A microplate screen to estimate metal-binding affinities of metalloproteins

Patrick Diep1, Radhakrishnan Mahadevan1,2 and Alexander F. Yakunin1,3

1 BioZone Centre for Applied Bioscience and Bioengineering, Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario, Canada
2 Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
3 Centre for Environmental Biotechnology, School of Natural Sciences, Bangor University, Bangor, United Kingdom

Highlights
• an improved version of a high-throughput screen (microITFQ-LTA) is described for multiplexed elucidation of metalloprotein binding profiles
• validation was accomplished with the previously characterized CjNikZ; testing was accomplished with an uncharacterized homologue herein named CcSBPII
• CcSBPII is shown to bind to multiple transition metal ions with a large range of affinities, and potentially overcome mismetallation using a simple histidine metallophore

Abstract
Solute-binding proteins (SBPs) from ATP-binding cassette (ABC) transporters play crucial roles across all forms of life in transporting compounds against chemical gradients. Some SBPs have evolved to scavenge metal substrates from the environment with nanomolar and micromolar affinities (K_D). There exist well established techniques like isothermal titration calorimetry for thoroughly studying these metalloprotein interactions with metal ions, but they are low-throughput. For protein libraries comprised of many metalloprotein homologues and mutants, and for collections of buffer conditions and potential ligands, the throughput of these techniques is paramount. In this study, we describe an improved method termed the microITFQ-LTA and validated it using CjNikZ, a well-characterized nickel-specific SBP (Ni-BP) from Campylobacter jejuni. We then demonstrated how the microITFQ-LTA can be designed to screen through a small collection of buffers and ligands to elucidate the binding profile of a putative Ni-BP from Clostridium carboxidivorans that we call CcSBPII. Through this study, we showed CcSBPII can bind to various metal ions with K_D ranged over 3 orders of magnitude. In the presence of L-histidine, CcSBPII could bind to Ni^{2+} over 2000-fold more tightly, which was 11.6-fold tighter than CjNikZ given the same ligand.

Keywords
metalloprotein; solute-binding protein; ABC transporter; metal-binding assay; tryptophan quenching

Short Title
A fluorescence-based microplate screen for metal-protein interactions
Introduction

Metalloproteins are proteins whose function and structure involve interactions with metal ions. Several techniques in metal-binding studies can be used to study these interactions in vitro. The most widely accepted technique is isothermal titration calorimetry (ITC) as it can determine multiple thermodynamic parameters in a single binding experiment. However, obtaining meaningful ITC data is not a trivial undertaking. Requisites include an easily expressed protein in large quantities that is stable under prolonged stirring conditions (viz. it does not precipitate), the protein generates a heat signature upon binding that is appreciably larger than the heat of dilution, there is sufficient time to run multiple ITC trials to optimize the ratio of ligand and protein, and more. This last requirement can be especially cumbersome due to the time needed to equilibrate the system, but a value “c” can be calculated to better adjust this ratio if an accurate estimation of the protein’s binding constant K_0 can be made using other techniques.\(^1\)\(^2\)

Given that meaningful ITC data is obtained, one must consider whether ITC is the most appropriate technique to determine the binding constants for large protein families, mutant libraries, or both; and for multiple ligands and solvent conditions of interest. It is useful in such cases to consider a high-throughput screening technique, such as one that employs intrinsic tryptophan fluorescence quenching (ITFQ) in a ligand titration assay (LTA), herein termed ITFQ-LTA, to complement the lower throughput but more comprehensive ITC experiments.

Fluorescence quenching of a protein’s intrinsic fluorophores (i.e. tryptophan) upon sequential exposure to a ligand through step-wise titration can generate binding curves for estimating K_0, which therefore complements ITC by helping to calculate c. To increase the throughput for more extensive library screening, microplate readers equipped with fluorescence-reading capabilities can be used instead of spectrofluorometers, which has been tested for interactions between albumins and proteases with organic compounds.\(^3\)\(^-\)\(^5\) Microplate-based ITFQ-LTA (microITFQ-LTA) has also been used to study interactions between metalloproteins and UO\(^{2+}\), but these researchers’ decision to use Equation (1), the Stern-Volmer equation (variables described further below), to fit the fluorescence quenching data is questionable.\(^6\)\(^,\)\(^7\)

\[
(1) \frac{F_0 - F}{F} = K_{SV} [L] = k_q \tau [L]_a
\]

The Stern-Volmer equation models collisional quenching, a phenomenon where the excited-state fluorophore is returned to ground state through contact with an external quencher in a non-radiative manner. This typically occurs via spin-orbit coupling with paramagnetic entities.\(^8\) Proteinaceous tryptophans are often partially or fully buried in the hydrophobic core where these external quenchers have limited access, and cannot easily collide. Consequently, static quenching is an unlikely mechanism for protein fluorescence quenching too because it requires the external quencher to form a complex with the ground-state proteinaceous tryptophan.\(^9\) A stronger explanation is intramolecular self-quenching. Tryptophan’s large dipole moment causes it to be highly sensitive to changes in the polarity of its environment. Ligand-binding frequently induces conformational changes across the protein structure that changes the direction and magnitude of local electric fields around the tryptophans’ indole rings. This can lead to saturable quenching (and sometimes enhancement) of its fluorescence through increased non-radiative energy transfer to nearby moieties of the surrounding protein matrix, typically through electron transfer into the peptide backbone and nearby side chains.\(^9\)\(^-\)\(^\text{14}\)

Regardless of the exact mechanism for protein fluorescence quenching, the association phenomenon (i.e. binding event) can be followed by the magnitude of the change in fluorescence in response to the ligand titrations, modelled by Equation (2) for 1:1 metal-protein complexes. This model uses basic mass-action kinetics that assumes the protein and ligand concentration that can freely form

\[
\frac{\delta F}{F} = -K_a [L] [S] + \frac{K_a [L] [S]}{1 + K_a [L] [S]}
\]
complexes at any point in time during the ITFQ-LTA is a sum of what is uncomplexed (i.e. free) and what is already complexed, described in Equations (3) and (4):\(^9,15,16\)

\[
\frac{F_0 - F}{F_0 - F_C} = \frac{[L]_a + [L]_a + K_D - \sqrt{([L]_a + K_D)^2 - 4[P]_L[P]_L}}{2[P]_L}
\]

\[
[L]_a = [L]_{free} + [PL]
\]

\[
[P]_L = [P]_{free} + [PL]
\]

For all Equations in this study: \(F_0\) and \(F_C\) are the measured fluorescence when the protein is fully unsaturated and fully saturated, respectively. \(F\) is the measured fluorescence at a ligand titration step. \(K_{sv}\) is the Stern-Volmer quenching constant and \(k_q\) is the bimolecular quenching rate constant. \(\tau\) is the fluorescence lifetime of the unquenched fluorophore. \([L]_a\) and \([P]_L\) are the concentrations of total ligand and protein, respectively. \([L]_{free}\) and \([P]_{free}\) are the concentrations of ligand and protein that are uncomplexed with each other, respectively. \([PL]\) is the concentration of the protein complexed with the ligand, and \(K_0\) is the apparent dissociation constant under a specific buffering condition.

Depending on how strongly the protein’s tryptophan fluorophores respond to a binding event, which is based on the number of tryptophans in the protein and the extent of the ligand-induced conformational change, a large signal with low noise can be obtained for low micromolar protein concentrations. If the \(K_0\) for a ligand is below the protein concentration by at least a factor of 10, it is generally more appropriate to use Equation (2). If the \(K_0\) for a ligand is larger than the protein concentration, which means the range of ligand concentrations used in the micro-ITFQ-LTA is in molar excess of protein concentration, \([PL]\) can be neglected in Equation (3), which simplifies the mass-action kinetics underpinning Equation (2) to yield Equation (5):\(^9\)

\[
\frac{F_0 - F}{F_0 - F_C} = \frac{[L]_a}{K_D + [L]_a}
\]

To simplify the variables for data analysis in this study, Equation (2) will be re-written as Equation (6), and Equation (5) will be re-written as Equation (7). \(F_{obs}\) is \(F_0 - F\) and \(F_{max}\) is \(F_0 - F_C\). When the Hill Coefficient “\(n\)” is used, \([L]_a\) in both Equations (6) and (7) is substituted with \([L]_a^n\).

\[
F_{obs} = \frac{F_{max}([P]_L + [L]_a + K_D - \sqrt{([P]_L + [L]_a + K_D)^2 - 4[P]_L[P]_L})}{2[P]_L}
\]

\[
F_{obs} = \frac{F_{max}[L]_a}{K_D + [L]_a}
\]

One group of metalloproteins are the solute-binding protein (SBP) components of metal ATP-binding cassette (ABC) transporters. These transporters are ubiquitous in nature as they provide cells the means to transport metal substrates against chemical gradients using the energy from nucleotide triphosphate hydrolysis. The specificity of ABC transporters is derived from its cognate SBP that contains the binding site for target metal ions.\(^17\) NikA from the \textit{Escherichia coli} ABC transporter NikABCDE is the most thoroughly studied nickel-specific SBP (Ni-BP) with extensive biochemical and structural characterization.\(^18-26\) Other Ni-BPs have also been studied because of their implications in health, and include the pathogens \textit{Campylobacter jejuni} (C[NikZ]), \textit{Brucella suis} (BsNikA), \textit{Yersinia pestis} (YpYntA), \textit{Staphylococcus aureus} (SaNikA, SaCntA), \textit{Helicobacter hepaticus} (HhNikA), \textit{Helicobacter pylori} (CeuE), \textit{Vibrio parahaemolyticus} (VpNikA), and \textit{Clostridium difficile} (CdOppA).\(^34\) However, it is not
only pathogens that require metals to survive. *Clostridium carboxidivorans* is not known to be pathogenic, but possesses a cluster of coding sequences herein termed the acetogenesis/nickel acquisition (*ana*) operon that encodes a putative metal ABC transporter and acetogenesis-related enzymes that use metal co-factors (Supplementary Figure 1). This ABC transporter possesses two SBPs, herein termed CcSBPI and CcSBPII, which are both homologous to *Cj*NikZ (41% and 37%, respectively).

We are interested in studying and engineering Ni-BPs and their cognate ABC transporters for mining applications. In this study, we took a different approach from the aforementioned UO$_2^{2+}$-metalloprotein binding study and instead used Equations (6) and (7) to fit our microITFQ-LTA data. We first validated our method by closely replicating the K_0 values for Ni$^{2+}$→*Cj*NikZ that have previously been determined using spectrophotometer-based ITFQ-LTA (specITFQ-LTA) and ITC. We then studied Ni$^{2+}$→CcSBPII with different buffers and varied the ligands afterwards. CcSBPII is an uncharacterized metalloprotein, but shares structural similarity to *Cj*NikZ (Supplementary Figure 2), so we narrowed our scope to elucidating its binding profile using the microITFQ-LTA screen so that it can be further studied with more comprehensive techniques like ITC and x-ray crystallography. Therefore, the focus of this study was to test and describe a microITFQ-LTA screening method for metalloproteins that builds on previous iterations of the method.$^{3-7}$ We report CcSBPII could bind to numerous transition metal ions with K_0 values that ranged over 3 orders of magnitude, and could possibly deal with Cu$^{2+}$ misinstallation by using L-histidine as a simple metallophore to selectively bind to the theoretical target Ni$^{2+}$.

Materials and Methods

DNA synthesis, cloning, and strains

The open-reading frames encoding CcSBPII from *Clostridium carboxidivorans* P7T (Ccar_RS11695, NCBI ID: NZ_CP011803.1) and *Cj*NikZ28 were synthesized (Twist Bioscience, San Francisco, USA) without start codons and without their native signal peptides identified using SignalP 5.0 with the Gram-positive setting.35 Their open-reading frames were cloned into the expression vector p15TV2-L (AddGene ID: 26093) under the T7 promoter and in-frame with the N-terminal 6xHisTag (Twist Bioscience). Upon receiving the completed plasmids, they were transformed into the DH5α and LOBSTR (Kerafast, #EC1001) *Escherichia coli* strains, then plated onto LB-Agar (carbenicillin, 100 µg/mL). The plasmids were miniprepped (GeneAid, #PD300) into MilliQ water and sequence verified at the ACGT Sequencing Facility (Toronto, Canada). Glycerol stocks were prepared for storage at -80 °C.

Protein expression and purification

Starters cultures for *Cj*NikZ and CcSBPII were grown from glycerol stock in LB with carbenicillin (100 µg/mL) for 16 hrs overnight at 37 °C with shaking. Expression cultures were started by pre-warming TB media with 5% glycerol and carbenicillin (100 µg/mL) to 37 °C before 1% v/v inoculation with the starter culture, then grown for 3 hrs at 37 °C until addition of IPTG (BioShop, #IPT002) to 0.4 mM for induction. The expression cultures were then transferred to 16 °C and grown for 16 hrs overnight with shaking, then pelleted with centrifugation and transferred to conical vials for one freeze-thaw cycle at -20 °C.

Frozen cell pellets were thawed and resuspended in binding buffer (10 mM HEPES, 500 mM NaCl, 5 mM imidazole, pH 7.2) to a final volume of 100 mL, followed by addition of 0.25 g lysozyme (BioShop, #LYS702). Cell pellet mixtures were sonicated for 25 min (Q700 Sonicator, Qsonica) and clarified by centrifugation. The soluble layer (supernatant) was applied to a cobalt-charged (Co-)NTA resin (ThermoFisher, #88221) pre-equilibrated with binding buffer in a gravity-column set-up. Bound proteins were cleansed with wash buffer (10 mM HEPES, 500 mM NaCl, 25 mM imidazole, pH 7.2) and the bound protein was collected with elution buffer (10 mM HEPES, 500 mM NaCl, 250 mM imidazole, pH 7.2).
Protein concentrations were determined by Bradford assay, and protein purity was determined by SDS-PAGE analysis and densitometry on Image Lab 6.0 (Bio-Rad).

Eluted protein was combined with 0.4 mg of in-house purified TEV protease and TCEP to 1 mM (BioShop, #TCE101), then transferred to a 10 kDa MWCO dialysis bag (ThermoFisher, #68100) for dialysis in 4 L dialysis buffer (10 mM HEPES, 1 mM TCEP, 1g/L Chelex 100, pH 7.2) at 4 °C with gentle stirring for 72 hrs. Dialed samples were then applied to a cobalt-charged NTA resin twice and concentrated to 2 mL by centrifugation using 30 kDa MWCO concentrators (Millipore Sigma, #GE28-9323-61). This concentrate was applied to a MonoQ 5/50 anion exchange resin (GE Healthcare, #17516601) using 10 mM HEPES, pH 7.2 for the mobile phase, and 10 mM HEPES, 1M NaCl, pH 7.2 for elution. Eluted proteins were collected in 96 deep-well blocks and stored at 4 °C during SDS-PAGE analysis. Selected fractions with sufficient purity were transferred to a 10 kDa MWCO dialysis bag for dialysis in 4 L dialysis buffer (10 mM HEPES, pH 7.2) at 4 °C with gentle stirring for 24 hrs and transferred to fresh dialysis buffer for another 24 hrs. Finally, they were flash-frozen drop-wise in liquid nitrogen before storage at -80 °C. Prior to usage in preliminary microITFQ-LTAs, the proteins were checked using circular dichroism, MALDI-ToF, and ICP-MS to ensure proper folding, molecular weight (i.e. successful 6x HisTag removal), and minimal metal contamination, respectively (Supplementary Information, Appendix A; Supplementary Figures 3 & 4).

Preparation of activity buffers and ligand solution

Except for CjNikZ which used either 20mM MOPS pH 8 or 40 mM HEPES pH 7.5 as the activity buffer to mimic conditions used in prior studies\(^{27,28}\), CcSBPII used 10 mM HEPES pH 7.2 as the default activity buffer with adjustments made as prescribed by the type of microITFQ-LTA (i.e. HEPES concentration range, pH range, NaCl range). Activity buffers were adjusted to the desired pH using NaOH and HCl, then filter sterilized by syringe using a 0.2 μm PTFE membrane disc (PALL ID: 4187). Ligand solutions were created using the appropriate activity buffer as prescribed by the type of microITFQ-LTA to match the activity buffer in the well that the protein was diluted into (e.g. 1 mM NiCl\(_2\) was prepared in 10 mM HEPES pH 7.2 from a 1M stock solution of NiCl\(_2\) dissolved in de-ionized water, in order to be added to CcSBPII diluted into 10 mM HEPES pH 7.2). Metal salts with >98% purity were used to prepare all ligand solutions requiring NiCl\(_2\), NiSO\(_4\), CoCl\(_2\), CuCl\(_2\), ZnCl\(_2\), MnCl\(_2\), and CdCl\(_2\). Ni-His\(_2\), Co-His\(_2\), Cu-His\(_2\) were each prepared with a 1:2 stoichiometric ratio using the metal chloride salt and L-histidine. Ni-Imi\(_2\), Ni-Gly\(_2\), and Ni-Imi\(_2\)Gly\(_2\) were prepared with a 1:2, 1:2, and 1:2:2 stoichiometric ratio using NiCl\(_2\), imidazole (imi), and glycine (gly). Ni\(_2\)-Citrate\(_2\), Ni-EDTA, and Ni-DETA\(_2\) were prepared with a 2:2, 1:1, and 1:2 stoichiometric ratio. All ligand solutions were prepared fresh and immediately used in microITFQ-LTAs; activity buffers were stored at 4 °C.

Microplate-based intrinsic tryptophan fluorescence quenching – ligand titration assay (microITFQ-LTA)

MicroITFQ-LTAs were performed in black, opaque 96-well microplates (Greiner Bio-One, #655076) using the SpectraMax M2 spectrophotometer (Molecular Devices) with the following settings: top-read, 25 °C, λ\(_{ex}\) 280 nm, λ\(_{em}\) 380 nm, PMT high, sensitivity 30, carriage speed high, 5 s shaking before endpoint reads, and 3 s shaking in between reads during kinetic reads. CjNikZ and CcSBPII were combined with the appropriate activity buffer as prescribed by the specific microITFQ-LTA to 0.4 μM for a total volume of 200 μL and allowed to equilibrate with intermittent shaking for up to 15 min, or until the signal stabilized. After equilibration, aliquots of the ligands are added in stepwise fashion using a multichannel pipette up to a maximum of 120 μL when saturation was not reached, otherwise less. Mixing by pipette was avoided to prevent the introduction of air bubbles or the retaining of droplets inside the tips that would distort the signal. Therefore, each titration was followed by a 30 s equilibration with intermittent shaking before endpoint reads were made to ensure proper mixing. All trials were done in triplicates. To account for
possible dilution effects in every trial, we included a triplicate negative control where the protein was
titrated with only activity buffer (no metal ligand) using the same volumes added at each titration. A minor
IFE was exhibited by histidine, which was accounted for by subtracting its individual fluorescence signal
at λem 380 nm (obtained by titrating histidine in the absence of metals or protein) from each titration step.
Otherwise, all ligand solutions and components of activity buffers did not exhibit the IFE for the
concentrations used.

Data analysis and visualization

All raw data is prepared in Microsoft 365 Excel for further analysis. Triplicate data for tests and
negative controls (as described above) were averaged for each titration step (error propagation applied).
The averaged negative control data was then subtracted from the averaged ligand test data at each
titration step to remove the background signal and obtain F. The value of F before any titration is made,
where the protein is unsaturated, is F₀. To obtain a Fobs value for each titration step, F from all titration
steps are subtracted from F₀ such that the new F₀ is zero and an up-right curve can be generated. These
sets of x/y data pairs (e.g. [L]ₐ/Fobs, respectively) are inputted into GraphPad Prism 5.0 for determination
of best-fit parameter values and confidence intervals through non-linear least-squares (NLLS) regression
using Equation (6). This is performed with and without the hill coefficient n as needed, where [L]ₐ is
substituted with [L]ₐⁿ. The Kemmer and Keller (KK) method, described elsewhere²⁶, is used in Excel to
compute an NLLS regression using Equation (6) or (7) for determining best-fit parameter values and 95%
confidence intervals, including n. In all NLLS regressions, the minimization parameter is χ², in which the
residuals are weighted by observed variability of Fobs (1/σ²). All figures are produced using GraphPad Prism
5.0 (or for brevity, “Prism”).

Results and Discussion

microITFQ-LTA closely replicates published binding constants for CjNikZ and supports crystal structure data

The Ni-BP CjNikZ belongs to NikZYXWV, a nickel ABC transporter, and has published K₀ values of
0.61 ± 0.07 μM and 1.6 ± 0.2 μM (89% difference), determined by a specITFQ-LTA²⁷ and by ITC²⁸,
respectively. In these studies, non-linear least squares (NLLS) regressions were performed to obtain these
best-fit parameter values with the commercial software packages SigmaPlot and MicroCal Origin. To fit
the data, one-binding site models (n = 1) were used. In this study, we determined the K₀ value of CjNikZ
in the same buffers used in these studies: 20 mM MOPS pH 8, and 40 mM HEPES pH 7.5. We also used the
same nickel salt to prepare the ligand solutions: NiCl₂ and NiSO₄, respectively.

Assuming CjNikZ has one binding site (n = 1), and given that the concentration of nickel to be
titrated is in molar excess of the protein concentration used (0.4 μM), Equation (7) was chosen to model
the data using Prism (Figure 1). In 20 mM MOPS pH 8, we find that Ni⁴⁺→CjNikZ yields a K₀ value of 2.23
μM with a confidence interval (CI) of 1.53 to 2.92 μM. In 40 mM HEPES pH 7.5, we find that Ni⁴⁺→CjNikZ
yields a K₀ value of 3.34 μM with a CI of 2.41 to 4.26 μM. This difference in K₀ values matches the
difference in the published K₀ in that the MOPS condition had a slightly lower K₀ than the HEPES condition.
Since crystallographic data shows that CjNikZ has only one binding site for Ni⁴⁺, we tested our first
assumption here and included n in Equation (7) for a separate analysis. We found n to be 0.90 with a CI of
0.60 to 1.21, and similar K₀ and Fmax values, suggesting that the assumption is correct. Given that CjNikZ’s
K₀ value of 1.6 μM determined by ITC is the most accurate value, the observed K₀ values of 2.23 μM and
3.34 μM are only 33% and 70% different, respectively, which suggests the microITFQ-LTA is as accurate as
the specITFQ-LTA that yielded an 89% difference.
While Prism can model data with Equation (7), it cannot be used with Equation (6) for scenarios where the K_D for a ligand is below the protein concentration in the assay because this requires the inclusion of a second independent variable $[P]$, that changes at each titration due to dilution. Therefore, we utilized a method described by Kemmer & Keller (2010) that combines Excel’s Solver function for NLLS regression with a simple plug-and-chug routine using Fisher’s F distribution to determine the CIs for the best-fit parameter values, herein termed the KK method for brevity. Using Equation (7) with the data for Ni$^{2+}$→CjNikZ in 40 mM HEPES pH 7.5, we found Prism and Solver’s NLLS regression algorithms generated nearly identical best-fit parameters values (Table 1). Comparing the CIs computed by Prism and the KK method, we found they were also nearly identical, suggesting the KK method was a reliable protocol for modelling data with Equation (7) on Excel. Applying the KK method with Equation (6) instead for this data, we find there is little difference made to the best-fit parameter values, indicating that $[P]$, was indeed negligible for characterizing this particular binding interaction between Ni$^{2+}$ and CjNikZ, thus confirming the assumption made earlier to choose Equation (7).

Interestingly, CIs could not be computed by the KK method for Equations (6) and (7) when n was included. Overparameterization can be diagnosed through the KK method using its χ^2 plots. Here, a value χ^2_{bf} is calculated using Fisher’s F distribution and the bounds for the 95% CI of a best-fit parameter value are defined by where the curves have a y-value equal to χ^2_{bf}, based on a polynomial function. Therefore, a requisite for the KK method to be used is for the slope of the curve on both sides to be sufficiently steep to define a reasonable CI. We generated χ^2 plots against K_D and F_{max} (Supplementary Figure 5) for both models and found the inclusion of n reduced χ^2 by 4-6% (viz. marginally improved the goodness of fit), but at the expense flattening the curve for F_{max} to the point where a reasonable CI could not be calculated, which is symptomatic of overparameterization of the model by n. Overall, this indicates n should be used judiciously, and only when minimizations of χ^2 are substantial and biologically meaningful.

In Lebrette et al. (2014), they complement their ITC data for CjNikZ with three crystal structures, one of which includes CjNikZ bound to Ni$^{2+}$ chelated by a histidine (PDB ID: 4OEU). Upon closer analysis, a (very) well-formed octahedral coordination complex is created between CjNikZ, Ni$^{2+}$, and histidine. However, their ITC data revealed that CjNikZ did not produce any thermic event when Ni(His)$_2$ was injected. While they explain the histidine in the crystal structure was an artifact of their crystallization procedure, we performed a Ni(His)$_2$→CjNikZ microTFQ-LTA in 40 mM HEPES pH 7.5, the same buffer
conditions for the ITC they performed, and detected a low nanomolar binding event. Using the KK method with Equation (6) and inclusion of \(n \), we observed a strong binding event: \(n \) of 1.32 with a CI of 1.11 to 1.57, \(K_o \) of 51 nM (I) with a CI of 31 to 74 nM, and an \(F_{\text{max}} \) of 265.25 with a CI of 255.23 to 278.65 (Table 1). Of pertinence, we subtracted the background fluorescence emission of histidine at each titration step through an additional set of controls to remove the IFE. Nonetheless, the IFE contribution of histidine only began appearing in the last two data points reported in Figure 1. We were not surprised by this finding because Ni-BPs have been found to bind to Ni-His complexes before with nanomolar affinity, which includes other structures solved in the same study by Lebrette et al. (2014). It is possible that in their study a small amount of Ni(His)_2 was accidentally exposed to \(CjNikZ \) in the sample cell upon insertion of the syringe into the sample, or by some other means, which would have saturated the protein prior to the first injection.

Compared to the usage of \(n \) for Ni\(^{2+}\)→\(CjNikZ \) in 40 mM HEPES pH 7.5 where it had a detrimental role on computing CIs by the KK method, \(n \) plays an important role in properly fitting Equations (6) and (7) to the data here. This is illustrated in Supplementary Figure 6 where the curves for both \(K_o \) and \(F_{\text{max}} \) were lowered and slightly narrowed by unconstraining \(n \) (viz. including it in the model), and Supplementary Figure 7 where the curve for \(n \) was lowered and noticeably narrowed when applied to

| \(Ni \rightarrow CjNikZ, \ 40 \text{ mM HEPES pH 7.5} \) |
|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|
| NLLS Method | Model | \(\chi^2 \) | \(n \) | \(n, \ 95\% \ CI \) | \(K_o, \ 95\% \ CI \) | \(F_{\text{max}}, \ 95\% \ CI \) |
| | | | Lower | Upper | Lower | Upper | Lower | Upper |
| Prism | Eq.(7) | 4.45 | 1 | | 3.44 | 2.41 | 4.26 | 69.40 | 64.64 | 74.17 |
| KK | Eq.(7) | 4.45 | 1 | | 3.44 | 2.57 | 4.27 | 69.41 | 65.32 | 74.14 |
| | | 4.32 | 0.90 | 0.60 | 1.21 | 3.39 | 2.39 | 4.39 | 72.95 | 58.93 | 86.96 |
| | Eq.(6) | 4.56 | 1 | | 3.02 | 2.24 | 3.92 | 68.59 | 64.49 | 73.37 |
| | | 4.32 | 0.88 | 0.65 | 1.23 | 3.08 | 2.34 | 4.10 | 73.03 | Error \(^a\) |

| \((1:2)^b \) Ni-His \(\rightarrow CjNikZ, \ 40 \text{ mM HEPES pH 7.5} \) |
|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|
| NLLS Method | Model | \(\chi^2 \) | \(n \) | \(n, \ 95\% \ CI \) | \(K_o, \ 95\% \ CI \) | \(F_{\text{max}} \) | \(F_{\text{max}}, \ 95\% \ CI \) |
| | | | Lower | Upper | Lower | Upper | Lower | Upper |
| Prism | Eq.(7) | 53.17 | 1\(^a\) | | 0.30 | 0.13 | 0.47 | 293 | 265.20 | 320.80 |
| | 6.74 | 2.17 | 1.71 | 2.63 | 0.090 | 0.038 | 0.14 | 264.7 | 256.90 | 272.50 |
| KK | Eq.(7) | 53.17 | 1\(^a\) | | 0.30 | 0.19 | 0.45 | 293.02 | 267.65 | 328.05 |
| | 6.74 | 2.17 | 1.83 | 2.58 | 0.090 | 0.056 | 0.13 | 264.69 | 258.70 | 271.24 |
| KK | Eq.(6) | 16.38 | 1\(^a\) | | 0.093 | 0.050 | 0.15 | 272.36 | 261.22 | 284.48 |
| | 4.42 | 1.32 | 1.11 | 1.57 | 0.051 | 0.031 | 0.074 | 265.25 | 255.23 | 278.65 |

a. CI could not be computed due to an inability to define a local minimum (refer to Supplementary Figures 5)
b. a 1:2 stoichiometric ligand solution of NiSO\(_4\) and L-histidine

equation (6). By including \(n, \chi^2 \) was reduced by 88% and 73% for Equation (7) and (6), respectively. Overall, this provides evidence supporting the functional role of the histidine in assisting \(CjNikZ \) in binding Ni\(^{2+}\) more tightly and helps explain why histidine is found inside the crystal structure of \(CjNikZ \). Next, we demonstrate the microITFO-LTA’s utility in understanding how CcSBPII binds to various metal ligands under different conditions. The best-fit parameter values are summarized in Table 2.
Table 2. Binding parameters for CcSBPII

<table>
<thead>
<tr>
<th>Buffer a</th>
<th>n, 95% CI</th>
<th>K_D (μM)</th>
<th>K_D, 95% CI</th>
<th>F_{max}, 95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Lower</td>
<td>Upper</td>
<td>Lower</td>
<td>Upper</td>
</tr>
<tr>
<td>10 mM HEPES pH 7.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10 mM MOPS pH 7.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10 mM PIPEs pH 7.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10 mM Tris pH 7.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10 mM Phosphate pH 7.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10 mM HEPES pH 7.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20 mM HEPES pH 7.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>40 mM HEPES pH 7.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>100 mM HEPES pH 7.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1000 mM HEPES pH 7.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10 mM HEPES 0 mM NaCl, pH 7.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10 mM HEPES 10 mM NaCl, pH 7.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10 mM HEPES 100 mM NaCl, pH 7.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10 mM HEPES 1000 mM NaCl, pH 7.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10 mM HEPES pH 2.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10 mM HEPES pH 6.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10 mM HEPES pH 7.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10 mM HEPES pH 7.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10 mM HEPES pH 7.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10 mM HEPES pH 8.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Ligand c</th>
<th>n, 95% CI</th>
<th>K_D (μM)</th>
<th>K_D, 95% CI</th>
<th>F_{max}, 95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Lower</td>
<td>Upper</td>
<td>Lower</td>
<td>Upper</td>
</tr>
<tr>
<td>NiSO₄</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NiCl₂</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CoCl₂</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CuCl₂</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MnCl₂</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ZnCl₂</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CdCl₂</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(1:2) Ni-His f</td>
<td>0.83</td>
<td>0.80 - 0.86</td>
<td>4.40*</td>
<td>1.33 - 8.76</td>
</tr>
<tr>
<td>(1:2) Co-His f</td>
<td>1.21</td>
<td>1.13 - 1.29</td>
<td>557.85*</td>
<td>509.88 - 608.20</td>
</tr>
<tr>
<td>(1:2) Cu-His f</td>
<td>1.19</td>
<td>1.02 - 1.38</td>
<td>36.06*</td>
<td>14.69 - 65.45</td>
</tr>
<tr>
<td>(1:2) Ni-Imi f</td>
<td>0.82</td>
<td>0.77 - 0.88</td>
<td>6.76</td>
<td>6.00 - 7.51</td>
</tr>
<tr>
<td>(1:2) Ni-Gly f</td>
<td>0.80</td>
<td>0.70 - 0.90</td>
<td>13.00</td>
<td>9.89 - 16.10</td>
</tr>
<tr>
<td>(1:2:2) Ni-Imi-Gly f</td>
<td>0.86</td>
<td>0.74 - 0.98</td>
<td>14.35</td>
<td>10.37 - 18.32</td>
</tr>
</tbody>
</table>

Best-fit parameter values and 95% confidence intervals (CI) are by default calculated on Prism without inclusion of n, meaning that n = 1, and using Equation (7) unless otherwise indicated.

- a. ligand used is Ni²⁺ prepared with NiCl₂
- b. saturation was not achieved in the ligand range titrated
- c. 10 mM HEPES pH 7.2 is used in all cases for CcSBPII and to prepare the ligand solutions
- d. values and corresponding lower and upper bound for CI is reported in millimolar (mM)
- e. values and corresponding lower and upper bound for CI is reported in nanomolar (nM)
- f. the KK method with inclusion of n, meaning n is unconstrained, is used with Equation (6) instead

His: histidine, Gly: glycine, Imi: imidazole
microITFQ-LTAs for buffer screening with CcSBPII and nickel

It is well known that pH buffers are crucial for numerous biochemical, cellular, and environmental assays; it is also known that buffer molecules can interact with the sample and confound the analysis, which is especially true for metal-binding studies. We performed (NiCl₂) Ni²⁺→CcSBPII microITFQ-LTAs with various Good’s buffers claimed to be “metal-compatible” buffers, as well as phosphate buffer (Figure 2). Using Equation (7) in Prism with \(n = 1 \), 10 mM HEPES, PIPES, MOPS, and Tris at pH 7.2 all generated similar binding curves with \(K_0 \) values ranging from 13 to 25 μM (Table 2). These buffers all possess lone pair electron orbitals at pH 7.2 and can therefore act as Lewis bases to form coordinate bonds with Ni²⁺. While this may explain the minor differences in \(K_0 \) between the four buffers, their CIs show some overlap. This is also true for the \(F_{\text{max}} \) values and their CIs. It is likely that the microITFQ-LTAs could not distinguish between the effects the four buffers had on Ni²⁺→CcSBPII, which indicated to us that the

![Figure 2](https://example.com/fig2.png)

Figure 2. Binding curves for Ni²⁺→CcSBPII titrations (left-panel) at pH 7.2 for 10 mM HEPES (circle), 10 mM PIPES (square), 10 mM MOPS (upward triangle), 10 mM Tris (downward triangle), and 10 mM phosphate (diamond). Right panels show the same curves in the left panel individually (except 10 mM phosphate) for easier visual inspection.

![Figure 3](https://example.com/fig3.png)

Figure 3. Binding curves for Ni²⁺→CcSBPII titrations (left-panel) at pH 7.2 with HEPES at 10 mM (circle), 20 mM (square), 40 mM (upward triangle), 100 mM (downward triangle), and 1000 mM (diamond). Right panels show the same curves in the left panel individually (except 1000 mM HEPES) for easier visual inspection.
use of any of these four buffers is appropriate since saturation could be achieved, as long the selected buffer is consistently used in further assays. A binding curve could not be generated with the phosphate buffer likely because metal-phosphate complexes tend to precipitate, thus preventing CcSBPII from interacting with the metal. Therefore, we continued testing HEPES as the buffer of choice because it provided the lowest K_D, suggesting the buffer interfered the least with the Ni$^{2+} \rightarrow$CcSBPII interaction.

When varying [HEPES] from 10 – 1000 mM at pH 7.2 and using Equation (7) in Prism with $n = 1$, we found the binding curves changed in two ways (Figure 3). K_D increased up to 2.4-fold over a change in 1-2 orders of magnitude of [HEPES], possibly because the higher concentrations of HEPES molecules effectively siphoned Ni$^{2+}$ from the pool available for CcSBPII to bind to, meaning that $[L]_{\text{free}}$ for each titration step was overestimated and lead to a rightward-positive shift of the binding curve. More notably, F_{max} decreased 7.5-fold over a change in 2 orders of magnitude of [HEPES]. Specifically F_0, which is needed to calculate F_{max}, decreased and indicates the fluorescence from tryptophans had already been reduced.

Figure 4. Binding curves for Ni$^{2+} \rightarrow$CcSBPII titrations (left-panel) at pH 7.2 with 10 mM HEPES and NaCl at 0mM (circle), 10 mM (square), 100 mM (upward triangle), and 1000 mM (downward triangle). Right panels show the same curves in the left panel individually (except pH 2.5 and pH 8.0) for easier visual inspection.

Figure 5. Binding curves for Ni$^{2+} \rightarrow$CcSBPII titrations (left-panel) with 10 mM HEPES at pH 2.5 (asterisk), pH 6.5 (square), pH 7.0 (upward triangle), pH 7.2 (downward triangle), pH 7.5 (diamond), and pH 8 (hexagon). Right panels show the same curves in the left panel individually (except pH 2.5 and pH 8.0) for easier visual inspection.
prior to the first titration, noting here that 1000 mM HEPES displayed a negligible increase in absorbance at the wavelengths used compared to 10 mM HEPES (data not shown). At higher concentrations, it is likely that HEPES exerts a chaotropic effect on the CcSBPII’s hydration shell, thus partially denaturing CcSBPII. This could alter the environments surrounding the tryptophans as well as the binding cavity, which could also explain why K_0 appeared to increase. Circular dichroism, thermal shift assays, or any method to probe changes in the secondary structure are needed to explore this. However, [HEPES] in the 1000 mM range is not typical of or practical for biochemical experiments and it was simpler to choose a lower [HEPES] with sufficient pH buffering capacity for the microITFQ-LTAs, so we continued with 10 mM HEPES.

When varying [NaCl] from 0 to 1000 mM at pH 7.2, and using Equation (7) in Prism with $n=1$, we found the binding curves changed in a similar manner to when [HEPES] was varied (Figure 4). K_0 increased 5.6-fold and F_{max} decreased 1.3-fold from 0 to 1000 mM NaCl, which likely reflects chaotropic effects on CcSBPII’s hydration shell exertyed by high [NaCl]. *C. carboxidivorans* is not known to be a halophile, meaning that its proteins are unlikely to form salt-bridge networks on their surfaces that would otherwise stabilize the structure. The more pronounced effect on K_0 compared to the case with high [HEPES] may be due to Na$^+$. While it is a hard ion that unlikely competes directly with Ni$^{2+}$ to form coordinate bonds with CcSBPII’s binding residues, its positive charge could still lead to electrostatic interactions with the negatively-charged binding cavity (Supplementary Figure 8), thus hindering the entrance and binding of Ni$^{2+}$. Therefore, we chose not to include [NaCl] to minimize the number of buffer components that could complicate the Ni$^{2+}$→CcSBPII interaction and continued with 10 mM HEPES.

When varying the pH from 6.5 to 8.0 for 10 mM HEPES, and using Equation (7) in Prism with $n=1$, we found K_0 decreased 7.3-fold and F_{max} increased 1.4-fold in contrast to increasing [HEPES] and [NaCl], indicating a stronger binding event in more alkaline conditions (Figure 5). No change in fluorescence was observed at pH 2.5. Generally, pH plays a crucial role in metalloprotein function because it affects the ionization of the sidechains involved in binding to metal ions. Two of the four hypothesized binding residues based on structural superimposition with *CjNikZ* (Supplementary Figure 2) are histidines that have a pK$_a$ of 6.0 for the imidazole side chain; a pH below this value would protonate their nitrogens rendering them unable to contribute the lone pairs of electrons to form coordinate bonds with Ni$^{2+}$. With increasing pH from 6.5 to 8.0, these histidines could become increasingly deprotonated such that coordinate bonds can be formed more easily with Ni$^{2+}$. The other two hypothesized binding residues are lysine (pK$_a$ 10.54) and arginine (pK$_a$ 12.48), which may experience some deprotonation in the pH range tested that would allow for better coordinate bond formation, though this effect is likely minor due to their large pK$_a$ values. To avoid CcSBPII’s isoelectric point (pI 5.78) and to limit nickel hydroxide precipitation beginning at pH 8.5 to 9, we defined 10 mM HEPES at pH 7.2 as a suitable buffer condition to conduct further ligand screening for CcSBPII.

microITFQ-LTA for ligand screening with CcSBPII in a defined buffer

High-throughput ligand screens using thermal shift assays for SBPs have been conducted for metabolic intermediates, carbohydrates, amino acids, and sulfur compounds. In these screens, SBPs were tested for binding to myriad compounds. In contrast, Ni-BPs are often assumed to be isofunctional for a single metal ion and their promiscuity with other metal ions rarely ever reported. In our analysis of the peptide/nickel binding protein family (InterPro ID: IPR0306078), CcSBPII clustered in the same phylogenetic branch as *CjNikZ* and nearby other characterized Ni-BPs (data not shown). Based on this information and the structural superimposition of CcSBPII to *CjNikZ* (Supplementary Figure 2), we hypothesized CcSBPII’s target metal ion is Ni$^{2+}$. In the previous section, we provided evidence for a Ni$^{2+}$→CcSBPII binding event with low micromolar affinity in 10 mM HEPES pH 7.2. Metal SBPs with crystal structures on the Protein Data Bank (PDB) have been solved with Co$^{2+}$, Cu$^{2+}$, Zn$^{2+}$, Mn$^{2+}$, or Cd$^{2+}$ inside the binding cavity. Therefore, we performed a small ligand screen for CcSBPII’s interactions with these other
metal ions in 10 mM HEPES pH 7.2 (Figure 6). When NiCl$_2$ and NiSO$_4$ were used to prepare the Ni$^{2+}$ ligand solution, similar K_D values were obtained for CcSBPII: 14.13 μM with a CI of 13.27 to 14.98 μM, and 12.00 μM with a CI of 11.12 to 12.88 μM, respectively. Since they are nearly identical, and because we previously used NiCl$_2$, we prepared the other metal ligands using their chloride salt to be consistent.

The results are summarized in Table 2. Binding affinities (K_D) varied over 3 orders of magnitude, and the observed order of weakest to strongest affinity was Cd$^{2+}$ $< <$ Zn$^{2+}$ $< <$ Mn$^{2+}$ $< <$ Co$^{2+}$ $< <$ Ni$^{2+}$ $< <$ Cu$^{2+}$. Notably, Cd$^{2+}$ and Zn$^{2+}$ are spectroscopically silent metal ions due to their complete d orbitals, yet they still generated a saturable signal in the microITFQ-LTA. This indicates the mechanism of fluorescence quenching was not collisional quenching, but better explained by the changes in the polarity of the environment surrounding the proteinaceous tryptophans due to binding-induced conformational changes. This is confirmed by other binding studies using specITFQ-LTA to study Cd$^{2+}$ and Zn$^{2+}$ interactions with metalloproteins.47,48

Also of note, the observed order resembles the natural order of stabilities (i.e. the Irving-William series).49,50 However, an anomaly in this observed order is Zn$^{2+}$ appearing to be weaker in affinity than Co$^{2+}$, whereas in the originally reported Irving-William series Zn$^{2+}$ is predicted to have a stronger affinity than Co$^{2+}$. The theoretical and empirical rationale for the order of the Irving-William series is based on observations made with mono- to poly-dentate amino-bearing molecules in aqueous solution, and high-spin octahedral complexes.50 While amino acid monomers were considered in this conceptualization, it

![Figure 6](https://example.com/figure6.png)

Figure 6. Binding curves for M$^{2+}$→CcSBPII titrations in 10 mM HEPES pH 7.2, where M represents a divalent metal: NiCl$_2$ (empty circle), NiSO$_4$ (filled circle), CuCl$_2$ (upward triangle), CoCl$_2$ (square), ZnCl$_2$ (filled diamond), MnCl$_2$ (empty diamond), CdCl$_2$ (downward triangle). Metal ligands are prepared in 10 mM HEPES pH 7.2. Note the differences in range for the y-axis and x-axis when comparing curves.
did not consider the spatial constraints imparted by a relatively rigid protein structure that may only be able to accommodate a specific coordination geometry. Zn\(^{2+}\) is overwhelmingly found in metalloproteins with a tetrahedral geometry despite its tendency to form an octahedral \([\text{Zn}(\text{H}_2\text{O})_6]^{2+}\) complex in an aqueous solution.\(^{51,52}\) It is possible that CcSBPII’s hypothesized binding residues are unable to readily position themselves to accommodate a ligand with a tetrahedral preference, perhaps requiring a conformational change to do so that would explain its 1.47-fold increase in \(F_{\text{max}}\) compared to Ni\(^{2+}\). Zn\(^{2+}\) also has a stronger preference for softer elements like sulfur in cysteine, of which is not found in the CcSBPII binding cavity.

For Cd\(^{2+}\)→CcSBPII, it is unclear why exactly its \(K_D\) increased over 967.5-fold compared to Ni\(^{2+}\) when Zn\(^{2+}\) only increased 12.8-fold. This dramatic difference in affinity may be due to Cd\(^{2+}\) having a marked preference for aspartate and glutamate residues, which are not included in the hypothesized binding residues, but are plentiful across CcSBPII’s surface.\(^{53}\) Cd\(^{2+}\) is relatively flexible with its geometric preference compared to the other metal ions tested here. In fact, Cd\(^{2+}\) has been found in numerous crystal structures of metalloproteins in incompletely formed trigonal planar and tetrahedral complexes,\(^{52}\) so gross adventitious binding may be occurring at sites across CcSBPII that may not quench tryptophan fluorescence, similar to one SBP from *Listeria monocytogenes* (PDB ID: 5JPD). In such circumstances, x-ray crystallography is a better choice than microITFQ-LTA for study numerous interactions simultaneously.

Figure 7. Binding curves for MHC→CcSBPII titrations in 10 mM HEPES pH 7.2, where MHC represents a metal-histidine complex prepared with a 1:2 stoichiometric ratio: nickel-histidine or Ni-His (circles), cobalt-histidine or Co-His (squares), and copper-histidine or Cu-His (diamonds). To compare the three, a plot with a logarithmic x-axis is provided for comparison (bottom-right panel).

The apparent ability for CcSBPII to bind Cu\(^{2+}\) 1.4-fold more tightly than the hypothesized target Ni\(^{2+}\) and 2.5-fold more tightly than Co\(^{2+}\) is a clear demonstration of an issue bacteria face: mismetallation.\(^{54,55}\) The ana operon (Supplementary Figure 1) from which CcSBPII is encoded from also encodes for enzymes predicted to require nickel- and cobalt-based co-factors, supporting the notion that the target is Ni\(^{2+}\) and likely Co\(^{2+}\) too. To improve Ni\(^{2+}\) selectivity, Ni-BPs have been reported to use opine metallophores akin to siderophores for iron species, suggesting that CcSBPII may also naturally use chelators. These opine metallophores are comprised of a histidine connected to a pyruvate or an \(\alpha\)-ketoglutarate, and Ni-BP crystal structures have been solved with nickel-histidine complexes inside the binding cavities, so we chose to prepare 1:2 stoichiometric ligand solutions of Cu\(^{2+}\), Ni\(^{2+}\), and Co\(^{2+}\) with L-
histidine to titrate into CcSBPII in 10 mM HEPES pH 7.2 (Figure 7). Using Equation (6) with the KK method and inclusion of n, we observed substantial changes in K_D, summarized in Table 2. In all cases n is near 1, suggesting a one-binding site model is appropriate. In the absence of histidine, the observed order of affinity from weakest to strongest binding was Co$^{2+}$ < Ni$^{2+}$ < Cu$^{2+}$; in its presence it was Co$^{2+}$ < Cu$^{2+}$ < Ni$^{2+}$.

Specifically, by introducing histidine, K_D decreased 37.8-fold for Co$^{2+}$, 236.7-fold for Cu$^{2+}$, and a remarkable 2728.4-fold for Ni$^{2+}$ to obtain a K_D of 4.4 nM with a CI of 1.3 to 8.8 nM. CcSBPII binds 11.6-fold more tightly to a nickel-histidine complex than CjNikZ, reported earlier in this study to have a K_D of 51 nM. Further testing reveals that the imidazole ring of histidine contributes the most to the decrease in K_D compared to glycine (the backbone), but the presence of both imidazole and glycine is not sufficient enough for improving the binding affinity and selectivity for Ni$^{2+}$ (Figure 8). This indicates it is specifically the histidine molecule, not just its components, that is required to potentially counter mismetallation by Cu$^{2+}$.

However, it is unclear whether CcSBPII is binding to a nickel-histidine complex that has a 1:1 stoichiometry like that found in CjNikZ, or 1:2 like those found in YpYntA or SoNikA.28

Figure 8. Binding curves for C→CcSBPII titrations in 10 mM HEPES pH 7.2, where C represents a nickel in complex with imidazole (1:2, Ni-Imi, filled circles), glycine (1:2, Ni-Gly, empty circles), and both (1:2:2, Ni-Imi-Gly, diamond).

Limitations of the method

The microITFQ-LTA has several limitations that ought to be considered during experimental design and data analysis. First, the user must estimate the magnitude of [L], that will lead to maximal protein fluorescence quenching and prepare their ligand solution accordingly. If the user does not reach saturation in the titration range tested, best-fit parameter values will be poorly determined and lead to incorrect conclusions about the protein’s binding profile. We recommend a titration range over 3 orders of magnitude with a plateau reached in the largest order of magnitude; or alternatively, when the F_{obs} value ceases to increase with differences within 1 standard deviation for the last three data points. For example, in Figure 4, we did not observe saturation of CcSBPII by Ni$^{2+}$ in the presence of 100 and 1000 mM NaCl. The corresponding best-fit parameter values therefore need to be interpreted with caution. Additionally, the beginning of the binding curve has a larger effect on the K_D value, so it is important for users to have enough titration steps to accurately fit the model.

Second, Cu$^{2+}$ is known to undergo a redox reaction with the hydroxyl group of HEPES to form Cu$^+$.56 We attempted to measure the IFE this may cause by titrating Cu$^{2+}$ (same preparation and concentrations used in the Cu$^{2+}$→CcSBPII assay) into 10 mM HEPES pH 7.2 without protein and did not observe anything different from titrating the buffer alone (data not shown). Cu$^+$ prefers tetrahedral
geometries and lower coordination numbers, and our observation that CcSBPII has a low affinity for Zn$^{2+}$, which has a preferred tetrahedral geometry in protein structures, suggests that it is unlikely CcSBPII would specifically bind to Cu$^{+}$ as the major copper species with a K_0 value (8.54 μM) less than that of Ni$^{2+}$ (12.00 μM). Additionally, Cu$^{+}$ requires stabilization through interactions with alkenes and amines. This means its concentrations can be very low (viz. its presence is negligible) without catalysts or additional chemicals to drive the redox reaction forward and maintain its presence. In our purification and activity buffers, we did not add such components. Stabilization of Cu$^{+}$ by adventitious binding to the protein’s amine groups could occur, especially for micromolar and nanomolar K_0 interactions as observed here, but this phenomenon is poorly studied and does not nullify the usefulness of well documented methods for estimating K_0 values. Nevertheless, we caution future users of the microITFQ-LTA to carefully analyze data involving Cu$^{2+}$, especially when additional buffering components are introduced that may stabilize the Cu$^{+}$ species. To better characterize the redox state of copper bound to CcSBPII, electron paramagnetic resonance (EPR) spectroscopy and nuclear magnetic resonance (NMR) are recommended.

Third, the models presented here in Equations (6) and (7) are not appropriate for definitively elucidating mismetallation, and therefore directly studying the competition between metal ions. Our study of histidine’s effect on CcSBPII’s ability to bind to Ni$^{2+}$ compared to Cu$^{2+}$ (Figure 7) must be further explored using appropriate models. Similarly, studying the binding stoichiometry for metal complexes (i.e. histidine with Ni$^{2+}$, Co$^{2+}$, Cu$^{2+}$) cannot simply use the Hill Coefficient n appended to Equations (6) and (7) to definitively elucidate the ratio of protein to metal to complexing agent. We mostly observed $n \approx 1$ meaning that a one-site binding model could be true in many cases, but further research is needed using other binding models or ITC and x-ray crystallography to support these findings.

Lastly, we note that the position of tryptophan residues in the protein structure should be inspected to determine if they are solvent exposed and protruding into the metal-binding site as this could lead to collisional quenching in addition to the intramolecular self-quenching underpinning the microITFQ-LTA described here. Such a scenario would lead to a measured fluorescence quenching that would be a combination of the two phenomena, thus overestimating the association phenomenon. Structural data for proteins can be used to inspect the spatial location of the tryptophan residues computationally or experimentally. Correcting for collisional quenching is described elsewhere. For C,NiKZ and CcSBPII, our structural analysis (data not shown) revealed their tryptophan residues are buried in the hydrophobic core.

Conclusion

The validity of the microITFQ-LTA method proposed in this study was confirmed by using it to determine the K_0 value for Ni$^{2+}$→C,NiKZ and (1:2) Ni-His→C,NiKZ binding events. We were able to closely replicate existing K_0 values from literature and support crystal structure data. We then tested this method on CcSBPII, an uncharacterized putative Ni-BP from C. carboxidivorans, to demonstrate how a series of microITFQ-LTAs could be designed to study the effect of buffer composition on Ni$^{2+}$→CcSBPII binding and how CcSBPII interacts with various metal ions and complexes.

Approximately 240 replicates were conducted using the microITFQ-LTA in this study. The time required to process a single 96-well plate (i.e. one set of titrations manually by multichannel pipette) was 1.5 hrs. 240 replicates would have required >350 hrs (at least two weeks straight) if performed on a one-cuvette-per-run spectrofluorometer; ITC would have taken substantially longer. While dedicated spectrofluorometers and ITC can provide more in-depth and more comprehensive analyses of binding events, high-throughput methods like the microITFQ-LTA are crucial for exploring protein libraries with large buffer and ligand screens.
Competing interest statement

The authors declare they have no competing financial interests.

Abbreviations

Acknowledgements

The authors thank (1) Anna Khusnutdinova, Robert Flick, and Chao Chen for advice on experimental design and data processing, (2) Dr. Bridget A. Bergquist and Joan de Vera for access to and training on their Thermo-Fisher X-Series 2 ICP-MS in the Department of Earth Sciences at the University of Toronto, and (3) Dr. Walid Houry, Vaibhav Bhandari, and Elisa Leung for access to and training on the Bruker MALDI-ToF Biotyper and the JASCO J-800 spectropolarimeter in the Department of Biochemistry at the University of Toronto. This work was supported by the Ontario Ministry of Economic Development, Job Creation and Trade through the Elements of Bio-mining ORF-RE program. PD is a recipient of an Ontario Graduate Scholarship.

References

9. Van De Weert, M. & Stella, L. Fluorescence quenching and ligand binding: A critical discussion of a popular...

27. Howlett, R. M., Hughes, B. M., Hitchcock, A. & Kelly, D. J. Hydrogenase activity in the foodborne pathogen Campylobacter jejuni depends upon a novel ABC-type nickel transporter (NikZYXWV) and is SlyD-independent. *Microbiol. (United Kingdom)* (2012). doi:10.1099/mic.0.054130-0

doi:10.1111/mmi.12487

doi:10.1038/nprot.2009.182

doi:10.1016/bs.mie.2015.08.021

doi:10.1016/j.xphs.2016.11.014

doi:10.1038/nprot.2018.018

doi:10.1021/bi501388y

doi:10.1074/jbc.M117.804799

doi:10.1039/jr9530003192

doi:10.1002/9780470687123

64. Solovyev, V. & Salamov, A. Automatic Annotation of Microbial Genomes and Metagenomic Sequences. in Metagenomics and its Applications in Agriculture, Biomedicine and Environmental Studies (2011).

Supplementary Materials

Appendix A – Additional Protocols

Bioinformatics of the ana operon and CcSBPII

The **ana** operon of *C. carboxidivorans* was discovered through a blastp search using the *Cj*NikZ open-reading frame (UniProt ID: A0A0M4UJ91), and can be found here: tiny.cc/ccanaoperon. The locations of the promoter, ribosome binding sites, and transcriptional terminator were predicted using BPROM\(^64\), RBS Calculator\(^65\), and FindTerm\(^64\), respectively. The cobalamin riboswitch was predicted using Riboswitch Scanner.\(^66\)

Multiple sequence alignments were made and visualized on JalView using the MUSCLE algorithm with default settings.\(^67\) The 3D structure of CcSBPII was made using SWISS-MODEL with unliganded *Cj*NikZ as the template (PDB ID: 4OET), and visualized on PyMOL.\(^28,63\)

Matrix-assisted laser desorption/ionization time-of-flight (MALDI-ToF)

Matrix solution (30% v/v ACN, 0.05% v/v TFA, sinapinic acid to saturation) was briefly centrifuged to remove undissolved sinapinic acid, then combined with 1 µL of 1 mg/ml CcSBPII in a 1:1 ratio and applied to a polished steel target plate (Bruker, Part No. 8281817) to dry at room temperature. The Bruker Microflex LT MALDI-ToF was used in the 20 – 100 kDa range to analyze the ACN:TFA-CcSBPII precipitate by collecting 200 shots with the laser at 85% power and 60 Hz. Data was analyzed on flexAnalysis v3.4.

Inductively-coiled plasma mass spectrometry (ICP-MS)

A multi-element standard curve (Millipore Sigma, #1094800100) was prepared (0, 0.01, 0.1, 0.5, 1, 5, 10, 15, and 20 ppb) volumetrically in MilliQ water, each containing a final concentration of 2% TraceMetal\(^7\) Grade HNO\(_3\) (ThermoFisher, #A509P500) and 8 ppb TraceCERT® germanium (Millipore Sigma, #05419) for the internal standard. CcSBPII samples for metal analysis were prepared in the same manner with a final CcSBPII concentration of 0.67 µM (total volume = 3 mL per CcSBPII sample). For metal analysis, the ICP-MS (Thermo-Fisher X-Series 2) was equilibrated at 20 °C for 30 min. The system was then flushed with 2% TraceMetal\(^7\) Grade HNO\(_3\) for 30 min and tuned using the tune A solution (Fisher Scientific, #NC9063415). Triplicates were acquired and processed automatically by PlasmaLab, then visualized using GraphPad Prism 5.0.

Circular dichroism (CD)

The JASCO-800 spectropolarimeter was flushed with nitrogen gas (20 L/min) for 15 min and allowed to equilibrate at 25 °C with running distilled water before turning the lamp on. A 1-mm quartz cuvette (Millipore Sigma, #Z800015) was washed with MilliQ water, 70% EtOH, 70% HNO\(_3\), and a final wash with MilliQ water. 1 µM of purified CcSBPII in MilliQ water was added to the cuvette and analyzed in triplicate using the Measurement Mode between 180 – 260 nm at a 1 nm interval. The curve was then smoothed using a Savitzky-Golay filter on CAPITO\(^68\), then visualized using GraphPad Prism 5.0.
Supplementary Figure 1. Schematic diagram of the ana operon from Clostridium carboxidivorans encoding a potential acetogenesis pathway. (A) The ana operon is comprised of two sets of coding sequences. The first encodes an ABC transporter, which includes two solute binding proteins (SBP I and SBP II), two permease units (Permease I and Permease II), two nucleotide-binding domains (NBD I and NBD II), and an energy-coupling factor S-component. The second encodes acetogenesis-related enzymes, which includes two methyltransferases (MeTR I and MeTR II), one C-FeSP, and a cobalamin riboswitch after the transcriptional terminator (TT). A promoter (right angle arrow) and ribosome binding sites (white semi-circles) indicate where the operon and coding sequences start, respectively. Numbers below coding sequence names are identifiers that can be prefixed with “Ccar_” to locate them in the C. carboxidivorans genome (NZ_CP011803.1). SBP II (CcSBPII) is the protein of interest in this study.

(B) Pyruvate is largely derived from glycolysis and possesses a carboxylate group (COO-) noted in blue and red, representing the Western and Eastern branches of the Wood-Ljungdah pathway, respectively. Numerous enzymes require metal co-factors. PFOR requires a [4Fe-4S] cluster. CODH requires a [3Fe-4S] cluster bridged to a binuclear NiFe cluster. ACS requires a [4Fe-4S] cluster bridged to a binuclear NiNi cluster. C-FeSP requires cobalamin.
Supplementary Figure 2. Similarities between CjNikZ and CcSBPII revealed by structural and sequence analysis. (A) A superimposition was made on PyMOL using the unliganded CjNikZ structure (tan, PDB ID: 4OET) and the predicted CcSBPII structure (red - Western lobe, blue - Eastern lobe, orange - hinge region) using SWISS-MODEL with 4OET as the template. The top-right panel (RHH cavity) and bottom-left panel (variable loop) are zoom-ins of the superimposition and highlight residue similarities and differences between CjNikZ (green residues) and CcSBPII (cyan residues). (B) A multiple sequence alignment reveals CcSBPII uses K62 instead of H43 from CjNikZ, but has conserved binding residues otherwise (black arrows).
Supplementary Figure 3. Post-purification validation of tag removal, nickel removal, and proper protein folding of purified CcSBPII. (A) MALDI-ToF analysis of protein molecular weight with two samples (orange – addition of TEV, blue – no addition of TEV). Dashed black lines depict the maximum peaks for each sample. (B) ICP-MS analysis of nickel concentration to evaluate the usage of Chelex 100 to remove heavy metals from the Co-IMAC protein eluent, which is collected after applying the cell lysate to the Co-NTA and washing the resin with washing buffer. This protein eluent is combined with TEV for cleavage and dialyzed for 72 hrs with and without Chelex 100, labelled “+TEV +Chelex” and “+TEV -Chelex”, respectively. A negative control is included where the cell lysate volume is replaced with binding buffer to determine background nickel contamination by the buffer. No TEV is added to the eluent in this case and is dialyzed in the same fashion, labelled “no protein + Chelex” and “no protein - Chelex”. CcSBPII after the final 24 hr dialysis, prior to freezing, was also evaluated by ICP-MS and labelled “Post-aEX”. (C) CD spectrum of CcSBPII after being blanked with 10 mM HEPES, pH 7.2.
Supplementary Table 2. CcSBPII purification and purity profile

<table>
<thead>
<tr>
<th></th>
<th>mg/mL</th>
<th>mg</th>
<th>Purity</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cell Lysate</td>
<td>83.8</td>
<td>23</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wash-120 mL</td>
<td>0.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Elution Fraction 1</td>
<td>1.1</td>
<td>69</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Elution Fraction 5</td>
<td>0.1</td>
<td>100</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1st Co-NTA Elution</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Combined</td>
<td>0.5</td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Post-dialysis + 2nd Co-NTA</td>
<td>0.4</td>
<td>750</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pre-aEX concentrate</td>
<td>1.6</td>
<td>3.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Elution Fraction D2</td>
<td>0.5</td>
<td>98</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Elution Fraction E3</td>
<td>0.9</td>
<td>99</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Post-aEX Elution</td>
<td>1.0</td>
<td>2.2</td>
<td>>98%</td>
<td></td>
</tr>
</tbody>
</table>

Supplementary Figure 4. SDS-PAGE analysis of CcSBPII purification.

A A comparison of CcSBPII purification using NTA resin charged with copper, nickel, and cobalt.

B Two-step purification of CcSBPII. Left-panel: 1st step, purification using Co-NTA resin (elution with 250 mM imidazole). Right-panel: 2nd step, purification using anion exchange chromatography (aEX) on MonoQ to remove remaining impurities.
Supplementary Figure 5. χ^2 plots of $\text{Ni}^{2+} \rightarrow \text{C} \rightarrow \text{NikZ}$ to compare how n constrained ($n = 1$, circles) and n unconstrained (triangles) affects the behavior of global minima for best-fit K_0 and F_{max} parameters. Top-Left Panel: χ^2 vs. K_0 using Equation (7). Top-Right Panel: χ^2 vs. F_{max} using Equation (7). Bottom-Left Panel: χ^2 vs. K_0 using Equation (6). Bottom-Right Panel: χ^2 vs. F_{max} using Equation (6). Curves of best-fit for these plots are polynomial functions generated from Excel, and solved using Wolfram Alpha to generate CIs. These plots are created following instructions described by the KK method. Graph generated on Prism.
Supplementary Figure 6. χ^2 plots of (1:2) Ni-His→CJNikZ to compare how n constrained ($n = 1$, circles) and n unconstrained (triangles) affects the behavior of global minima for best-fit K_D and F_{max} parameters. Top-Left Panel: χ^2 vs. K_D using Equation (7). Top-Right Panel: χ^2 vs. F_{max} using Equation (7). Bottom-Left Panel: χ^2 vs. K_D using Equation (6). Bottom-Right Panel: χ^2 vs. F_{max} using Equation (6). Curves of best-fit for these plots are polynomial functions generated from Excel, and solved using Wolfram Alpha to generate CIs. These plots are created following instructions described by the KK method. Graph generated on Prism.
Supplementary Figure 7. χ² plot of (1:2) Ni-His\(\rightarrow\)CjNikZ to compare how the inclusion of n in Equations (6) and (7) alters the global minimum for the parameter n. Curves of best-fit for these plots are polynomial functions generated from Excel, and solved using Wolfram Alpha to generate CIs. These plots are created following instructions described by the KK method. Graph generated on Prism.
Supplementary Figure 8. Coulombic surface view of CcSBPII (homology model from CjNikZ, PDB ID: 4OET) highlighting regions of positive charge (blue), negative charge (red), and neutral (white). Visualized on Chimera 1.13.1.