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Abstract 26 

Co-expression networks are a powerful tool to understand gene regulation. They have 27 

been used to identify new regulation and function of genes involved in plant 28 

development and their response to the environment. Up to now, co-expression 29 

networks have been inferred using transcriptomes generated on plants experiencing 30 

genetic or environmental perturbation, or from expression time series. We propose a 31 

new approach by showing that co-expression networks can be constructed in the 32 

absence of genetic and environmental perturbation, for plants at the same 33 

developmental stage. For this we used transcriptomes that were generated from 34 

genetically identical individual plants that were grown in the same conditions and for 35 

the same amount of time. Twelve time points were used to cover the 24h light/dark 36 

cycle. We used variability in gene expression between individual plants of the same 37 

time point to infer a co-expression network. We show that this network is biologically 38 

relevant and use it to suggest new gene functions and to identify new targets for the 39 

transcription factors GI, PIF4 and PRR5. Moreover, we find different co-regulation in 40 

this network based on changes in expression between individual plants, compared to 41 

the usual approach requiring environmental perturbation. Our work shows that gene 42 

co-expression networks can be identified using variability in gene expression between 43 

individual plants, without the need for genetic or environmental perturbations. It will 44 

allow further exploration of gene regulation in contexts with subtle differences between 45 

plants, which could be closer to what individual plants in a population might face in the 46 

wild. 47 

 48 

 49 

Author summary 50 
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Plant development and response to changes in the environment are strongly regulated 51 

at the level of gene expression. That is why understanding how gene expression is 52 

regulated is key, and transcriptome approaches have allowed the analysis of 53 

transcription for all genes of the genome. Extracting useful information from the high 54 

amount of data generated by transcriptomes is a challenge, and gene co-expression 55 

networks are a powerful tool to do this. The principle is to find genes that co-vary in 56 

expression in different conditions and to pair them together. Communities of genes 57 

that are more closely linked are then identified and this is the starting point to look for 58 

their implication in the same pathway. Co-expression networks have been used to 59 

identify new regulation and function of genes involved in plant development and their 60 

response to the environment. They were constructed using transcriptomes generated 61 

on plants experiencing genetic or environmental perturbation. We show that co-62 

expression networks can in fact be constructed in the absence of genetic and 63 

environmental perturbation. Our work will allow further exploration of gene co-64 

regulation in contexts with subtle differences between plants, which could be closer to 65 

what individual plants in a population might face in the wild. 66 

 67 

Introduction 68 

Understanding how transcriptomes are regulated is key to shedding light on how 69 

plants develop and also respond to environmental fluctuations. A powerful tool often 70 

used to reveal transcriptional regulation at a genome wide level is gene co-expression 71 

networks [1,2]. In gene co-expression networks, genes that co-vary in expression in 72 

different conditions are detected and paired together [3–5]. By doing this for the entire 73 

transcriptome, a multitude of genes can be linked, indicating a similar gene regulation. 74 

Communities of genes, called modules, that are more closely linked can then be 75 
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identified [6]. The presence of genes in a given module indicates a close co-regulation 76 

and is usually the starting point to look for their implication in the same pathway, or 77 

their regulation by the same transcription factor(s) [7–10]. Most studies using co-78 

expression networks can be separated into two categories: targeted analyses that use 79 

only a subset of genes (selected based on their function or transcriptional regulation) 80 

or specific genetic/environmental perturbations, and global analyses that make use of 81 

hundreds or thousands of transcriptomes performed in various conditions, often 82 

publicly available ones, and do not select genes based on their function prior to the 83 

co-expression analysis. Co-expression networks are now commonly used in a variety 84 

of work in plant research, and have allowed the identification or prediction of new 85 

genes and transcription factors involved in development [9,11,12], in metabolic 86 

pathways [13] and in response to biotic and abiotic stresses [8,14–17]. It has also been 87 

proposed that the topology of the co-expression network and position of genes in the 88 

network can be of interest in itself to identify genes involved in natural diversity in 89 

development and in the response to environment [18,19].  90 

 91 

One limit of gene co-expression networks is that they only provide information about 92 

correlation in expression but do not indicate the direction and type of relationship 93 

between genes that are co-expressed. In order to define which genes are transcription 94 

factors (TF) that regulate the expression of other genes in the network, additional types 95 

of data should be used or integrated [20]. This additional data can be for example 96 

ChIP-seq [21,22] that provides the list of targets of a given transcription factor, protein-97 

protein interaction [21,23], as well as the presence of TF binding motifs in the promoter 98 

of genes [24,25]. Another limit is that genes should exhibit changes in expression 99 

between the different samples used for the analysis in order to detect co-expressed 100 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 15, 2020. ; https://doi.org/10.1101/2020.06.15.152314doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.15.152314
http://creativecommons.org/licenses/by/4.0/


5 

pairs of genes. This is usually achieved by using genetic and/or environmental 101 

perturbations in order to cause changes in the transcriptome regulation. However 102 

these perturbations often have large effects, and it can be time consuming and 103 

challenging to produce the large number of samples required. In order to analyse gene 104 

regulation in a biologically context that is more relevant, more subtle changes in 105 

expression might be prefered. This could be achieved by using milder genetic or 106 

environmental perturbations. Another option would be to analyse changes in 107 

expression that occur in the absence of any genetic or environmental perturbation [26]. 108 

This can be possible in theory as widespread differences in gene expression levels 109 

have been observed between genetically identical plants, in the absence of any 110 

environmental perturbation [27–31]. The idea is to use this variability in gene 111 

expression to find potential co-regulation. In mammals, variability in gene expression 112 

between single cells of the same cell type has been used to identify co-expression 113 

patterns for genes that show a high level of gene expression variability between cells 114 

[32]. Moreover, gene co-expression networks have been inferred using transcriptomes 115 

of individual plant leaves, after removing in silico the genotype, environment and 116 

genotype x environment effects on gene expression [26]. The modules identified in 117 

this network were functionally relevant and this study allowed the identification of a 118 

new regulator of the jasmonate pathway [26]. It thus shows that the analysis of gene 119 

expression regulation can be as powerful in the absence of genetic and environmental 120 

fluctuation. However, the first step of the study of Bhosale and colleagues was to 121 

remove in silico the genotype, environment and genotype x environment effects on 122 

gene expression, as the transcriptomes were performed on plants from different 123 

genotypes, as well as plants that were grown in different research laboratories. It is 124 
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thus not clear if co-expression networks can be identified in plants from transcriptomes 125 

performed in the absence of genetic and environmental perturbation. 126 

 127 

We thus decided to test if it is possible to infer gene co-expression networks using 128 

transcriptomes generated on single plants in the absence of any genetic and 129 

environmental perturbation. In particular, we wanted to define if such a network would 130 

provide different information compared to a network using environmental perturbation. 131 

Finally we wished to determine if modules that would be detected in such a network 132 

would have functional relevance. In order to answer these questions, we took 133 

advantage of the existence of a set of published transcriptomes carried out on single 134 

seedlings of the same genotype that were grown in the same environmental conditions 135 

[28]. In this dataset, multiple genetically identical seedlings had been harvested at 136 

several time points during a day/night cycle. Differences in expression between 137 

seedlings were previously observed for many genes in each time point of this dataset. 138 

In particular, 8.7% of the genes in this dataset have been identified as Highly Variable 139 

Genes (HVG), as their expression was statistically more variable between seedlings 140 

than the rest of the transcriptome. Using this dataset we were able to infer co-141 

expression networks in absence of genetic and environmental perturbations. Based 142 

on enrichment in a module for genes involved in flavonoid metabolism, we speculated 143 

that AT4G22870, a 2-oxoglutarate (2OG) and Fe(II)-dependent oxygenase, could also 144 

have a role in flavonoid metabolism. Finally, we identified new targets for the TFs 145 

PHYTOCHROME INTERACTING FACTOR 4 (PIF4), GIGANTEA (GI) and PSEUDO-146 

RESPONSE REGULATOR 5 (PRR5). 147 

 148 

 149 
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Results 150 

Co-expression networks can be inferred using expression variation between 151 

individual seedlings 152 

 153 

Co-expression networks in plants are normally inferred using transcriptomes obtained 154 

from pools of plants, using genetic or environmental perturbations in order to identify 155 

genes that co-vary in expression between these conditions. In order to define if co-156 

expression networks can be inferred from expression measurements obtained from 157 

single seedlings in the absence of genetic and environmental perturbations, we used 158 

the previously published dataset of transcriptomes generated on single seedlings 159 

grown in the same environment. This dataset contained a total of fourteen seedlings 160 

per time point, for twelve time points spanning a 24 hours day/night cycle [28]. 161 

Widespread differences in expression levels have been observed between seedlings 162 

in this dataset, which is a prerequisite to be able to infer a co-expression network ([3–163 

5] Fig 1a and S1). We first detected co-expressed genes in each time point, by 164 

measuring Spearman correlation for each pair of genes in profiles of expression in the 165 

14 seedlings of this time point. In order to keep robust correlations in the final network, 166 

we then selected edges of the network that are detected in at least four consecutive 167 

time points, with one gap allowed (Materials and Methods). Using this approach, we 168 

find a total of 4715 edges, connecting 1729 genes in this network, from now on referred 169 

to as the variability network. The number of edges detected for each time point varies 170 

from 787 to 3221, with a higher number of edges being detected at the end of the day 171 

and the beginning of the night (Fig 1b). We then used the Louvain community detection 172 

algorithm in order to identify modules of genes that are densely connected in the 173 

network [33]. In total, we identified 153 modules (Table S1), containing between 2 and 174 
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334 genes, with most of the modules only composed of two genes (Fig 1c). To test the 175 

robustness of the variability network, we also selected edges that are in at least 3 176 

consecutive time points and compared the detected modules in both networks (Fig 177 

S2). Similar modules with a similar overall connectivity between them are found in the 178 

two networks, which confirms the robustness of the modules in our original network. 179 

Modules in the network based on 4 consecutive time points are smaller. In somes 180 

cases, several modules of the network based on 4 consecutive time points correspond 181 

to a single module in the network based on 3 consecutive time points and these 182 

smaller modules have differences in several features (Fig S2). That is why we decided 183 

to focus our analysis on the network obtained when selecting edges present in 4 184 

consecutive time points, and in particular for the 28 modules of this network containing 185 

5 genes or more. 186 

 187 

Fig 1. Inference of gene co-expression networks in absence of genetic and 188 

environmental perturbations 189 

(A) Description of co-expression network inference using transcriptomes performed 190 

on single seedlings. Transcriptomes were generated for a total of fourteen seedlings 191 

per time point, with twelve time points spanning a day/night cycle over 24 hours. In 192 

each time point, genes with correlated expression profiles in the fourteen seedlings 193 

were identified. The co-expression network was inferred based on pairs of genes 194 

correlated for at least four consecutive time points. Finally, modules in the network, 195 

which consist of groups of genes that are densely connected, were detected. (B) Total 196 

number of edges in the final network that are detected in each time point. (C) 197 

Distribution of the number of genes present in each of the 153 modules. Inset shows 198 

the same data plotted with a logarithmic scale. (D) Number of edges that are detected 199 
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in each time point for four modules: the module 1 in which most edges are detected 200 

during day time, the module 21 in which most edges are detected during the night 201 

time, the module 8 in which most edges are detected at the transition between night 202 

and day and the module 12 in which most edges are detected at the transition between 203 

day and night. 204 

 205 

 206 

First we analysed the number of edges at each time point throughout the time course 207 

for each module (Fig 1d and S3). In most modules the edges are distributed non-208 

uniformly across the 12 time points. Some exhibit a larger number of edges during the 209 

day or the night, while in other modules, a larger number of edges is observed at the 210 

transitions from night to day, or from day to night. It indicates that genes in these 211 

modules are co-regulated at some moments of the day/night cycle but not at others. 212 

While for some modules, this is linked with the genes being more expressed at these 213 

same times of the day (module 1 for example), this is not the case for other modules 214 

in which genes are expressed throughout the time course (module 12 for example, Fig 215 

2). Most of the edges in module 1 are observed during the day (Fig 1d) and we were 216 

able to confirm co-expression of genes in this module by doing a RT-qPCR in a 217 

replicate experiment for a few genes in this module. In this replicate experiment, we 218 

find a very high correlation during the day (ZT6), and a lower correlation during the 219 

night (ZT14) (Fig S4). On the other hand, most edges in module 21 are observed 220 

during the night (Fig 1d). We also find in a replicate RT-qPCR experiment that genes 221 

of module 21 were more correlated during the night than the day (Fig S4). These 222 

results confirm that the co-expression of genes in modules of the variability network, 223 

and also the differences in co-expression between the day and night, can be 224 
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reproduced in a replicate experiment. Moreover, we find that modules with a high 225 

percentage of edges during the night are more connected to one another than with 226 

modules for which most edges are observed during the day, and vice versa (Fig 5a). 227 

We can measure this assortativity of the network (i.e. the tendency of similar nodes to 228 

be connected to each other) through the Pearson correlation of the daytime-specific 229 

edge percentages of connected modules (Pearson correlation=0.4573, p-230 

value=0.043). This result shows that modules that are more connected to one another 231 

are more similar, at least for this feature, indicating that the community detection in the 232 

network worked well and provides modules that are relevant. 233 

 234 

Fig 2. Comparison of the variability network and the averaged time course 235 

network 236 

Expression profiles throughout the time course for genes in each module with 5 genes 237 

or more, using the average expression of the fourteen seedlings for each time point. 238 

Each line represents the normalised expression (z-score) for one gene. 239 

Modules are ordered by the percentage of genes in the averaged time course network 240 

(high to low). Modules highlighted in blue contain 50% or more of genes that are also 241 

in the averaged time course network. Modules highlighted in red contain 15% or less 242 

of genes that are also in the averaged time course network. 243 

 244 

Fig 5. Network architecture is mainly influenced by the time of day when edges 245 

are detected, and by the presence of highly variable genes 246 

Organisation of modules in the network, with the size of circles representing the 247 

module size (i.e. number of edges). Number of edges connecting the modules are 248 

represented by the thickness of the lines between modules. The number in each 249 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 15, 2020. ; https://doi.org/10.1101/2020.06.15.152314doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.15.152314
http://creativecommons.org/licenses/by/4.0/


11 

module corresponds to the module number. (A) Modules are color coded based on 250 

the percentage of edges that are detected during the night in each module. Blue 251 

modules are composed of a majority of night-time edges, while yellow modules are 252 

mainly composed of day-time edges. (B) Modules are color coded based on the 253 

percentage of highly variable genes (HVG) in the modules. Green modules are 254 

composed of a majority of HVG while red modules have a low percentage of HVG. 255 

 256 

Since high gene expression variability between genetically identical plants was 257 

previously observed in the transcriptome dataset we used to infer the variability 258 

network [28], we tested if the network is enriched in highly variable genes (HVGs). We 259 

find a total of 477 HVGs in the network, that is 27.6% of all genes in the variability 260 

network. This is higher than the 8.7% of HVGs that were detected in the full 261 

transcriptome dataset [28]. This result suggests that most of the genes in the variability 262 

network do not have to display a high level of gene expression variability to be able to 263 

detect co-expression between individual seedlings. We find that most modules are 264 

either strongly enriched in HVGs, or strongly depleted in HVGs, with only a few 265 

modules containing around 27% of HVGs (Table 1, Fig S5a). Modules 37, 43 and 66 266 

for example are only composed of HVGs, while a total of 8 modules do not have a 267 

single HVG. This result suggests that HVGs can co-vary in expression and are 268 

potentially co-regulated. It also suggests that HVGs are not likely to co-vary in 269 

expression with non variable genes. To test if this result could indicate a bias in the 270 

method used to construct the variability network and detect modules, we analysed 271 

expression levels in single seedlings for genes in modules with high or low percentage 272 

of HVG (Fig S5b). We find that modules with high or low percentage of HVG have 273 

different expression profiles in the seedlings, indicating an absence of bias. Moreover, 274 
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modules with a high percentage of HVG tend to be more connected to one another 275 

than with modules containing a low percentage of HVG, and vice versa (Pearson 276 

correlation=0.6896, p-value= 0.0007683, Fig 5b).  277 

 278 

 279 

Table 1. 280 

Number and percentage of HVGs in each module, for modules with at least 5 genes. 281 

 282 

Our results show that gene co-expression networks can be inferred in the absence of 283 

genetic or environmental perturbation. Moreover, genes don’t need to show a high 284 

level of gene expression variability between seedlings to be integrated in the network. 285 

 286 

module name number of genes in module number of HVGs in module percentage of HVGs in module Fisher's p-value
37 12 12 100,00 0,0022
43 8 8 100,00 0,0118
66 6 6 100,00 0,0287
18 15 14 93,33 0,0022
24 47 42 89,36 0,0001
59 9 8 88,89 0,0181
15 44 38 86,36 0,0001
1 19 15 78,95 0,0052
32 56 43 76,79 0,0001
64 7 5 71,43 0,1496
23 6 4 66,67 0,2384
21 79 50 63,29 0,0001
79 10 6 60,00 0,1322
4 175 97 55,43 0,0001
25 24 9 37,50 0,4014
8 41 8 19,51 0,4820
2 150 17 11,33 0,0002
13 77 6 7,79 0,0009
9 101 3 2,97 0,0001
0 334 3 0,90 0,0001
5 91 0 0,00 0,0001
6 61 0 0,00 0,0001
36 24 0 0,00 0,0047
12 21 0 0,00 0,0127
71 8 0 0,00 0,2142
126 7 0 0,00 0,3578
70 6 0 0,00 0,3512
86 5 0 0,00 0,5915
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Additional gene co-expression is identified in the variability network compared 287 

to a network inferred from a pool of plants. 288 

 289 

Next, we decided to test whether the co-expression network based on the variability 290 

of expression between genetically identical plants grown in the same environment is 291 

different from a co-expression network inferred from a pool of plants. Since the 292 

transcriptome dataset contains data for several time points throughout a day/night 293 

cycle, we decided to infer a co-expression network using the average expression of 294 

the fourteen seedlings for each time point and thus exploit changes in expression 295 

happening during the time course. This network, referred to as the averaged time 296 

course network, allows the identification of co-expression throughout the time course. 297 

Using this approach, we find a total of 9332 edges, connecting 3861 genes in the 298 

averaged time course network. A total of 524 genes of this averaged time course 299 

network are also present in the variability network, that is 30% of the genes in the 300 

variability network (Table 2). Only 35 edges are shared between the two networks. 301 

This result shows that the majority of the genes and edges present in the variability 302 

network are not detected in this dataset using a classical approach with pools of plants.  303 

 304 
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 305 

Table 2. 306 

Number and percentage in each module of genes also detected in the averaged time 307 

course network. 308 

 309 

We find that between 0% and 87.5% of genes in modules of the variability network are 310 

also in the averaged time course network, with most of the modules having between 311 

20 and 50% of genes also present in the averaged time course network (Table 2). The 312 

modules with the highest percentage of genes also in the averaged time course 313 

network are modules 71 (87%: 7 out of 8 genes) and 13 (76%: 59 out of 77 genes). 314 

module name
number of genes 
in module

number of genes in module 
also in averaged time 
course network

percentage of genes in 
module also in averaged 
time course network Fisher's p-value

71 8 7 87,5 0,0585
13 77 59 76,6 0,0001
126 7 4 57,1 0,2947
8 41 21 51,2 0,0671
70 6 3 50,0 0,4431
21 79 37 46,8 0,0431
25 24 10 41,7 0,4146
37 12 5 41,7 0,566
9 101 41 40,6 0,1273
23 6 2 33,3 1
5 91 29 31,9 0,8248
1 19 6 31,6 1
12 21 6 28,6 1
64 7 2 28,6 1
36 24 6 25,0 0,8289
24 47 11 23,4 0,5296
4 175 37 21,1 0,0592
0 334 69 20,7 0,0063
86 5 1 20,0 1
2 150 26 17,3 0,0087
6 61 10 16,4 0,0845
32 56 9 16,1 0,0985
15 44 6 13,6 0,0627
79 10 1 10,0 0,4744
18 15 1 6,7 0,1401
59 9 0 0,0 0,1286
43 8 0 0,0 0,2106
66 6 0 0,0 0,3465
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We find that genes in these modules have very similar and clear expression profiles 315 

throughout the time course (Fig 2). This is also the case for all modules with at least 316 

50% of genes in the averaged time course network (modules highlighted in blue in Fig 317 

2). This result could suggest that the reason why these modules contain many genes 318 

also present in the averaged time course network, is because their genes have very 319 

similar expression patterns throughout the day/night cycle. On the other hand, several 320 

modules that only have 15% or less of genes present in the averaged time course 321 

network are composed of genes without clear expression patterns during the time 322 

course. These results show that additional gene co-expression is identified in the 323 

variability network compared to the averaged time course network. Most importantly, 324 

using gene expression in single seedlings, co-expression between genes can be 325 

detected even in absence of expression patterns throughout the day/night cycle. 326 

 327 

Modules identified in the variability network are functionally relevant 328 

 329 

In order to define if the modules identified in the variability network are functionally 330 

relevant, we performed a gene ontology (GO) enrichment analysis. We find that some 331 

of the modules have strongly enriched GO (Table S2). 332 

For example, the module 8 is enriched in multiple GO related to photosynthesis. In 333 

particular, 33 genes out of the 41 in this module are members of the photosystem I or 334 

II, or of the light harvesting complex (Fig 3a, Table S3). Other genes in this module 335 

also have functions related to photosynthesis: CURT1A is required for a proper 336 

thylakoid morphology [34], while RBCS1A, RBCS3B and RCA are members of the 337 

Rubisco or necessary to Rubisco light activation [35,36]. Most edges of module 8 are 338 

observed at the transition between night and day. This module contains 51% of genes 339 
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that are also in the averaged time course network, which could be expected as most 340 

of the genes have very similar expression patterns throughout the day/night cycle. In 341 

particular, all genes of this module present in the photosystem I, II or the light 342 

harvesting system have the same expression profile with a peak of expression at dawn 343 

and the beginning of the day, while other genes have different expression profiles with 344 

a peak of expression at the beginning of the day and another one during the night (Fig 345 

S6a). Also, we find that these other genes are at the periphery of the module 8 (Fig 346 

S6b), which highlights that these genes are less well correlated with the dense core of 347 

highly correlated photosystem genes in the centre of the network. Another module 348 

enriched in GO related with photosynthesis is module 37 (Table S2), in which 9 out of 349 

the 12 genes are chloroplast genes, some being present in the Photosystems I or II, 350 

in the Cytochrome b6/f complex or in the ATP synthase (Fig 3a, Table S3). Genes in 351 

module 37 are mainly expressed at the beginning of the day. These results suggest 352 

that the expression of genes involved in photosynthesis are co-regulated, not only over 353 

time, but also between plants at a given time. 354 

 355 

Fig 3. Modules enriched in genes involved in the photosynthesis and the 356 

glucosynolate pathway 357 

(A) Functional analysis of modules 8 and 37. For each module, the number of genes 358 

that are part of the Photosystem I (green), Photosystem II (orange), the Light 359 

harvesting complex (blue) or the ATP synthase (purple) are indicated. (B) Functional 360 

analysis of module 1. Genes of the module are color coded depending on their role in 361 

the glucosynolate pathway: biosynthesis (turquoise), transport (green) or regulation 362 

(orange). Genes previously identified as co-expressed with glucosynolate 363 

biosynthesis genes are also indicated (grey). On the right side, the glucosinolate 364 
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biosynthesis pathway is shown with an indication of the number of genes present in 365 

the module 1 at each step of the pathway. 366 

 367 

Module 71 is enriched in GO related to DNA packaging (Table S2), and is in fact only 368 

composed of histones, including 2 variants of H2A, 2 variants of H2B, and H3.1 (Table 369 

S3). None of the genes in this module are HVGs, and 7 genes out of 8 are also present 370 

in the averaged time course network. 371 

 372 

Module 1 is enriched in GO related to glucosinolate (Table S2). We find that 16 out of 373 

19 genes of the module are in the glucosinolate biosynthesis pathway, transporters of 374 

glucosinolate, or transcription factors (TF) regulating the pathway (Fig 3b, Table S3). 375 

All genes in module 1, except one, were previously identified as co-expressed, in a 376 

previous study of the glucosinolate pathway [13]. Among the genes that are not known 377 

to be involved in glucosinolate biosynthesis, but are co-expressed with it, AKN2 is 378 

regulated by the MYB TF also regulating the glucosinolate pathway [37]. AKN2 is 379 

involved in sulfate assimilation which is linked to glucosinolate metabolism [37]. It thus 380 

makes sense that AKN2 is co-expressed with genes of the glucosinolate biosynthesis 381 

pathway. Most edges of module 1 are observed during the day, which is when the 382 

genes in the module are more expressed. Also 15 out of the 19 genes of the modules 383 

are HVGs. 384 

 385 

Module 43 is enriched in GO related to flavonoid metabolism (Table S2), with 6 out of 386 

8 genes shown to be involved in flavonoid biosynthesis [38]. Among the other genes, 387 

AT4G22870 has not been shown to be involved in the flavonoid pathway, and our 388 

result suggests that it might have a role in this pathway. It is a protein of the 2-389 
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oxoglutarate (2OG) and Fe(II)-dependent oxygenase superfamily. We also find that all 390 

the genes in module 43 are HVGs. Most edges of the module are observed during the 391 

day, and the genes in the module have very similar expression patterns throughout 392 

the time course with a peak of expression at the beginning of the day and another one 393 

at the end of the day. However, none of the genes in the module 43 are also present 394 

in the averaged time course network.  395 

 396 

Overall, we find that several modules in the variability network are functionally 397 

relevant, with modules showing enrichment for functions such as photosynthesis, DNA 398 

packaging and glucosinolate or flavonoid metabolism, even in the absence of genetic 399 

and environmental perturbations. Moreover, we could identify a potential role in the 400 

enriched pathways for some genes, based on their co-expression with other genes in 401 

the same module.  402 

 403 

Identification of new targets for GI, PIF4 and PRR5 404 

 405 

To go further in the functional analysis of the modules, we looked for enrichment of 406 

targets of TFs in the modules. We focussed on TFs for which ChIP-seq were 407 

performed in similar conditions (seedlings grown in day/night cycles), and for which a 408 

list of target genes have been previously published [39–42]. This way, we identified an 409 

enrichment in modules for targets of SPL7, GI, PIF4 and PRR5 (Table S4). For 410 

example, all 41 genes in the module 8 are SPL7 targets (Table S4) [39]. This is 411 

significantly more compared to the entire network in which 244 genes are SPL7 targets 412 

(14%). SPL7 targets have been previously shown to be enriched in multiple GO terms, 413 
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including photosynthesis [39], in agreement with the predominant role in 414 

photosynthesis of genes in this module 8. 415 

We also find that 6 out of 7 genes in the module 64 are targets of GI (Table S4, Fig 416 

4a). This is more compared to the entire network in which 394 genes are GI targets 417 

(22%). To explore more in detail GI binding at the genes in the module 64, we 418 

downloaded the ChIP-seq data, mapped it on the Arabidopsis thaliana genome and 419 

looked at the ChIP-seq signal for GI at all the 7 genes of the module 64 [40]. We find 420 

a strong signal for the GI ChIP-seq at the promoter of the 6 genes that were already 421 

identified as GI targets (Fig 4a). Interestingly, the signal for GI at the 7th gene, 422 

AT1G03630, not previously described as a GI target, is equally strong at the promoter 423 

of the gene (Fig 4a). This result indicates that AT1G03630 is also a target of GI, even 424 

if it has not been previously identified as such. AT1G03630, or PORC, encodes for a 425 

protein with protochlorophyllide oxidoreductase activity that is NADPH- and light-426 

dependent [43]. 427 

 428 

Fig 4. Additional TF targets can be identified using TF targets enrichment in 429 

modules 430 

(A) Analysis of GI TF targets on the module 64: 6 of the 7 genes in the module 64 are 431 

known targets of GI (left). IGV screenshot showing the signal for the GI ChIP-seq 432 

(right) at a known GI target (top) and for the seventh gene in the module 64 that is not 433 

known as a GI target (bottom). (B) Analysis of PIF4 TF targets on the module 86: 3 of 434 

the 5 genes in the module 86 are known targets of PIF4 (left). IGV screenshot showing 435 

the signal for the PIF4 ChIP-seq (right) at a known PIF4 target (top) and for the two 436 

other genes in the module 86 that are not known as a PIF4 target (bottom). 437 

 438 
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Another TF with enriched targets in some modules is PIF4. We find that 3 out of the 5 439 

genes (60%) in the module 86 are PIF4 targets (Table S3, Fig 4b), while only 305 440 

genes in the full network are PIF4 targets (17.6%). To explore more in detail PIF4 441 

binding at the genes in the module 86, we downloaded the ChIP-seq data, mapped it 442 

on the Arabidopsis thaliana genome and looked at the ChIP-seq signal for GI at all the 443 

5 genes of the module 86 [41]. We observe a strong signal for the PIF4 ChIP at the 444 

promoters of the 3 known targets in the module 86 (Fig 4b). We also see a clear signal 445 

for the PIF4 ChIP for the two other genes in the module 86, AT4G26542 and 446 

AT5G55730, suggesting that they are also targets of PIF4 (Fig 4b). AT4G26542 is an 447 

anti-sens transcript for AT4G26540. AT5G55730 (FLA1) encodes a fasciclin-like 448 

arabinogalactan-protein 1 [44]. 449 

 450 

Finally, we find an enrichment for PRR5 targets in modules 8 and 21 with respectively 451 

78% and 70% of genes in the module that are PRR5 targets [42]. For comparison, 452 

27% of all genes in the network are PRR5 targets. To explore more in detail PRR5 453 

binding at the genes in the module 8, we downloaded the ChIP-seq data, mapped it 454 

on the Arabidopsis thaliana genome and looked at the ChIP-seq signal for PRR5 at all 455 

the 41 genes of the module 8 [45]. We find a strong ChIP-seq PRR5 signal at the 32 456 

target genes in the module 8, and a similarly strong signal for most of the other 9 genes 457 

in the module that were not listed as a PRR5 target (Fig S7a). In order to look for PRR5 458 

targets, and to expand the analysis to other modules, we re-identified peaks for the 459 

PRR5 ChIP-seq and looked for PRR5 targets in the modules with a high proportion of 460 

already described PRR5 targets (Table S4). This way, we identified 5 additional PRR5 461 

targets in the module 8, and 9 additional PRR5 targets in the module 21. When 462 

combining the PRR5 targets from both analyses, the total percentage of PRR5 targets 463 
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is 90% in the module 8, and 83% in the module 21 (Fig S7b). These results suggest 464 

that most, if not all, genes in the module 8 and 21 are in fact PRR5 targets. 465 

 466 

Overall, we find that some modules are enriched for TFs targets, and that this 467 

enrichment can be used to identify additional targets for the TF in the modules showing 468 

enrichment for its targets. 469 

 470 

Discussion 471 

 472 

In this work, we have analysed gene co-expression networks inferred using expression 473 

data generated in the absence of genetic and environmental perturbations. To do this, 474 

we made use of an already published dataset of transcriptomes performed on single 475 

seedlings that were grown in the same environment. We showed that genes do not 476 

need a high level of gene expression variability between seedlings to be able to 477 

integrate them in the network (Table 1). Moreover we find that modules identified in 478 

this network are biologically relevant, as several are strongly enriched in GOs (Fig 3) 479 

and in TF targets (Fig 4). Based on these enrichments, we speculated that AT4G22870 480 

could also have a role in flavonoid metabolism and identified new targets for the TFs 481 

GI, PIF4 and PRR5. 482 

 483 

We find that it is possible to infer gene co-expression networks using transcriptomes 484 

of genetically identical plants grown in the exact same environment. This is in 485 

agreement with previous work, where co-expression networks have been inferred on 486 

transcriptomes generated on individual plants and for which genetic and 487 

environmental effects have been removed in silico [26]. We also find an interesting 488 
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topology of the network with some modules more connected with one another, and 489 

that connected modules share similar characteristics in terms of percentage of edges 490 

detected during the day or night, and percentage of HVG (Fig 5 and S8). We observe 491 

that modules have either a high or low percentage of HVG, but rarely a mix of HVG 492 

with non HVG. This suggests that some pathways are more variable than others. We 493 

find that, in general, modules with genes involved in the response to the environment 494 

are also composed of a high percentage of HVG. This is the case for example for the 495 

module 37, enriched in photosynthesis (100% of HVG), the module 43, enriched in 496 

flavonoid metabolism (100% of HVG), or the module 1, enriched in glucosinolate 497 

metabolism (78% of HVG). Flavonoids are secondary metabolites and have been 498 

shown to be involved in many biotic and abiotic responses in plants [46]. And 499 

glucosinolates are involved in the response to pathogens [47]. In agreement with our 500 

observation, previous work showed that HVG are usually involved in the response to 501 

the environment [28,48–51]. In particular, plant-to-plant variability has already been 502 

observed for glucosinolates [30], showing that the variability in expression we observe 503 

for genes involved in this pathway can lead to differences in glucosinolate content 504 

between plants.   505 

 506 

Like for Bhosale and colleagues, we find that the modules of the network identified in 507 

absence of genetic and environmental perturbation are biologically relevant and can 508 

be used to speculate new gene function or regulation. We only explored the function 509 

for the most obvious GO enrichment in modules as GO can be sparse for some 510 

functions and many genes do not have a GO. For example the module 43 is enriched 511 

in genes involved in the flavonoid pathway. We speculate that AT4G22870, a member 512 

of this module, is also involved in the flavonoid pathway. To support our suggestion, 513 
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AT4G22870 codes for a protein of the 2-oxoglutarate (2OG) and Fe(II)-dependent 514 

oxygenase superfamily and three 2-oxoglutarate- and ferrous iron-dependent 515 

oxygenases have been previously shown to be involved in flavonoid biosynthesis [38]. 516 

Most importantly, this new potential candidate gene could not have been detected by 517 

analysing the network inferred using day/night environmental fluctuations as none of 518 

the genes in the module 43 are also present in the averaged time course network. 519 

We find several modules with enrichment for genes involved in photosynthesis. In 520 

particular, the modules 8 and 37. The main distinction between these two modules is 521 

that module 8 is composed of genes from the nuclear genome, while module 37 is 522 

mainly composed of genes from the chloroplast genome. Our approach was not 523 

designed to specifically identify and separate genes from different organelles, 524 

suggesting that genes from the nuclear and chloroplast genomes involved in 525 

photosynthesis vary differently in expression between seedlings. Our result is in 526 

agreement with the fact that organelle functional modules can be detected in 527 

Arabidopsis thaliana [52]. However, genes that are not from the nuclear genome are 528 

usually ignored in network analysis, and it would be of interest to integrate them in the 529 

future. 530 

 531 

Finally, we identified enrichment for targets of the TFs GI, PIF4 and PRR5 in different 532 

modules, and used this enrichment to highlight new targets. We find that in most 533 

cases, when a module is enriched in targets for a TF, the remaining genes of that 534 

module are also targets of this TF. By reanalysing the ChIP-seq data for PRR5, we 535 

could increase the percentage of targets in modules already showing a strong 536 

enrichment. This result shows the double interest of combining co-expression 537 

networks with ChIP-seq data [21,22]. On the one hand, ChIP-seq data adds 538 
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information about the regulation of genes in the co-expression network. On the other 539 

hand, the co-expression network is a good way to focus on some of the targets of the 540 

TF to better understand their regulation and also to detect extra targets. In the case of 541 

PRR5, we find that 90% of the genes in the module 8 are targets of this TF. Genes in 542 

the module 8 are involved in photosynthesis. This is in agreement with the fact that 543 

the circadian clock, of which PRR5 is a core member, has been shown to regulate the 544 

photosynthesis [53–55]. 545 

The functional characterisation of the network has been restricted to some modules 546 

with obvious GO enrichments, and to TFs for which ChIP-seq data and lists of targets 547 

were available and performed in similar conditions. However this network, being the 548 

first to be performed in absence of genetic and environmental fluctuation, could bring 549 

further information on other pathways we have not explored in this paper. Moreover, 550 

our approach could reveal co-regulations that might not be detected using 551 

environmental perturbations, as shown by the fact that the variability network provided 552 

additional co-expression relationships that were not detected in a network inferred on 553 

the same dataset using expression fluctuations caused by the day/night cycle. That is 554 

why we encourage readers to look at the modules for their genes or pathway of 555 

interest, and have developed an interactive website where readers can do so 556 

(https://jlgroup.shinyapps.io/VariabilityNetwork/). 557 

 558 

We show that most genes in the network are not HVG (Table 1), showing that high 559 

gene expression variability between seedlings is not needed to be able to detect co-560 

expression. These results indicate that we are not in the presence of random 561 

fluctuation in expression, or noise, but that pathways are slightly differently regulated 562 

in individual seedlings even if the plants are in the same environment. Our approach 563 
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uses these small differences between seedlings that might be caused by micro-564 

environmental fluctuation, or a different state of the plant caused by internal factors. It 565 

indicates that plants are very sensitive to minor changes in their environment, and that 566 

we could harness this sensitivity to better understand gene expression regulation. 567 

Phenotypic differences have been observed between genetically identical plants 568 

grown in the same environment [27,29,30,56–58], indicating that the changes in 569 

expression of pathways we highlight here might be physiologically relevant. It shows 570 

that it is not necessary to perform experiments in very different environmental 571 

conditions to identify co-expression networks that could be relevant to the studied 572 

pathway. Strong fluctuations (mutants, over-expressors, environmental fluctuations) 573 

could potentially affect a big part of the transcriptome that could mask some co-574 

expressions of interest showing the usefulness of our approach in some contexts. Our 575 

work shows the interest in harnessing gene expression variability between genetically 576 

identical individual plants in order to better understand gene regulation in a context 577 

where differences between plants are not known and probably very subtle. 578 

 579 

Materials and Methods 580 

Transcriptome data 581 

The transcriptomes we used were already published (GSE115583; [28]), and 582 

performed on single seedlings, for a total of fourteen seedlings per time point every 583 

two hours over a 24 hours cycle. Expression levels and corrected variability levels for 584 

all genes were downloaded from https://jlgroup.shinyapps.io/AraNoisy/, as this data 585 

had been already corrected as previously described [28]. 586 

 587 

Network construction  588 
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Variability network: For each of the 12 time points (0h, 2h, 4h, … 22h) we calculated 589 

the Spearman correlation between every pair of genes, using their expression profiles 590 

across the 14 seedlings (Fig 1a). Using a Benjamini-Hochberg correction with a false-591 

discovery rate of 10% the most significant correlations were selected, and further 592 

filtered by only considering those for which a significant correlation appeared in four 593 

consecutive time points (with one gap allowed, e.g. 8h, 10h, 14h, 16h). These 594 

correlations form the edges of the variability network. We also calculated a version of 595 

the network using a filter that only required three consecutive time points, and 596 

calculated network modules using the same community detection algorithm. As can 597 

be seen in Fig S1, similar modules with a similar overall connectivity between them 598 

are found, which confirms the robustness of the modules in our original network. All 599 

network analysis was carried out using the Python NetworkX and python-louvain 600 

libraries. 601 

 602 

Averaged time course network: For the averaged time course network we calculated 603 

the mean expression across all seedlings for every time point, generating a time series 604 

of average expression for every gene. We again calculated the Spearman correlations 605 

for every pair of genes and generated a network by applying the Bonferroni correction 606 

as a (highly conservative) significance cutoff. This yielded a network that was similar 607 

in size to the variability network. All network analysis was carried out using the Python 608 

NetworkX and python-louvain libraries. 609 

 610 

Community detection 611 

The Louvain algorithm [33] community detection algorithm was used to identify 612 

modules in the networks. This algorithm attempts to maximise the modularity of the 613 
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network by searching the space of network partitions. Due to the size of the search 614 

space it is unable to find the global maximum. The composition of modules may 615 

therefore (as with most community detection algorithms) vary somewhat between runs 616 

of the algorithm.   617 

 618 

RT-qPCR 619 

Col-0 WT Arabidopsis thaliana seeds were sterilised, stratified for 3 days at 4°C in 620 

dark and transferred for germination on solid 1/2X Murashige and Skoog (MS) media 621 

at 22°C in long days for 24 hours. Using a binocular microscope, seeds that were at 622 

the same stage of germination were transferred into a new plate containing solid 1/2X 623 

MS media. Seedlings were grown at 22°C, 65% humidity, with 12 hours of light (170 624 

µmoles) and 12 hours of dark in a conviron reach-in cabinet. After 7 days of growth, 625 

seedlings were harvested individually into a 96-well plate and flash-frozen in dry ice. 626 

Sixteen seven-day old Col-0 WT Arabidopsis thaliana seedlings were harvested 627 

individually and flash-frozen in dry ice at ZT6 and at ZT14. All seedlings harvested in 628 

a given time point were grown in the same plate. Total RNA was isolated from 1 ground 629 

seedling. RNA concentration was assessed using Qubit RNA HS assay kit. cDNA 630 

synthesis was performed on 700ng of DNAse treated RNA using the Transcriptor First 631 

Strand cDNA Synthesis Kit. For RT-qPCR analysis, 0.4 µl of cDNA was used as 632 

template in a 10 µl reaction performed in the LightCycler 480 instrument using LC480 633 

SYBR green I master. Gene expression relative to two control genes (SandF and 634 

PP2A) was measured (See Table S5 for the list of primers used for RT-qPCR).  635 

 636 

Gene Ontology term enrichment  637 
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We used the Ontologizer [59] command line tool with Bonferroni multiple-hypothesis 638 

correction to perform Gene Ontology (GO) term enrichment analysis of the network 639 

modules. Only the significantly enriched non redundant GO are shown. 640 

 641 

ChIP-seq data and analysis 642 

ChIP-seq data were downloaded from GSE45213 for SPL7 [39], from GSE129865 for 643 

GI [40], from GSE43286 for PIF4 [41] and from GSE36361 for PRR5 [42]. 644 

ChIP-seq data were analysed in house, using a combination of publicly available 645 

software and in-house scripts. Reads were aligned to the TAIR10 genome using 646 

Bowtie2 [60]. Potential optical duplicates were removed using Picard tools 647 

(https://github.com/broadinstitute/picard). Peak calling was performed using MASC2 648 

[61], with the corresponding INPUT used as a reference. Snapshots of ChIP-seq signal 649 

around targets were shown using the Integrative Genomics Viewer (IGV [62] ). 650 

 651 
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 862 

Supplementary Figures and Tables legends 863 

Supplementary figure 1 864 

Expression in seedlings of genes in module 1, from the RNA-seq data, with one line 865 

per gene. Expression is mean normalised for each gene. 866 

 867 

Supplementary figure 2 868 

Comparison of edges in modules detected in the networks containing edges present 869 

in 3 or 4 consecutive time points. Modules detected in the network based on edges 870 

present in at least 3 consecutive time points are shown in blue. Modules detected in 871 

the network based on edges present in at least 3 consecutive time points are shown 872 

in red. For the later, the percentage of edges of the modules that are also detected in 873 

the blue modules are indicated. 874 

 875 

Supplementary figure 3 876 
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Number of edges in the final network that are detected in each time point, for every 877 

module containing at least 5 genes. 878 

 879 

Supplementary figure 4 880 

a. Correlation in expression between seedlings for genes of the module 1 and module 881 

21, for the RNA-seq experiment. AT5G07690 at ZT14 was removed as it is not 882 

expressed.   883 

b. Correlation in expression between seedlings for genes of the module 1 and module 884 

21, based on a RT-qPCR replicate of the RNA-seq experiment. Sixteen seedlings 885 

where harvested at ZT6 and at ZT14. 886 

c. Normalised expression level in the fourteen seedlings for the genes of the module 887 

21, from the RNA-seq data. Expression level for AT4G13250 is shown as the x axis 888 

while expression for the other genes of the module are shown on the y axis. 889 

Expression is mean normalised for each gene. 890 

 891 

Supplementary figure 5 892 

a. Inter-individual gene expression variability profiles throughout the time course for 893 

genes in each module with 5 genes or more. Each line represents the corrected 894 

variability level for one gene: : corrected CV2=[log2(CV2/trend)], with 895 

CV2=variance/(average2)] (see Cortijo et al., 2019). 896 

Modules are ordered by the percentage of HVG (high to low). Modules highlighted in 897 

blue contain 75% or more of HVGs. Modules highlighted in red contain 10% or less of 898 

HVGs. 899 
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b. Heatmap of normalized gene expression for genes in modules 2, 6 (less than 15% 900 

HVG), module 4 (55% of HVG) and modules 15 and 24 (more than 85% of HVG). 901 

Expression is shown in single seedlings from the time point ZT20. Expression is mean 902 

normalised: expression in a seedling/ averaged expression in all seedlings. The left 903 

color coded bar indicates the module of each gene. 904 

 905 

Supplementary figure 6 906 

a. Expression profiles throughout the time course for genes in module 8. Each line 907 

represents the normalised expression (z-score) for one gene. Genes of the 908 

photosystem I, II or the light harvesting system are in blue.  909 

b. All edges and nodes of module 8. Genes of the photosystem I, II or the light 910 

harvesting system are in blue. 911 

 912 

Supplementary figure 7 913 

a. Analysis of PRR5 TF targets on the module 8. 32 of the 41 genes in the module 8 914 

are known targets of PRR5 (left). IGV screenshot showing the signal for the PRR5 915 

ChIP-seq (right) at a known PRR5 target (top) and for a gene in the module 64 that is 916 

not known as a PRR5 target (bottom). 917 

b. Comparison of published (blue) and realised (grey) PRR5 targets in modules 8 (left) 918 

and 21 (right). 919 

 920 

Supplementary figure 8 921 

Organisation of modules in the network, with the size of circles representing the 922 
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module size (i.e. number of edges). Number of edges connecting the modules are 923 

represented by the thickness of the lines between modules. 924 

a. Most enriched GOs are written in each module. 925 

b. Modules are color coded based on the percentage of edges in the averaged time 926 

course network. Dark blue modules have a high percentage of genes in the averaged 927 

time course network while light blue modules have a low percentage of genes in the 928 

averaged time course network. 929 

 930 

 931 

Table S1 932 

List of genes in each module 933 

 934 

Table S2 935 

GO enriched (corrected p-value<0.5) in each module 936 

 937 

Table S3 938 

Function of genes in modules 1, 43 and 71 939 

 940 

Table S4 941 

Number and percentage in the modules of targets for the TFs SPL7, GI, PIF4 and 942 

PRR5 943 
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