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ABSTRACT 
 
Team flow occurs when a group of people reaches high task engagement while sharing a common goal as in sports 
teams and music bands. While team flow is a superior enjoyable experience to individuals experiencing flow or 
regular socialization, the neural basis for such superiority is still unclear. Here, we addressed this question utilizing 
a music rhythm task and electroencephalogram hyper-scanning. Experimental manipulations held the motor task 
constant while disrupted the hedonic musical correspondence to blocking flow or occluded the partner's body and 
task feedback to block social interaction. The manipulations' effectiveness was confirmed using psychometric 
ratings and an objective measure for the depth of flow experience through the inhibition of the auditory-evoked 
potential to a task-irrelevant stimulus. Spectral power analysis revealed higher beta/gamma power specific to team 
flow at the left temporal cortex. Causal interaction analysis revealed that the left temporal cortex receives 
information from areas encoding individual flow or socialization. The left temporal cortex was also significantly 
involved in integrated information at both the intra- and inter-brains levels. Moreover, team flow resulted in enhanced 
global inter-brain integrated information and neural synchrony. Thus, our report presents neural evidence that team 
flow results in a distinct brain state and suggests a neurocognitive mechanism by which the brain creates this unique 
experience. 
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INTRODUCTION 
 

Flow state, or getting into the zone, is a psychological phenomenon that develops when there is a balance 
between the skills of the individual and the challenge of the task, clear goals, and immediate feedback (1, 2). Flow 
is accompanied by intense task-related attention, effortless automatic action, a strong sense of control, and a 
reduced sense of external and internal awareness and sense of time (2). Flow is intrinsically rewarding and have a 
positive effect on several life experiences (1-4). Although flow can develop during an individual activity, it is more 
common to develop during a group activity. There is a growing interest in studying flow in group activities, group 
flow, within several fields including psychology, sociology, organizational behavior, and business fields; hence, it 
has been studied in a plethora of contexts concerning sports, music, education, work, and gaming (5-10). Group 
flow, such as classroom students, audience in a concert or a group of motorcycle drivers, is believed to be a 
collective phenomenon, not a simple aggregation of individual flow experiences, showing augmented positive 
effects, including enhanced creativity, productivity, or emotions (5-10). Team flow is a specific case of group flow 
where the group forms a team characterized by a common purpose, complementary skills, performance goals, 
strong commitment, and mutual accountability (11, 12). The positive subjective experience during team flow, as in 
sports teams, music ensembles, dance squads, business teams, or teams in video gameplay, is superior to ordinary 
socialization or individuals experiencing flow (5, 9, 13). Flow and socialization are two disparate subjective 
experiences; in other words, acting in a social context is not necessarily sufficient to get into the flow state, and vice 
versa.  

The neural mechanisms of both individual flow and socialization experiences have been studied in isolation. 
For social information processing, several networks have been implicated: social perception, empathy,  
mentalization, and action observation networks have been identified as partially overlapping brain regions with the 
central role played by the amygdala, the anterior cingulate cortex (ACC), the prefrontal cortex (PFC), and the inferior 
frontal gyrus (IFG) and the inferior and superior parietal lobule (IPL/SPL), respectively (14-19). Meanwhile, several 
studies of individual flow have shown increased activity of the IFG and the IPL/SPL, and a decreased activity of the 
PFC (20-24). There are concordant and discordant overlaps between the brain regions involved in these two 
experiences. For example, both experiences activate IFG and IPL/SPL. On the other hand, the reported inhibition 
of the PFC activity during individual flow is discordant with the reported social perception and mentalization 
information processing. Given the nature of the complex overlap between the brain regions involved in individual 
flow and socialization, a unique interaction among these brain areas might emerge during the team flow experience. 
While, phenomenologically, the experience of team flow is subjectively more intense than individual flow and 
ordinary socialization, the underlying neurocognitive mechanism is still unclear. The current study aimed to directly 
examine the possible distinct neural activity patterns, emerging at both the intra-brain and inter-brains levels during 
team flow.  
 
 
RESULTS 
 
Behavioral establishment and subjective assessment of team flow 
 

To address these questions, we established a behavioral paradigm where a pair of prosocial highly-skilled 
participants are engaged in playing a popular music rhythm game. The game’s task is to respond by tapping a touch 
screen at the moment animated visual cues reach a designated area with instantaneous positive feedback. The 
feedback and the well-designed cues give the impression of playing a musical instrument inducing the game’s 
positive experience and a state of flow. Each pair of participants, matched in skill level and song preference, played 
as a team through splitting the tapping area and sharing in completing the task with a common goal of getting the 
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best score for the team (Fig. 1a and Movie S1). In the meanwhile, we simultaneously recorded their brain activities 
using electroencephalogram (EEG). 

In the primary experimental condition, teams were playing in an open interpersonal setting, and the visual 
tapping cues were accompanied by the synchronized audio music track (Interpersonal synchronized audio 
condition, or Inter-SyncA) (Fig. 1b and Table S1). This condition was designed to maximize the team flow 
experience. To disrupt the flow experience, we manipulated the intrinsic reward/enjoyment dimension of flow by 
scrambling the game’s music, hence, interrupting the sense of immersion and continuity of the game (Inter-ScrA) 
(Fig. 1b and Table S1). To interrupt the social (team) interactions, we used an occlusion board between the two 
participants that occluded the partner’s whole bodies and feedback while leaving all of the cues visible to both 
players (Occl-SyncA) (Fig. 1b, Fig. S1a, and Table S1). We expected that the three experimental conditions, 
namely, Inter-SyncA, Inter-ScrA, and Occl-SyncA, would provide optimal manipulations to produce team flow, team 
non-flow, or non-team flow experiences, respectively. 

To validate our manipulations, participants performed psychometric ratings after each trial, which were 
indexed along the dimensions of flow and team interactions (Fig. S2). As expected, the subjective experience of 
flow, assessed by a flow index, significantly decreased in the Inter-ScrA condition less than the other two conditions 
(Friedman Test, chi-square = 25.0, p < 0.0001; Fig. 1c and Fig. S2). The subjective positive team interactions, 
assessed using a team index, significantly decreased in the Occl-SyncA condition less than the other two conditions 
(Friedman Test, chi-square = 25.291, p < 0.0001; Fig. 1d and Fig. S2). The subjective experience of team flow, 
assessed using the team flow index, was significantly higher in the Inter-SyncA condition more than the other two 
conditions (Friedman Test, chi-square = 26.8, p < 0.0001; Fig. 1e and Fig. S2). Also, there were no differences in 

Figure 1. Behavioral establishment and 
subjective assessment of team flow.  
a, Diagram of the finger-tapping music 
rhythm task. Participants must tap when 
animated cues/notes moving from the top of 
the screen reach the tapping area.  
b, Manipulations (see Table S1): team flow 
is predicted when the participants are 
playing the original song with the auditory-
visual input synchronized (Inter-SyncA). 
Flow is interrupted through scrambling the 
music (Inter-ScrA). Team interaction is 
interrupted through hiding the partner’s 
body and feedback using an occlusion 
board between participants (Occl-SyncA).  
c-e, Subjective rating indices as a measure 
of flow experience, interpersonal interaction 
or interpersonal flow (see Fig. S2). 
Friedman test with Dunn’s post-hoc. * P < 
0.05, ** P < 0.01, *** P < 0.001. Error bars 
represent mean ± s.e.m.; n = 20. 
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the participants performance across conditions (one-way ANOVA, F(2,27) = 0.02437, p = 0.976), excluding possible 
neural differences caused by motor responses. Collectively, the results of the psychometric assessment confirmed 
effectiveness of our manipulations to achieve the aimed state, while maintaining minimal changes in other factors, 
such as task difficulty, sensory input, and motor response (Table S1).  
 
The depth the flow state was confirmed by neurophysiological measure 
 

To provide a more objective evidence for the flow state, we established a novel neurophysiological measure 
of flow. We utilized the intense task-related attention, and the reduced sense of external awareness dimensions of 
flow (2), and the well-known effect of selective attention on the auditory-evoked potential (AEP) (25). During each 
trial, we presented task-irrelevant beeps to the participants. The strength of the resultant AEP to the task-irrelevant 
beeps should be inversely proportional to the immersion in the game and thus constitute an objective measure for 
flow (Fig. 2 and Fig. S3). As expected, the mean AEP response was significantly higher in the Inter-ScrA condition 
more than the other two conditions (one-way ANOVA, F(2,57) = 6.237, p = 0.0045; Fig. 2a-c). Thus, this weaker 
AEP for the task-irrelevant stimulus in the Inter-SyncA and Occl-SyncA conditions provides neural evidence that 
the brain has reached a distinct selective-attentional state marking the flow experience. Notably, the AEP was 
negatively correlated with the flow index in the Inter-SyncA condition (Spearman’s Rho = -0.48, P = 0.03), while it 
was only weakly (Spearman’s Rho = -0.29, P = 0.22) or not correlated (Spearman’s Rho = 0.11, P = 0.64) with the 
flow index in the Occl-SyncA and the Inter-ScrA condition, respectively (Fig. 2d). These results provided an 
evidence that the experimental manipulations indeed produced a deep flow state in the Inter-SyncA and Occl-SyncA 
conditions, but not in the Inter-ScrA condition. 
 
  

Figure 2. Selective-attention-based objective assessment of flow.  
a, b, The potential, pass-filtered in the theta range (3 – 7 Hz), at central channels locked to the task-irrelevant 
beep onsets during the resting and playing phases.  
c, The mean magnitude of the bandpass-filtered auditory-evoked potential (AEP). The non-flow condition (Inter-
ScrA) showed statistically significant higher AEP than the flow conditions. One-way ANOVA with Bonferroni 
post-hoc test.  
d, Spearman’s correlation between AEP and flow index. AEP is negatively correlated with the flow index in the 
Inter-SyncA condition (Spearman’s Rho = -0.48, P = 0.03), showing a negative correlation trend in the Occl-
SyncA condition (Spearman’s Rho = -0.29, P = 0.22), and no correlation in the Inter-ScrA condition (Spearman’s 
Rho = 0.11, P = 0.64). Dashed line indicates regression line. * P < 0.05. Error bars and shaded regions represent 
mean ± s.e.m.; n = 20. 
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A unique neural signature for team flow is revealed using power spectral analysis 
 

To detect specific neural correlates for team flow, we used power spectral analysis at various domains (Fig. 
S1b). First, in the frequency domain, we checked the normalized power grand-averaged across all channels for 
each frequency band. We found significant difference across test conditions in the alpha (8 -12 Hz; one-way 
ANOVA, F(2,57) = 3.5491, p = 0.0353), beta (13 – 30 Hz; one-way ANOVA, F(2,57) = 3.0756, p = 0.0539), and 
gamma (31 – 120 Hz; one-way ANOVA, F(2,57) = 7.7168, p = 0.0011) frequencies but not in the delta (1 – 3 Hz; 
one-way ANOVA, F(2,57) = 0.8067, p = 0.4514), or theta (4 – 7 Hz; one-way ANOVA, F(2,57) = 0.1693, p = 0.8447) 
frequency bands (Fig. S4). Second, at the topographical domain, alpha-power analysis did not show specific surface 
channels significantly different across conditions (data not shown). Topographical beta- and gamma-power analysis 
showed four channels at the left temporal area with significantly higher beta and gamma power in team flow, Inter-
SyncA condition, more than the other two conditions (Fig. 3). For considerations, we used the combined beta and 
low-gamma (beta/gamma) band (13-50 Hz) for further analysis (please, check the Statistical analysis section). 
Third, at the anatomical-source domain, we performed a precise cortical source localization method that included 
co-registration with the individual’s structural MRI. The anatomical-source beta/gamma power showed that regions 
at the right and left temporal area had a significantly higher power in the Inter-SyncA condition compared to the 
other two conditions (Fig. 4a,b). These brain regions encompass the inferior temporal gyrus (ITS), middle temporal 
gyrus (MTG), and the superior temporal gyrus (STG) and sulcus (STS). Also, the beta/gamma power of these brain 
regions showed higher correlation tendencies with the team flow index only in the Inter-SyncA condition. For 
example, the Left MTG (L-MTG) showed the highest beta/gamma power correlation with the team flow index in the 
Inter-SyncA condition (Spearman’s Rho = 0.56, P = 0.006) but not in the Inter-ScrA (Spearman’s Rho = - 0.19, P = 
0.43) or the Occl-SyncA (Spearman’s Rho = - 0.02, P = 0.95) conditions (Fig. 4c). The results from the power 

Figure 3. Higher beta/gamma power at 
the left temporal regions as a unique 
neural signature for team flow.  
a, The topographies of the beta and gamma 
frequencies (13 – 120 Hz) computed as the 
average over normalized power.  
b, Permutation statistical significance across 
conditions with Bonferroni multiple 
comparison corrections. The black crosses 
indicate channels with P < 0.05.  
c, The normalized power spectral analysis 
averaged from the four channels (D21, D22, 
D24, D31) in the left temporal area identified 
in b.  
d, Averaged normalized power for the beta 
(13 – 30 Hz) and gamma (31 – 120 Hz) 
frequency bands show power enhancement 
in the team flow (Inter-SyncA) condition. 
One-way ANOVA with Bonferroni post-hoc 
test. ** P < 0.01. Error bars represent mean 
± s.e.m.; n = 20. 
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spectral analyses, at all tested domains, provided the first neural evidence that team flow is a qualitatively different 
brain state distinguishable from individual flow or ordinary socialization. 

 

 
 
Unsupervised clustering analysis revealed brains areas specific to individual flow, socialization, or team 
flow 
 

All the ROIs in the anatomical-domain power analysis, mentioned above, showed significant power activity 
specific only to team flow. This indicates that during team flow, there is no brain area still encodes individual flow or 
socialization. Before rushing for this conclusion, we tested an alternative hypothesis that the analysis above failed 
to detect weaker, but true effects, due to strict statistical threshold (check Statistical analysis section for further 
explanation). Since the anatomical-source localization averages source vertices based on a rigid, predefined 
parcellations method, we wanted to give more weight to the distribution of activity based on function rather than 
anatomy. Therefore, we used an activity-dependent unsupervised machine learning to cluster (cl) the source 
vertices based on their similarity in the beta/gamma power pattern (Fig. 5). We detected two clusters (cls), 
distributed over the anterior part of the frontal cortex, where the beta/gamma power was higher in the Inter-ScrA 
condition than the other conditions (Fig. 5; cls 1 and 2). This pattern was significant in cl 2 (one-way ANOVA, F(2,57) 
= 3.6125, p = 0.033), while cl 1 showed a trend (one-way ANOVA, F(2,57) = 1.5916, p = 0.2125). The suppressed 
activity in these clusters is specific to the flow experience, regardless of the social context, which is consistent with 

Figure 4. Higher beta/gamma power during team 
flow is anatomically localized to the middle 
temporal lobe and temporal-parietal regions.  
a, Brain regions, as defined by the Destrieux atlas, 
showing significant beta/gamma normalized power 
difference across conditions are highlighted in green.  
b, The average normalized power of the beta/gamma 
frequency band (13 - 50 Hz) at each highlighted brain 
region. One-way ANOVA with Bonferroni post-hoc 
test.  
c, Condition-specific Spearman’s correlations 
between beta/gamma power and team flow index at 
L-MTG as a representative region. Positive 
correlation was found in the Inter-SyncA condition 
(Spearman’s Rho = 0.56, P = 0.006), but not in the 
Inter-ScrA condition (Spearman’s Rho = -0.19, P = 
0.43) or in the Occl-syncA condition (Spearman’s Rho 
= -0.02, P = 0.95). Dashed line indicates regression 
line. * P < 0.05, ** P < 0.01.  
Error bars represent mean ± s.e.m.; n = 20. B, bottom 
view; R, right; L, left; AOS, anterior occipital sulcus; 
PLF, posterior lateral fissure; ITS, inferior temporal 
sulcus; STS, superior temporal sulcus; STG, superior 
temporal gyrus; TPJ, temporal parietal junction, LTS, 
lateral temporal sulcus; ITG, inferior temporal gyrus; 
CLS, collateral and lingual sulcus. 
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a neural representation of the automaticity-dimension of flow (20, 21). Also, we detected two clusters distributed 
mostly over the middle and inferior frontal cortex and the left occipital cortex, where the beta/gamma power was 
lower in the Occl-SyncA condition than the other conditions (Fig. 5; cls 3 and 4). This pattern was significant in cl 4 
(one-way ANOVA, F(2,57) = 7.4841, p = 0.0013), while cl 3 showed a trend (one-way ANOVA, F(2,57) = 2.4288, p 
= 0.0972). The increased activity in these clusters is specific to team interactions, regardless of the flow state. The 
rest of the clusters were distributed mostly over the temporal, parietal, and occipital cortices, where the beta/gamma 
power was higher in the Inter-SyncA condition than the other conditions (Fig. 5; cls 5 - 7). This pattern was significant 
in all three cls: cl 5 (one-way ANOVA, F(2,57) = 11.8753, p = 0.000049), cl 6 (one-way ANOVA, F(2,57) = 9.548, p 
= 0.00027), and cl 7 (one-way ANOVA, F(2,57) = 6.9256, p = 0.002). The increased activity in these clusters is 
specific to team flow. These results indicate that even during team flow, the brain shows neural correlates of each 
isolated experience: individual flow and socialization. Before performing further groups interaction metric analyses, 
we used the activity-dependent power spectral analysis to refine the definition of brain regions to gain higher 
sensitivity for the neural correlates. We combined the anatomical and the functional domains mentioned above 
creating 14 anatomically-defined-activity-dependent groups (GPs), 7 GPs per hemisphere (Fig. S5, Table S2, and 
Table S3). GP7 represented the temporal brain areas, which showed significant differences across conditions (Fig. 
4). 
 
 

  

Figure 5. Unsupervised hierarchical vertices 
clustering based on beta/gamma power 
difference reveals flow-, social-, or team flow-
related clusters.  
a, Clustered-vertices projected to a standard brain 
to visualize cluster localization. The black lines 
indicate the boundaries of the brain regions that 
showed significant beta/gamma normalized power 
across conditions as shown in Fig. 4.  
b, The cluster-averaged normalized power of the 
beta/gamma frequency band. One-way ANOVA 
with Tukey-Kramer’s post hoc test. Flow-related 
(cls1-2), social-related (cls3-4), or team flow-
related (cls5-7) clusters are indicated in color 
scheme matching Fig. 5a. # P = 0.077, * P < 0.05, 
** P < 0.01. Error bars represent mean ± s.e.m.; n 
= 20. B: Bottom; D: dorsal; L: left; R: right; T: top; 
V: ventral. 
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The left temporal cortex receives information from brain areas encoding individual flow or socialization 
     

The neural signature of team flow detected in the left temporal regions (L-GP7) might be the upstream 
neural spark that guided other brain information processes or the downstream outcome of these processes. In both 
cases, this neural signature will play a critical function to produce the team flow experience. Alternatively, this neural 
signature might be a neural byproduct passively accumulated during information processing. To disentangle these 
possibilities, we analyzed the causal information interactions across all the brain region groups (GPs), using three 
frequency-domain Granger-causality (GC) measures: the Granger- Geweke Causality (GGC), the direct directed 
transfer function (dDTF), and the normalized partial directed coherence (nPDC)(26). In all GC measures, the causal 
interaction matrix showed GP7 receives information (From) more than sending information (To) other GPs (Fig. 6a 
and Fig. S6a). To quantify whether a GP is a global sender or recipient of information, we calculated the global 
To/From ratio for each GP per condition. In the GGC measure, the logarithmic (Log) global To/From ratio for the 
left GP7 (L-GP7) was less than zero and significantly less than any other GP except the right GP7 (R-GP7) (Fig. 
6b, two-way ANOVA, F(26,494) = 2.9768, p = 1.94e-6). Also, in the dDTF and nPDC measures, the global To/From 
ratio for the left GP7 (L-GP7) was significantly less than any other GP except the right GP7 (R-GP7) (Fig. S6b). 
These results indicate that the left-temporal brain regions (L-GP7) fall downstream in information causality to all 

Figure 6. Intra-brain causality 
analysis showing the left temporal 
regions (GP7) as a downstream 
information recipient.  
a, The mean Granger-Geweke 
Causality (GGC) causal interaction 
matrix for the activity-dependent-
anatomically-defined groups (GPs). To, 
indicates sending information; From, 
indicates receiving information; L, left 
hemisphere; R, right hemisphere.  
b, The mean GGC To/From ratio (log 
transformed) where positive values 
indicate global information sender to 
other GPs and vice versa. L-GP7 is a 
significant information receiver. Two-
way ANOVA with Tukey-Kramer’s post 
hoc test.  
c, The top information senders among 
all GP-GP causal interactions. For each 
GP-GP connection, the line color 
matches the color of the GP name which 
sends the information. Notably, only in 
the Inter-SyncA condition, L-GP7 
receives information from R-GP1 and R-
GP3. *** P < 0.001. Error bars represent 
mean ± s.e.m.; n = 20. D-L, dorsal-left; 
V-L, ventral-left. 
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other brain regions. Therefore, the detected beta/gamma power in L-GP7 might be an final information processing 
outcome playing a function in producing the team flow experience.   

If L-GP7 contained the most downstream brain regions regarding information causality, what are the most 
important upstream brain regions contributing in sending information? To answer this question, for each GP-GP 
causal interaction, we applied a global threshold to leave only the top, approximately 10%, information senders 
(Fig. 6c). The top information senders are L- & R-GP1, L- & R-GP2, R-GP3, and R-GP5. Interestingly, using this 
threshold, in the Inter-SyncA condition, the top information senders to L-GP7 include the contralateral R-GP1 and 
R-GP3. On the other hand, in the Inter-ScrA and Occl-SyncA conditions showed a different causality pattern where 
the top information senders to L-GP7 include the contralateral R-GP5. Collectively, these results indicate that the 
unique beta/gamma power detected in the left temporal regions (L-GP7) is an outcome of information processing 
that happened earlier in time and the sources of these information include brain areas that encodes individual flow 
(GP1) and socialization (GP3).       
 
The left temporal cortex is involved in integrated information at both the intra- and inter-brain levels 

In the Inter-SyncA condition, L-GP7 received information from R-GP1, where the beta/gamma activity is 
related to individual flow, and from R-GP3 where the beta/gamma activity is related to social interaction (Fig. 5b 
and 6c). On the phenomenological level, it is hard to decompose the team flow experience into two isolated 
components; flow and socialization. Therefore, a possible outcome of such causality is an effect on the integration 
of information from the brain regions coding each isolated experience. To test this hypothesis, we used the 
integrated information theory (27, 28). We calculated the normalized Integrated Information value (Norm II) as a 
metric for the integrated information. In both intra-brain and inter-brains calculations, there was a general tendency 
for Norm II to be higher in the Inter-SyncA condition than the other conditions (Fig. 7a). When we averaged the 
Norm II across all GP-GP connections (Global Norm II), the Inter-SyncA showed significant higher inter-brains 
Global Norm II than other conditions (one-way ANOVA, F(2,57) = 15.0516, p = 5.64e-6), while showing similar trend 
at the intra-brain level (one-way ANOVA, F(2,57) = 3.6251, p = 0.033) (Fig. 7b). Next, we checked all GP-GP 
connections for a significant Nom II at Inter-SyncA condition compared to other conditions (three-way ANOVA, 
condition x GP1 interaction for intra-brain: F(26,10133) = 4.7622, p = 1.35e-14, and for inter-brain: F(26,10959) = 
3.676, p = 7.76e-10). Among all GP-GP connections, significant connections were detected only at the left 
hemisphere as detailed in Fig. 7c. These connections formed an intra-brain L-GP3-GP4-GP5-GP7 subnetwork and 
an inter-brains L-GP7-to-L-GP7 link that showed significant higher Norm II in the Inter-SyncA (Fig. 7c). These results 
indicate that during team flow, the team members exhibited higher information integration not only within each 
player’s brain but also between their brains. More specifically, L-GP7 was the only group of brain regions that 
showed significantly higher inter-brain integrated information during team flow.  
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Team flow is associated with higher intra- and inter-brain neural synchrony 

The enhanced inter-brain integrated information might concur with enhanced neural synchrony between 
the team’s brain regions. To check for this hypothesis, we calculated the inter-brains Normalized Phase-Locking 
Values (Norm PLV) across all the GP-GP connections for each condition (Fig. 8a). The results showed a general 
tendency for Norm PLV to be higher in the Inter-SyncA condition than other conditions at both the intra- and inter-
brains level. The inter-brain Norm PLV calculated using a randomly shuffled pairs does not seem to show any 
difference across conditions. To quantify this effect, we averaged the Norm PLV for all GP-GP connections (Global 
Norm PLV). The Inter-SyncA showed a significantly higher Global Norm PLV than other conditions only in the actual 
paired participants but not in randomized pairs (two-way ANOVA, F(2,114) = 3.416, p = 0.0362) (Fig. 8b). 
Collectively, these results indicate that during team flow, the team members exhibited higher integration and neural 
synchrony between their brains. This enhancement in information integration and neural synchrony is consistent 

Figure 7. Team flow showing enhanced integrated information globally and specifically at the left 
temporal regions (GP7).  
a, The mean normalized Integrated Information value (Norm II) connectivity matrix for the activity-dependent-
anatomically-defined groups (GP1-7). Normalized Integrated Information is presented as difference from the 
average Integrated Information for each GP-GP connection across conditions.  
b, The mean Global Norm II averaged across all GP-GP connections showing significantly higher inter-brains 
(left panel) and intra-brain (right panel) during inter-SyncA condition. One-way ANOVA with Bonferroni post hoc 
test.  
c, GP-GP connections that shows significant (P < 0.05) Norm II in the inter-SyncA condition compared to other 
conditions. Three-way ANOVA with Bonferroni post hoc test. Black lines indicate intra-brain and green line 
indicates inter-brains GP-GP connections. D-L, dorsal-left. * p < 0.05, ** p < 0.01, # p < 0.1. Error bars represent 
mean ± s.e.m.; n = 20. 
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with the phenomenological experience during team flow. Indeed, it might be the neurocognitive basis for the superior 
subjective experience of team flow. 
 

 
DISCUSSION 

 
Effective parametric tools to measure the depth of the flow experience  
 

So far, the flow state was identified in the literature using only subjective questionnaires, which we have 
reproduced in this report (Fig. 1 and Fig. S2) (20-23). Although psychometric ratings provided some evidence that 
the participants reached some sort of the flow experience, it did not give us reliable clues about the depth of the 
flow state (24). Using the task-irrelevant AEP, we could confirm that the task used in this report could attain enough 
depth of flow experience to alter one of the most critical flow dimensions: the attenuated consciousness to external 
stimulus. Indeed, the flow experience is hypothesized to be either an abrupt discrete zone or a gradual continuum 
(21, 24). Solving this ambiguity would be a significant advance in understanding how the flow experience develops 
and operates. Our newly developed method for measuring the flow depth can be a useful parametric tool to help to 
answer this question. 
 
The unique neural correlates of team flow and it generality 
 

The most prominent neural correlate for the team flow state identified in this study is the higher beta/gamma 
power in the temporal regions (GP7) as shown in Figs. 3, 4 and 5. A critical question is whether this unique team 
flow signature is only related to the particular task employed in this report i.e., the music rhythm game or 

Figure 8. Phase-locking value showing a global enhanced inter-brain synchrony during team flow.  
a, The mean phase-locking value (PLV) connectivity matrix for the activity-dependent-anatomically-defined 
groups (GP1-7). Normalized PLV is presented as difference from the average PLV for each GP-GP 
connection across conditions. Paired, indicates the actual experimental pair; Random, indicates randomly 
selected pairs.  
b, The mean Global normalized PLV averaged across all GP-GP connections showing significantly higher 
inter-brains during Inter-SyncA condition. Two-way ANOVA for inter-brain with Bonferroni post hoc test. * p 
< 0.05. Error bars represent mean ± s.e.m.; n = 20.   
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representing a general correlate to team flow regardless of the task. Beta and gamma oscillations are involved in 
several cognitive functions, including attention, memory, and awareness, with evidence of abnormalities in brain 
disorders (29). In general, these functions are consistent with higher team interactions, and with enhancement in 
many flow dimensions. Moreover, our data agree with the neural activities detected in other reports, studying 
individual flow or social interaction, that used completely different tasks. For example, in GP1 (the anterior part of 
the frontal cortex), the beta/gamma power was lower in the flow conditions compared to the non-flow conditions 
(Fig. 5 and Fig. S5). These data agree with the reduced activities in the medial PFC in an arithmetic task (21, 23). 
Also, in GP3 (that includes the IFG), the beta/gamma power was higher in the team conditions compared to the 
non-team conditions (Fig. 5 and Fig. S5). These data agree with the involvement of the IFG in social interaction in 
a plethora of different tasks (14, 30). These oscillations and brain regions are seemingly not constrained to a specific 
task but specific functions supporting the generality of our conclusions. Still, the ultimate test is to reproduce the 
team flow experience, and its neural correlates in other situations and tasks, which goes beyond this report. 
 
A suggested neural model for team flow 
 

As mentioned earlier, team flow might require a unique interaction between the brain regions involved in 
individual flow and socialization. As reported, the PFC are activated during social interaction but suppressed during 
individual flow experience (14, 15, 24). During team flow, the PFC showed both signals. The anterior part of the 
PFC (GP1) showed lower activity related to the effortless information processing during the flow experience. On the 
other hand, the posterior part (GP3) showed high activity associated with more social information processing. These 
observations argue that the neural correlates of team flow are unique in terms of the interaction of the different 
neural networks, not just a simple addition of known functional modules of individual flow and socialization. 

Our data also show that L-GP7, the left temporal cortex, falls downstream to other brain areas and receives 
information from brain areas encoding individual flow, GP1, and from areas encoding social interaction, GP3. Also, 
L-GP7 was the only significant region showing higher integrated information during team flow at both the intra- and 
inter-brain levels. Both of the above results imply that the left temporal cortex function as a region that collects flow-
related and social-related information and integrate them during the team flow experience. Previous reports also 
suggest an integration function for the temporal cortex in different contexts. For example, the middle and inferior 
temporal gyrus, regions included in GP7, have been reported to play a role in cognitive-affective integration in 
schizophrenia (31). Also, superior temporal sulcus, anther region within GP7 and has been extensively reported in 
social information processing, played a role in integrating multiple social networks (15). Thus, our results and past 
reports fall in line to suggest a neural model during team flow where the left temporal cortex is involved in integrating 
the flow and social information to serve the team flow experience, as depicted in Fig. S7. 

 
Team flow as a bonafide inter-brain state 
 

Recent social neuroscience studies have reported interactions between the brains of a group of members 
measured as inter-brain synchronization (e.g., phase synchrony). This synchrony can be enhanced during intense 
socialization, body or speech coordination, music production, dancers, student-teacher interactions in classrooms, 
touch-mediated pain reduction, creativity in cooperative tasks, and even in socially interacting bats (32-41). Hence, 
it can be a metric for more effective group interactions. Similarly, integrated information, which measures the amount 
of information generated by the system as a whole relative to the sum of its parts, is another metric of group 
interaction (28). Integrated information between the brain can predict effective group interaction and complexity; 
thus, it can be linked to collective intelligence (42). Crucial data in our report is the significantly higher inter-brain 
information integration and neural synchrony during team flow (Fig. 7 and 8). Based on both metrics, our data 
indicate that team flow creates a hyper-cognitive state between the team members.    
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One might argue that these results are the outcome of the pair of participants sharing the same 
sensorimotor information. Hence, the synchronized neural substrates are related to a lower-level task-related 
cognitive function. This interpretation is not valid as the pair of participants shared the same sensorimotor 
information in all the three experimental conditions. We were careful in our experimental design to refute such a 
conclusion by keeping almost all the visual, auditory, and motor information constant across conditions (Table S1). 
We only used minimum manipulations to create the proper subjective experience. Even with such minimum 
manipulations, our study kept a real-life dynamic interaction between participants (9, 34, 43). These dynamic 
interactions were essential and sufficient to induce the team flow experience and its unique brain state. 

In this context, whereas the integrated information is typically considered a quantitative measure of 
consciousness (28), there is considerable debate among researchers about whether integrated information is a 
sufficient measure of consciousness (44). Hence, our findings of the high value of integrated information do not 
necessarily indicate a modified form of consciousness, for instance, “team consciousness.” Nonetheless, its 
consistency with neural synchrony (PLV) certainly raises intriguing and empirical questions related to inter-brains 
synchrony, information integration, and altered state of consciousness. 
 
 
MATERIALS AND METHODS 

 
Participants  
In the main experiment, 15 participants (5 males; age: 18-35 years) attended forming 10 pairs (3 male pairs) where 
5 participants (1 male) were paired twice.  Written informed consent was acquired from all participants. All the 
procedures were approved by the Institutional Review Board of the California Institute of Technology.  
 
Task  
We used a commercial music rhythm game called “O2JAM U” (version 1.6.0.11, MOMO Co., South Korea). We 
used the 4-lane mode during the main experiment where a pair of participants played with each participant 
responsible for two adjacent lanes. Task, manipulations, screening and main experimental sequence are detailed 
in the SI. 

After playing each song (trial), the game displays a performance report on the screen, including a final 
numerical score, the total number of cues, and the number of missed cues. The performance report of each trial 
was hidden from the participants until they finish answering their subjective experience questionnaire. The 
percentage of the missed cues per the total number of cues was used as a metric for the performance of each pair 
of participants. 
 
Task-irrelevant stimulus 

Task-irrelevant auditory stimulus (beep sound) were pseudo-randomly presented to probe the strength of 
the participants’ selective-attention to the game and was used as an objective measure of flow. We presented beep 
trains played at 5 Hz for 1 second (i.e. each train consisted of 5 beeps). Each beep was at 500 Hz and lasted for 
10 milliseconds. The beep trains simulated the sound of someone knocking on a door to make the stimulus as 
natural as possible. The interval between the beeps train varied from 4 - 8 seconds. The beeps were generated by 
Matlab 2012 (The MathWorks, Inc., Natick, Massachusetts, United States) and delivered through another pair of 
speakers placed equidistant from the iPad. 
 
Anatomical MRI acquisition 

To increase the accuracy of source estimation for cortical activity, individual head anatomy from each 
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participant, who passed the screening and agreed to participate in the main experiment, was acquired with magnetic 
resonance imaging (MRI). A 3 Tesla Siemens Trio (Erlangen, Germany) scanner and standard radio frequency coil 
was used for all the MR scanning. High resolution structural images were collected using a standard MPRAGE 
pulse sequence, providing full brain T1-weighted 3-dimensional structural images. 
 
Psychometric ratings and calculation of experience indices  

From subjective reports, we calculated the flow, team, and team flow indices, by calculating the arithmetic 
mean of the ratings for each trial, to estimate subjective experience for individual flow, positive team interaction and 
team flow, respectively (Fig. S2). For assessing flow experience, questions related to the skill-demand balance (Q1 
and Q2), feeling in control (Q3), automaticity (Q4), enjoyment (Q5), and time perception (Q6) dimensions of flow 
were used(2). For assessing team interaction, questions related to awareness of partner (Q7), teamwork (Q8), and 
coordination (Q9) dimensions of positive team interaction were used. Questions assessing competition (Q10) and 
distraction (Q11) were asked to confirm the absence of negative team interactions and were not included in any 
index. The team flow index was calculated by averaging the flow and team indices. 
 
Hyperscanning EEG recording and preprocessing 

Electroencephalogram (EEG) was recorded simultaneously from both participants using a dual BioSemi 
ActiveTwo system (BioSemi Inc., Amsterdam, The Netherlands). Each participant wore a cap holding 128 scalp 
Ag/AgCl electrodes. Signals were amplified by two daisy-chained ActiveTwo AD boxes where one AD box was 
connected to the control PC and worked as a master controlling the other AD box to ensure synchronization. 
Electrode impedance was kept below 10 kΩ. For each cap, an active Common Mode Sense (CMS) electrode and 
a passive Driven Right Leg (DRL) electrode positioned near vertex served as the ground electrodes. EEG signals 
were recorded at a sampling rate of 2048 Hz (later down-sampled to 256 Hz). During recording, the A1 electrode, 
or A2 electrode in 3 participants, served as a reference. In the ABC layout (a Biosemi designed equiradial system), 
these electrodes overlap with the Cz location of the international 10–20 system. Signals were recorded and saved 
using ActiView/LabView software (version 8.04, BioSemi Inc., Amsterdam, The Netherlands) installed on the control 
PC. Another master PC was used to generate the task-irrelevant beep sound and to send signals to the EEG data 
receiver marking the onset of each beep train (event triggers). The event triggers were used to align the EEG data 
with the resting and the playing phases by using a real-time projection of the top-view video recording to the control 
PC. The experimenter confirmed that all the onsets of the beep trains happened during the resting or the playing 
phase periods.  

To analyze the auditory-evoked potentiation (AEP), EEG data were epoched -0.5 sec to 1 sec (1.5 sec 
total) flanking the beep train onsets (AEP epochs). To analyze the neural correlates (NC) of game play experience, 
EEG data were epoched 2 sec to 5 sec (3 secs total) after the beeps train onset (NC epochs; Fig. S1b). EEG data 
was high-pass filtered at 0.5 Hz, re-referenced to the average of all channels and artifact corrected using automatic 
independent component analysis (ICA) rejection using the FASTER toolbox (45). Bad channels showing line noise 
noted during recording sessions were rejected and interpolated during the FASTER preprocessing. 
 
Auditory evoked potential analysis 

To select the channels maximally responsive to the task-irrelevant auditory stimuli, we analyzed the AEP 
epochs during the resting phase. We calculated the event-related spectral perturbation (ERSP) and the inter-epochs 
coherence (IEC) using EEGLAB toolbox (version 14.1.1) (46). Both ERSP and IEC showed changes in theta activity 
(3 – 7 Hz) at 100 – 350 ms post-onset with a peak increase at 150 – 250 ms post-onset (Fig. S3a,b). Topographical 
analysis in the theta band showed a strong positive activity in the 14 central channels from 200 - 260 ms post-onset 
(Fig. S3c). The frequency, time and topographical frames of our AEP were consistent with previous reports (47, 
48). For each trial, we used IEC in the theta band during the resting phase to select channels showing stable AEP. 
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IEC was averaged across the 14 central channels and channels showing IEC lower than one standard error below 
the mean were excluded from further AEP analysis for that trial. We then analyzed theta power from -200 ms to 
500 ms flanking the beep train onsets during the resting and the playing phase (Fig. 2a,b). AEP peak amplitude 
was calculated according to the method described by a previous simulation report showing that event-related 
potential measured based on the mean amplitude surrounding the group latency is the most robust against 
background noise (49). Therefore, we first calculated the N1, P2, and N2 peak latencies averaged across all 
conditions during the resting phase (Fig. 2a). Second, the individual N1, P2, and N2 mean peak amplitudes ± 40 
ms surrounding the calculated peak latencies were obtained during the playing phase (Fig. 2b). This results in the 
following time windows: N1 (110 – 150 ms), P1 (210 – 250 ms), and N2 (310 – 350 ms). The theta power from the 
selected channels averaged across these time windows was used as AEP (Fig. 2c,d).  
 
Anatomically-defined source estimations  

FreeSurfer (50) was used for automatic segmentation and reconstruction of the MRI images. MRI images 
were used to compute each individualized head model using boundary element model (BEM) implemented in 
OpenMEEG within BrainStorm software package (version 3.4) using the default parameters (51, 52). MRI 
registration with EEG electrodes head positions was aligned with each participant’s BEM model and sources were 
computed (version 2018) using BrainStorm for each NC epoch in the playing phase. Maps of cortical activity density 
were obtained across the BEM mesh using the distributed minimum-norm estimate (MNE) method; with constrained 
dipole orientations and no baseline noise correction. For cortical region-based analysis, brain regions were defined 
according to the anatomical parcellation of the Destrieux atlas as implemented in FreeSurfer and available in 
BrainStorm (53). The time series of source activities from the 15002 vertices and the averaged activity of the 
predefined 148 regions of interest (ROIs) were exported for further analysis. 
 
Power spectrum analysis 

Power spectral density (PSD) estimate was calculated using Welch's overlapped segment averaging 
estimator as implemented in the MATLAB 2016a signal processing toolbox within the EEGLAB toolbox using default 
parameters (46, 54). The normalized PSD was calculated for each NC epoch then averaged within each trial yielding 
trial PSD data at each of the 128 channels, the 148 brain region sources, and the 15002 mesh vertex sources. For 
each song played, the individual’s mean PSD across the three conditions was calculated. The normalized power 
was calculated through subtracting the individual’s mean PSD from the PSD at each condition. The normalized 
power was averaged within the following frequency bands: delta (1 – 3 Hz), theta (4 – 7 Hz), alpha (8 -12 Hz), beta 
(13 – 30 Hz), gamma (31 – 120 Hz), and lower gamma (31 – 50 Hz). The normalized power for the 128 channel 
data and the permutation statistics with Bonferroni multiple comparison correction was projected to topographical 
maps using EEGLAB toolbox. As detecting high-gamma power (> 50 Hz) using noninvasive EEG might be prone 
to artifacts (55), we only considered the combined beta and low-gamma (beta/gamma) band (13-50 Hz) for further 
analysis. We used one-way ANOVA across condition for determining the significance in each anatomical-source 
beta/gamma power effect. We set the significance threshold to p < 0.00034 (i.e. 0.05 / 148 ROIs) to correct for 
multiple comparison. 

 
Unsupervised clustering analysis 

We clustered the 15002 mesh vertex sources based on their beta-gamma power. We used scikit-learn, a 
Python machine learning library, and implemented the unsupervised agglomerative clustering approach (56). 
Agglomerative clustering uses a bottom-up hierarchical approach where vertices are progressively linked together 
into clusters based on their feature similarity.  We used 3 features for clusters which are the grand averaged beta-
gamma normalized power at each of the 3 conditions. We used the Euclidean distance as a similarity measure, and 
the complete linkage criteria which minimizes the maximum distance between observations of pairs of clusters. We 
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have tried setting the number of clusters into 3 – 8 clusters. We selected the minimum number of clusters, 7 in our 
case, that would extract statistically significant flow- and team-related clusters. When we set the number of clusters 
to 3 up to 6 clusters, we get similar trend of results but did not pass significance using one-way ANOVA. 

 
Activity-dependent anatomically-defined grouping of ROIs   

First, for each anatomical-defined ROI, we calculated the cluster composition as the percentage of the flow-
related clusters (cls1-2), team-related clusters (cls3-4), and team flow-related clusters (cls5-7). Second, we checked 
if the anatomically-defined ROIs can be spatially subdivided into smaller ROIs with clear tendencies for a certain 
activity-dependent cluster composition (Fig. S5a,b). This check was done by calculating a cumulative cluster 
composition curve to define a threshold for subdividing the ROIs (Fig. S5b). We presented superior frontal cortex 
as an example of the subdivided ROIs (Fig. S5a). Next, we grouped anatomically-defined ROIs or their subdivisions 
into 7 groups (GPs) per hemisphere (GP1-7) based on the major activity-dependent cluster composition (Fig. S5c). 
For each of the 14 GPs, the activity-dependent cluster composition is summarized in Table S2 and the anatomical 
composition is summarized in Table S3. Anatomically-defined ROIs that showed significant beta-gamma 
normalized power across conditions, as shown in Fig. 4, were grouped as GP7 regardless of their composition. The 
time series from all the 15002 vertices were averaged based on the new 14 GPs and hence, reduced into 14 time 
series for each trial per participant.  
 
Intra-brain causal interactions analysis 

We used the Source Information Flow Toolbox (SIFT) to fit an adaptive multi-variate autoregressive 
(AMVAR) model for the 14 GPs activities for each subject’s trial using the Vieira–Morf algorithm (57). We fitted the 
NC epoch with a sliding window length of 500 ms and a step size of 25 ms (26). Model order was selected by 
minimizing the Akaike Information criterion. We validated each fitted model using tests included in SIFT for 
consistency, stability, and whiteness of residuals. To estimate causal interactions, we used three directed model-
based linear frequency-domain Granger-causality measures (26). These measures are the normalized partial 
directed coherence (nPDC)(58), the direct directed transfer function (dDTF)(59), and the Granger- Geweke 
Causality (GGC)(60, 61). For each connectivity measure, we averaged across trials for each participant per 
condition, then averaged across the NC epoch time interval (3 secs) and across the beta-gamma (13 – 50 Hz) 
frequency. Finally, to quantify the degree by which a GP sends or receives information, we calculated the ratio of 
sending (To) divided by receiving (From) for each GP-GP interaction then average these ratios for each GP per 
condition per participant (To/From ratio). Two-way ANOVA was used as statistical test. To calculate the information 
senders for GP-GP causal interactions, we used the Log To/From GGC ratio for each GP-GP connection. Top 
information senders were calculated by setting a threshold where the p-value of 0.064. The GP-GP connection 
above this threshold were represented on a circular graph.        
 
Integrated Information analysis 

Integrated Information (II) was used as a measure of inter-GP bidirectional causal interaction. For every 
pair of time courses of the GPs activities, within and between participants, we operationalized the “state” of the pair 
of GPs by discretizing time-samples into binary values. To roughly match the frequency range of 13-50 Hz, we first 
down sampled the GPs activities to give timesteps of 12.8, 17.1, 25.6Hz or 51.2Hz (that is, a time step of 19.5, 39.1, 
58.6, or 78.1 ms). Using the down sampled GPs activities, we then converted each pair of consecutive time samples 
to “on” if the GPs activity’s voltage was increasing over two time steps and “off” otherwise. Using the time series of 
binarized states, we computed the probabilities of each state transitioning into each other state, constructing a 
transition probability matrix (TPM) which describes the evolution of the pair of GPs activities across time. To ensure 
accuracy of transition probabilities, we computed these across all trials.  As lower time resolutions give fewer 
observations with which to compute the probabilities, we repeated the down sampling for each possible “start” (i.e. 
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for each time-sample in the first time-bin) and used all transitions from all shifted-down sampled time series to build 
the TPM. We then submitted the TPM to PyPhi (1.2.0)(62), which then constructs a minimally reducible version of 
the TPM, assuming independence of GPs activities, and compares the original TPM to the minimally reducible 
version to compute Integrated Information (28, 62). For each actual pair, we calculated normalized Integrated 
Information value by subtracting the absolute value from the average across all conditions for each GP-GP 
connection. Three-way ANOVA (condition × GP1 x GP2) was used as statistical test for normalized Integrated 
Information at each GP-GP connection. The Global normalized Integrated Information was calculated through 
averaging normalized Integrated Information values across all possible GP-GP connections. One-way ANOVA was 
used as statistical test for Global normalized Integrated Information.    
 
Phase synchrony analysis  

The phase-locking value (PLV), or inter-site phase clustering (ISPC), was used as an index of neural 
synchrony. The distribution of the phase angle differences between sources was generated at each time point 
(within the NC epoch 3 sec window) then averaged over (ISPC-trial) (63, 64). ISPC-trial was calculated at each 
frequency and then averaged across the frequency band of 13 – 50 Hz. For each condition, we calculated the ISPC-
trial between all sources for the actual pairs or for each of 10 randomly assigned pairs. For each actual or random 
pair, we calculated normalized PLV value by subtracting the PLV value from the average across all conditions for 
each GP-GP connection. The Global normalized PLV was calculated through averaging normalized PLV values 
across all possible GP-GP connections. ANOVA was used as statistical test. 
 
Statistical analysis 

All statistics were done using the Statistics and Machine Learning Toolbox within MATLAB 2016a.  Authors 
acknowledge that most of the analyses done in this study were exploratory. In this section, we are giving a 
parameter justification for each analysis based on the rationale for doing the analysis.  

- Screening process: the screening process is inevitable in this study to attain reasonable team flow 
behavioral response. In the first screening process, we needed to assure that participants signed to this study have 
enough skill to fall into the individual flow state. In the second screening process, we needed to match participants 
based on their skill and song preference. We assumed that this screening would maximize the chances of finding 
pairs of participants who can reach the team flow state. This quicker and cheaper behavioral-based screening 
process was necessary before committing to more lengthy and expensive neuroimaging process.    

- Sample size: The final number of participants was mainly constrained by availability after the screening 
process. We strived to keep the final number of participations similar to the samples sizes reported in similar 
publications (34). Note: during the main experiment, the data collection process for one male pair of participants 
was interrupted due to a technical error and the collected data was excluded from data analysis.  

- Trial numbers: we limited the number of trials to 6 per condition to avoid fatigue which might have 
compromised the possibility of falling into the flow state in later trials. Note that the total experimental time for each 
pair was approximately 3-4 hours including co-registration, EEG cap set up, the main experiment and clean up. 
Note: for one pair, we could only collect 5 trials per condition due to time constraints. For another pair, one of the 
trials contained excessive noise and hence, we excluded this trial and all corresponding trials in the other conditions.  

- Units of analysis: for all analyses conducted in this study, the unit of analysis was participation i.e. n = 20. 
The only exception was the performance analysis where the unit of analysis was the final score for the pair i.e. n = 
10. 

- Control conditions: we paid much attention in the design of our manipulations to control for all possible 
sources of neural variability other than what can be attributed to the desired behavioral state or condition. Please, 
check Table S1 for details. Data collection were not performed blind to the conditions of the experiment. 
Experimental blinding was not possible due to the overt and obvious nature of the experimental setup for each 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted June 19, 2020. ; https://doi.org/10.1101/2020.06.17.157990doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.17.157990


18 

 

manipulation. Data in all conditions were subjected to identical analysis algorithms. 
- Spectral analysis: The power spectral analysis was completely exploratory. For the topographical domain 

power spectral analysis, we used permutation statistics with Bonferroni multiple comparison correction. Authors did 
explore the anatomical-source domain power spectral analysis and cluster analysis using beta (13-30 Hz), gamma 
(31 – 120 Hz), beta/full-gamma (13-120 Hz), and beta/low-gamma (13-50 Hz) bands. All bands showed similar 
trends with the beta band showing the least and the beta/full-gamma band the most significant effect across 
conditions. However, there are some limitations to the capability of EEG to accurately detect high-gamma ( > 50 
Hz) power. Therefore, we decided to use combined beta/low-gamma (13-50 Hz) for further analysis. 

For the anatomically-domain power analysis, we restricted our anatomical atlas definition to the Destrieux 
atlas. The search for an ROI showing significant effect across conditions were exploratory and using one-way 
ANOVA across conditions. Therefore, we set the significance threshold to p < 0.00034 (i.e. 0.05 / 148 ROI) to 
correct for multiple comparison. All these ROIs showed higher beta/gamma power in the Inter-SyncA condition 
compared to other conditions as presented in Fig. 4. 

- Cluster-analysis: as we set strict significance threshold in the anatomically-domain power analysis, we 
might have committed a type II error by ignoring true effects of other trends. The strict significance threshold was 
set by the number and rigid anatomical definitions of the atlas. Therefore, we used this analysis to check for the 
possibility of weaker but still significant trends. Hence, we increased the number of clusters just enough to detect 
these weaker trends. We needed to detect these weaker trends to answer the question: whether the brain still 
shows neural correlates of individual flow and socialization during team flow. This also justify the need for redefining 
the brain regions as mentioned in the Activity-dependent anatomically-defined grouping of ROIs section. Note that 
we have tried several clustering algorithms and parameters, all gave similar results. 

- Causal interaction, IIT, and phase synchrony analyses: these analyses were done on the 14 GPs defined 
in the Activity-dependent anatomically-defined grouping of ROIs section. Note that all these analyses are orthogonal 
to the basis by which these GPs are defined which is beta/gamma power. 
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