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Abstract. Colijn & Plazzotta (Syst. Biol. 67:113-126, 2018) introduced a scheme for bijectively associating the
unlabeled binary rooted trees with the positive integers. First, the rank 1 is associated with the 1-leaf tree. Proceeding
recursively, ordered pair (k1, k2), k1 > k2 > 1, is then associated with the tree whose left subtree has rank k1 and
whose right subtree has rank k2. Following dictionary order on ordered pairs, the tree whose left and right subtrees
have the ordered pair of ranks (k1, k2) is assigned rank k1(k1 − 1)/2 + 1 + k2. With this ranking, given a number of
leaves n, we determine recursions for an, the smallest rank assigned to some tree with n leaves, and bn, the largest
rank assigned to some tree with n leaves. For n equal to a power of 2, the value of an is seen to increase exponentially
with 2αn for a constant α ≈ 1.24602; more generally, we show it is bounded an < 1.5n. The value of bn is seen to
increase with 2β(2n) for a constant β ≈ 1.05653. The great difference in the rates of increase for an and bn indicates
that as the index v is incremented, the number of leaves for the tree associated with rank v quickly traverses a wide
range of values. We interpret the results in relation to applications in evolutionary biology.
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1 Introduction

For a given number of leaves n > 2, the unlabeled binary rooted trees with n leaves can be obtained
recursively (Table 1). For fixed n, we enumerate all possible pairings of a subtree of size k leaves with a
subtree of size n− k leaves, for each k from 1 to ⌊n

2 ⌋. For each k < n
2 , each pairing of a subtree of size k and

a subtree of size n−k generates a distinct unlabeled binary rooted tree; for even n and k = n
2 , we enumerate

pairings of distinct subtrees of size n
2 and pairings of identical subtrees of size n

2 .
Letting Un denote the number of unlabeled binary rooted trees with n leaves, we have [10, p. 29]

Un =











1, if n = 1
∑(n−1)/2

k=1 UkUn−k, if n is odd and n > 3

[
∑(n−2)/2

k=1 UkUn−k] + Un/2(Un/2 + 1)/2, if n is even.

(1)

The sequence of values Un, the Wedderburn-Etherington numbers, begins from n = 1 with 1, 1, 1, 2, 3, 6,
11, 23, 46, 98, 207, 451, 983, 2179, 4850 (Table 2, A001194 in OEIS). Un is straightforward to calculate from
U1, U2, . . . , Un−1 via the recursion in eq. 1. However, no closed-form expression is known.

For a fixed value of n, the unlabeled binary rooted trees can be enumerated in the sequence in which they
appear in the recursion. According to the ranking scheme of Furnas [11] for trees of size n leaves, k 6 ⌊n

2 ⌋ is
viewed as the size of the left subtree of a tree of size n > 2 and n− k is the size of the right subtree. Trees
with n leaves that have a lower value of k are assigned lower rank. Trees with n leaves that have the same
value of k are ordered by the rank of their left subtree, and trees with n leaves that have the same value of k
and the same left subtree are ordered by the rank of their right subtree. For trees with two distinct subtrees
of size n

2 , the one with lower Furnas rank appears on the left (Table 1).
The Furnas ranking bijectively associates the unlabeled binary rooted trees with the positive integers.

For n > 1, we let Sn =
∑n

k=1 Uk denote the sum of the Wedderburn-Etherington numbers, with S0 = 0
(A173282 in OEIS). In the bijection, the tree of size n with Furnas rank v, 1 6 v 6 Un, is associated with
the integer Sn−1 + v. The trees of size n are associated with the integers in [Sn−1 + 1, Sn] (Table 2).
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Table 1. Furnas ranks of unlabeled binary rooted trees with 1 6 n 6 8 leaves.

n

Furnas rank v 1 2 3 4 5 6 7 8

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

This bijection based on the Furnas ranking is convenient as a scheme for indexing trees, but the un-
availability of a closed form for Un and hence for Sn makes it difficult to quickly discern the tree associated
with a given integer and vice versa. An alternative scheme of Colijn & Plazzotta [4], which also bijectively
associates the unlabeled binary rooted trees with the positive integers, addresses this problem.

In the Colijn-Plazzotta ranking, the 1-leaf tree is given rank 1. For n > 2 leaves, the ordered pair (k1, k2),
k1 > k2 > 1, is associated with the tree whose left subtree has Colijn-Plazzotta rank k1 and whose right
subtree has rank k2. Following the dictionary order on ordered pairs, the tree associated with ordered pair
(k1, k2) is assigned rank k1(k1−1)/2+1+k2. Thus, the Colijn-Plazzotta rank of a tree is obtained recursively
from the ranks of its left and right subtrees, and the tree associated with a rank v is obtained by identifying
the largest k1 such that k1(k1 − 1)/2+ 1 < v and assigning to rank v the tree whose left subtree has rank k1
and whose right subtree has rank v − k1(k1 − 1)/2− 1 (Table 3). Note that the left–right orientation of an
unlabeled binary rooted tree generally differs for the Furnas and Colijn-Plazzotta rankings.

Here, we study mathematical properties of the Colijn-Plazzotta ranking of the unlabeled binary rooted
trees. For fixed n, we obtain recursions for the smallest rank an assigned to some tree with n leaves as well
as the largest rank bn. We then study asymptotic properties of an and bn.
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Table 2. Minimal and maximal Furnas and Colijn-Plazzotta ranks among unlabeled binary ranked trees
with 1 6 n 6 16 leaves.

Furnas Colijn-Plazzotta

n Un Sn−1 + 1 Sn an bn

1 1 1 1 1 1

2 1 2 2 2 2

3 1 3 3 3 3

4 2 4 5 4 5

5 3 6 8 6 12

6 6 9 14 7 68

7 11 15 25 10 2280

8 23 26 48 11 2598062

9 46 49 94 20 3374961778893

10 98 95 192 22 5.70 × 1024

11 207 193 399 28 1.62 × 1049

12 451 400 850 29 1.32 × 1098

13 983 851 1833 53 8.65 × 10195

14 2179 1834 4012 56 3.74 × 10391

15 4850 4013 8862 66 6.99 × 10782

16 10905 8863 19767 67 2.44 × 101565

The Wedderburn-Etherington number Un follows eq. 1. The minimal rank Sn−1 + 1 and maximal rank Sn according to the

Furnas ranking are taken from the sums Sn of the Weddernburn-Etherington numbers. The minimal rank an and maximal rank

bn according to the Colijn-Plazzotta ranking are taken from Theorems 5 and 7, respectively. For n > 10, bn is approximated.

2 The Colijn-Plazzotta ranking

We define the Colijn-Plazzotta ranking more formally. Let Tn be the set of unlabeled binary rooted trees
with n leaves, and let T = ∪∞

n=1Tn be the set of all unlabeled binary rooted trees. All trees considered here
are unlabeled binary rooted trees, and we refer to them simply as trees. For a tree t ∈ T , we let m(t) denote
its number of leaves. For m(t) > 2, we let ℓ(t) and r(t) denote the left and right subtrees of t.

Definition 1. The Colijn-Plazzotta ranking for trees t ∈ T is a function f : T → Z
+ that satisfies

(a) f(t) = 1 if m(t) = 1, and
(b) f(t) = f

(

ℓ(t)
)

[f
(

ℓ(t)
)

− 1]/2 + 1 + f
(

r(t)
)

if m(t) > 2.

We abbreviate the Colijn-Plazzotta ranking as the CP ranking. To determine the CP rank of a tree t, we
require t to be written in a canonical form in which f

(

ℓ(t)
)

> f
(

r(t)
)

. In this canonical form, the number of

leaves in the left subtree, m
(

ℓ(t)
)

, can be greater than, less than, or equal to m
(

r(t)
)

(Table 3). The 1-leaf
tree has CP rank 1, and hence, if it is a subtree of the root of t and m(t) > 3, then it is necessarily the right
subtree (for m(t) = 2, both subtrees have 1 leaf). The 2-leaf tree has CP rank 2, and if it is a subtree of the
root of t and m(t) > 5, then it is the right subtree.

The dictionary order used in the CP ranking has the implication that for two trees t1, t2 in canonical
form with f

(

ℓ(t1)
)

< f
(

ℓ(t2)
)

, f(t1) < f(t2). For two trees t1, t2 in canonical form with f
(

ℓ(t1)
)

= f
(

ℓ(t2)
)

and f
(

r(t1)
)

< f
(

r(t2)
)

, f(t1) < f(t2).
The CP ranking f gives a bijective map between trees and positive integers [4]. Briefly, for injectivity,

two distinct trees t1, t2 differ in their pair of subtrees,
(

ℓ(t1), r(t1)
)

6=
(

ℓ(t2), r(t2)
)

, giving rise to distinct
values of f , f(t1) 6= f(t2). For surjectivity, each positive integer v > 2 has a unique representation in the
form k1(k1 − 1)/2 + 1 + k2, with k1, k2 positive integers and k1 > k2, so that the tree whose subtrees have
CP ranks k1, k2 is assigned to CP rank v.

Given a positive integer v > 2, we identify the tree with CP rank v as the tree t ∈ T whose left subtree
is the tree with CP rank k1(v), where k1(v) is the largest integer satisfying k1(k1 − 1)/2+ 1 < v, and whose
right subtree is the tree with CP rank k2(v) = v − k1(v)[k1(v)− 1]/2− 1. We solve the inequality for k1.
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Table 3. Colijn-Plazzotta ranks of unlabeled binary ranked trees with CP rank 1 6 v 6 37.

CP rank v

(

f
(

ℓ(t)
)

, f
(

r(t)
)

)

t m(t) an bn

1 - 1 a1 = 1 b1 = 1

2 (1,1) 2 a2 = 2 b2 = 2

3 (2,1) 3 a3 = 3 b3 = 3

4 (2,2) 4 a4 = 4

5 (3,1) 4 b4 = 5

6 (3,2) 5 a5 = 6

7 (3,3) 6 a6 = 7

8 (4,1) 5

9 (4,2) 6

10 (4,3) 7 a7 = 10

11 (4,4) 8 a8 = 11

12 (5,1) 5 b5 = 12

13 (5,2) 6

14 (5,3) 7

15 (5,4) 8

16 (5,5) 8

17 (6,1) 6

18 (6,2) 7

19 (6,3) 8

20 (6,4) 9 a9 = 20

21 (6,5) 9

22 (6,6) 10 a10 = 22

23 (7,1) 7

24 (7,2) 8

25 (7,3) 9

26 (7,4) 10

27 (7,5) 10

28 (7,6) 11 a11 = 28

29 (7,7) 12 a12 = 29

30 (8,1) 6

31 (8,2) 7

32 (8,3) 8

33 (8,4) 9

34 (8,5) 9

35 (8,6) 10

36 (8,7) 11

37 (8,8) 10

The tree t = f−1(v) and its left and right subtrees ℓ(t), r(t) follow Proposition 2, and the number of leaves m(t) follows Corollary

3. Sequence {m
(

f−1(v)
)

}∞
v=1 follows A064064 in OEIS. The values of an and bn follow Theorems 5 and 7, respectively. The

first v for which the number of leaves declines in proceeding from rank v to rank v + 1 occurs at v = 7, so that m
(

f−1(8)
)

<

m
(

f−1(7)
)

. Thus, v = 8 × 7/2 + 1 + 7 = 36 is the smallest rank for which f−1(v) has fewer leaves in the left subtree than in

the right subtree. The next ranks for which the left subtree has fewer leaves than the right subtree are 74, 76, 77, 78.
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Proposition 2. The function f−1 : Z+ → T that gives the tree with specified CP rank satisfies
(a) f−1(1) is the tree with one leaf, and

(b) for v > 2, f−1(v) is the tree whose left subtree has CP rank k1(v) = ⌈ 1+
√
8v−7
2 ⌉ − 1 and whose right

subtree has CP rank k2(v) = v − k1(v)[k1(v)− 1]/2− 1.

Using the function f−1 that gives the tree associated with CP rank v, we obtain a recursion for the
number of leaves possessed by the tree of CP rank v.

Corollary 3. The function m : Z+ → Z
+ that gives the number of leaves in the tree with specified CP rank

satisfies
(a) m

(

f−1(1)
)

= 1, and

(b) for v > 2, m
(

f−1(v)
)

= m
(

f−1(⌈
√
8v−7−1

2 ⌉)
)

+m
(

f−1(v − ⌈
√
8v−7−1

2 ⌉⌈
√
8v−7−3

2 ⌉/2− 1)
)

.

Proof. The number of leaves in the tree of CP rank v > 2, or m
(

f−1(v)
)

, is the sum of the numbers of leaves

in its left and right subtrees, or m
(

k1(v)
)

+m
(

k2(v)
)

. �

The CP ranking, unlike the Furnas ranking, assigns trees whose numbers of leaves differ substantially to
neighboring ranks (Table 3). Unlike the Furnas ranking, however, it enables a straightforward calculation of
the rank associated with a given tree and the tree associated with a given rank.

3 Smallest CP rank for a fixed number of leaves

Next, we compute the CP ranks of the trees of size n that have the smallest and largest CP ranks. For
n > 1, we define an = mint∈Tn

f(t) and bn = maxt∈Tn
f(t). The sequences {an}

∞
n=1 and {bn}

∞
n=1 give the

minimal and maximal CP rank considering all trees of size n leaves. Let zn and Zn respectively denote the
trees of size n that achieve the minimal and maximal CP rank, f(zn) = an and f(Zn) = bn.

We begin with an. To determine a recursion for an, we first must establish that an increases with n.

Lemma 4. {an}
∞
n=1 is a strictly increasing sequence.

Proof. First, by the definition of the CP ranking and the fact that tree sizes n = 1, 2, and 3 each have only
one tree, a1 = 1, a2 = 2, and a3 = 3. We show by induction that for each n > 3, an+1 > an.

Consider a tree t of size n + 1. We must show f(t) > an, as it would then follow that an+1 =
mint∈Tn+1

f(t) > an. We consider two cases. (i) Suppose the two subtrees of the root of t have sizes n
and 1. Then the left subtree of t has size ℓ(t) = n and the right subtree has size 1, and

f(t) = f
(

ℓ(t)
)

[f
(

ℓ(t)
)

− 1]/2 + 2

>
an(an − 1)

2
+ 2.

> an.

Here, the first inequality uses f
(

ℓ(t)
)

> an by the definition of an, and the second follows from the quadratic
inequality x(x− 1)/2 + 2 > x. Thus, each tree t of size n+ 1 with subtrees of size n and 1 has f(t) > an.

(ii) Suppose t instead has subtrees of size m, ⌈n+1
2 ⌉ 6 m 6 n− 1, and n+ 1−m 6 m. The subtrees of t

are ℓ(t) and r(t), one of which has size m and the other of which has size n+1−m (possibly m = n+1−m
for odd n). As it is not yet specified which subtree is ℓ(t) and which is r(t), we consider both left–right
arrangements, in each exhibiting a tree t′ of size n with an 6 f(t′) < f(t).

Suppose that ℓ(t) has size m. Then f
(

ℓ(t)
)

> f(zn+1−m) by the inductive assumption: if ℓ(t) has size

m, then f
(

ℓ(t)
)

> am > an+1−m. Consider a tree t′ of size n whose two subtrees are ℓ(t) and zn−m. Note

that f
(

ℓ(t)
)

> am > an−m = f
(

zn−m

)

by the inductive assumption, so that the canonical form for t′ has
ℓ(t′) = ℓ(t) and r(t′) = zn−m. We then have

f(t) = f
(

ℓ(t)
)

[f
(

ℓ(t)
)

− 1]/2 + 1 + f
(

r(t)
)

> f
(

ℓ(t)
)

[f
(

ℓ(t)
)

− 1]/2 + 1 + an+1−m

> f
(

ℓ(t)
)

[f
(

ℓ(t)
)

− 1]/2 + 1 + an−m

= f
(

ℓ(t′)
)

[f
(

ℓ(t′)
)

− 1]/2 + 1 + f
(

r(t′)
)

= f(t′).
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The first inequality follows from the definition of an, and the second follows from the inductive assumption.
Thus, f(t) > f(t′) > an.

Now suppose instead that ℓ(t) has size n + 1 −m. Let the two subtrees of t′ be r(t) and zn−m. Then
f
(

r(t)
)

> am > an−m = f
(

zn−m

)

, so that in canonical form, t′ has ℓ(t′) = r(t) and r(t′) = zn−m. We have

f(t) = f
(

ℓ(t)
)

[f
(

ℓ(t)
)

− 1]/2 + 1 + f
(

r(t)
)

f(t′) = f
(

r(t)
)

[f
(

r(t)
)

− 1]/2 + 1 + an−m.

It follows that f(t) > f(t′) is equivalent to [f
(

ℓ(t)
)

− f
(

r(t)
)

][f
(

ℓ(t)
)

+ f
(

r(t)
)

− 3] > 2[an−m − f
(

ℓ(t)
)

].

This latter inequality holds, as f
(

ℓ(t)
)

− f
(

r(t)
)

> 0 for any t, f
(

ℓ(t)
)

+ f
(

r(t)
)

− 3 > 0 for any t with

m(t) > 3, and f
(

ℓ(t)
)

> an+1−m > an−m by the inductive hypothesis. Thus, f(t) > f(t′) > an.
We conclude that for each tree of size n+ 1 with subtrees of size m and n+ 1−m, ⌈n+1

2 ⌉ 6 m 6 n− 1,
we can find a tree t′ of size n for which f(t) > f(t′). As f(t′) > an, it follows that f(t) > an. �

The computation of an encodes a result that the tree with minimal CP rank is obtained by appending
two subtrees of minimal CP rank for their size to a shared root. These subtrees are identical for even n, and
they differ in size by one leaf for odd n.

Theorem 5. The sequence {an}
∞
n=1 of values of the minimal CP rank across trees of fixed size n satisfies

(a) a1 = 1.
(b) a2n = an(an − 1)/2 + 1 + an for 2n > 2, and
(c) a2n−1 = an(an − 1)/2 + 1 + an−1 for 2n− 1 > 3.

Proof. The base case of a1 = 1 is trivial, as are the cases of a2 = 2 and a3 = 3. Consider a tree t with an
even number of leaves 2n > 4.

We claim that if m
(

ℓ(t)
)

< n, then t 6= z2n. Suppose the left subtree of t has n∗ < n leaves. The right

subtree then has at least n + 1 leaves, so that f
(

ℓ(t)
)

> f
(

r(t)
)

> an+1. Then ℓ(t) cannot equal zn∗ , as
f(zn∗) = an∗ < an+1 by Lemma 4. We could then construct a tree of 2n leaves whose left subtree is r(t)
and whose right subtree is zn∗ . This tree would have a lower CP rank than t, as the inequality

f
(

ℓ(t)
)

[f
(

ℓ(t)
)

− 1]

2
+ 1 + f

(

r(t)
)

>
f
(

r(t)
)

[f
(

r(t)
)

− 1]

2
+ 1 + an∗

is equivalent to [f
(

ℓ(t)
)

− f
(

r(t)
)

][f
(

ℓ(t)
)

+ f
(

r(t)
)

− 3] > 2[an∗ − f
(

ℓ(t)
)

]; this latter inequality holds as its

left side is nonnegative and its right size is negative. Thus, m
(

ℓ(z2n)
)

> n.

Having established that the canonical form of z2n has m
(

ℓ(z2n)
)

> n, we have ℓ(z2n) ∈ Tn ∪ Tn+1 ∪ . . .∪
T2n−1. We now argue that z2n is the tree t∗ whose left subtree is zn and whose right subtree is also zn.

For t, t′ in canonical form, f
(

ℓ(t)
)

< f
(

ℓ(t′)
)

implies f(t) < f(t′) (Section 2); for t, t′ in canonical form

with f
(

ℓ(t)
)

= f
(

ℓ(t′)
)

and f
(

r(t)
)

< f
(

r(t′)
)

, f(t) < f(t′). By Lemma 4, an 6 an+1 6 . . . 6 a2n−1, so that
zn = argmint∈{Tn∪Tn+1∪...∪T2n−1} f(t). Combining these results, each tree t 6= t∗ with t ∈ T2n and ℓ(t) ∈
Tn∪Tn+1∪. . .∪T2n−1, written in canonical form, has f(t) > f(t∗): if ℓ(t) 6= zn, then f(t) > f(t∗); if ℓ(t) = zn
and r(t) 6= zn, then f(t) > f(t∗). We conclude ℓ(z2n) = r(z2n) = zn and a2n = an(an − 1)/2 + 1 + an.

For trees of size 2n− 1 > 5, the same argument applies: we show m
(

ℓ(t)
)

> n, then we argue that z2n−1

is the tree with left subtree zn and right subtree zn−1, producing a2n−1 = an(an − 1)/2 + 1 + an−1. �

The first terms of {an}
∞
n=1 are 1, 2, 3, 4, 6, 7, 10, 11, 20, 22, 28, 29, 53, 56, 66, 67 (Table 2). The

recursion for an constructs the trees zn. For odd n, the two subtrees immediately descended from the root
of the tree f−1(an) have numbers of leaves that differ by 1 (Table 3). For even n, f−1(an) has two identical
subtrees descended from the root. In both the odd and even cases, for each internal node, the two subtrees
immediately descended from the node differ by at most 1 in their numbers of leaves. Note that in the case
that n is a power of 2, n = 2k for k > 1, the tree that has minimal CP rank is the fully symmetric tree.

4 Largest CP rank for a fixed number of leaves

We now turn to {bn}
∞
n=0, the sequence of values of the maximal CP rank among trees with n leaves. As in

Section 3, we begin by demonstrating that bn increases with n.
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Lemma 6. {bn}
∞
n=1 is a strictly increasing sequence.

Proof. We show bn+1 > bn for n > 1.
For n > 1, we append zn and z1 to a shared root to obtain a tree t. Then f(t) = bn(bn − 1)/2 + 2. The

inequality bn(bn − 1)/2 + 2 > bn always holds, as b2n − 3bn + 4 is an upward-facing parabola with vertex at
a positive value, (32 ,

7
4 ). Thus, we have constructed a tree of n+ 1 leaves with CP rank greater than that of

the tree of n leaves with largest CP rank. �

Next, to obtain bn, we show that the tree of size n with maximal CP rank is obtained by appending the
tree of maximal CP rank with size n− 1 and a single leaf to a shared root.

Theorem 7. The sequence {bn}
∞
n=1 of values of the maximal CP rank across trees of fixed size n satisfies

(a) b1 = 1.
(b) bn = bn−1(bn−1 − 1)/2 + 2 for n > 2.

Proof. The base case b1 = 1 is trivial, as are the cases of b2 = 2 and b3 = 3.
Let n > 4 and consider a tree t with m(t) = n. We claim that if m

(

ℓ(t)
)

< ⌈n
2 ⌉, then t 6= Zn.

Suppose the left subtree of t has n∗ < ⌈n
2 ⌉ leaves. The right subtree then has at least ⌈n

2 ⌉ leaves, so that
f
(

ℓ(t)
)

> f
(

r(t)
)

> b⌈n

2
⌉. Then ℓ(t) cannot be Zn∗ , as f(Zn∗) = bn∗ < b⌈n

2
⌉ by Lemma 6. We could then

construct a tree t′ of size n whose left subtree is Zn−n∗ and whose right subtree is Zn∗ . This tree would have
a greater CP rank than t, as

f
(

ℓ(t)
)

[f
(

ℓ(t)
)

− 1]

2
+ 1 + f

(

r(t)
)

<
bn∗(bn∗ − 1)

2
+ 1 + bn−n∗ <

bn−n∗(bn−n∗ − 1)

2
+ 1 + bn∗ = f(t′),

where we use bn∗ < bn−n∗ by Lemma 6. Thus, m
(

ℓ(Zn)
)

> n.

Having established that the canonical form of Zn has m
(

ℓ(Zn)
)

> n, we have ℓ(Zn) ∈ T⌈n

2
⌉ ∪ T⌈n

2
⌉+1 ∪

. . . ∪ Tn−1. We now argue that Zn is the tree t∗ whose left subtree is Zn−1 and whose right subtree is Z1.
For t, t′ in canonical form, f

(

ℓ(t)
)

< f
(

ℓ(t′)
)

implies f(t) < f(t′) (Section 2). By Lemma 6, b⌈n

2
⌉ 6

b⌈n

2
⌉+1 6 . . . 6 bn−1, so that Zn−1 = argmaxt∈T⌈n

2
⌉∪T⌈n

2
⌉+1∪...∪Tn−1

f(t). Combining these results, each tree

t 6= t∗ with t ∈ Tn and ℓ(t) ∈ T⌈n

2
⌉ ∪ T⌈n

2
⌉+1 ∪ . . . ∪ Tn−1, written in canonical form, has f(t) < f(t∗). We

conclude ℓ(Zn) = Zn−1 and r(Zn) necessarily is Z1. Hence bn = bn−1(bn−1 − 1)/2 + 2. �

The first values of {bn}
∞
n=1 are 1, 2, 3, 5, 12, 68, 2280, 2598062 (Table 2, A108225 in OEIS). Because

the tree Zn with maximal CP rank is obtained by successively appending the tree Zn−1 with maximal CP
rank and a single leaf to a shared root, the tree of n leaves that achieves maximal CP rank is the caterpillar
tree—the tree in which there exists an internal node that descends from all other internal nodes (Table 3).

A relationship exists between entries of {an}
∞
n=1 and entries of {bn}

∞
n=1. We write dn = a2n for n > 0.

Proposition 8. For n > 0, dn + 1 = bn+2.

Proof. We demonstrate the result by induction. We have d0 + 1 = a1 + 1 = 2 and b2 = 2. For the inductive
step, we assume dn + 1 = bn+2 and show dn+1 + 1 = bn+3.

By Theorem 5, for n > 1, dn+1 = a2n(a2n − 1)/2 + 1 + a2n = dn(dn − 1)/2 + 1 + dn = dn(dn + 1)/2 + 1.
At the same time, bn+3 = bn+2(bn+2 − 1)/2 + 2 by Theorem 7. By the inductive hypothesis, we then have
bn+3 = (dn + 1)dn/2 + 2 = dn+1 + 1. �

The sequence {dn}
∞
n=0 = {a2n}

∞
n=0 begins 1, 2, 4, 11, 67, 2279, 2598061 (A006894 in OEIS). As a result

of Theorem 7 and Proposition 8, as we traverse ranks in the interval [bn, bn+1), flanked by the largest ranks
for trees with n and n+1 leaves, we encounter ranks for trees representing numbers of leaves as high as 2n−1.
The CP ranking can place trees with quite different numbers of leaves in adjacent ranks. We characterize
this difference in the following remark.

Remark 9. For n > 1, all trees with CP rank in [bn, bn+1) have sizes in [n, 2n−1]. The smallest size for a
tree with CP rank in [bn, bn+1) is n, and the largest size for a tree with CP rank in [bn, bn+1) is 2n−1.

Proof. The interval [bn, bn+1), ranging from the largest CP rank of a tree with n leaves to one less than
the largest CP rank of a tree with n + 1 leaves, contains the smallest CP rank of a tree with 2n−1 leaves
(a2n−1 = dn−1 = bn+1 − 1 by Proposition 8). Because {bn}

∞
n=1 is increasing by Lemma 6, bn−1 < bn, so that

no trees of size n− 1 leaves or fewer have CP rank in [bn, bn+1). Because {an}
∞
n=1 is increasing by Lemma

4, a2n−1 < a2n−1+1, and no trees of size 2n−1 + 1 or greater have CP rank in [bn, bn+1). �
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5 Asymptotics

We now evaluate the asymptotic behavior of the sequences {an}
∞
n=1 and {bn}

∞
n=1. We use the method of

Aho and Sloane [1].

Theorem 10. dn ∼ 2α(2n) for a constant α ≈ 1.24602.

Proof. In Proposition 8, dn = 1
2d

2
n−1 +

1
2dn−1 + 1 for n > 1, with d0 = 1. Substituting dn = 2xn − 1

2 , we
obtain xn = x2

n−1 +
11
16 , with x0 = 3

4 .
We take yn = log xn in this quadratic recursion for xn. We then have, for n > 1, yn = 2yn−1 + αn−1,

where αn−1 = log[1 + 11/(16x2
n−1)]. Applying the method of Aho and Sloane [1] for quadratic recursions,

yn = 2ny0 +
n−1
∑

i=0

2n−i−1αi

= 2n
(

y0 +

∞
∑

i=0

2−i−1αi

)

−

∞
∑

i=n

2n−i−1αi.

Exponentiating both sides, we obtain

xn =

[

x0 exp

( ∞
∑

i=0

2−i−1αi

)](2n)

exp

(

−

∞
∑

i=n

2n−i−1αi

)

= α(2n) exp

(

−

∞
∑

i=n

2n−i−1αi

)

,

where α is the constant α = x0 exp(
∑∞

i=0 2
−i−1αi). Inserting the first terms of the recursive sequence

{xn}
∞
n=0, we have (x0, x1, x2, x3, . . .) = (34 ,

5
4 ,

9
4 ,

23
4 , . . .). From these values, we have (α0, α1, α2, α3, . . .) =

(log 20
9 , log

36
25 , log

10
9 , log

540
529 , . . .). Numerically evaluating the constant α from the first 10 terms, we obtain

α ≈ 1.24602083298366.
Then

xn

α(2n)
= exp

(

−

∞
∑

i=n

2n−i−1αi

)

.

As n → ∞, the sum
∑∞

i=n 2
n−i−1αi can be bounded 0 6

∑∞
i=n 2n−i−1αi 6 αn

∑∞
i=n 2n−i−1 = αn. Because

xn → ∞ as n → ∞, αn → 0 as n → ∞. Hence limn→∞[xn/α
(2n)] = 1.

Because dn = 2xn − 1
2 , we conclude dn ∼ 2α(2n). �

The connection between dn = a2n and bn (Proposition 8) quickly gives the following result.

Corollary 11. bn ∼ 2β(2n) for a constant β ≈ 1.05653.

Proof. By Proposition 8, bn ∼ dn−2, and by Theorem 10, dn−2 ∼ 2α(2n−2). Hence, bn ∼ 2α(2n−2). Writing
β = α1/4 ≈ 1.05652876566960, the result follows. �

We have obtained an asymptotic equivalence for {dn}
∞
n=0 in Theorem 10, giving the increase of {an}

∞
n=1

for the subsequence n = 1, 2, 4, 8, 16, . . .. We now place a bound on the increase in {an}
∞
n=1 more generally.

Proposition 12. an < (32 )
n for n > 1.

Proof. We use induction. The result holds for n = 1 (a1 = 1 < 3
2 ), n = 2 (an = 2 < 9

4 ), n = 3 (a3 = 3 < 27
8 ),

and n = 4 (a4 = 4 < 81
16 ). We assume that the inequality holds for each n from 1 to 2k − 2.

For even 2k > 4, applying Theorem 5 and the inductive hypothesis,

a2k =
ak(ak − 1)

2
+ 1 + ak

<
(32 )

k[(32 )
k − 1]

2
+ 1 +

(

3

2

)k

=
1

2

(

9

4

)k

+
1

2

(

3

2

)k

+ 1.
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1 5 10 15 20 25 30 35 40 45 50
n0

2

4

6

8

10

an

2αn

Figure 1. The ratio an/(2α
n), α ≈ 1.24602. This ratio has limit 1 for subsequence {a2k}

∞
k=0 (Theorem 10).

1 5 10 15 20 25 30 35 40 45 50
n0

0.2

0.4

0.6

0.8

1

an

(3/2)n

Figure 2. The ratio an/(
3
2 )

n. This ratio lies below 1 for all n (Proposition 12).

To demonstrate a2k < (32 )
2k, we must show 1

2 (
9
4 )

k + 1
2 (

3
2 )

k + 1 < (32 )
2k, or equivalently, (32 )

k + 2 < (94 )
k.

This latter inequality holds: g(k) = (94 )
k − (32 )

k − 2 is an increasing function for k > 0, with g(2) = 13
16 > 0,

and g(k) therefore remains positive for k > 2.
For odd 2k − 1 > 5, applying Theorem 5 and the inductive hypothesis,

a2k−1 =
ak(ak − 1)

2
+ 1 + ak−1

<
(32 )

k[(32 )
k − 1]

2
+ 1 +

(

3

2

)k−1

=
1

2

(

9

4

)k

−
1

2

(

3

2

)k

+ 1 +

(

3

2

)k−1

.

To demonstrate a2k−1 < (32 )
2k−1, we must show 1

2 (
9
4 )

k − 1
2 (

3
2 )

k + 1 + (32 )
k−1 < (32 )

2k−1, or equivalently,
(32 )

k + 6 < (94 )
k. Again, the function g(k) = (94 )

k − (32 )
k − 6 is increasing for k > 0, with g(3) = 129

64 > 0.
Hence, g(k) remains positive for k > 3. �

In Figures 1 and 2, we examine the ratios an/(2α
n) and an/(

3
2 )

n for small values of n. In Figure 1, the
ratio an/(2α

n), which has limit 1 for the subsequence n = 1, 2, 4, 8, 16, . . . (Theorem 10), generally exceeds
1, returning to near 1 when n is equal to a power of 2. In Figure 2, the ratio an/(

3
2 )

n lies substantially below
1, indicating that (32 )

n is a relatively loose upper bound for an.
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6 Discussion

The Colijn-Plazzotta ranking provides a convenient method for obtaining the rank associated with a given
tree and the tree associated with a given rank. We have obtained recursions for the minimal and maximal CP
rank across trees with n leaves (Theorems 5 and 7), analyzing their asymptotic behavior (Section 5). This
analysis demonstrates that as the CP rank increases, the numbers of leaves in the associated trees traverse a
wide range of values. In fact, for n > 1, the interval bounded by the largest rank across trees with n leaves
and the largest rank across trees with n + 1 leaves contains ranks for trees with as many as 2n−1 leaves
(Remark 9). Unlike for the Furnas ranking, the CP ranking has the property that the trees associated with
sequential ranks do not necessarily differ in size by either 1 or 0 leaves; the difference in size between trees
with sequential ranks is 2n−n−2 in the transition from rank a2n to rank a2n+1 = bn+2. Asymptotically, the
largest rank across trees with n leaves increases with 2β(2n) for a constant β ≈ 1.05653 (Corollary 11), and
the smallest rank across trees with n leaves is bounded above by the substantially smaller (32 )

n (Proposition
12), with asymptotic equivalence to 2αn, α ≈ 1.24602, for the subsequence {a2n}

∞
n=0 (Theorem 10).

The computations of an and bn construct the trees zn and Zn that respectively have the smallest and
largest CP ranks among n-leaf trees. The largest rank belongs to the caterpillar. The smallest rank belongs
to a “balanced” tree, in which, for each internal node, the two subtrees descended from the node have either
equally many leaves, or numbers of leaves that differ by 1. Thus, because the most extreme CP ranks among
trees of size n are represented by a balanced tree and the unbalanced caterpillar tree, CP rank has potential
to be useful in the measurement of tree balance—the extent to which an unlabeled shape resembles balanced
shapes [2, 10, 12, 15]. Because the tree of minimal CP rank has absolute difference 0 or 1 between the sizes
of the two subtrees for each internal node, it is perhaps useful to consider CP rank specifically in relation to
the Colless tree balance index [3, 5, 6, 14]—which for each node sums the absolute difference in the numbers
of descendants of the two subtrees of the node and which has larger values for unbalanced trees.

The study augments recent results examining unlabeled binary rooted trees that possess maximal or
minimal features in scenarios arising from consideration of evolutionary problems [6, 7, 8, 13]. Curiously,
Theorem 10 has a close connection with an analysis of “non-equivalent ancestral configurations,” structures
that are used in characterizing relationships of pairs of trees [9, 16]. For non-equivalent ancestral configura-
tions associated with the completely balanced trees—the same trees that produce the smallest CP rank in
the case that n is a power of 2—Section 4.2 of Disanto & Rosenberg [9] gives a recursion for a quantity γn,
with γ0 = 0, which when transformed by γn = 2xn − 3

2 produces the recursion xn = x2
n−1 +

11
16 with x0 = 3

4

seen in the proof of Theorem 10. Thus, Disanto & Rosenberg [9] obtain the same asymptotic result 2α(2n) we
observed, but for the growth of a different quantity, the number of non-equivalent ancestral configurations
with increasing numbers of leaves 2n in completely balanced trees.

The CP ranking encodes an innovative scheme that facilitates computations with unlabeled binary rooted
trees, as shown by Colijn & Plazzotta [4] in their construction of metrics for unlabeled binary rooted trees
and their use of these metrics to study evolutionary trees of strains of infectious agents. Further analysis of
the mathematical properties of the CP ranking can potentially inform its applications.
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