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Abstract 

Older aged adults and those with pre-existing conditions are at highest risk for severe COVID-

19 associated outcomes.  Using a large dataset of genome-wide RNA-seq profiles derived from 

human dermal fibroblasts (GSE113957) we investigated whether age affects the expression of 

pattern recognition receptor (PRR) genes and ACE2, the receptor for SARS-CoV-2.  Older age 

was associated with increased expression of PRR genes, ACE2 and four genes that encode 

proteins that have been shown to interact with SAR2-CoV-2 proteins.  Assessment of PRR 

expression might provide a strategy for stratifying the risk of severe COVID-19 disease at both 

the individual and population levels.   

 

Keywords: SARS-CoV-2, Pattern recognition receptors, Toll-like receptor 4, Aging, Skin 

fibroblasts 

 

Background 

Most people infected with SARS-CoV-2 will have mild to moderate cold and flu-like symptoms, 

or even be asymptomatic (1).  Older aged adults, and those with underlying conditions such as 

diabetes mellitus, chronic lung disease and cardiovascular disease are at highest risk for severe 

COVID-19 associated outcomes (2). The highest case fatality rates are in the 80 years and 

older age group (7.8%), with the lowest in the 0–9 years age group (0.00161%) (3).  The 

reasons for these markedly different outcomes at the extremes of age and for the occasional 

death that occurs in apparently healthy younger patients remain poorly understood.   

 

Pattern recognition receptors (PRRs) play crucial roles in the innate immune response by 

recognizing pathogen-associated molecular patterns (PAMPs) and molecules derived from 

damaged cells, referred to as damage-associated molecular patterns (DAMPs) (4-6).  PRRs are 

coupled to intracellular signaling cascades that control transcription of a wide spectrum of 

inflammatory genes.  Humans have several distinct classes of PRRs, including Toll-like 

receptors (TLRs), NOD-like receptors (NLRs), RIG-like receptors (RLRs), C-type lectin 

receptors (CLRs) and intracellular DNA sensors.  PRRs play a critical role in the inflammatory 

response induced by viruses and are important determinants of outcome (7-9).  
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In this study, we examined whether age affects the expression of PPR genes, ACE2 and 

proteins that have been shown to interact with SARS-CoV-2.  We found older age to be 

associated with increased expression of PRR genes, ACE2 and several genes that encode 

proteins known to interact with SAR2-CoV-2.    

 

Results and discussion 

Dermal fibroblast RNA-seq data set 

Dermal fibroblast cultures retain age-dependent phenotypic, epigenomic, and transcriptomic 

changes (10-13).  As such, fibroblast cultures have been proposed as a model for studying  

aging and related diseases (14).  We leveraged this approach to investigate the affect aging has 

on PRR and ACE2 gene expression.  For our analysis we used a large dataset of genome-wide 

RNA-seq profiles derived from human dermal fibroblasts (GSE 113957) that was previously 

used to develop an ensemble machine learning method that could predict chronological age to a 

median error of 4�years (14).  The dataset includes samples from 133 “apparently healthy 

individuals” aged between 1 to 94�years.   Given that COVID-19 disease has markedly different 

outcomes at the extremes of age, we first examined the gene expression differences between 

the oldest (≥80 years) and the youngest (≤10 years) age groups (see “Methods” section).   After 

filtering out genes with low expression (cpm >0.5 in at least two samples), a total of 1252 genes 

were differentially expressed between the oldest relative to the youngest age group (Fig. 1a, 

Additional file 1: Suppl Table 1a).  Differentially expressed genes were enriched in KEGG 

pathways involved in Cell Cycle and DNA replication, among others (Fig. 1b, Additional file 2: 

Suppl Table 2).   

 

Age is associated with broad changes in PRR gene expression 

We next focused on whether the expression of individual PRR genes change with age.   

Between the oldest (≥80 years) and the youngest (≤10 years) age groups we found three 

differentially expressed PRR genes (TLR3, TLR4, and IHIF1) that had a log2FC >1.0 (Fig. 1c 

and d, Additional file 1: Suppl Table 1b).   Age was correlated with the expression of 20 out of 

21 PRR genes (Fig. 2a, Additional file 3, Suppl Table 3a-c).  Normalized gene counts for TLR3, 

TLR4 and IHIF1 expressed as a function of age are shown in Fig. 2b.  Of these, TLR4 had the 

greatest fold change increase (log2FC = 2.6) and the highest correlation coefficient with age 
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(Pearson r 0.60, Adj. P Value 2.05E-14) (Additional files 1 and 3: Suppl Tables 1b and 3a-c).  

Plots of the other TLR genes counts are provided in Additional file 4: Suppl Figure 1.   

The expression of two PRR genes were negatively correlated with age, Nucleotide-binding 

oligomerization domain-containing protein 1 (NOD1) (log2FC = -0.27; Adj. P Value = 0.01; 

Pearson r -0.18, Adj. P Value 0.04) and Cyclic GMP-AMP Synthase (CGAS) (log2FC = -0.56, 

Adj. P Value 7.89E-05; Pearson r -0.34, Adj. P Value 6.6E-5).  Both genes encode proteins that 

activate the immune response to viruses (15, 16).   

To explore our findings further, we performed a differential gene expression analysis on the 

dermal fibroblast cell lines that had high (>75th percentile) and low (<25th percentile) expression 

of TLR4 (Additional file 5: Suppl Table 4).  Curiously, enrichment analysis of the 789 

differentially expressed genes showed cell cycle (KEGG: hsa04110) to be the canonical 

pathway with the greatest enrichment (FDR 1.55E-06), similar to the enrichment of the 

differentially expressed genes between oldest and youngest groups (Fig. 1b and 2c, Additional 

file 6: Suppl Table 5).  TLR4 is known to act via the adaptor molecule TRIF to regulate the 

expression of type I interferons.  TLR activation of TRIF can also induce the cell cycle, an effect 

which is antagonized by type I interferons (17).  Our finding of both high levels of TLR4 and 

elevated cell cycle could thus imply changes in the expression of type I interferons. 

ACE2 expression increases with age 

We then examined whether the expression of ACE2, the receptor for SARS-CoV-2, changes 

with age.  ACE2 expression was detected in 35 of the 133 cell lines (26.3%) and showed a 

marked increase in the 80+ age group (Fig. 2b right).  ACE2 expression was correlated with the 

expression of 19 of the 21 PRR genes (Fig. 2a and Additional file: Suppl Table 3a-c).  Of note, 

ACE2 was expressed at much lower levels than TLR4, with variable expression in the 80 year 

and over age group.  Whether the latter reflects the biological state of the individuals who 

donated the skin samples or is a consequence of ex vivo culture will require further study.   

Age-related interactions with SARS-CoV-2 proteins 

We also asked the question if the differentially expressed genes between the oldest and 

youngest age groups encode proteins that interact with SARS-CoV-2 (see “Methods” section).  

Our analysis revealed eleven differentially expressed genes between the oldest and youngest 

age groups that encode proteins known to interact with SARS-CoV-2 (Fig. 3d).  Four of these 
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genes (ADAM9, FBLN5, FAM8A1, CLIP4) have increased expression in the older compared to 

the younger age groups.  Interestingly, the SAR-CoV-2 proteins to which they bind relate to lipid 

modifications and vesicle trafficking.  Host interactions of Orf8 (endoplasmic reticulum quality 

control), M (ER structural morphology proteins), and NSp13 (golgins) may facilitate the dramatic 

reconfiguration of ER/Golgi trafficking during coronavirus infection (18).  Whether age-related 

increases in the expression of host proteins that bind SARS-CoV-2 protein predispose to 

COVID-19 disease or change its clinical course deserves further study.   

 

Discussion 

The COVID-19 (Coronavirus Disease-2019) pandemic is presenting unprecedented challenges 

to health care systems and governments worldwide.  As of June 15, 2020 there have been 

7,949,073 confirmed cases worldwide, resulting in 434,181 deaths (19).  COVID-19 disease is 

caused by the novel Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2).  

SARS-CoV-2 is a single-stranded enveloped RNA virus, with viral entry depending upon binding 

of its spike protein to Angiotensin Converting Enzyme II (ACE2), a transmembrane protein 

present on the surface of multiple types of cells (20).  Infection of cells by SARS-CoV-2 disrupts 

cellular metabolism and compromises cellular survival by triggering apoptosis.  Given the rapid 

spread of the virus and its associated mortality, there is a critical need to better understand the 

biology of the SARS-CoV-2 infection.   

In this study, we used RNA-seq data from a large collection of dermal fibroblasts to demonstrate 

that PRR genes and ACE2 vary with age.   Further, we show that aging is associated with 

increased expression of several genes that encode proteins known to bind to SARS-CoV-2.  

Whether these gene expression differences contribute to the epidemiology of SARS-CoV-2 

infection will require further study.  Nevertheless, overexpression of PRR genes, TLR4 in 

particular, is an intriguing mechanism to explain the relationship between age and SARS-CoV-2 

infection, and potentially the TLR-mediated cytokine storm that characterizes the morbidity and 

mortality in COVID-19 disease.  TLR4 has been previously suggested to have a role in the 

damaging responses that occurs during viral infections, acting via both PAMPs and DAMPs 

(21).  Diabetes, obesity and coronary artery disease are some of the conditions in which 

increased TLR4 expression has been reported (22-24).  Notably, when blood from individuals 

with stable coronary artery disease and obese patients with atherosclerosis are stimulated with 

TLR ligands there is an increased cytokine response (25, 26).  Platelet TLR4 also has an 

important role in thrombosis (27), thus potentially linking toll-receptor expression to the 
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hypercoagulability observed in COVID-19 patients (28).  Considered together, changes in the 

expression of TLRs and other PRRs could have a key role in mediating the age-related 

inflammatory response during SARS CoV-2 infection.   

 

Our study does have some limitations.  Foremost, is that health information was not available 

for the individuals donating skin samples to the dermal fibroblast collection.  Although, the skin 

samples are reported to be from “apparently healthy individuals”, we believe it is unlikely that 

individuals in the oldest age group were completely free of chronic diseases.  Another limitation 

was that minority groups are inadequately represented in the collection.  The dermal fibroblast 

collection includes samples from one American Indian (<1%), one Hispanic (<1%), two Asians 

(1.5%), and nine Blacks (6.7%)—way too few to draw any meaningful conclusions on the ethnic 

groups that have been the hardest hit by the COVID-19 pandemic.   

 

Finally, as the scientific community ramps up research in response to the COVID-19 pandemic, 

the dermal fibroblast model could prove useful for investigating SARS-CoV-2 biology.  

Fibroblasts have been previously used to investigate host antiviral defenses during Coronavirus 

infection (29).  The potential strength of the dermal fibroblast model is that skin samples can be 

easily obtained from donors of different ages, sex, and ethnicities, and those with varying 

comorbidities such a high blood pressure and diabetes; and from smokers and non-smokers.  

Such a model would also have an advantage over transfection models as these cells would not 

only have increased expression of ACE2 and TLR4, but also have an aged transcriptome which 

could be important for the infectivity and outcome of the SARS-CoV-2 infection.  The critical role 

PRRs play in mediating host-pathogen interactions, and their increased expression in some co-

morbidities associated with poor COVID-19 outcomes, make them an attractive target for 

developing tools to predict risk for and outcomes of SARS-CoV-2 infection at both the individual 

and population levels.    

 

Conclusions 

Using a large dataset of genome-wide RNA-seq profiles derived from human dermal fibroblasts 

we show that expression of PRR genes and ACE2, the receptor for SARS-CoV-2 vary with age.  

Advanced age was also associated with increased expression of several genes that encode 

proteins which interact with SARS-CoV-2.  Given that PRRs function as a critical interface 
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between the host and invading pathogens, further research is needed to better understand how 

changes in PRR expression affects the susceptibility to and outcome of SARS-CoV-2 infection.   

 

Methods 

Human dermal fibroblast dataset 

Our analysis was done using RNA-seq data (GSE113957) from the National Center for 

Biotechnology Information (NCBI, Bethesda, MD, USA). Normalized TMM gene counts per 

million for the individual dermal fibroblast cell lines were downloaded from the GEO RNA-seq 

Experiments Interactive Navigator (GREIN) (30, 31).   

 

Identification of differentially expressed genes and enrichment analysis 

Limma-Voom (32, 33) was used to identify differentially expressed genes between the oldest 

(≥80 years, N=33) and youngest (≤10 years, N=14) age groups.  Differentially expressed genes 

were defined as those with an Adjusted P value <0.05 after multiple testing correction and an 

absolute log2Fold Change >1.0.  Enrichment analysis of the differentially expressed genes was 

performed with ToppGene (34).   

Correlation analysis 

Pairwise Pearson correlation coefficients were calculated between the normalized gene counts 

of the 21 PRR genes, ACE2 and age, over all 133 samples using GraphPad Prism version 8.0.   

Age related interactions with SARS-CoV-2 proteins 

Protein-protein interactions linking differentially expressed genes and SARS-CoV-2 proteins 

were identified by overlaying differentially expressed genes in the oldest and youngest age 

groups on to the SARS-CoV-2 human protein-protein interaction map reported by Gordon, et al 

(18).  Network visualization was performed using Cytoscape (35) the NDEx v2.4.5 (36).   
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CAPTIONS FOR FIGURES 

 

Figure 1.  Gene expression differences between dermal fibroblast cell lines derived from 

the oldest (≥80 years) and youngest (≤10 years) age groups 

 

(a) Volcano plot showing gene expression differences between oldest and youngest age groups 

 

(b)  KEGG pathways enriched in differentially expressed genes between the oldest and 

youngest age groups 

 
(c)  Heatmap of differentially expressed pattern recognition receptor genes between the oldest 

and youngest age groups   

 

(d)  Violin plots of the pattern recognition receptor genes that had an Adjusted P Value <0.05 

and a log2FC >1.0 between the oldest and youngest age groups   

 

 

Figure 2.  Effect of age on the expression of pattern recognition receptor genes, 

enrichment results of high and low TLR4 expressors, and predicted interactions with 

SARS-CoV-2 proteins 

 

(a)  Correlation matrix comparing the relationships between age, ACE2 and 21 pattern 

recognition receptor genes.  Pearson r, P values, and Confidence intervals of r are provided in 

Additional file 3: Suppl Table 3a-c.  Age refers to the age of the individual from which the dermal 

fibroblast cell line was derived. 

 

(b)  Normalized gene counts for TLR3, TLR4, IHIF1 and ACE2 expressed as a function of age.  

 

(c)  Enriched KEGG pathways in differentially expressed genes (absolute log2FC >1.0 and 

Adjusted P Value <0.05) between dermal fibroblast cell lines with high (>75th percentile) and low 

(<25th percentile) expression of TLR4.  Based on differentially expressed genes with an absolute 

log2FC >1.0 and Adjusted P Value <0.05). 
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(d)  Protein-protein interactions linking differentially expressed genes between oldest (≥80 

years) and youngest (≤10 years) age groups and SARS-CoV-2 proteins.  SARS-CoV-2 viral 

proteins are represented at the center of each module, with interacting human host proteins 

represented with circles.  Differentially expressed gene color is proportional to logFC.  Physical 

interactions among host and viral proteins are noted as thin black lines.  Four genes (ADAM9, 

FBLN5, FAM8A1, CLIP4) that encode proteins that interact with SARS-CoV-2 had increased 

expression in the oldest compared to youngest age groups (shades of red).     

 

 

ADDITIONAL FILES 

Additional file 1:  Supplementary Table 1.  Gene expression analysis between the oldest (≥80 

years) and youngest (≤10) age groups: a) Differentially expressed genes with an Adjusted P 

Value <0.05 and Absolute FC >1.0, b) ACE2 and PRR genes  

 

Additional file 2:  Supplementary Table 2. ToppGene enrichment results for differentially 

expressed genes between the oldest and youngest age groups (filtered to show KEGG pathway 

results)  

 

Additional file 3:  Supplementary Table 3. a) Pearson r, b) P values, and c) Confidence 

intervals of r for the correlation matrix shown in Fig. 2a 

 

Additional file 4:  Supplementary Figure 1.   Normalized gene counts for the ten Toll-like 

receptors expressed as a function of age    

 

Additional file 5: Supplementary Table 4. Differentially expressed genes between TLR4 high 

vs low expressors  

 

Additional file 6:  Supplementary Table 5. ToppGene enrichment results for differentially 

expressed genes between TLR4 high and low expressors (filtered to show KEGG pathway 

results)  
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