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Abstract 

To feed an ever-increasing population we must leverage advances in genomics and phenotyping to 

harness the variation in wheat breeding populations for traits like photosynthetic capacity which 

remains unoptimized. Here we survey a diverse set of wheat germplasm containing elite, introgression 

and synthetic derivative lines uncovering previously uncharacterised variation. We demonstrate how 

strategic integration of exotic material alleviates the D genome genetic bottleneck in wheat, increasing 

SNP rate by 62% largely due to Ae. tauschii synthetic wheat donors. Across the panel, 67% of the Ae. 

tauschii donor genome is represented as introgressions in elite backgrounds. We show how observed 

genetic variation together with hyperspectral reflectance data can be used to identify candidate genes 

for traits relating to photosynthetic capacity using association analysis. This demonstrates the value of 

genomic methods in uncovering hidden variation in wheat and how that variation can assist breeding 

efforts and increase our understanding of complex traits. 
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Introduction: 

Bread wheat occurred through hybridisation of domesticated emmer with diploid goat grass, Ae. 

Tauschii (D)1. This event is thought to have occurred very few times in nature, integrating very few 

Tauschii donors and resulting in a genetic bottleneck in D genome diversity2. This lack of diversity 

has been identified in multiple populations, using capture enrichment3 and whole genome 

resequencing4 where variation rate in the A/B genomes was >4-fold higher than the D genome. In an 

attempt to relieve this genetic bottleneck CIMMYT has created >1200 synthetic hexaploid wheat 

lines5 through interspecific crosses of durum wheat (T. turgidum ssp. durum, AABB) and diverse Ae 

tauschii (=Ae. squarrosa) D genome donors6. Many have been used as parents in pre-breeding and 

breeding programmes, being crossed with elite material producing synthetic-derived lines7,8. These 

lines are attributed to have favourable effects on yield under irrigated conditions9, drought stress10 

heat stress11, salinity12, biofortification13, pre-harvest sprouting resistance14 and resistance to several 

pests and diseases15. In addition, introgression of wild relatives has been used to introduce novel 

diversity with well documented examples such as Rye (Secale cereale) and Thinopyrum ponticum16,17. 

Despite the broad range of contributions of both synthetic wheat and introgressions to CIMMYTs 

breeding efforts, little work has been done to characterize the variation in these populations that is 

hidden to microarray-based techniques that rely on pre-existing knowledge of the variation assayed. 

Leading to much of this novel genetic variation that has been introduced being overlooked. 

In addition to providing diversity for wheat breeders, this genetic diversity can be used to unpick the 

genetic basis of the traits measured at CIMMYT year on year. We demonstrate this by investigating 

phenotypic variation in spectral indices that are related to three classes of traits: (i) thermal/hydration 

properties measured in the infrared part of the electromagnetic spectrum, (ii) pigment related indices 

assessed in visible bands18 and (iii) photosynthesis related indices derived from the whole spectra19,20 

in the High Biomass Association Panel (HiBAP). Few studies have attempted to determine these 

traits' contribution to a plant’s efficiency in utilisation of incident solar radiation (or radiation use 

efficiency, RUE), which determines crop productivity21. Our mechanistic understanding of the genes 

and pathways involved in RUE is therefore limited, especially under field conditions22.  

Exploiting existing variation in RUE related traits through identification of the genetic mechanisms 

responsible could be a straightforward strategy for increasing RUE. A phenotypic range in 

photosynthetic rates of 33% was observed across 64 winter wheat varieties in UK field conditions23 

and 50% for 55 spring wheat varieties in Mexico and Australia24. To understand the genetic causes of 

this variation, traits contributing to RUE must be studied. Molero et al., 2019 proposed the use of 

exotic material (landrace and synthetic-derivative lines) as a resource to increase RUE. Previous work 

has uncovered multiple marker trait associations (MTAs) related to RUE and biomass accumulation at 

various phenological stages 22 and demonstrated a link between RUE and photoprotection.  
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This suggests that photo-protective pigments could contribute to RUE throughout the crop cycle by 

preventing the propagation of free radicals that damage photosynthetic machinery. In addition, 

photosynthetic potential may differ depending on the content of individual leaf pigments25 as the 

amount of solar radiation absorbed depends on pigment content26 which in turn relates to 

photosynthetic capacity27. Chlorophyll a (chla) is the primary pigment of photosynthesis while 

chlorophyll b (chlb) is an accessory pigment. In a study of Australian wheat varieties released through 

time, a decrease in the Chl a/b ratio was associated with a decrease in electron transport capacity per 

unit of chlorophyll, but because total Chl content per unit leaf area increased, electron transport 

capacity per unit leaf area increased28. Assessment of the contribution to RUE from pigment 

composition and its underpinning genetic basis is, therefore, of great interest for enhancing 

photosynthetic potential of wheat. 

Through enrichment capture and de novo SNP discovery we are able to gain an unprecedented insight 

into the overall levels of genetic diversity within CIMMYT breeding material. Using this data, we can 

determine the contribution of Ae. Tauschii, S. secale and T. ponticum donors to increasing diversity in 

exotic derived lines. We have utilised this novel genetic information to further investigate the link 

between photoprotection and RUE through genome wide association of leaf pigment compositions of 

149 wheat lines using high throughput hyperspectral reflectance measurements taken over 2 growing 

seasons. This uncovered novel MTAs for >20 traits relating to leaf pigmentation and water content 

along with candidate genes containing possible causative non-synonymous variants that could be 

leveraged for improvements in RUE. 
 

Results 
Genotyping and SNP effects 

To investigate genetic variation across the HiBAP panel we used a de novo SNP discovery strategy 

using a bespoke target sequence capture design. We developed a 12-Mb target sequence using the 

MyBaits system based on that described by Gardiner et al., 20183 , where underperforming baits were 

replaced with baits targeting genes associated with photosynthesis and biomass accumulation. A 

schematic of this capture design can be seen in SF1.  

In total, 18.6 billion reads were sequenced between the 149 lines, an average of 124 million per line. 

Of these, 86% mapped uniquely covering 420Mbp of the genome to 5x or greater and 172Mbp at 10x 

or greater. A breakdown of mapping efficiency and variant calling can be found in ST1. Variant 

calling yielded an average of 764,825 homozygous SNPs per line, producing a marker density of 45 

SNPs/Mb. Of these, 96.9% of SNPs were in intergenic regions and 3.1% in the genic regions. Of the 

SNPs in gene bodies, 49% resulted in synonymous substitutions and 51% in non-synonymous 

substitutions (ST2). The average number of SNPs for the panel members containing exotic pedigree 
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history was 11% higher than that of the elite subpopulation overall. The exotic population showed an 

increased SNP rate in all subgenomes, 5%, 10% and 62% for the A, B and D genomes respectively. A 

T-test comparing the elite and exotic subpopulation showed no significant differences between the 

number of reads nor the number of bp that were mapped to ≥5x coverage between populations. After 

filtering for SNP loci with <10% missing data for MAF of >5%, 241,907 shared loci were retained. 

Overall marker density across the shared variants was 17 SNPs/Mbp with the highest density in the B 

genome followed by the A and D with 25, 16 and 9 SNPs/Mbp respectively (ST3). Genome-wide 

SNP subset density can be seen in Figure 1 and SF2. 

 

Population structure analysis 

Model-based Bayesian clustering methods were used to deduce the population structure of the panel. 

The Evanno method revealed evidence for 2 subpopulations and some evidence for as many as 8 

subpopulations (SF3). Where 2 subpopulations are assumed, population 1 and 2 comprise 114 and 35 

respectively (SF4). Of population 2 members, 88.5% had synthetic/landrace parents in their pedigree 

history whereas only 16% of population 1 had any exotic background (Figure 2). Multiple lines also 

demonstrated significant admixture between populations. Admixture was seen to a lesser extent in the 

elite backgrounds (4%) compared with exotic backgrounds (25%). Fst analysis demonstrated genome-

wide effects of integration of exotic material with large regions of chromosomes showing differences 

between the elite background and exotic background panel members. Most notably in chromosomes 

2D, 3D, 4B and 7B with regions spanning >300Mbp (Figure 1/SF5-A). When the elite population 

was split randomly into two pseudo-populations, Fst was negligibly small across every chromosome 

(SF5-B). 

 

Synthetic wheat introduces substantial increase in D genome variation 

Comparison of SNP density in the D genome within the elite and exotic subpopulations revealed an 

increase of 62% in variation in the exotic subpopulation (Table 1). The largest increase was seen on 

chromosome 3D, with an increase of ~200%. However, these increases were not universal, with 1D 

showing no notable increase in SNP numbers between populations. Comparison of the elite and exotic 

subpopulation members highlights that these increases in D genome SNP density is localised into 

blocks (Figure 3), a result of the low crossover rate of 1-2 per chromosome per cross in wheat 29, with 

regions as large as 343Mb showing notable SNP density increases. Within these regions a large 

proportion of the SNPs matched variation called for modern Ae. Tauschii, confirming the origin of 

this variation is the Ae. Tauschii donor used in synthetic creation (Figure 3B). The overall size of 

donor regions varied widely across the synthetic subpopulation, spanning from 43% to as little as 

0.5% of the D subgenome and differed from the theoretical D contribution to pedigree range (1.6 – 

25%) estimated from a dilution factor associated with the number of crosses after the original cross 
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with the primary synthetic (ST4). In 13 members with synthetic backgrounds negligible levels of 

donor were identified (0.5-5%), suggesting donor loss during subsequent crosses and selections for 

agronomic traits/ideotypes. This loss was not necessarily correlated with the theoretical D pedigree 

contribution. For example, lines HiBAP_49 and HiBAP_51 are sister lines derived from the same 

cross (SOKOLL//PUB94.15.1.12/WBLL1) with a common selection history and a theoretical 

pedigree contribution of 6.3% from Ae. Tauschii, but they contain 12.7% and 26.0%, respectively of 

Ae. Tauschii regions in their D subgenome (SF6 and ST4). Elite members showed almost no regions 

of increased diversity to the extent seen in those with synthetic history when compared to the CS 

reference (Figure 3A). All D subgenome chromosomes are seen to contain regions of greatly 

increased SNP density in at least one member of the synthetic history subpopulation. Across all panel 

members with synthetic pedigree history 5301 non-redundant 500Kbp bins were identified with a 5-

fold increase in variation when compared to the average number of SNPs for each bin across the elite 

subpopulation. This equates to ~2.65Gbp (67.1%) of D genome sequence within the synthetic 

subpopulation that are likely to originate from donor Ae. Tauschii. These regions encompass 22,583 

high confidence genes in the CS reference annotation. 

 

Wild relative introgressions can be tracked using de novo SNP calls 

To identify introgressions from Rye (Secale cereale), SNPs from each line were separated into 

500kbp bins for all subgenomes and the number of variants that match Rye in both position and allele 

were counted. SNPs between Rye and Chinese spring (CS) were generated by mapping and variant 

calling Lo7 Rye Illumina sequencing reads (ERS446995) against the CS reference genome. This 

revealed the 1B/1Rs introgressions in 6 panel members spanning the first 239Mb in each line (SF7). 

This region contains 1507 high confidence genes in the CS reference genome annotation (v1.1). An 

introgression on the long arm of chromosome 7D was also identified in 3 panel members that spans a 

300Mb region from 344Mb to the end of the chromosome (SF8); this interval contains 2563 genes in 

the CS reference annotation. The pedigree history of these lines suggests this is an introgression from 

Thinopyrum ponticum. Panel members containing S. Secale/T. ponticum introgressions can be seen in 

ST5. 

 

Phenotypic variation for N content, and spectral indices 

The results from analysis of variance (ANOVA) for N content, vegetation indices, pigment 

composition, senescence, water indices and traits estimated from wheat physiology predictor 

indicated significant variation among genotypes, environments, and genotype × environment 

interactions with few exceptions (Table 2). Broad sense heritability (H2) was high for NLamA7, 

medium for SPADA7, low to medium for vegetation indices, pigment composition and 

senescence/degradation indices, high to medium for water indices and low for LMA and RDM (Table 
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2). Broad phenotypic variation among genotypes in spectral reflectance between the visible spectrum 

and the distribution of values for carotenoid, chla/b content was observed (Figure 4). 

  

Association between spectral indices and agronomic traits 

Multiple regression analysis (stepwise) was conducted to determine if the combination of traits 

presented in Table 2 (excluding phenology) were able to explain a percentage of variation of 

BM_PM, HI, TGW, GM2, RUE_E40InB, RUE) InBA7, RUE_GF and RUET (Table 3). In total, 

13.2% of the variation in final biomass (BM_PM) was explained by the combination of water index 2 

(WI_2) and plant senescence reflectance index (PRSI). For HI, 18% of the variation was explained by 

the combination of LMA and chla (RARSa) and 27.7% of the variation was explained when the 

model also considered chlbb (RARSb) and total chlorophyll content (R750_700.) In the case of TGW 

and GM2, the combination of enhanced vegetation index (EVI) and Plant Senescence Reflectance 

Index (PSRI) explained 13.3% and 16.5% of the variation, respectively, with opposite effects. RARSb 

explained 7.7% of the total variation observed in RUE_E40InB. However, the combination of LMA, 

Green Normalized Difference Vegetation Index (GNDVI), R750_700 and PSRI explained 25.6% of 

the variation in RUE_E40InB. For RUE_InBA7and RUE_GF, only 8.3% and 4% of the variation was 

explained by the combination of chlorophyll content in the flag leaf (SPAD_A7) and water index 4 

(WI_4) or WI_2, respectively. Carotenoid content (RARSc) was the first component selected in the 

model and explained 3% of the variation in RUET. When structural independent pigment index 

(SIPI), WI_2 and NLamA7 were added to the model, 13.5% of RUET was explained. 

  
Genome-wide association 

Marker trait association analyses carried out using best linear unbiased estimators (BLUEs) from two 

repetitions for each measured trait over two years. From across 23 traits 47 MTAs were identified 

with a -Log P value of 5 (P <0.00001) of which 10 passed FDR threshold determined in GAPIT (-Log 

P 7.12) for traits including total chlorophyll content (Figure 5), chlorophyll b content and carotenoid 

content (Figure 1). A full list of MTAs and plots can be found in Table 4 and SF9 respectively. 

Subgenome B had the most MTAs with 24 followed by the A and D genome with 11 found on each. 

The highest number of MTAs on a single chromosome were seen on 2B and 3B. The size of 

associated intervals varied greatly, ranging from less than 1Mbp to greater than 100Mbp with 

associations towards the centromere often being larger, consistent with the increase in centromeric 

linkage group size in wheat.  

 

Putative Candidate Genes and Haplotype Phased Non-Synonymous Variation 

Candidate gene searches were carried out using Knetminer to identify genes within MTA intervals 

with phenotype/ontology terms associated with each trait alongside literature searches. Candidates 
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were identified with ontology terms relating chlorophyll content and chlorophyll biosynthesis within 

multiple MTA intervals including Genome Uncoupled 5 (GUN5) in SPAD-2B, Early Chloroplast 

Biogenesis 2 (ECB1)/Vanilla Cream 1 (VAC1) in the shared interval RARSa-2b, RARSb-2b, 

R750/700-2B and R750/500-2B, SWEET4/5 bi-directional sugar transporter and Ethylene-responsive 

element binding factor 1 (ERF1) within 1Mbp of the MTA in RARSa-2A and PSSRa-2A. We also 

identified multiple candidates chlorophyll breakdown and senescence: protein phosphatase 2A 

(PP2A) and HY5 a bZIP transcription factor that binds to the promoters of light-inducible genes in 

NPQI-7A, TCP20 and HK3 cytokinin receptor in PSRA-3B. Along with candidates that link to 

carotenoid biosynthesis and distribution: SYTF and TRAESCS3B02G039600  in RARSc-3B, 

TRAESCS7D02G503400 in RARSc-7D and also Small ubiquitin-related modifier 1 (SUMO1) in 

SIPI-3B and KNAT3/KNOTTED1-like in SIPI-7D, both of which have also been implicated in 

chlorophyll levels in the leaf.  

The SWEET bidirectional sugar transporter was identified in the interval for chla content (RARSa) on 

chromosome 2A, whose closest orthologues are atSWEET4/5. These genes have been observed to 

have an effect on chlorophyll content in both Arabidopsis thaliana30  and in rice31. A search was 

carried out for non-synonymous SNP calls within SNP calls that were removed prior to GWA, 

including many resulting from “off target” sequencing that did not have coverage in >90% panel 

members. This search identified a non-synonymous SNP at the start of the SWEET gene causing a 

substitution of Serine to Threonine. This variation was identified in 15 of 26 members with the minor 

allele of the MTA, suggesting this non-synonymous SNP is in phase with the MTA.  No candidate 

genes that had any link to measured traits were identified for 4 MTAs. A full list of candidate genes 

can be seen in ST6. 

 
 
Discussion 

“De novo” SNP discovery 

The size of the wheat genome means it is not yet economically viable to perform whole genome 

sequencing for large populations. Much of our understanding of the genetic diversity of wheat has 

come from array based genotyping32,33. An alternative is enrichment capture, that has uncovered 

“hidden variation” across world diversity panels34 and landraces3. Here we utilise capture sequencing 

and de novo SNP discovery to assess the contribution of strategically integrated exotic germplasm to 

overall CIMMYT germplasm diversity, to identify and track wild relative introgressions and 

demonstrate how this novel diversity can be exploited to identify candidate genes for agriculturally 

important traits.  
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Recent synthetic wheat contribution to D genome variation and identification of wild relative 

introgressions 

HiBAP panel members containing exotic pedigree history were found to have a 62% increase in 

genetic variation when compared to elite lines. Since this variation is present in wheat lines that have 

been demonstrated to have no yield penalty, it could be deployed rapidly into breeding programmes to 

alleviate the genetic bottleneck on the D genome which may be hindering genetic gains in wheat35. A 

large contribution to this variation is made by the synthetic derivatives in which the proportion of Ae. 

tauschii was observed to be as high as 43% of the D genome with an average of 16% across the 

synthetic derived subpopulation (ST4). Contribution of synthetic material to advanced lines has been 

theoretically predicted utilising genetic inference from pedigree history and allele frequency variation 

of markers at low resolution, determining a likely average of 17.5%  contribution8. Here we are able 

to confirm these predictions and build on this by identifying regions to high resolution and through 

SNP identity utilising the Ae. tauschii reference genome. Across this whole subpopulation a total of 

2.65Gb (67.2%) of the D genome was identified to be of synthetic donor origin, demonstrating the 

value of the HiBAP panel as a resource that could be utilised to study the effects of the presence of 

some of the ~22,000 genes found in these regions that are already introgressed into agronomically 

favourable backgrounds. We also identify that the proportion of Ae. tauschii donors in the synthetic 

subpopulation can vary substantially, from as little as 0.5% to as high as 43% of the D subgenome, a 

larger range than identified in studies using synthetic octoploids as primary Ae. tauschii donors (0.075 

% to 13.5 %)36. Through comparison of sister lines within the panel we also show that the content of 

the donor genome is not necessarily linked to the number of subsequent crosses post introduction of 

primary synthetic material (SF6, ST4).   

By utilising genome wide variation in conjunction with pedigree history and genetic resources for 

wheat wild relatives we are able to track introgressions from other common donors including Rye and 

T. ponticum. Using identification by genetic identity we tracked the once common CIMMYT 

1BL/1RS introgression to 6 HiBAP panel members (ST5). We also confirm that this original 

introgression remains intact in each instance, demonstrating the inability of homologous 

recombination when the effect of ph mutants is negated, restricting breakage of alien introgressions37. 

We also identified a region of increased SNP density on chromosome 7DL in 3 panel members, 

pedigree history examination determined this to be of T. ponticum origin. This introgression, inferring 

resistance to both stem rust (Sr25) and leaf rust (Lr19)17 can be tracked through CIMMYT breeding 

material. The agronomic advantages these introgressions infer highlight the importance of tracking 

their presence in breeding programmes and for making selections for future crosses.  
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Using high density genotyping and high-throughput phenotyping to uncover novel markers and 

putative candidate genes associated with photosynthetic efficiency 

Recent developments in high-throughput phenotyping have already made significant contributions to 

physiological breeding18,38,39 and breeding programmes40. Assessment of photosynthetic related traits 

using high-throughput surrogates based on spectral profiles has allowed the identification of genetic 

variation in wheat for photosynthetic capacity and efficiency24 and respiration20 at leaf level along 

with pigmentation composition and water content at canopy level allowing the identification of QTLs 

associated with spectral indices41,42. In the present study, we aimed to identify genetic variation at leaf 

level from the spectral profiles reflected by green tissue. Our GWAS analysis identified 47 novel 

MTAs (Table 4) that, after a validation process, could be deployed into CIMMYT marker-assisted 

breeding programmes to track favourable alleles for traits that have important agronomic 

implications. One such trait is the chlorophyll content of leaves that has significant effect on 

photosynthetic efficiency, water use efficiency and yield in multiple crop species in field 

environments43,44. MTAs were identified for chla and chlb separately and also for total chlorophyll 

content on chromosomes 2BS and 3BL with the main association on 2BS at ~150Mbp being present 

in all measurements which could be a result of the mostly overlapping absorbance spectra of the two 

pigments45. A QTL has been identified for chlorophyll content on 2BS under heat stress, spanning 

nearly the entire short arm of the chromosome46, using ultra-high density genotyping we are able to 

reduce this to an interval of <5Mbp. Within this interval we identify Early Chloroplast Biogenesis 2 

(ECB1)/Vanilla Cream 1 (VAC1), a pentatricopeptide repeat protein with arabidopsis mutants in the 

gene reducing chlorophyll content by 10 fold47,48. SPAD measurements in the flag leaf (a surrogate of 

total chl content), uncovered MTAs on chromosomes 2B, 2D, 5A and 6D. Candidate gene search 

within the 2B interval showed the Genome Uncoupled 5 gene (GUN5). GUN5 encodes a magnesium 

chelatase 49, mutations in the gene in arabidopsis result in the disruption of chlorophyll synthesis. This 

can be explained because GUN 5 sits in the retrograde signalling pathway linking chlorophyll 

biosynthesis to sugar signalling50. 

 This makes GUN5 a possible target for future study in relation to chlorophyll variation in the HiBAP 

panel. We also identified a pigment specific MTA for chla on 2A and 7B and an MTA specific to chlb 

on chromosome 3BL. Of these, we believe that 3BL association has been identified previously in a 

QTL spanning over a fifth of 3B51, here we refine that to a region of less than 2Mbp. Within 1Mbp of 

MTA for chla in 2A two candidate genes were identified: an ERF1 gene associated with biotic/abiotic 

stress tolerance, which when overexpressed in wheat has demonstrated a 50% increase in chla content 

under normal growing conditions52. Also a SWEET bi-directional sugar transporter related to 

Arabidopsis SWEET4/5, with mutants in SWEET4/5affecting leaf chlorophyll content in 

Arabidopsis30 and rice31, although the mechanism for this effect is still unclear. SWEET transporters 

catalyse the passive efflux of sucrose down the gradient from the mesophyll to the apoplast where it is 
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taken up by sucrose transporters (SUTs) into the phloem53. Within this gene, a non-synonymous 

mutation was identified in the prefiltered SNPs set that is in phase with the top SNP for this MTA, the 

SNP was called in 15 of the 25 lines containing the minor allele for this MTA. When taken together 

this evidence makes the SWEET gene a strong candidate for further study. The fact that both SWEET 

and GUN5 genes were associated with chlorophyll traits suggests that the two may be working 

together to control chlorophyll content in wheat leaves. Through the index NPQI we can also make 

inference about the level of chlorophyll degradation happening in the leaves54 which can be indicative 

of plant senescence. We detected an association for NPQI in chromosome 7AL that contains HY5, an 

antagonist of PIF that controls the accumulation of chlorophyll in the leaves in response to 

phytochrome photoreceptor signalling55,  which also causes delayed senescence in rice transgenic 

plants56. We also observed an association on 3BL for plant senescence itself through calculation of 

PSRI, this interval contains AHK2 a cytokinin receptor which controls leaf longevity in Arabidopsis 

and knockouts demonstrate a delayed senescence phenotype. Another gene in this interval found 

>180Kbp from this MTA is transcription factor TCP20 which causes early senescence phenotypes in 

Arabidopsis but only in a double mutant including TCP9 due to predicted redundancy in signalling 

roles57.    

Increasing RUE is a major target for achieving yield potential21. However, under field conditions like 

the ones experienced in Cd. Obregon, leaves are exposed to high irradiance absorbing more light they 

can use. This leads to photooxidative damage and reduces photosynthetic efficiency in a process 

known as photoinhibition. To avoid oxidative stress and photoinhibition, photoprotective mechanisms 

can be activated in response to high irradiance58. There is evidence that photoinhibition has a large 

impact on biomass production in crops exposed to high light levels59 and photoprotective mechanisms 

can increase yield and canopy RUE in rice60. Previous studies identified photoprotective genes 

associated with RUE22 indicating that protection of photosynthetic machinery has an impact in wheat. 

In this study, the photoprotective mechanisms that were detected are related with non-photochemical 

processes happening before photolysis in PSII, such as the xanthophyll cycle, where xanthophyll 

carotenoid plays an important role59. In our analysis, carotenoid content in the flag leaf (RARSc) was 

the first trait explaining 3% of RUET variation and together with carotenoids:chla ratio (SIPI) 6% of 

variation was explained. Carotenoids play an important role protecting the photosynthetic machinery 

from excessive light61,62. Also, the ratio of carotenoids to chlorophyll is associated with senescence 

triggered by aging or stress63. An MTA for carotenoid content was identified on chromosome 3B, 

along with three others on homeologous regions of 7A, B and D. Two genes in the 3B interval were 

denoted as being involved in carotenoid biosynthesis by Knetminer, SYTF and 

TRAESCS3B02G039600.  
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Reduced total chlorophyll content in the flag leaf is associated with enhanced RUE in elite 

cultivars 

Total chlorophyll content was negatively correlated with RUE (Table 3) and it is mainly determined 

by chla concentration since the ratio between chla:chlb in wheat non-stressed plants is ~3:128. In the 

present study, chla (RARSa) explained a significant part of HI variation while chlb (RARSb) 

explained variation for RUE_E40InB. In wheat canopies, the uppermost layer including the flag leaf 

measured in this study receives the highest irradiance. However, photosynthetic machinery in wheat is 

saturated at 1,200 µmol m−2 s−164. Considering the high irradiance in Obregon when the 

measurements were taken (>1,800 µmol m−2 s−1), flag leaves absorb more light than they can use and 

need to engage photoprotective mechanisms. Lower chlorophyll content per unit area in the upper 

leaves facilitates light penetration in the canopy decreasing canopy extinction coefficient and 

therefore mitigating efficiency losses associated with light saturation65,66. This is in agreement with 

the negative effect observed here between total chl content and RUE, suggesting that less chlorophyll 

content in upper leaves has a positive effect on biomass production as observed for rice or 

soybean43,44. 

 

Implications in physiological breeding 

Here we uncover the contribution of exotic material to variation in CIMMYT wheat lines, confirming 

the value of strategic incorporation of primary synthetics to ease genetic bottlenecks in the D genome. 

The HiBAP panel now represents an unprecedented resource of characterised genetic diversity, 

containing ~67% of the Ae. tauschii genome across the panel already in agronomically viable 

backgrounds. Identification of Ae. tauschii introgressions at such resolution allows breeders to select 

lines for strategic crossing to increase overall genetic variation using agronomically favourable 

material. The HiBAP panel has also been extensively phenotyped including yield traits, biomass 

accumulation, RUE and respiratory rates, in both yield potential and under abiotic stress. The results 

presented here highlight the possibilities created when phenotyping and genotyping efforts are 

coordinated in consortiums such as the International Wheat Yield Partnership (www.iwyp.org) to 

boost wheat genetic gains.      

 

The use of hyperspectral reflectance (ASD Field Spec) measured on leaves in the field is independent 

of sunlight (due to the light source of the device) and one leaf can be measured in less than 30 

seconds19. From the reflectance spectrum produced, multiple indices were derived which when 

combined with high density genotyping, facilitated the identification of candidate genes / traits 

integral to photosynthetic improvement. This protocol facilitates measurement of hundreds of 

genotypes per day to explore genetic variation of photosynthesis24 making association analysis 
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feasible. The new MTAs for traits that contributed to RUE, HI and other traits of interest can be 

further used to identify allelic variation in other mapping populations or introgressed into elite lines 

through conventional and strategic crossing. 

The current study was conducted on the flag leaf and scaling leaf-level data to the canopy can be 

complicated as leaf age and leaf angle can play a crucial role when integrating leaf level 

photosynthetic traits at the canopy scale67. However, leaf level measurements have been previously 

associated with higher yields68–70 and in the present study, traits measured at leaf level explained a 

significant proportion of the variation of BM_PM, HI, TGW, GM2  and RUE measured at different 

growth stages. Nevertheless, further experiments expanding measurements at the flag leaf to other 

canopy levels and at more time points across the whole growth cycle may be worthwhile71. 

The identification of new sources of variation that contribute to increased photosynthetic potential in 

wheat together with the identification of markers associated with them could help to identify better 

donors that can provide superior combinations of alleles of useful genes. 

 

Materials and Methods: 
Plant material  
The High Biomass Association Mapping Panel (HiBAP) consists of 149 bread wheat spring types 

(ST6) that are agronomically acceptable including elite high yielding lines, pre-breeding lines that 

have been selected for high yield and/or biomass, including lines that have “exotic” material such as 

landraces or synthetic primary hexaploids in their recent pedigree history along with appropriate local 

check lines. The panel contains members that show broad variation of both RUE and biomass at 

multiple growth stages as described in22, and are controlled for the confounding effects of the 

extremes of height and phenology.  

 
DNA extraction and capture enrichment: 
Flag leaf tissue was obtained from plants used in field trials after anthesis. Material from 10 

individuals was taken per line and pooled for DNA extraction using a standard CTAB based method. 

DNA purity was assessed using a NanoDrop 2000 (Thermofisher Scientific) and quantified 

fluorometrically using the Quant-iTTM assay kit (Life Technologies). Dual indexed DNA libraries 

were constructed with a modal insert size of 450bp using TruSeq DNA library preparation kit 

(Illumina).  Capture enrichment was carried out using the MyBaits targeted capture kit (Arbor 

Bioscience, Michigan USA) incorporating 100,000 custom 120-mer RNA bait sequences with 8x pre-

capture multiplexing following standard protocols. In total, 90,000 probes were designed in an island 

strategy distributed to facilitate enrichment and subsequent variant calling from regions spanning the 

entire genome. Probe sequences were designed based on a subgenome-collapsed reference, allowing 
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probes to target homeologous regions, increasing the genomic design space with the fewest probes 

possible. 10,000 probes were designed to target selected gene sequences using an end-to-end tiling 

strategy covering the gene body and the promoter region (~2000bp). The 2 Kb distance was based on 

the median distance between the TSS and the first transposable element, 1.52 Kb to allow a high 

likelihood of full promoter sequence capture72. Enriched libraries were then sequenced on a 

NovaSeq6000 (Illumina) S4 flowcell producing 2 x 150bp paired end sequences. 

 

Genotyping and imputation 

Sequencing quality was assessed with FastQC and low-quality reads removed/trimmed. The paired-

end sequencing data for each accession was mapped to the Refseq-v1.0 reference sequence77 using 

BWA MEM version 0.7.1373. Mapping results were filtered using SAMtools v1.474; any non-uniquely 

mapping reads, unmapped reads, and/or poor-quality reads were removed. PCR duplicates were 

identified and removed using Picard Tools MarkDuplicates. Variant calling was carried out using 

bcftools and were filtered using GATK75, using the standard GATK recommended parameters of 

minimum quality of 30, a minimum depth of 5. The likely functional effect of each variant was 

annotated using SnpEff 4.376 using a custom database generated using Refseq v1.1 annotation77. For 

each SNP loci found in the panel as a whole, if no alternative allele was found for an individual but 

mapping depth of ≥5 was observed, the individual was designated as homozygous reference for that 

loci, else it was designated as missing data. SNP loci that had <10% missing data and a minor allele 

frequency of ≥5% were then subjected to imputation using Beagle 5.0 78 

 

Population structure analysis: 

Genetic inference into the population structure of the panel was made using STRUCTURE 2.3.479 

using model based Bayesian approaches along with Hierarchical clustering to deduce similarity 

between lines. An admixture model was selected in STRUCTURE and run using 30,000 burn-in 

iterations and 50,000 repetitions of the Markov Chain Monte Carlo (MCMC) model for the assumed 

sub-populations of k (2-10) for 10 independent, randomly seeded iterations of the analysis per 

assumed sub-population. To identify the statistically most likely number of definable subpopulations, 

the delta k method of80 was applied to all 10 replicates, where the Dk statistic is deduced from the rate 

of change in the probability of likelihood [LnP(D)] value between each k value. The Evanno method 

was implemented through STRUCTURE HARVESTER Python script81. CLUMPP 1.1.2 was used to 

produce a consensus Q matrix using 10 independent STRUCTURE replicates for each assumed sub-

population number82. To assess the overall level of genetic variation in the panel PCA analysis was 

carried out using the Scikit-Learn machine learning package in Python. PCA was applied to 

genotyping data from the 35K wheat breeders array and capture enrichment genotyping data for all 

subgenomes combined and for the D genome separately to assess the level of variation that could be 
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observed when using pre-known SNP loci and using de novo methods. To determine genomic regions 

most greatly affected by the incorporation of exotic material, fixation index (Fst) was calculated in 

windows of 500Kbp in pairwise comparisons of the elite subpopulation with the exotic 

subpopulations that included landrace, synthetic and landrace+synthetic and the introgression lines 

subpopulation as a whole. As a control measure, the elite population was randomly split and Fst was 

calculated between the pseudo subpopulations. 

Identification of Ae. tauschii synthetic D genome donor regions and S. cereale introgressions  

To identify genomic regions originating from Ae. tauschii donors used in the creation of primary 

synthetics present in the pedigree history of 40 HiBAP panel members, SNPs called for each HiBAP 

member were compared to SNPs called between the CS wheat reference and the Ae. tauschii 

reference genome83 to determine identity. Paired end 150bp reads were simulated from the Ae. 

tauschii reference genome to a depth of 20x using WGSim. Reads were mapped and variant called 

using the same methods outlined for the capture sequencing of the HiBAP panel members. To remove 

noise created by varietal SNPs between CIMMYT germplasm and the CS reference, Weebill1 SNPs 

were generated using trimmed sequencing reads used to create the contig assembly of Weeblil1 

(project PRJEB35709 accession SAMEA6374024) and SNPs from the panel matching in location and 

allele we removed from further analysis. SNPs across each panel member were binned into 500Kbp 

bins, within each bin the number of SNPs matching Ae. Tauschii variation was counted.  To estimate 

the contribution of Ae. tauschii within the entirety of the HiBAP panel the maximum number of SNPs 

within every 500kbp window was assessed for both the elite background and synthetic background 

subpopulations. Where the value for a bin in any synthetic line was 5-fold higher than the average 

value for each bin from the whole elite population this was classed as a modern Ae. tauschii region. 

Additionally, the theoretical contribution to pedigree from Ae. tauschii was estimated using the 

available pedigree and selection history information from the International Wheat Information System 

(IWIS), curated by CIMMYT. 

To determine the presence of Rye introgressions in the panel SNPs between Rye and CS were 

generated by mapping and variant calling Lo7 Rye Illumina sequencing reads (ERS446995) against 

CS as previously described. Genetic identification of regions of Rye was carried out using the same 

methods for Ae. Tauschii outlined above. 

 

Field experimental conditions 
The 149 lines were grown in two consecutive growing seasons (2015/16 and 2016/17, which will be 

referred to as Y16 and Y17 respectively). Field experiments were carried out at the IWYP-Hub 

(International Wheat Yield Partnership Phenotyping Platform) at CENEB in the Yaqui Valley, near 

Ciudad Obregón, Sonora, México (27°24’ N, 109°56’ W, 38 masl), under fully irrigated conditions. 
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The soil type was a coarse sandy clay, mixed montmorillonitic typic caliciorthid, low in organic 

matter, and slightly alkaline (pH 7.7) in nature84. Experimental design was a α-lattice with four 

replications in raised beds (2 beds per plot each 0.8 m wide) with four (Y16) and two (Y17) rows per 

bed (0.1 m and 0.24 m between rows respectively) and 4 m long. The emergence dates were 7 Dec. 

2015 and 30 Nov. 2016 for each year. The seeding rate was 102 Kg ha−1. Appropriate fertilization, 

weed disease and pest control were implemented to avoid yield limitations. Plots were fertilized with 

50 kg N ha−1 (urea) and 50 kg P ha−1 at soil preparation, 50 kg N ha−1 with the first irrigation and 

another 150 kg N ha−1 with the second irrigation. Growing conditions and main agronomic 

characteristics of the trial grown for two years are detailed in22. 
  

Field traits measurements 
Agronomical and physiological characterization was conducted as detailed in22. In summary, two 

replicates were measured for the different traits with the exception of phenology, yield, thousand 

grain weight (TGW) and grain number per m2 (GNO) where four replicates were scored.  

Anthesis (DTA) and physiological maturity (DTM) dates were recorded using the scale for growth 

stages (GS) developed by85, following the average phenology of the plot when 50% of the shoots 

reached GS65 and GS87, respectively. The phenological stages represent the number of days from 

emergence to the onset of these stages.  
At physiological maturity, a sub-sample consisting of 100 (Y16) or 50 (Y17) fertile shoots was 

obtained from the harvested area to estimate yield components and harvest index (HI). Grain yield 

was determined in 3.2 - 4 m2 using standard protocols86 discarding 50cm in both extremes of the plots 

to avoid edge effects arising from extra solar radiation reaching border plants. A subsample of grains 

was weighed before and after drying (oven dried at 70°C for 48 h) and the ratio of dry to fresh weight 

was used to determine dry grain yield and for TGW.  
In order to calculate radiation use efficiency (RUE) at different growth stages, different biomass 

samplings were collected forty (Y16) or forty-two (Y17) days after emergence (BME40), at initiation 

of booting (BMInB), approximately seven days after anthesis (BMA7) and after physiological 

maturity (BM_PM). BME40, BMInB and BMA7 consisted of all aboveground tissue from two central 

beds of a 50-cm length, starting at least 50 cm from the end of the plot (or the previous harvest) to 

avoid border effects. Fresh biomass was oven-dried at 70°C for 48 h for dry weight measurement. 

BM_PM was calculated from yield/HI. RUE was then estimated as the slope of linear regression of 

cumulative aboveground biomass on cumulative intercepted PAR87 considering the different biomass 

sampling such as RUE_E40InB: from 40 days after emergence to initiation of booting, RUE_InBA7: 

from initiation of booting to seven days after anthesis, RUE_GF: RUE from seven days after anthesis 

until physiological maturity and RUET: RUE from 40 days after emergence to physiological maturity. 

Light intercepted by the canopy was not used for the RUE calculations due to low heritability 
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estimates and the lack of genotypic effect22. The genotypes evaluated in this study intercept an 

average of 80% at E40, 95% at InB and 94% at A+722.  We assumed that 100% of the radiation was 

intercepted between E40 and A+7 and 50% was intercepted for one quarter of the grain filling 

period88. 

 

Chlorophyll content, N composition and reflectance measurements 
Chlorophyll content in the flag leaf was measured with a SPAD-502 Minolta (Spectrum Technologies 

Inc., Plainfield, IL, USA) in five flag leaves per plot seven days after anthesis (SPADA7).  
Nitrogen concentration of the leaf lamina (NlamA7) was measured using the Kjeldahl digestion 

method putting together all green leaf laminas from 12 random stems harvested seven days after 

anthesis after drying (oven dried at 70°C for 48 h), milling and digestion with concentrated sulphuric 

acid. 
The hyperspectral reflectance of flag leaves was measured between 11.00 to 14.00 hours 

approximately seven days after anthesis following the protocol described by19. A FieldSpec®3 

(Analytical Spectral Devices, Boulder, CO, USA) full range spectroradiometer (350–2500 nm) was 

coupled via a fibre optic cable to a leaf. A mask was used to reduce the leaf-clip aperture and a black 

circular gasket was pasted to the mask to avoid leaf damage and to eliminate potential entry of 

external light through the edges. One reflectance measurement was made per leaf lamina, and two 

measurements per plot in two plots per entry. Different spectral reflectance indices were calculated as 

described by89–96. The formulas for index calculations are presented in Table 2. Leaf mass area 

(LMA) and respiration on a dry matter basis (RDM) were estimated using a web-application to 

predict wheat physiological traits from hyperspectral reflectance spectra known as the Wheat 

Physiology Predictor [https://www.metabolome-express.org/pheno/] based on19 and20 prediction 

models.  

 

 
Genome-wide association analysis: 

Association analysis was carried out using GAPIT97 on 149 HiBAP lines. A model based on the 

unified mixed linear model approach, the SUPER algorithm, was applied to the genotype/phenotype 

data. The model was adjusted using membership coefficient matrices produced by STRUCTURE 

assuming between 2-8 subpopulations (Q2-8) or the first 10 eigenvectors from principal component 

analysis (PC1-10) along with a kinship matrix (K) as covariates to limit the confounding effects of 

population structure effects and therefore reducing false positives. The EMMA method proposed by98 

to create a positive semidefinite kinship matrix (K) was followed, implemented in GAPIT. Interval 

size was determined by taking the flanking SNPs from each association that were greater than the 

lower t -Log P value of 5 threshold. To identify possible causative candidates, genes within the 
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associated intervals were submitted to Knetminer99. The resultant information networks were assessed 

and if adequate evidence was available to suggest the gene or its orthologous genes may be involved 

in a mechanism linking to the trait to which it was associated, the gene was selected as a possible 

candidate. Interval genes were also mined for non-synonymous variants in both the high confidence 

SNP calls along with those falling below depth filters.  

 

Statistical analysis of phenotypic data 

Data for field measured traits were analysed by using a mixed model for computing the least square 

means (LSMEANS) for each genotype across both years using the program Multi Environment Trial 

Analysis with R for Windows  (METAR,100). DTA was used as covariate (fixed effect) when its effect 

was significant with the exception of phenology and RUE. Broad sense heritability (H2) was 

estimated for each trait across both years as: 

 "# = 	 &'(

&'()	
*'+(
+ )	*

(
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where r = number of repetitions, e= number of environments (years), σ2 =error variance, σ2g 

=genotypic variance and σ2ge = G×Y variance.  

Multiple linear regression analysis (stepwise) was used to analyse the relationship between the studied 

variables using the SPSS statistical package (SPSS Inc., Chicago, IL, USA) 
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Table 1. The average number of de novo SNP calls per chromosome for the elite and exotic 
subpopulations 

  Elite Exotic background Percentage 
Difference* 

chr1A 45734 47865 4.66% 
chr1B 49306 55034 11.62% 
chr1D 9372 9423 0.54% 
chr2A 46243 53899 16.56% 
chr2B 60874 62237 2.24% 
chr2D 9284 12458 34.19% 
chr3A 33536 35550 6.01% 
chr3B 97429 97734 0.31% 
chr3D 7892 23853 202.24% 
chr4A 35341 34540 -2.27% 
chr4B 12840 30796 139.84% 
chr4D 3597 4099 13.96% 
chr5A 36687 38698 5.48% 
chr5B 56866 57567 1.23% 
chr5D 5850 8960 53.16% 
chr6A 40510 41888 3.40% 
chr6B 63171 65299 3.37% 
chr6D 5684 8218 44.58% 
chr7A 53058 54033 1.84% 
chr7B 44757 55862 24.81% 
chr7D 7872 13268 68.55% 

A Genome 291110 306473 5.28% 
B Genome 385242 424530 10.20% 
D Genome 49550 80280 62.02% 

*where difference = (exotic-elite)/elite  
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Table 2. Descriptive statistics, broad sense heritability (H2) and ANOVA for phenology, nitrogen content 
and hyperspectral indices of HiBAP grown for two years (Y15-16 and Y16-17) in northwest Mexico under 
full irrigated conditions.  
 

Trait†           ANOVA§ 

  Mean Min. Max. LSD H2 G Y G×Y 
    
Phenology         
 DTA (days) 76.4 68.4 85.2 3.2 0.87 *** *** *** 

 DTM (days) 114.9 104.7 123.8 3.4 0.85 *** *** *** 
Nitrogen          
 NLamA7 (%) 3.6 3.3 4 0.2 0.62 *** ** *** 

 SPADA7 49.7 42.9 56 4.2 0.52 *** ns *** 
Vegetation  Indices         

 GNDVI(R780-R550)/(R780+R550) 0.61 0.56 0.64 0.031 0.40 *** ** *** 

 RNDVI(R780-R670)/(R780+R670) 0.76 0.72 0.79 0.031 0.19 0.06 ** *** 

 NDII(R850-R1650)/(R850+R1650) 0.163 0.136 0.185 0.018 0.59 *** ** * 

 NDMI(R1649-R1722)/(R1649+R1722) 0.021 0.017 0.023 0.002 0.28 *** ** ** 

 EVI2.5*((R900-R680)/(R900+6*R680-7.5*R475+1)) 0.80 0.75 0.86 0.04 0.47 *** * ns 
Pigment composition         
 Chl a (RARSa)R675/R700 0.59 0.53 0.65 0.05 0.44 *** ** *** 
 Chl a (PSSRa)R800/R675 7.46 6.35 8.75 1.06 0.14 ns ** *** 

 Chl b (RARSb)R675/(R650*R700) 8.17 7.12 9.55 1.1 0.20 0.06 ** *** 
 Carotenoids (RARSc)R760/R500 6.61 5.64 7.83 0.73 0.46 *** ** *** 

 Carotenoids:Chla ratio (SIPI)(R800-R435)/(R415+R435) 0.73 0.71 0.77 0.025 0.38 *** ** *** 
 Total ChlR750/550 3.98 3.48 4.45 0.39 0.38 *** ** *** 
 Total ChlR750/700 4.11 3.73 4.52 0.4 0.24 ** ** *** 
Senescence/degradation indices         
 NPQI(R415-R435)/(R415+R435) -0.048 -0.069 -0.028 0.021 0.30 ** ** ns 
 PSRI(R680-R570)/(R531-R570) -0.007 -0.018 0.004 0.009 0.32 ** * *** 
Water Indices         
 Water Index (WI2)R1100/1200 1.073 1.059 1.084 0.007 0.71 *** 0.07 ns 
 Water Index (WI3)R1300/1450 2.706 2.412 2.95 0.211 0.46 *** ** *** 

 Water Index (WI4)R1300/1200 0.995 0.992 0.998 0.002 0.4 *** ** *** 
Physiology predictor         
 Leaf Mass Area (LMA) 57.3 49.7 66.8 6.1 0.37 *** ** * 

 Respiration rate per Dry Matter (R_DM) 60.3 55.1 65.8 6.2 0.00 ns * ns 
                    
†DTA: days to anthesis,  DTM: days to maturity, NLamA7: nitrogen concentration measured in leaf laminas seven days after anthesis, SPAD: 
chlorophyll content per unit flag leaf area, Chl: chlorophyll, NDVI: Normalized Difference Vegetation Index, GNDVI: Green Normalized 
difference vegetation index based on the difference between near-infrared and green light reflectance; RDNVI: Red Normalized difference 
vegetation index based on the difference between near-infrared and red reflectance; NDII: Normalized difference infrared index; NDMI: 
Normalized difference matter index; EVI: Enhanced vegetation index; RARSa and PSSRa: chlorophyll a; RARSb: chlorophyll b; RARSc: 
carotenoids; SIPI: Structural independent pigment index; Total Chl: total chlorophyll content; NPQI: Normalized Pheophytinization Index; PSRI: 
Plant senescence reflectance index; WI: water index. 
§*P < 0.05, **P < 0.01, ***P < 0.001 and not significant (ns) 
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Table 3. Stepwise analysis with biomass at physiological maturity (BM_PM), harvest index (HI), 
thousand grain weight (TGW), grain number (GM2), Radiation Use Efficiency measured between 40 
days after emergence and initiation of booting (RUE_E40InB), RUE between initiation of booting and 
seven days after anthesis (RUE_InBA7), RUE between seven days after anthesis and physiological 
maturity (RUE_GF) and RUE between 40 days after emergence and physiological maturity (RUET) 
as dependent variables and nitrogen content and hyperspectral indices as independent variables. 
 

Trait Variable chosen r R2 Significance 
BM_PM WI_2 0.343a 0.112 <0.001 

 WI_2, PSRI 0.379b 0.132 <0.001 
     

HI LMA(—) 0.309a 0.089 <0.001 
 LMA(—), RARSa 0.437b 0.180 <0.001 
 LMA(—), RARSa, RARSb 0.502c 0.236 <0.001 
 LMA(—), RARSa, RARSb, R750_700(—) 0.544d 0.277 <0.001 
 LMA(—), RARSa, RARSb, R750_700(—), RNDVI 0.594e 0.330 <0.001 
     

TGW EVI 0.234a 0.048 <0.01 
 EVI, PSRI 0.380b 0.133 <0.001 
     

GM2 EVI(—) 0.304a 0.086 <0.001 
 EVI(—), PSRI(—) 0.420b 0.165 <0.001 
     

RUE_E40InB RARSb 0.289a 0.077 <0.001 
 RARSb, LMA(—) 0.345b 0.107 <0.001 
 RARSb, LMA(—), GNDVI 0.386c 0.131 <0.001 
 LMA(—), GNDVI 0.384d 0.136 <0.001 
 LMA(—), GNDVI, R750_700(—) 0.429e 0.168 <0.001 
 LMA(—), GNDVI, R750_700(—), PSRI(—) 0.525f 0.256 <0.001 
     

RUE_InBA7 SPAD_A7(—) 0.262a 0.062 0.001 
 SPAD_A7(—), WI_4 0.309b 0.083 0.001 
     

RUE_GF WI_2 0.214a 0.039 <0.01 
     

RUET RARSc 0.190a 0.030 <0.05 

 

RARSc, SIPI(—) 0.270b 0.060 <0.01 
RARSc, SIPI(—), WI_2 0.341c 0.098 <0.001 
RARSc, SIPI(—), WI_2, NLamA7(—) 0.397d 0.135 <0.001 
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Table 4: Summary of Marker-Trait Associations (MTAs) identified. Common SNPs are 
indicated by the same colour. 
 
Trait Chromosome MTA ID Position P-value Interval 
Phenology 
DTA chr5B chr5B-27404243 27404243 8.12E-06 25-28Mbp  
  chr6B chr6B-189683325 189683325 7.45E-07 188-189Mbp  
Nitrogen content 
SPAD chr2B chr2B-106930486 106930486 7.54E-06 105-140Mbp 
 chr2D chr2D-16845994 16845994 1.96E-06 15.3-16.9Mbp 
 chr5A chr5A-3550988 3550988 4.72E-07 3-4Mbp 
  chr6D chr6D-456495062 456495062 8.69E-07 455-462Mbp 
Vegetation Index 
NDVI chr7D chr7D-608810464 608810464 2.56E-07 608.8-610Mbp 
GNDVI chr2B chr2B-153275048 153275048 7.03E-10 148-157Mbp 
  chr3B chr3B-723108033 723108033 2.11E-06 721-725Mbp 
RNDVI chr7A chr7A-711982572 711982572 2.30E-06 711-712.5Mbp 
  chr7D chr7D-608810464 608810464 9.92E-08 604-611Mbp 

NDII chr6A chr6A-497983531 497983531 6.33E-06 497.8-
498.5Mbp 

NDMI chr2B chr2B-669669845 669669845 2.73E-07 530-670Mb 
EVI chr6B chr6B-174740483 174740483 1.10E-06 17-19Mbp 
  chr3D chr3D-523811772 523811772 1.50E-06 51-52Mbp 
Pigmentation composition 
RARSa chr2A chr2A-16347452 16347452 7.35E-08 500kb-26Mbp 
 chr2B chr2B-20043565 20043565 8.67E-07 15-21Mbp 
 chr2B chr2B-149018684  149018684 4.08E-08 148-154Mbp 
  chr7B chr7B-135775607 135775607 5.78E-06 135-136Mbp 
PSSa chr2A chr2A-17001351 17001351 7.13E-07 500kb-20Mbp 
RARSb chr2B chr2B-153898371 153898371 1.83E-06 150-154Mbp 
 chr3B chr3B-20186940 20186940 1.27E-07 18.4-21Mbp 
  chr3B chr3B-715184359 715184359 9.06E-07 713-728Mbp 
RARSc chr3B chr3B-20358957 20358957 1.25E-08 19-21.5Mbp 
 chr7A chr7A-676592398 676592398 1.84E-06 675-677Mbp 
 chr7B chr7B-722589303 722589303 4.66E-06 722-725Mbp 
  chr7D chr7D-608810464 608810464 1.05E-06 608-609Mbp 
SIPI chr3B chr3B-711119921 711119921 2.87E-06 690-712Mbp 
  chr7D chr7D-610551080 610551080 3.74E-06 608-611Mbp 
R750550 chr2B chr2B-2619111 2619111 9.55E-06 2.4-3.2Mbp 
  chr2B chr2B-153275048 153275048 6.29E-09 150-155Mbp 
R750700 chr2B chr2B-153275048 153275048 1.04E-09 150-155Mbp 
  chr3B chr3B-736709296 736709296 2.72E-07 722-737Mbp 
Senescence/degradation indices 
NPQI chr7A chr7A-539405222 539405222 2.31E-07 523-564Mbp 
PSRI chr3B chr3B-718670251 718670251 3.43E-07 715..7-718.6 
Water Indices 
WI2 chr3A chr3A-616891767 616891767 9.04E-07 616-625Mbp 
WI3 chr1B chr1B-572799923 572799923 1.09E-07 567-573Mbp 
  chr7A chr7A-34727282 34727282 7.30E-06 34.5-35 Mbp 
WI4 chr3A chr3A-616891767 616891767 2.87E-08 616-628Mbp 
  chr3D chr3D-611549913 611549913 1.24E-07 612-620Mbp 
Physiology predictor 
LMA chr3D chr3D-336170196 336170196 3.29E-07 307-336Mbp 
  chr1B chr1B-65889406 65889406 5.71E-07 65-83Mbp 
R_DM chr1D chr1D-397474458 397474458 1.27E-06 396-399Mbp 
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Figure 1. Genetic analysis of the HiBAP panel. (From outside to inside) A) SNP density 
heatmap across the genome of loci containing <10% missing data and >5% MAF within the 
HiBAP panel in 100Kbp bins. B) Fixation index calculated between elite background and 
exotic background subpopulations. C) Genome wide association of flag leaf chlorophyll b 
content (C) Genome wide association of carotenoid content. Significance cut-offs for -log10p 
of 5 and FDR correction are shown as blue and red lines respectively. SNPs in an interval 
above significance thresholds are shown in red.  
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Figure 2. Enrichment capture reveals hidden variation contributed by exotic material. Distribution of D genome polymorphic SNP 
markers in the HiBAP panel from A) The 35K wheat breeders’ array and B) PCA demonstrating the identified genetic variation using the 35K 
array SNPs C) De novo SNP distribution from enrichment capture data after filtering the combined panel data for < 10% missing data and a 
minor allele frequency (MAF) of > 5%. D) PCA demonstrating the identified genetic variation using the de novo called enrichment capture 
genotyping SNPs 
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Figure 3. Synthetic wheat donor introgression identification in the D genome. D genome SNP density plots for A) a representative example 
of HiBAP elite population and B) an example of a member of the synthetically derived subpopulation. SNPs were binned into 500Kbp bins, 
demonstrating the number of SNPs that matched in position and allele of those seen in Ae. Tauschii against Chinese Spring reference genome 
(red) and the number of SNPs that did not match (blue).  
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Figure 4. Phenotypic variation in Spectral reflectance from the 149 lines: A) The level of variation in reflectance of the visible portion of the 
hyperspectral reflectance data for each member of the HiBAP panel. The distribution of observed values derived from spectral indices B) flag 
leaf chlorophyll a C) flag leaf chlorophyll b and D) flag leaf carotenoid content across all panel members where frequency relates to the 
number of panel members within each bin in each histogram. 
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Figure 5. Genome-wide association results for total chlorophyll content. Manhattan plot showing A) the GWA output for total chlorophyll 
content (R750/700), significance cut-offs for -log10p of 5 and FDR correction are shown as blue and red lines respectively. B) The same GWA 
output for chromosome 2B, the level of genetic linkage to the most associated SNP is depicted by a heatmap.  
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