
1 
 

Microscopy-based assay for semi-

quantitative detection of SARS-CoV-2 

specific antibodies in human sera 
Authors: Constantin Pape1,2,*, Roman Remme1,*, Adrian Wolny1,2, Sylvia Olberg3, Steffen Wolf1, 

Lorenzo Cerrone1, Mirko Cortese4, Severina Klaus5, Bojana Lucic6, Stephanie Ullrich3, Maria 

Anders-Össwein3, Stefanie Wolf3, Cerikan Berati4, Christopher Neufeld4, Markus Ganter5, Paul 

Schnitzler3, Uta Merle7, Marina Lusic6, Steeve Boulant3,8, Megan Stanifer4,8, Ralf 

Bartenschlager4,9, Fred A. Hamprecht1, Anna Kreshuk2, Christian Tischer2, Hans-Georg 

Kräusslich3,9, Barbara Müller3,# and Vibor Laketa3,9,# 

 

1HCI/IWR, Heidelberg University, Heidelberg, Germany 

2European Molecular Biology Laboratory, Heidelberg, Germany 

3Department of Infectious Diseases, Virology, University Hospital Heidelberg, Heidelberg, 

Germany 

4Department of Infectious Diseases, Molecular Virology, University Hospital Heidelberg, 

Heidelberg, Germany 

5Department of Infectious Diseases, Parasitology, University Hospital Heidelberg, Heidelberg, 

Germany 

6Department of Infectious Diseases, Integrative Virology, University Hospital Heidelberg, 

Heidelberg, Germany 

7Department of Gastroenterology and Hepatology, University Hospital of Heidelberg, 

Heidelberg, Germany 

8Research Group “Cellular polarity and viral infection”, German Cancer Research Center 

(DKFZ), Heidelberg, Germany 

9German Center for Infection Research, Heidelberg, Germany 

#Corresponding authors: Vibor Laketa, Department of Infectious Diseases, Virology, University 

Hospital Heidelberg, Im Neuenheimer Feld 344, 69120 Heidelberg, Germany, Email: 

vibor.laketa@med.uni-heidelberg.de and Barbara Müller, Department of Infectious Diseases, 

Virology, University Hospital Heidelberg, Im Neuenheimer Feld 344, 69120 Heidelberg, 

Germany, Email: barbara.mueller@med.uni-heidelberg.de  

*equal contribution 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 15, 2020. ; https://doi.org/10.1101/2020.06.15.152587doi: bioRxiv preprint 

mailto:vibor.laketa@med.uni-heidelberg.de
mailto:barbara.mueller@med.uni-heidelberg.de
https://doi.org/10.1101/2020.06.15.152587
http://creativecommons.org/licenses/by-nc-nd/4.0/


2 
 

 

Abstract 

Emergence of the novel pathogenic coronavirus Sars-CoV-2 and its rapid pandemic 

spread presents numerous questions and challenges that demand immediate attention. Among 

these is the urgent need for a better understanding of humoral immune response against the 

virus and assessment of seroprevalence levels in the population, both of which form the basis 

for developing public health strategies to control viral spread. For this sensitive, specific and 

quantitative serological assays are required. Here, we describe the development of a semi-

quantitative high-content microscopy-based assay for detection of three major classes (IgG, IgA 

and IgM) of Sars-CoV-2 specific antibodies in human samples. The possibility to detect 

antibodies against the entire viral proteome together with a robust semi-automated image 

analysis workflow resulted in improvement of sensitivity and specificity compared to an approved 

ELISA-based diagnostic test. Combining both resulted in maximum specificity in a negative 

control cohort, while maintaining high sensitivity. The procedure described here is compatible 

with high-throughput microscopy approaches and may be applied for serological analysis of 

other virus infections. 

Introduction 

The emergence of the novel pathogenic coronavirus Sars-CoV-2 at the end of 20191–3 

and the rapid pandemic spread of the virus had dramatic consequences in all affected countries. 

In the absence of a protective vaccine or a causative antiviral therapy for COVID-19 patients, 

testing for Sars-CoV-2 infection and tracking of transmission and outbreak events are of 

paramount importance to control viral spread and avoid the overload of healthcare systems. The 

sequence of the viral genome became publicly available only weeks after the initial reports on 

COVID-19 via the community online resource virological.org and allowed rapid development of 

reliable and standardized quantitative RT-PCR (qPCR) based tests for direct virus detection in 

nasopharyngeal swab specimens4. These tests are the key to identify acutely infected individuals 

and monitor virus load as a basis for the implementation of quarantine measures and treatment 

decisions. 
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In response to the initial wave of COVID-19 infection many countries implemented more 

or less severe lockdown strategies, resulting in a gradual decrease in the rate of new infections 

and deaths5. With gradual release of these lockdown strategies, monitoring and tracking of Sars-

CoV-2 specific antibody levels becomes highly important. Many critical aspects of the humoral 

immune response against Sars-CoV-2 are currently not well understood. For example, Sars-

CoV-2 infection is frequently accompanied by relatively mild symptoms and may also occur 

asymptomatic6,7. In addition, many COVID-19 cases may be undocumented due to limitations in 

the testing capacity and availability of hospital care especially in areas of high infection rate. 

Therefore, the proportion of asymptomatic carriers and levels of infection in the general 

population in different countries remain largely unknown. Any public health control strategy 

aiming at regulating human mobility and social behavior in order to suppress the infection rate 

will have to take into account the proportion of seropositive individuals in the population8. Further, 

there is evidence that age is a factor that influences the outcome of exposure to the virus. Data 

from countries with widespread Sars-CoV-2 infection revealed that young children rarely suffer 

from severe COVID-19 respiratory symptoms9,10. However, whether this correlation indicates 

lower susceptibility to infection and/or is due to lower or different pathogenicity of the virus in 

children is a matter of debate. Other important open questions are how antibody levels are 

correlated to the titer of neutralizing antibodies, and how these titers in turn correlate to protection 

against reinfection. Finally, the dynamics of antibody development in different age groups, in 

severe, mild or asymptomatic infections, or under different treatment conditions, as well as the 

duration of a potential antibody response remain to be investigated. Answers to all of these 

questions are crucial elements for planning strategies to control the disease. Thus, there is an 

urgent need for specific, sensitive and reliable methods for the quantitative detection of Sars-

CoV-2 specific antibodies in human specimens. 

Compared to the RNA based approach for direct virus diagnostics, development of test 

systems for detection of Sars-CoV-2 specific antibodies proved to be more challenging. Due to 

the emergency of the situation initially marketed test kits underwent a very rapid development 

and approval process, with low numbers of samples used for validation; consequently, sensitivity 

and specificity of the test systems often failed to meet the practical requirements11. In particular, 

cross reactivity of antibodies against circulating common cold coronaviruses (strains OC43, 

NL63, 229E and HKU1) are of concern in this respect as it was observed in case of serological 

tests developed for closely related Sars-CoV and Mers-CoV12. Developments in the past months 

have resulted in improvements of commercially available antibody tests, and better validated 
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ELISA or (electro)chemoluminescence based diagnostic kits are available. Nevertheless, given 

the likely currently low percentage of seropositive individuals in the low one-digit range13–15 and 

estimated seroprevalence of antibodies against common cold coronaviruses of over 90% in the 

global population16, even tests with a specificity of 99% are bound to yield a high proportion of 

false positive results in studies screening cohorts from the general public. Thus, strategies to 

test for Sars-CoV-2 antibodies which combine increased sensitivity and specificity with high 

information content (antibody levels, class of antibodies, viral target protein or peptide) with 

quantitative information and high sample throughput are urgently needed. 

Immunofluorescence (IF) using virus infected cells as a specimen is a classical 

serological approach in virus diagnostics and has also been employed for coronaviruses, 

including the closely related virus Sars-CoV17–19. The advantages of IF are (i) that it does not 

depend on specific diagnostic reagent kits or instruments, (ii) that the specimen contains all viral 

antigens expressed under near-native conditions and (iii) that the method offers potential for 

high information content (semi-quantitative assessment; differentiation of staining patterns due 

to reactivity against various viral proteins) and high throughput. A disadvantage of the classical 

IF approach is the involvement of manual handling steps. Furthermore, the classification of 

samples based on visual inspection of micrographs is subjective and thus not well standardized; 

further, only binary results are obtained. Here, we present the development and validation of a 

semi-quantitative, semi-automated workflow for Sars-CoV-2 specific antibody detection. With its 

96-well format, semi-automated microscopy and automated image analysis workflow it combines 

advantages of IF with a reliable and objective semi-quantitative readout. Whereas the protocol 

was developed in response to the ongoing Sars-CoV-2 pandemic, the method described here 

can be adapted for the study of other viral infections. 

Results  

Setup of the IF assay for SARS-CoV-2 antibody detection 

We decided to use cells infected with Sars-CoV-2 as samples for our IF analyses, since 

this setup provides the best chance for detection of antibodies targeted at the different viral 

proteins expressed in a near-natural context. African green monkey kidney epithelial cells 

(VeroE6 cell line) have already been used for infection with Sars-CoV-2, virus production and 

IF3,20. In preparation for this study we compared different cell lines for use in infection and IF 
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experiments, but all tested cell lines were found to be inferior to VeroE6 cells for our purposes 

(see Materials and Methods and Supplementary Figure 1). All following experiments were thus 

carried out using the VeroE6 cell line.  

In order to allow for clear identification of positive reactivity in spite of a variable and 

sometimes high nonspecific background from human sera, our strategy involves a direct 

comparison of the IF signal from infected and non-infected cells in the same sample. Preferential 

antibody binding to infected compared to non-infected cells indicates the presence of specific 

SARS-CoV-2 antibodies in the examined serum. Under our conditions, infection rates of ~40-

80% of the cell population were achieved, allowing for a comparison of infected and non-infected 

cells in the same well. An antibody that detects dsRNA produced during viral replication was 

used to distinguish infected from non-infected cells within the same field of view (Figure 1A). 

In order to define the conditions for immunostaining using human serum, we selected a 

small panel of negative and positive control sera. Four sera from healthy donors collected before 

November 2019 were chosen as negative controls, and eight sera from PCR confirmed COVID-

19 inpatients collected at day 14 or later post symptom onset were employed as positive controls. 

Sera from this test cohort were used for primary staining, and bound antibodies were detected 

using fluorophore-coupled secondary antibodies against human IgG, IgA or IgM.  

No difference between infected and non-infected cells in serum IgG antibody binding was 

observed when sera collected before the start of the Sars-CoV-2 pandemic were examined 

(Figure 1B, Supplementary Figure 2). In contrast, when examining COVID-19 patient serum, we 

clearly detected higher serum IgG antibody binding to infected compared to non-infected cells 

(Figure 1B). All eight COVID-19 patient serum samples yielded higher IgG binding to infected 

compared to non-infected cells as assessed by visual inspection (Supplementary Figure 2). 

Similar results were obtained when an IgA or IgM specific secondary antibody was used for 

detection (Supplementary Figure 3). In order to allow for the parallel assessment of IgG and IgA 

or IgM antibodies, we established conditions for the parallel detection of anti-IgG coupled to 

AlexaFluor488 and anti-IgA or anti-IgM coupled to DyLight650 or AlexaFluor647 secondary 

antibodies, respectively, without signal bleedthrough. Using this approach, it was possible to 

implement detection of SARS-CoV-2 specific IgG and IgA or IgM antibodies in a single 

experimental setup (Supplementary Figure 4). 
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Titration experiments were performed with positive control sera to determine the optimal 

range of serum concentration in the IF experiments. All eight positive control samples showed 

visually detectable specific labeling of infected cells over the range of 1:102 and 1:105, 

demonstrating robustness of the assay (Supplementary Figure 5). Serum concentrations of less 

than 1:105 did not yield detectable signals in all cases. We decided to employ a dilution of 1:102 

in the further experiments 

Image analysis 

Our next aim was to establish a semi-automated analysis workflow for image acquisition and 

analysis for a medium-high throughput setting. VeroE6 cells were seeded into 96-well plates 

infected and immunostained using anti-dsRNA antibody and patient serum, followed by indirect 

detection using a mixture of anti-IgG and anti-IgA/IgM secondary antibodies. Images were 

acquired using an automated widefield microscope (see Materials and Methods section for more 

details) .  

To obtain a measure for specific antibody binding, we performed automated 

segmentation of cells and classified them into infected and non-infected cells based on the 

dsRNA staining. We then measured fluorescence intensities in the serum channel per cell as a 

proxy for the amount of bound antibodies for both infected and non-infected cells and calculated 

the ratio between these values for infected and non-infected cells in a given sample. To afford 

training of a machine learning approach for the cell segmentation, and to directly evaluate the 

infected cell classification, we manually labeled cells and annotated them as infected/non-

infected in 10 images chosen from 5 positive and 5 control samples. Figure 2 presents a 

graphical overview of all analysis steps; the full description of every step can be found in 

Materials and Methods. Briefly, our approach works as follows: 

First, we manually discarded all images that contained obvious artefacts such as large 

dust particles or dirt and out-of-focus images. Then, images were processed to correct for the 

uneven illumination profile in each channel. Next, we segmented individual cells with a seeded 

watershed algorithm21, using nuclei segmented via StarDist22 as seeds and boundary predictions 

from a U-Net23,24 as a heightmap. We evaluated this approach using leave-one-image-out cross-

validation on the manual annotations and measured an average precision25 of 0.77 +- 0.08 (i.e., 

on average 77% of segmented cells are matched correctly to the corresponding cell in the 

annotations). Combined with extensive automatic quality control which discards outliers in the 
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results, the segmentation was found to be of sufficient quality for our analysis, especially since 

robust intensity measurements were used to reduce the effect of remaining errors. 

We then classified the segmented cells into infected and non-infected, by measuring 

the 95th percentile intensities in the dsRNA channel and classifying cells as infected if this value 

exceeded 4.8 times the noise level, determined by the mean absolute deviation. This factor and 

the percentile were determined empirically using grid search on the manually annotated images 

(see above). Using leave-one-out cross validation on the image level, we found that this 

approach yields an average F1-score of 84.3%. 

In order to make our final measurement more reliable, we then discarded whole wells, 

images or individual segmented cells based on quality control criteria that were determined by 

inspection of initial results. Those criteria include a minimal number of non-infected cells per 

well; minimal and maximal number of cells per image; minimal cell intensities for images; and 

minimal and maximal sizes of individual cells (see Materials and Methods for full details). 

To score each sample, we computed the intensity ratio 𝑟 : 

𝑟 =
𝑚𝐼

𝑚𝑁
 Eq. 1 

Here, 𝑚𝐼 is the median serum intensity of infected cells and 𝑚𝑁 the median serum intensity of 

non-infected cells. For each cell, we compute its intensity by computing the mean pixel intensity 

in the serum channel (excluding the nucleus area where we typically did not observe serum 

binding) and then subtracting the background intensity, which is measured on two control wells 

that did not contain any serum. 

We used efficient implementations for all processing steps and deployed the analysis 

software on a computer cluster in order to enhance the speed of imaging data processing. For 

visual inspection, we have further developed an open-source software tool (PlateViewer) for 

interactive visualization of high-throughput microscopy data26. PlateViewer was used in a final 

quality control step to visually inspect positive hits. For example, PlateViewer inspection allowed 

identifying a characteristic spotted pattern co-localizing with the dsRNA staining (Supplementary 

Figure 6) that was sometimes observed in the IgA channel upon staining with negative control 

serum. In contrast, sera from COVID-19 patients typically displayed cytosol, ER-like and plasma 

membrane staining patterns in this channel (Figure 1B, Supplementary Figure 3). The dsRNA 

co-localizing pattern observed for sera from the negative control cohort is by definition non-
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specific for Sars-CoV-2, but would be classified as a positive hit based on staining intensity 

alone. Using PlateViewer, we performed a quality control on all IgA positive hits and removed 

those displaying the spotted pattern colocalizing with dsRNA signal from further analysis.  

Assay characterization and validation 

With the immunofluorescence protocol and automated image analysis in place we 

proceeded to test a larger number of control samples in a high throughput compatible manner 

for assay validation. All samples were processed for IF as described above, and in parallel 

analyzed by a commercially available semi-quantitative Sars-CoV-2 ELISA approved for 

diagnostic use (Euroimmun, Lübeck, Germany) for the presence of Sars-CoV-2 specific IgG and 

IgA antibodies. 

As outlined above, a main concern regarding serological assays for Sars-CoV-2 

antibody detection is the occurrence of false positive results. A particular concern in this case is 

cross-reactivity of antibodies that originated from infection with any of the four types of common 

cold Corona viruses (ccCoV) circulating in the population. Although the highly immunogenic 

major structural proteins of Sars-CoV-2  nucleocapsid (N) and spike (S) protein, have an overall 

homology of ~30%3 to their counterparts in ccCoV, subdomains of these proteins display higher 

homology and the cross-reactivity with ccCoV has been discussed as the major reason for false 

positive detection in serological tests for closely related Sars-CoV and Mers-CoV12. Also, acute 

infection with Epstein-Barr virus (EBV) or cytomegalovirus (CMV) may result in unspecific 

reactivity of human sera27,28. We therefore selected a negative control panel consisting of 219 

sera collected before the fall of 2019, comprising samples from healthy donors (n=105, cohort 

B), patients that tested positive for ccCoV several months before the blood sample was taken 

(n=34, all four types of ccCoV represented; cohort A), as well as patients with diagnosed 

Mycoplasma pneumoniae (n=22; cohort Z), EBV or CMV infection (n=58, cohort E). We further 

selected a panel of 57 sera from 29 RT-PCR confirmed COVID-19 patients collected at different 

days post symptom onset as a positive sample set (cohort C, see below). 

Sera were employed as primary antisera for IF staining using IgM, IgA or IgG specific 

secondary antibodies, and samples were imaged and analyzed as described above. This 

procedure yielded a ratiometric intensity score for each serum sample. Based on the scores 

obtained for the negative control cohort and the patient sera, we defined the threshold separating 

negative from positive scores for each of the antibody channels. For this, we performed ROC 
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curve analysis29–31 on a subset of the data (cohorts A, B, C, Z). Using this approach, it is possible 

to take the relative importance of sensitivity versus specificity into account for optimal threshold 

definition. By giving more weight to false positive or false negative results, one can adjust the 

threshold dependent on the context of the study. Whereas high sensitivity is of importance for 

e.g. monitoring seroconversion of a patient known to be infected, high specificity is crucial for 

population based screening approaches, where large study cohorts characterized by low 

seroprevalence are tested. Since we envision the use of the assay for screening approaches, 

we decided to assign more weight to specificity at the cost of sensitivity for our analyses (see 

Materials and Methods for an in-depth description of the analysis). Optimal separation in this 

case was given using threshold values of 1.39, 1.31 and 1.27 for IgA, IgG and IgM channels 

respectively (Supplementary Figure 7). We validated the classification performance on negative 

control cohort E (n=58) which was not seen during threshold selection, and detected no positive 

results.  Results from the analysis of the negative control sera are presented in Figure 4 and 

Table 1. 

While the majority of samples were tested negative in ELISA measurements as well as 

in the IF analyses, some positive readings were obtained in each of the assays. Since samples 

from these cohorts were collected between 2015 and 2019 and donors were therefore not 

exposed to Sars-CoV-2 before sampling, these readings represent false positives. Of note, 

negative control cohort E displayed a particularly high rate of false positives in ELISA 

measurements, but not in IF (Table 1). We conclude that the threshold values determined 

achieve our goal of yielding highly specific results (at the cost of sub-maximal sensitivity). 

Roughly 8% (IgA) or 3% (IgG) of the samples were classified as positive or potentially 

positive by ELISA (Table 1). The notably lower specificity of the IgA determination in a 

seronegative cohort observed here is in accordance with findings in other studies32,33 and 

information provided by the manufacturer of the test (90,5% for IgA vs. 99,3% for IgG; 

Euroimmun Sars-CoV-2 data sheet, April 24, 2020). The respective false-positive numbers 

obtained based on IF, 0% for IgA and 0,9% for IgG, were lower, indicating moderately higher 

specificity of the IF readout compared to the ELISA measurements. Importantly, however, false 

positive readings did not correlate between ELISA and IF (Figure 4). Thus, classifying only 

samples that test positive in both assays as true positives resulted in the elimination of false 

positive results (0 of 219 positives detected). We conclude that applying both methods in parallel 

and using the ‘double positive’ definition for classification notably improves specificity of Sars-

CoV-2 antibody detection. 
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In order to determine the sensitivity of our IF assay, we employed 57 sera from 29 

symptomatic COVID-19 patients that had been RT-PCR confirmed for Sars-CoV-2 infection. 

Archived sera from these patients had been collected in the range between day 5 and 27 post 

symptom onset. Again, samples were measured both in IF and ELISA, and the correlation 

between the quantitative values was assessed as shown in Figure 5. While there were deviations 

in the height of the values, positive correlation was evident in both cases, with values for the IgG 

readout being more congruent than those for the less specific IgA determination (Pearson r: 

0,847 for IgG; 0,599 for IgA).   

For an assessment of sensitivity, we stratified the samples according to the day post 

symptom onset, as shown in Figure 6. For both methods, and for all antibody classes, mean 

values and the proportion of positive samples increased over time. In all cases, only positive 

values were obtained for samples collected later than day 14 post symptom onset, in accordance 

with other reports33–35. Consistent with other reports35, Sars-CoV-2 specific IgM was not detected 

notably earlier than the two other antibody classes in our measurements. At the earlier time 

points (up to day 14), a similar or higher proportion of positive samples was detected by IF 

compared to ELISA for IgA and IgG, respectively. Although the sample size used here is too 

small to allow a firm conclusion, these results suggest that the sensitivity of IgG detection by the 

semi-quantitative IF approach is higher than that of an approved semi-quantitative ELISA assay 

routinely used in diagnostic labs.  
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Discussion 
 

Here, we describe the development of a semi-quantitative IF based assay for detection 

of Sars-CoV-2 specific antibodies in human samples that complements available ELISA-based 

testing systems and thereby enhances the selectivity of detection. Specificity of detection is 

essential in a current setting of relatively low Sars-CoV-2 antibody prevalence13–15 in conjunction 

with high prevalence of potentially cross-reactive anti-ccCoV antibodies in a global population16. 

By combining two technically different serological assays, IF and ELISA, and classifying as 

“positive hits” only those that scored positive in both assays, we achieved maximum specificity 

in our negative control test cohorts. With this approach, high sensitivity was still achieved as all 

positive control samples from COVID-19 patients collected later than 14 days post symptom 

onset tested positive in both assays. This approach will serve as a principle for our future 

serological studies.   

A major advantage of the IF based assay presented here is that the specimens used 

for detection present the entire viral proteome expressed under near-native conditions, while 

ELISA or chemiluminescent approaches use a single recombinantly expressed antigen. Both 

the N and S protein of coronaviruses are highly immunogenic, and it is assumed that antibodies 

binding to the receptor binding domain on the S1 subunit are most relevant for neutralization. 

However, the relative importance of antibodies directed against the N protein for potential 

protective immunity against Sars-CoV-2 is currently unclear. Other Sars-Cov-2 structural and 

non-structural proteins might also play a role in immune response as it was shown for proteins 

3a and 9b of closely related Sars-Cov36. In addition, expression of the viral proteome in 

permissive cells ensures the correct protein folding and the presence of post-translational 

modification pattern such as glycosylation. Alterations in post-translational modifications are 

likely to influence the ability of serum antibodies to bind to different viral epitopes as it was shown 

for other viruses such as HIV37. The high information content of the IF data (differential staining 

patterns) or the implementation of stable cell lines expressing selected viral antigens in the IF 

assay will provide additional parameters for classification of patient sera. By combining such cell 

lines with spectral unmixing microscopy38 it would be not only possible to simultaneously 

determine the level of all three major classes of antibodies (IgM, IgG and IgA) but also to 

determine the identity of viral antigens recognized in a single multiplexed approach. Using 

recombinant cell lines will also allow to implement automated cell seeding and immunostaining 

pipelines already established in the field of high-content screening microscopy39, thereby 

enabling true high-throughput application.  
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High sensitivity and exclusive specificity of serological assays are inversely correlated, 

making it necessary to balance to some degree between these two desirable properties. 

Depending on the context of a study and the questions to be addressed, sensitivity or specificity 

may be of higher importance. The automated image analysis protocol developed here allows the 

user to adapt the classification according to the study needs, putting more weight on either one 

of the parameters.  

Finally, the described analysis pipeline can be applied for serological analysis of other 

virus infections, provided that there is an infectable cell line and a staining procedure that allows 

differentiating between infected and non-infected cells in the sample. 
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Methods 

Human material 

Negative control serum samples (n=219) were collected for various serological testing in the 

routine laboratory of the Center of Infectious Diseases, University Hospital Heidelberg between 

2015 and 2019, before the start of the SARS-CoV-2 outbreak. Samples used corresponded to 

pseudonymized remaining material from the archive of the Center of Infectious Diseases. Sars-

CoV-2 positive sera were collected from 29 PCR confirmed symptomatic COVID-19 inpatients 

(n=17) or outpatients (n=12) treated at the University Hospital Heidelberg under general 

informed consent (ethics votum no S-148/2020, University Hospital Heidelberg). Days post 

symptom onset were defined based on the anamnesis carried out upon admission. Serum 

samples were stored at -20°C until use.  

Virus stock production  

VeroE6 cells were cultured in Dulbecco’s modified Eagle medium (DMEM, Life Technologies) 

containing 10% fetal bovine serum, 100 U/mL penicillin, 100 µg/mL streptomycin and 1% non-

essential amino acids (complete medium). 

SARS-CoV-2 virus stocks were produced by amplification of the BavPat1/2020 strain (European 

Virus Archive) in VeroE6 cells. To generate the seed virus (passage 3), VeroE6 cells were 

infected with the original virus isolate, received as passage 2, at an MOI of 0.01. At 48 h post 

infection (p.i.), the supernatant was harvested and cell debris was removed by centrifugation at 

800xg for 10 min. For production of virus stocks (passage 4), 500µl of the seed virus was used 

to infect 9E+06 VeroE6 cells. The resulting supernatant was harvested 48h later as described 

above. Virus titers were determined by plaque assay. Briefly, 2.5E+06 VeroE6 cells were plated 

into 24 well plates. 24 h later, cells were infected with serial dilutions of SARS-CoV-2 for 1 h. 

Inoculum was then removed and the cells were overlaid with serum free DMEM containing 0.8% 

carboxymethylcellulose. At 72 h. p.i., cells were fixed with 5% formaldehyde for 1 h followed by 

staining with 1% Crystal violet solution. Plaque forming units per ml (PFU/ml) were estimated by 

manual counting of the viral plaques. Stock solutions were stored in aliquots at -80°C until use 

for infection experiments. 

Infection of cells and immunofluorescence staining       
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In order to find a suitable cell line for our application, we performed pre-experiments comparing 

different cell lines with respect to their susceptibility to Sars-CoV-2 infection. Cells were seeded 

on glass coverslips and infected on the following day with SARS-CoV-2 strain BavPat1/2020 for 

16h at MOI 0.01. Cells were fixed with 6%PFA in PBS, followed by permeabilization with 0.5% 

Triton X100 in PBS and then subjected to a standard immunofluorescence staining protocol as 

described in materials and methods. Only very few infected calls were detected in the case of 

hepatocyte-derived carcinoma cells (HUH-7), human embryonic kidney (HEK293T) and human 

alveolar basal epithelial (A549) cells (Supplementary Figure 1). Calu-3 cells grew in small 

clumps, often on top of each other which impacted our microscopy-based readout. In contrast, 

VeroE6 cells grew as a monolayer and were viable for at least 24h post infection. Based on 

these results, VeroE6 cells were chosen for all experiments in this manuscript.  

For serum screening by IF microscopy, VeroE6 cells were seeded at a density of 7,000 cells per 

well into a black-wall glass-bottom 96 well plates (Corning, Product Number 353219) or on glass 

coverslips placed in a 24-well plate. 24 h after seeding, cells were infected with SARS-COV-2 at 

an MOI of 0.01 for 16 h. Cells were then fixed with 6% Formaldehyde for 1 h followed by washing 

3x with phosphate buffered saline (PBS) under biosafety level 3. Afterwards, samples were 

handled under biosafety level 2. Cells were washed once in PBS containing 0,02% Tween 20 

(Sigma) and permeabilized using 0,5% Triton X100 (Sigma) for 10 minutes. Samples were 

washed again and blocked using 2% powdered milk (Roth) in PBS for 20 min followed by two 

additional washing steps. All washing steps in a 96-well format were performed using the 

HydroFlex microplate washer (Tecan). Next, cells were incubated with patient serum (prediluted 

1:1 in 0,4% Triton-X100 in PBS; further dilution 1:50 in PBS if not stated otherwise) and anti ds-

RNA mouse monoclonal J2 antibody (Scicons, 1:4000) in PBS for 30 min at room temperature. 

After 3 washing steps, cognate secondary antibodies were applied for 20 min at room 

temperature. Goat anti-human IgG-AlexaFluor 488 (Invitogen, Thermofisher Scientific), goat 

anti-human IgA DyLight 650 (Abcam), goat anti-human IgM u chain (Invitogen, Thermofisher 

Scientific), for detecting immunoglobulins in human serum together with goat anti-mouse IgG-

AlexaFluor 568 (Invitogen, Thermofisher Scientific) for dsRNA detection, all at 1:2000 dilution in 

PBS, have been used. After incubation with secondary antibodies cells were washed twice, 

stained with Hoechst (0,002µg/ml in PBS) for 3 minutes, washed again twice and stored at +4°C 

until imaging. 

Microscopy 
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Samples were imaged on motorized Nikon Ti2 widefield microscope using a Plan Apo lambda 

20x/0.75 air objective and a back-illuminated EM-CCD camera (Andor iXon DU-888). To 

automatically acquire images in 96-well format, the JOBS module was used. The system was 

configured to acquire 9 images per well (in a regular 3 x 3 pattern centered in the middle of each 

well). The Perfect Focus System was used for autofocusing followed by a software-based fine 

focusing using the Hoechst signal in an axial range of 40um. Images were acquired in 4 channels 

using the following excitation/emission settings: Ex 377/50, Em 447/60 (Hoechst); Ex 482/35, 

Em 536/40 (AlexaFluor 488); Ex 562/40, Em 624/40 (AlexaFluor 568) and Ex 628/40, Em 692/40 

(AlexaFluor 647 and DyLight 650). Exposure times were in the range between 50 and 100ms 

with EM gain between 50 and 150. 

 

Enzyme linked immuno- sorbent assay (ELISA) 

ELISA measurements for determination of reactivity against the S1 domain of the viral spike 

protein were carried out using the Euroimmun Anti-SARS-CoV-2-ELISA (IgA) and Anti-SARS-

CoV-2-ELISA (IgG) test kits (Euroimmun, Lübeck, Germany; EI 2606-9601 A and EI 2606-9601 

G) run on an Euroimmun Analyzer I instrument according to the manufacturer’s instructions. 

Optical densities measured for the samples were normalized using the value obtained for a 

calibrator sample provided in the test kit. The interpretation of the semi-quantitative ratiometric 

values obtained followed the manufacturer’s protocol: values <0,8 were classified as negative, 

0,8-1,1 as borderline, and values of 1,1 or higher as positive.  

Image Analysis 

Manual Annotations 

Two of our processing steps require manually annotated data: in order to train the convolutional 

neural network used for boundary and foreground prediction, we needed label masks for the 

individual cells. To determine suitable parameters for the infected cell classification, we needed 

a set of cells classified as being infected or non-infected. We have produced these annotations 

for 10 images with the following steps. First, we created an initial segmentation following the 

approach outlined in the Segmentation subsection, using boundary and foreground predictions 

from the ilastik40 pixel classification workflow, which can be obtained from a few sparse 

annotations. We then corrected this segmentation using the annotation tool BigCat 

(https://github.com/saalfeldlab/bigcat). After correction, we manually annotated these cells as 

infected or non-infected. Note that this mode of annotations can introduce two types of bias: the 
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segmentation labels are derived from an initial segmentation. Small systematic errors in the 

initial segmentation that were not found during correction, could influence the boundary 

prediction network. More importantly, when annotating the infected / non-infected cells, both the 

serum channel and the virus marker channel have to be available to the annotators, in order to 

visually delineate the cells. This may result in subconscious bias, with the observed intensity in 

the serum channel influencing the decision on the infection status of a cell. 

 

Preprocessing 

On all acquired images, we performed minimal preprocessing (i.e., flat-field correction) in order 

compensate for uneven illumination of the microscope system41. First, we subtract a constant 

CCD camera offset (ccd_offset). Secondly, we correct uneven illumination by dividing each 

channel by a corresponding corrector image (flatfield(𝑥, 𝑦)), which was obtained as a normalized 

average of all images of that channel, smoothed by a normalized convolution with a Gaussian 

filter with a bandwidth of 30 pixels. 

processed(𝑥, 𝑦) =
raw(𝑥, 𝑦) − ccd_offset

flatfield(𝑥, 𝑦) − ccd_offset
 Eq. 2 

This corrector image was obtained for all images of a given microscope set-up. Full background 

subtraction is performed later in the pipeline using either the background measured on wells that 

(deliberately) do not contain any serum or, if not available, using a fixed value that was 

determined manually. 

 

Segmentation 

Cell segmentation forms the basis of our analysis method. In order to obtain an accurate 

segmentation, we make use of both the DAPI and the serum channel. First, we segment the 

nuclei on the DAPI channel using the StarDist method22 trained on data from Caicedo et al. 

201942. Note that this method yields an instance segmentation: each nucleus in the image is 

assigned a unique id. In addition, we predict per pixel probabilities for the boundaries between 

cells and for the foreground (i.e. whether a given pixel is part of a cell) using a 2D U-Net23 based 

on the implementation of Wolny et al. 202024. This method was trained using the 9 annotated 

images, see above. The cells are then segmented by the seeded watershed algorithm21. We use 

the nucleus segmentation, dilated by 3 pixels, as seeds and the boundary predictions as the 

height map. In addition, we threshold the foreground predictions, erode the resulting binary 

image by 20 pixels and intersect it with the binarized seeds. The result is used as a foreground 
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mask for the watershed. The dilation / erosion is performed to alleviate issues with very small 

nucleus segments / imprecise foreground predictions. In order to evaluate this segmentation 

method, we train 9 different networks using leave-one-out cross-validation, training each network 

on 8 of the manually annotated images and evaluating it on the remaining one. We measure the 

segmentation quality using average precision25 at an intersection over union (IoU) threshold of 

0.5 as described in https://www.kaggle.com/c/data-science-bowl-2018/overview/evaluation. We 

measure a value of 0.77 +- 0.08 with the optimum value being 1.0.  

 

Quantitation and Scoring 

Infection classification 

To distinguish infected cells from control cells we use the dsRNA virus marker channel: infected 

cells show a signal in this channel while the non-infected control cells should ideally be invisible 

(see Figure 3). We classified each cell in the cell segmentation (see above) individually, using 

the following procedure. First, we denoised the marker channel using a white tophat filter with a 

radius of 20 pixels. To account for inaccuracies in the cell segmentation (the exact position of 

cell borders is not always clear), we then eroded all cell masks with a radius of 5 pixels and 

thereby discard pixels close to segment boundaries. This step does not lead to information loss, 

since the virus marker is mostly concentrated around the nuclei. On the remaining pixels of each 

cell, we compute the 0.95 quantile (𝑞) of the intensity in the marker channel. For the pixels that 

the neural network predicts to belong to the background (𝑏), we compute the median intensity 

of the virus marker channel across all images in the current plate. Finally, we classify the cell as 

infected if the 0.95 quantile of its intensity exceeds the median background by more than a given 

threshold: 

𝑞 −median(𝑏) > 𝑡 Eq. 3 

For additional robustness against intensity variations we adapt the threshold based on the 

variation in the background in the plate. Hence, we define it as a multiple of the mean absolute 

deviation of all background pixels of that plate with N=4.8:  

𝑡 = 𝑁 ∙ mad(𝑏) Eq. 4 

To determine the optimal values of the parameters used in our procedure, we used the cells 

manually annotated as infected / non-infected (see above). We performed grid search over the 

following parameter ranges:  

 Quantile: 0.9, 0.93, 0.95, 0.96, 0.97, 0.98, 0.99, 0.995 
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 𝑁: 0 to 10 in intervals of 0.1 

To estimate the validation accuracy, we performed leave-one-out cross-validation on the image 

level. This yields an average validation F1 score of 84.3%, precision of 84.3% and recall of 

84.8%. These values are the arithmetic means of the individual results per split. 

 

Immunoglobulin intensity measurements 

 

In order to obtain a relative measure of antibody binding, we determined the mean intensity and 

the integrated intensity in each segmented cell from images recorded in the IgG, IgA or IgM 

channel. A comparative analysis revealed that the mean intensity was more robust against the 

variability of cell sizes, whereas using the integrated intensity as a proxy yielded a higher 

variance in non-infected cells. Thus, mean intensity per cell was chosen as a proxy for the 

amount of antibody bound. Non-specific auto-fluorescence signals required a background 

correction of the measured average serum channel intensities. For background normalization, 

we used cells (one well per plate) which were not immunostained with primary antiserum. From 

this we computed the background to be the median serum intensity of all pixels of images taken 

from this well. This value was subtracted from all images recorded from the respective plate. In 

case this control well was not available, background was subtracted manually by selecting the 

area outside of cells in randomly selected wells and measuring the median intensity. 

 

Scoring 

The core interest of the assay is to measure the difference of antibody binding to cells infected 

with the coronavirus in comparison to non-infected control cells. To this end, utilizing the results 

of the image analysis, we compute the following summary statistics of the background corrected 

antibody binding of infected cells, 𝐼, and of non-infected cells, 𝑁: 

𝑚𝐼 = median(𝐼) Eq. 5 

𝑚𝑁 = median(𝑁) Eq. 6 

𝜎𝑁 = mad(𝑁) Eq. 7 

Using these, the ratio 𝑟, difference 𝑑 and robust z score 𝑧 are computed: 𝑟 =
𝑚𝐼

𝑚𝑁
 Eq. 8 

𝑑 = 𝑚𝐼 −𝑚𝑁 Eq. 9 
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𝑧 =
𝑚𝐼 −𝑚𝑁

𝜎𝑁
 Eq. 10 

We compute above scores for each well and each image, taking into account only the cells that 

passed all quality control criteria (see below). While the final readout of the assay is well-based, 

image scores are useful for quality control. 

 

Decision threshold selection 

In order to determine the presence of Sars-CoV-2 specific antibodies in patient sera, it was 

necessary to define a decision threshold r*. If a measured intensity ratio r is above a decision 

threshold r* than the serum would be characterized as positive for Sars-CoV-2 antibodies. For 

this an ROC analysis was performed31. Each possible choice of r* for a test corresponds to a 

particular sensitivity/specificity pair. By continuously varying the decision threshold, we 

measured all possible sensitivity/specificity pairs, known as ROC curves (Supplementary Figure 

7). To determine the appropriate r* we considered two factors29: 

 

● The undesirability of errors or relative cost of false-positive and false-negative 

classifications 

● The prevalence, or prior probability of disease 

 

These factors can be combined to calculate a slope in the ROC plot29–31 

𝑚 =
(𝑓𝑎𝑙𝑠𝑒𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑐𝑜𝑠𝑡)

(𝑓𝑎𝑙𝑠𝑒𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑐𝑜𝑠𝑡)

(1 − 𝑃)

𝑃
 Eq. 11 

where 𝑃 is the prevalence or prior probability of disease. 

 

The optimal decision threshold r*, given the false-positive/false-negative cost ratio and 

prevalence, is the point on the ROC curve where a line with slope m touches the curve. As 

discussed in the main text, a major concern regarding serological assays for Sars-CoV-2 

antibody detection is the occurrence of false-positive results. Therefore, we choose m to be 

larger than one in our analysis. In particular, we determine r* for the choice of m=10 (see 

Supplementary Figure 7). 

Quality control 
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We performed quality control of the images and analysis results at the level of wells, images and 

cells. The entities that did not pass quality control are not taken into account when computing 

the score during final analysis. We exclude wells that contain less than 100 non-infected cells, 

that have a median serum intensity of infected cells smaller than 3 times the noise level 

(measured by the median absolute deviation), or that have negative intensity ratios, which can 

happen due to the background subtraction. Out of 1.736 wells, 94 did not pass the quality control, 

corresponding to 5.4 % of wells. At the image level, we visually inspect all images and mark 

those that contain imaging artifacts using a viewer based on napari43. We distinguish the 

following types of artifacts during the visual inspection: empty, unstained or over-saturated 

images, as well as images covered by a large bright object. In addition, we automatically exclude 

images that contain less than 10 or more than 1000 cells. These thresholds are motivated by 

the observation that too few or too many cells often result from a problem in the assay. Thus, 

296 of the total 15.624 images were excluded from further analysis, corresponding to 1.9 % of 

images. Out of these, 295 were manually marked as outliers and only a single one did not pass 

the subsequent automatic quality control. Finally, we automatically exclude segmented cells with 

a size smaller than 250 pixels or larger than 12.500 pixels that most likely correspond to 

segmentation errors. These limits were derived by the histogram of cell sizes investigated for 

several plates. Two percent of the approximate 5.5 million segmented cells did not pass this 

quality control. In addition, we have also inspected all samples scored as positives. For the IgA 

channel, we have found a dotty staining pattern in ten cases that produced positive hits based 

on intensity ratio in negative control cohorts, but does not appear to indicate a specific antibody 

response. We have also excluded these samples from further analysis. 

Implementation 

In order to scale the analysis workflow to the large number of images produced by the assay, 

we implemented an open-source python library to run the individual analysis steps. This library 

allows rerunning experiments for a given plate for newly added data on demand and caches 

intermediate results in order to rerun the analysis from checkpoints in case of errors in one of 

the processing steps. To this end, we use a file layout based on hdf544 to store multi-resolution 

image data and tabular data. The processing steps are parallelized over the images of a plate if 

possible. We use efficient implementations for the U-Net24, StarDist22 and the watershed 

algorithm (http://ukoethe.github.io/vigra/) as well as other image processing algorithms45. We 

use pytorch (https://pytorch.org/) to implement  GPU-accelerated cell feature extraction. The 

total processing time for a plate (containing around 800 images) is about two hours and thirty 
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minutes using a single GPU and 8 CPU cores. In addition, the results of the analysis as well as 

meta-data associated with individual plates are automatically saved in a centralized MongoDB 

database (https://www.mongodb.com) at the end of the workflow execution. Apart from keeping 

track of the analysis outcome and meta-data, a user can save additional information about a 

given plate/well/image in the database conveniently using the PlateViewer (see below). All 

source code is available open source under the permissive MIT license at https://github.com/hci-

unihd/batchlib. 

 

Data visualization 

In order to explore the numerical results of our analysis together with the underlying image data 

we further developed a Fiji46 based open-source software tool for interactive visualization of high-

throughput microscopy data26. The PlateViewer links interactive results tables and configurable 

scatter plots (image and well based) with a plate view of all raw, processed and segmentation 

images. The PlateViewer is connected to the centralised database such that also image and well 

based metadata can be accessed. The viewer thus enables efficient visual inspection and 

scientific exploration of all relevant data of the presented assay. 

 

Data availability 

1. The data from the IF assay are available in the BioImage Archive 

(http://www.ebi.ac.uk/bioimage-archive) under accession number S-BIAD24. This 

includes raw microscopy images, intermediate segmentation and infected cell 

classification results as well as quality control and final score results. 
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Figures and tables 
 

Negative 

cohort 

IF IgM IF IgA IF IgG ELISA IgA ELISA IgG 

            

B (n=105) 1 0 1 7 5 

A (n=34) 0 0 1 1 1 

Z (n=22) 0 0 0 2 0 

E (n=58) 0 0 0 10 1 

            

Total 

(n=219) 

1 (0,5%) 0 (0,0%) 2 (0,9%) 20a (9,1%) 7a (3,2%) 

Table 1: Summary of positive results for the negative control samples obtained by ELISA 

and IF. The classification of positive or borderline results in ELISA followed the definition of the 

test manufacturer. The classification in IF is described in materials and methods. Positive IgA 

and IgG ELISA readings were derived from the same sample. a – borderline values were 

considered positive. 
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days post 

symptom 

onset 

IF IgM IF IgA IF IgG ELISA IgA ELISA IgG 

< 11 (n=17) 8 (47%) 9 (53%) 7 (41%) 11 (65%) 3 (18%) 

11-14 

(n=25) 

18 (72%) 19 (76%) 19 (76%) 19 (76%) 16 (64%) 

>14 (n=16) 16 (100%) 16 (100%) 16 (100%) 16 (100%) 16 (100%) 

            

Total (n=57) 42 (73%) 44 (77%) 42 (73%) 46 (80%) 34 (60%) 

            

Table 2: Positive results obtained for sera from COVID-19 patients collected at the 

indicated days post symptom onset.  
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Figure 1. 

 
 

Figure 1: Principle of the immunofluorescence assay for SARS-CoV-2 antibody detection. 

(A) Scheme of the IF workflow and the concept for SARS-CoV-2 antibody detection. (B) 

Representative images showing immunofluorescence results using a COVID-19 patient serum 

(positive control, upper panels) and a negative control serum (lower panels), followed by staining 

with an AlexaFluor488-coupled anti-IgG secondary antibody. Nuclei (gray), IgG (green), dsRNA 

(magenta) channels and a composite image are shown. White boxes mark the zoomed areas. 
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Dashed lines mark borders of non-infected cells which are not visible at the chosen contrast 

setting. Note that the upper and lower panels are not recorded and displayed with the same 

brightness and contrast settings. In the lower panels the brightness and contrast scales have 

been expanded in order to visualize cells in the IgG serum channel where only background 

staining was detected. Scale bar is 20 µm in overview and 10 µm in the insets.  
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Figure 2. 

 

 

Figure 2: Schematic overview of the image processing pipeline. Initially, images are 

subjected to the first manual quality control, where images with acquisition defects are 

discarded. A pre-processing step is then applied to correct for barrel artifacts. Subsequently, 

segmentation is obtained via seeded watershed, this algorithm requires seeds obtained from 

StarDist segmentation of the nuclei and boundary evidence computed using a neural network. 

Lastly, using the virus marker channel we classify each cell as infected or not infected and we 

computed the scoring. A final automated quality control identifies and automatically discards 

non-conform results. All intermediate results are saved in a database for ensuring fully 

reproducibility of the results.  
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Figure 3. 

 

 

Figure 3: Examples of results from the automated image analysis pipeline. Panels display 

images that correspond to three different ratio scores (ratio score is indicated above the image) 

determined from samples stained with three different human sera, followed by staining with an 

anit-IgG secondary antibody coupled to AlexaFluore488. Images represent overlays of three 

channels - nuclei (blue), IgG (green) and dsRNA (red). White boxes mark the zoomed area. 

Cells in the insets are highlighted with yellow or cyan boundaries, indicating infected and non-

infected cells, respectively. Scale bar = 10 m.  

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 15, 2020. ; https://doi.org/10.1101/2020.06.15.152587doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.15.152587
http://creativecommons.org/licenses/by-nc-nd/4.0/


32 
 

Figure 4. 

 

 

Figure 4: Correlation between Sars-CoV-2 specific IF and ELISA results for the negative 

control panel obtained in IgA (A) or IgG (B) measurements. Each dot represents one serum 

sample. Blue, healthy donors; red, ccCoV positive; green, CMV positive; orange, EBV positive; 

black, mycoplasma positive. Bottom panels represent zoomed-in versions of the respective top 

panel to illustrate the borderline region. (C) IgM values for the indicated negative control cohorts 

determined by IF. Since a corresponding IgM specific ELISA kit from Euroimmun was not 

available, correlation was not analyzed in this case. In some cases, antibody binding above 

background was undetectable by IF in non-infected as well as in infected cells, indicating low 

unspecific cross-reactivity and lack of specific reactivity of the respective serum.  In order to 

allow for inclusion of these data points in the graph, the IF ratio was set to 1,0. Dotted lines 

indicate the optimal separation cut-off values defined for sample classification, gray areas 

indicate borderline results in ELISA. 
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Figure 5. 

 

 

Figure 5: Correlation between IgA or IgG values obtained by ELISA and IF for sera from 

29 COVID-19 patients collected at different days post infection. Dotted lines indicate the 

cut-off values defined for classification of readouts, gray areas indicate borderline values. 

  

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 15, 2020. ; https://doi.org/10.1101/2020.06.15.152587doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.15.152587
http://creativecommons.org/licenses/by-nc-nd/4.0/


34 
 

Figure 6. 

 

 

Figure 6: Detection of Sars-CoV-2 specific antibodies in sera from COVID-19 patients. (A) 

Fifty-seven serum samples from 29 PCR confirmed patients collected at the indicated times post 

symptom onset were analyzed by the IF workflow for the presence of Sars-CoV-2 specific IgM, 

IgA and IgG antibodies. Each dot represents one serum sample. Red line: mean value; dotted 

line: cut-off between negative and positive values. (B) The same samples as in A were analyzed 

by ELISA for the presence of Sars-CoV-2 specific IgA and IgG antibodies. Each dot represents 

one serum sample. Red line: mean value; dotted lines: cut-off; gray zone: borderline. 
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