacts occur in SEEG electrodes especially in the high gamma-range and are 

most prominent in anterior and medial temporal lobe (81). The localization and time-course of 

HG activity reported in the present study suggest that it is not attributable to ocular artifacts. 

Moreover, we also verified that brain signals during the delay period were not affected by 

unwanted eye movements; Averaging EOG signals with respect to stimulus onset did not reveal 

any systematic EOG activity in left vs right instructed saccade trials. Lastly, based on non-human 

primate studies (16,69,76), we expected to see differences between right and left saccades during 

the delay period. However, no differences were found when we trained an LDA algorithm to 

classify left and right saccades in Free and Instructed conditions (see Figure S6). This means that 

the iEEG signals recorded in the present study do not seem to carry spatial information. This could 

in part be attributed to the fact that saccade directions were cued symbolically and foveally, or 

because of larger fields captured in bipolar sEEG recordings compared to electrophysiological 

recordings in macaques. It may also very well be possible that other signal features not 

considered in our analyses may be able to successfully predict saccade direction from delay 

period neural activity. Future analyses are needed to address such questions.  
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To conclude, the present study provides the first direct electrophysiological investigation of 

delayed eye movement decisions using depth recordings in humans. Compared to instructed 

saccades, we found free choice saccades to be associated with a more sustained HG activity in a 

parieto-frontal network. In a few prefrontal sites this HG enhancement persisted throughout the 

duration of the delay period, however, in most of the decision-related sites, HG activity 

modulations were present only in the early part of the delay period (i.e. first 2 seconds). We 

interpret the early sustained HG activity as reflecting deliberation processes, while the reported 

persistent HG activity may reflect maintaining one’s own decision in working memory. These 

results bridge the gap between findings in human and non-human primates and expands our 

understanding of the brain’s spatial, temporal and spectral dynamics underlying human decision 

making.  
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Methods 
 

Contact for Reagent and Resource Sharing 

 

All requests for further information and resources should be directed to and will be fulfilled 

by the Lead Contact, Thomas Thiery (thomas.thiery@umontreal.ca). 

Experimental Model and Patient Details 

 

Six patients with drug-resistant epilepsy participated in this study (6 females, mean age 30.3 
± 9.6). The patients were stereotactically implanted with multisite EEG depth electrodes at the 
Epilepsy Department of the Grenoble Neurological Hospital (Grenoble, France). In collaboration 
with the medical staff, and based on visual inspection, electrodes presenting pathological 
waveforms were discarded from the present study. All participants had normal vision without 
corrective glasses. All participants provided written informed consent, and the experimental 
procedures were approved by the local Ethical Committee (CPP Sud-Est V n° 09-CHU-12). 
Patient-specific clinical details can be found in Table S1. 

Method Details 

 

Electrode implantation and stereotactic EEG recordings 

Each participant was implanted with stereotactic electroencephalography (SEEG) electrodes 
(diameter of 0.8 mm). Depending on the implanted structure, electrodes were composed of 10 to 
15 contacts that were 2 mm wide and 1.5 mm apart (DIXI Medical Instrument, Besançon, France). 
Intracranial EEG signals were recorded from a total of 778 intracerebral sites across all 
participants (Between 128 and 133 sites per participant). At the time of acquisition, a white 
matter electrode was used as reference, and data was sampled at 1024 Hz and bandpass filtered 
between 0.1 and 250 Hz. Electrode locations were determined in each individual participant using 
the stereotactic implantation scheme. The coordinates of each electrode contact were given 
following these references: origin (anterior commissure), anteroposterior axis (anterior 
commissure - posterior commissure), and vertical axis (interhemispheric plane). The electrodes 
were then localized in each individual participant using Talairach coordinates, which were then 
transformed to MNI coordinate system using standard procedures (i.e. tal2mni.m Matlab 
function) (Figure 1C). We then automatically assigned electrodes to brain regions based on three 
distinct atlases : Brodmann areas, the Automated Anatomical Labeling (AAL; 75), and the 
Multiresolution Intrinsic Segmentation Template (MIST; 76). The mapping from coordinates to 
brain areas (using this atlas) is publicly available in several toolboxes, including the one we used 
here (Visbrain, see 84). 

behavior during the Free 

Delayed motor task 

 
At the beginning of each trial, participants were asked to fixate a central fixation point that 

appeared at the center of the screen, along with two lateral points for 500ms. Lateral points are 
always visible and were located within a 14° visual angle (-7° and +7° around the central point). 
Participants were then instructed to perform horizontal saccades toward one of the two targets, 
depending on a visually presented central cue appearing briefly for 250ms. In the FREE condition, 
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the cue (outline diamond-shaped) indicated the participants were free to decide the direction 
(Right or Left) of the saccade they would execute at the upcoming go signal (cue 2). In this 
condition (FREE), no specific instruction was given concerning the timing of decisions. In the 
INSTRUCTED condition, participants prepared a saccade towards the target indicated by the cue 
(empty arrow). As soon as the central cue disappeared a variable delay period began (3750, 5750 
or 7750ms, selected with equal probability for each trial, i.e. 33,3%) during which the participants 
prepared the (chosen or instructed) saccade while fixating a central fixation point. Next, a GO 
signal (a central filled double-arrow in the FREE condition or an arrow pointing to one of the two 
targets in the INSTRUCTED condition) indicated that the participants could execute the saccade 
(Execution period). In the CONTROL condition, an empty central rectangle indicated that the 
participants should continue central fixation without preparing any saccade. A variable delay 
(3750, 5750 or 7750ms) was then followed by a GO signal indicating the direction of the saccade 
to be executed immediately, i.e. without prior preparation. After every saccade execution, no 
visual feedback about the trial performance was given, and participants had to fixate the central 
fixation point for 500ms. Next, everything disappeared from the screen during 1500 ms until the 
start of the next trial (inter-trial interval). Each trial type (FREE, CONTROL, INSTRUCTED) was 
presented with the same (33,3%) probability, and trials were pseudo-randomly interleaved. In 
all conditions, participants were asked to execute the saccade as soon as possible after the GO 
signal. We excluded trials in which participants took longer than 750ms to execute the saccade 
after the GO cue, and the EOG signal was visually inspected to exclude trials that contained 
abnormal eye movements and/or spontaneous saccades made during fixation or during the delay 
period (see Figure S3). Across all participants approximately 75 % of the trials were retained for 
further analysis. The overall luminance and stimulus area of the first cue were matched across all 
three trial types, to exclude differential visual effects. 

 
Behavioral analysis 

Based on the EOG traces (see Figure S2), we computed saccade onset latencies for each trial 
and for all participants in the Control, Instructed and Free conditions. Saccade onset latencies 
were identified from EOG traces recorded during each experimental conditions using a routine 
semi-automatic saccade detection procedure: a custom Matlab (The Mathworks, Inc.) program 
provided an initial automatic detection of saccade onsets and allowed for interactive manual 
adjustments of the marker latencies (see Table S2). In order to test whether reaction times 
differed significantly across conditions, we used a two-tailed paired Student's t-test and 
compared mean reaction times for Control vs Instructed, Control vs Free, and Instructed vs Free 
conditions. Standard errors of the mean together with means, t-statistics and p-values were 
reported. To confirm these results in individual participant data, we used a two tailed paired 
Student’s t-test to compare reaction times between condition on a trial-by-trial basis within each 
participant (Control vs Instructed, Control vs Free, and Instructed vs Free). To account for 
differences in numbers of trials per condition, we used a bootstrap procedure (n=100) each time 
randomly selecting values to match the condition with the least number of trials. Lastly, we found 
no obvious across-trial dependences in choice behavior during the Free condition (e.g. alternating 
behavior, left - right - left…, or any other history effects), as shown in Figure S1.  

 

EOG Data preprocessing 

Oculomotor performance was followed online using horizontal and vertical electro-
oculograms (EOG), allowing to measure the amplitude and the speed of saccades (see Figure S2), 
as well as the errors made by each participant. Four electrodes placed around the eyes to measure 
horizontal and vertical eye movements with a sampling frequency of 1024 Hz. Saccade onsets 
were identified from EOG traces recorded during each experimental condition using a routine 
semi-automatic saccade detection procedure. A custom Matlab script identified saccade onsets by 
detecting the onset of the characteristic slope (by computing the derivative of the EOG signal). 
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The automatic detection of saccade onset was then fine-tuned through interactive manual 
adjustments of the marker latencies. To make sure our results cannot be attributed to saccades 
made after the presentation of Cue 1 during the delay period, we used a two tailed paired 
Student’s t-test at each moment in time to compare mean right and left EOG responses, as well as 
mean responses during Free and Instructed conditions across all participants and found no 
significant differences, 

 
 
SEEG Data preprocessing 

SEEG data preprocessing was conducted according to our routine procedures (70,71). These 
included signal bipolarization, where each electrode site was re-referenced to its direct neighbor. 
Bipolar re-referencing can increase sensitivity and reduce artefacts by canceling out distant 
signals that are picked up by adjacent electrode contacts (e.g. mains power). The spatial 
resolution of bipolar SEEG electrodes was approximately 3 mm (71,80). Next, using visual 
inspection and time-frequency explorations of the signal, we excluded electrodes containing 
pathological epileptic activity. The pre-processing led to a total of 543 bipolar derivations across 
all participants (see Figure 1B). 

 

 

Quantification and Statistical Analysis 

 

Spectral analyses 

We conducted power analyses in several standard frequency bands defined as follows: theta 
(θ) [4–8 Hz], alpha (α) [8–15 Hz], beta (β) [16–30 Hz], low gamma (low γ) [30–60] and HG [60-
140 Hz]. This was achieved by first filtering the raw EEG signals using a finite impulse response 
filtering (FIR1, order = 3) and then computing the Hilbert transform over 400 ms time windows 
with an overlap of 50ms. The power features used for classification were computed as mean 
power over 400ms time windows with an overlap of 50ms during the delay period (-500ms to 
2500 ms), where t=0ms corresponds to the onset of Cue 1, and execution (-500ms to 1500ms)  
where t=0ms corresponds to the onset of Cue 2. The classification was applied on non-normalized 
power. For single trial representations, the same methods were used but using 60ms time 
windows with an overlap of 10ms. Whenever present, baseline normalization was only used for 
visualization purposes (time-frequency maps and single trial representation). Baseline 
normalization was achieved for each frequency band, by subtracting then dividing by the mean 
of a 400 ms baseline window, i.e. the pre-stimulus rest period ([-500ms, -100ms]).  

 

Signal classification 

We set out to explore the feasibility of using multisite human LFP data (543 bipolar electrode 
sites) to perform classifications during motor planning and execution. To this end, we 
implemented a machine learning framework for trial-by-trial classification using spectral power. 
Several classification techniques were initially tested for the single feature classification 
procedure, including linear-discriminant analysis (LDA), k-nearest-neighbor (KNN) and support 
vector machine (SVM). The classification accuracy results were very similar across the three 
methods. The LDA algorithm (81) was the fastest and was therefore chosen for this study given 
the computationally-demanding permutation tests used to evaluate classifier performance. In 
brief, for a two-dimensional problem, the LDA algorithm tries to find a hyperplane that maximizes 
the mean distance between the mean of the two classes while minimizing inter-class variance. 
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Decoding accuracy and statistical evaluation of decoding performance 

Single-trial classification performance was evaluated in each participant separately. We used 
a standard stratified 10-fold cross-validation approach with Scikit-learn, a Python 3 package 
dedicated to machine-learning analyses (82). First, the data set was pseudo-randomly split into 
10, equally-sized, observations: 9 segments were used for training the classifier, and the last one 
as the test set. This procedure was repeated 10 times, such that every observation in the data was 
used exactly once for testing, and at least once for training, but never at the same time. This strict 
separation of training and testing ensures the test data was naïve and did not violate basic 
classification principles (e.g.(83). The use of stratification seeks to ensure that the relative 
proportion of labels (or classes) in the whole data set is reasonably preserved within each of the 
segments after the split. Next, the performance of the achieved decoding was calculated using the 
DA metric, which was computed as the mean correct classification across all folds. The statistical 
significance of the obtained decoding accuracies was evaluated by computing statistical 
thresholds using permutation tests (n=100, p<0.01). In other words, a null-distribution is 
generated by repeatedly (n=100) computing the classification accuracy obtained after randomly 
permuting class labels (84). In all our decoding analyses, we used maximum statistics to correct 
across electrodes, frequency bands and time with a statistical threshold at p<0.01. 

 
 
Cross-temporal generalization of HG decoding 
 
We explored the temporal dynamics of HG activity during the delay period for Free vs 

Control and Instructed vs Control conditions by probing cross-temporal generalization (11,52). 
In principle, we employed the same LDA decoding approach as described above, except that the 
classifiers trained at a given time point were now tested at every other point in time, resulting in 
two-dimensional cross-temporal decoding matrices (see 11,51)). Once t LDA classifiers have been 
fitted (where t is the duration of a trial expressed in time samples), each classifier is tested on its 
decoding generalization at any time t′. This method thus leads to a temporal generalization matrix 
of training time x generalization time (see Figure 4). In each cell of the matrix, decoding 
performance is summarized by the decoding accuracy (DA). Classifiers trained and tested at the 
same time point correspond to the diagonal of this matrix and are thus referred to as “diagonal” 
decoding. The decoding performance obtained when t′ differ from t is referred to as “off-diagonal” 
decoding. To identify where HG activity was significantly different between conditions in the 
temporal generalization matrices, we used the binomial cumulative distribution to derive 
statistical significance thresholds (see 89). Finally, we compared our results with the repertoire 
of canonical dynamical patterns in temporal generalization matrices established by previous 
studies (11,52). 

 
Multifeature classification analysis 
 
To perform the multi-feature analysis, we use the Exhaustive Feature Selection (EFS) method 

from mlxtend (113) applied for each frequency band, for each participant. The EFS algorithm will 
test all the possible combinations of the frequency bands and will select which feature or set of 
features allows for better decoding of our two conditions (Free vs Instructed, see Figure 3E). The 
feature selection is scored on a stratified validation dataset consisting of one third of the data. The 
EFS is repeated with all possibilities of validation set and the best selected features are counted 
for each electrode. 

 
Statistical analyses of temporal dynamics (peak and duration) 
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To statistically compare the peak of HG activity across the Instructed and Free conditions 
from all relevant sites during the delay period, we first extracted the peak of HG activity from all 
electrodes that exhibited significant decoding of Free vs Instructed conditions. We then compared 
the peak HG activity for all electrodes within participants using unpaired t-tests (Instructed - 
Free). This gave us t-values and p values for each individual participant (e.g., for HG activity, 
Instructed - Free, 4/6 participants). We then averaged the peak HG activity across electrodes and 
used a paired t-test to assess whether the effect was statistically significant across participants, 
at the group level.  

 
To assess whether activity was decoded earlier, peaked earlier and whether it was more 

sustained in the Free condition than in the Instructed condition, we first conducted two separate 
classifications (Free vs Control and Instructed vs Control). We then computed the timing at 
which each significant electrode (1) started to decode (based on first time bin of significant 
decoding) and (2) maximally decoded (based on the timing of the maximum accuracy) Free vs 
Control and Instructed vs Control conditions. We compared these timings for all electrodes 
within participants with an unpaired Student’s t-test. This gave us t-values and p values for each 
participant. We then averaged the first significant timings across electrodes and used a paired 
Student’s t-test to assess whether the effect was statistically significant across participants, at the 
group level. The same analysis was used to determine whether HG activity was more sustained in 
time in the Free condition, compared to the Instructed condition. To this end, we counted the 
total number of time points with significant decoding between Free vs Control, and Instructed 
vs Control and ran both within and across participant comparisons correlations between reaction 
times and HG activity. 

 
In addition, we computed Pearson’s rank correlation coefficients between reaction times and 

the onset of HG activity for each trial in the Free, Instructed and Control conditions during saccade 
execution. The onset of HG activity was determined in each trial by detecting the time point after 
which HG activity was greater than 2 standard deviations for at least two consecutive time bins. 
The statistical significance of correlations was established by using a two-sided test whose null 
hypothesis is that two sets of data are uncorrelated. The p-value thus indicates the probability of 
an uncorrelated system producing datasets that have a Pearson rank correlation at least as 
extreme as the one computed from these datasets. 

Data mapping to a 3-D standard cortical representation 

To facilitate the interpretation of the results, all significant task-based feature modulations 
and decoding results were remapped from the intracranial electrode sites onto a standard cortical 
representation. To achieve this, all electrode coordinates were transformed from individual 
Talairach space to standard MNI space using Visbrain (79), an open-source Python 3 package 
dedicated to brain signal visualization, to map the data from iEEG sites onto 3D images of 
transparent brains. This cortical representation technique is in line with methods used in 
previous iEEG studies (70,71,86) and allowed for brain-wide visualization of significant features 
and decoding performances. 

Data and Software Availability 

 

Electrophysiological data were analyzed using Python 3, in conjunction with toolboxes 

including Visbrain (79) for data visualisation and mlxtend (85) as well as Scikit-learn (82) for 

machine learning analyses. Data and custom Python analysis scripts are available upon 

reasonable request from Thomas Thiery (thomas.thiery@umontreal.ca). 
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