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Abstract  
Chimeric antigen receptor (CAR) therapy targeting CD19 is an effective treatment for 
refractory B cell malignancies, especially B cell acute lymphoblastic leukemia 
(B-ALL). The majority of patients achieve a complete response following a single 
infusion of CD19-targeted CAR-modified T cells (CAR-19 T cells); however, many 
patients suffer relapse after therapy, and the underlying mechanism remains unclear. 
To better understand the mechanism of tumor relapse, we developed an individual cell 
based computational model for tumor cell plasticity and the heterogeneous responses 
to the CAR-T treatment. Model simulations reproduced the process of tumor relapse, 
and predicted that CAR-T stress-induced cell plasticity can lead to tumor relapse in 
B-ALL. Model predictions were verified by applying the second-generation CAR-T 
cells to mice injected with NALM-6-GL leukemic cells, in which 60% of the mice 
relapse within 3 months, and relapsed tumors retained CD19 expression but exhibited 
a subpopulation of cells with CD34 transcription. These findings lead to a mechanism 
of tumor replace by which CAR-T treatment induced tumor cells to transition to 
hematopoietic stem-like cells (HSLCs) and myeloid-like cells and hence escape of 
CAR-T targeting. The computational model framework was successfully developed to 
recapitulate the individual evolutionary dynamics, which could predict clinical 
survival outcomes in B-ALL patients after CAR-T therapy.  
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Introduction 
 
Cancer immunotherapy based on genetically engineered T cells has been used 
successfully to treat refractory B cell malignancies, especially acute lymphoblastic 
leukemia (ALL)(1-3). In this strategy, the T cell genome is modified by the 
integration of viral vectors or transposons encoding chimeric antigen receptors (CARs) 
that direct tumor cell killing(4,5). The application of CAR-T therapy is limited by two 
major challenges: cytokine release syndrome (CRS), which is potentially 
life-threatening for patients and hence limits the number of CAR-T cells that can be 
transferred, and disease relapse, which occurs for various reasons(6-11). A detailed 
understanding of the disease relapse process is certainly important for the 
improvement of CAR-T cell therapy.  
 
  CAR-T therapy targeting CD19 has been proved to be an effective therapy for B 
cell acute lymphoblastic leukemia (B-ALL). Following CD19 CAR-T treatment, 
complete remission is often observed within 3 months; however, a significant number 
of patients relapse in long-term follow-up(2,12-26). These disease recurrences are 
associated with various phenomena, including mutation or alternative splicing of 
CD19, or the presence of CD19- cancer cells(27-29), or CD19+ relapse(2,13,14,19,25). 
Some relapsed patients show myeloid leukemia switches(30-32). In a study of human 
non-Hodgkin’s lymphoma (NHL) treated with CAR-19 CD8+ T cell (CTL) therapy, 
the acquisition of resistance was independent of the downregulation/loss of CD19 
expression and was presumably due to deregulated apoptotic machinery in anti-CD19 
CAR CTL-resistant NHL sublines (R-NHL)(33). The differentiation plasticity of 
hematopoietic cells has been increasingly recognized in recent years(34,35), and some 
patients develop mixed-phenotype acute leukemia(36-38), which shows aberrant 
expression of antigens from different lineages. Dual CARs, such as CD22-targeted or 
dual CD19- and CD123-targeted T cells, are often applied in relapsed patients(39,40). 
The reasons for tumor relapse, especially CD19+ relapse, are not fully understood, and 
detailed studies of the dynamic process after CAR-T cell infusion are necessary to 
uncover the underlying mechanisms of immune escape following CAR-T therapy.  
 

Drug treatments can promote cellular plasticity, which may help cancer cells 
evade detection and treatment(41). Lineage switches after CAR-T therapy in B-ALL 
shown a possible response of CAR-T stress-induced tumor cell plasticity. We asked 
how CAR-T stress-induced cell plasticity may result in the immune escapes after 
CAR-T therapy? How the process of tumor relapse may depend on the tumor cell 
plasticity and heterogeneous responses to CAR-T stress? How can we perform 
personal prediction of the outcome of CAR-T therapy? Experimentally, it is difficult 
to track details of cell plasticity during tumor relapse. Here, to better understand the 
mechanism of cell plasticity-induced tumor relapse, we developed an individual cell 
based computational model for the heterogeneous responses of tumor cells to the 
CAR-T treatment based on a hypothesis of CAT-T treatment induced tumor cell 
plasticity and immune escape. Model simulations reproduced the process of tumor 
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relapse, and shown that CAR-T stress-induced cell plasticity can lead to tumor relapse. 
Phenotype changes in relapsed tumor cells were further verified by mouse 
experiments, which shown the existence of CD34+ and CD123+ cells in tumor cells 72 
days after CAR-T cells infusion. Based on model simulations, tumor relapse can be 
predicted by dynamic parameters associated with individual responses to CAR-T 
treatment.   
 
Materials and Methods  
 
CAR-T treatment in mice injected with NALM-6-GL leukemic cells 
 

We developed a mouse model and applied the modified second-generation 
CD19-specified CAR-T cells CD19-28z(42-44). The functions of the modified 
CD19-28z T cells in response to tumor cells were tested through in vitro experiments. 
When CD19-28z T cells were co-cultured with K562-CD19 or NALM-6-GFP-Luc 
cells (NALM-6-GL), significantly high CD107a expression was observed in both 
CD8+ and CD4+ CAR-T cells, and IFN-𝛾 was specifically produced (Figure S1). 
Hence, the CD19-28z T cells were effectively activated by specific antigen CD19 cell 
lines and primary ALL cells.  

 
We injected mice with NALM-6-GL tumor cells on day 1, followed by CD19-28z 

CAR-T cells infusion on days 2, 3, 4, and 12. All mice showed complete remission 
(CR) in the first few weeks, but 60% (16/27) showed tumor relapse in long-term 
tracking. The tumor burden was assessed as previously described through 
bioluminescence imaging using a Xenogen IVIS Imaging System (Xenogen) with 
Living Image software (Xenogen) (45). Both dorsal and ventral views were obtained 
for all animals. To examine the phenotype of the tumor cells in the relapse mice, 
GFP+ tumor cells isolated from the bone marrow were sorted by flow cytometry.  

 
Detail experimental protocols were given in the Supplementary Text.  

 
Individual cell-based modeling of tumor relapse 
 

We developed an individual cell based computational model for the heterogeneous 
tumor cell responses to CAR-T treatment. The model simulates the biological process 
of tumor growth as a multiple cells system, in which each cell is undergoing 
proliferation, death, or terminal differentiation with their own rates depending on 
expression levels of the marker genes in the cell as well as the CAR-T signaling.  

 
 The model considers all tumor cells in the bone marrow, which are divided into 

three components: hematopoietic stem-like cells (HSLCs), progenitors, and terminally 
differentiated cells (TDCs) (Figure 1a). Different type cells differ in their abilities for 
self-renewal and terminal differentiation. HSLCs are quiescent cells with low 
self-renewal ability, the highest potential to produce diverse progeny, and no terminal 
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differentiation; progenitor cells are highly self-renewable, and can differentiate into 
TDCs; and TDCs have lost the capability of self-renewal, circulate through the body, 
and are prone to cell death. Upon CAR-T treatment, we assumed that tumor cells are 
killed by CAR-T cells with a death rate depending on the CAR-T signaling strength of 
each individual cell. The cell-to-cell variance in CAR-T signaling may be dependent 
on the expression of surface markers on target cells (Figure 1b), which vary over cell 
regenerations.  

 
In the model, we introduced key assumptions that CAR-T stress-induced tumor 

cells to transition to HSLCs (by promoting CD34 expression) and myeloid-like cells 
(by promoting CD123 expression) and hence escape of CAR-T targeting. 
Heterogeneity of each cell was represented by the relative expression levels of marker 
genes CD19, CD22, CD34, and CD123, which play important roles in the CD19 
CAR-T cell response and cell lineage. The proliferation rate 𝛽 and the differentiation 
rate 𝜅 depend on CD34 expression level through 

𝛽 = 𝛽%
𝜃

𝜃 + 𝑁 ×
5.8[CD34] + (2.2[CD34])6

1 + (3.75[CD34])6 , 

𝜅 = 𝜅%
1

1 + (4.0[CD34])6. 

Here 𝑁 means the total tumor cell number. CAR-T signals are dependent on the 
expression of these marker genes 

Signal = 𝑓([CD34], [CD123])
𝛾BC[CD19]

1 + 𝛾BC[CD19] + 𝛾EE[CD22]
𝑅(𝑡),

𝑓([CD34], [CD123]) =
1

H1 + H[CD34]𝑋%
J
KL
J H1 + H[CD123]𝑋B

J
KM
J
.
 

Here 𝑅(𝑡)  is the predefined CAR-T activity (referred to Supplementary Text, 
equation (1)). CD34 and CD123 are marker genes of stem-like cells and myeloid-like 
cells, respectively, which were assumed to inhibit the CAR-T signaling. The apoptosis 
rate 𝜇 includes a basal rate 𝜇% and a rate associated with the CAR-T signal 

𝜇 = 𝜇% + 𝜇B × Signal. 
 

In model simulations, we omitted the complex yet incomplete signaling pathways 
for the marker gene expressions, and introduced phenomenological descriptions for 
the random transitions of gene expressions. We assumed that the expression of the 
marker genes randomly changed during cell cycling following a transition probability 
of Beta-distributions, of which the shape parameters were dependent on both the state 
of mother cells and the CAR-T signaling. For example, we assumed that both CD19 
and the CAR-T signal promote CD34 expression, so that given the expression of 
CD34 (𝑢P) at the 𝑘th cycle, the average expression level at the (𝑘 + 1)th cycle 
(denoted by 𝑢PTB) is  
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E(𝑢PTB) = 	𝜙(𝑢P) = 0.08 + 1.06
(𝛼Z[𝑢P)E.E

1 + (𝛼Z[𝑢P)E.E
,

where		𝛼Z[ = 1.45 + 0.16 × [CD19] + 𝐴Z[ × Signal, 
and the variance is  

Var(𝑢PTB) =
1

1 + 𝑚𝜙(𝑢P)b1 − 𝜙(𝑢P)d. 

Let the shape parameters	

𝑎 = 𝑚𝜙(𝑢P), 𝑏 = 𝑚b1 − 𝜙(𝑢P)d, 

the expression level 𝑢PTB is a Beta-distribution random number with probability 
density function 

𝑝(𝑢, 𝑢P) =
𝑢hiB(1 − 𝑢)jiB

𝐵(𝑎, 𝑏) ,			𝐵(𝑎, 𝑏) =
Γ(𝑎)Γ(𝑏)
Γ(𝑎 + 𝑏). 

Formulations for the other genes were given similarly (Supplementary Text). 
 

Model parameters were adjusted in accordance with the experimentally observed 
tumor relapse dynamics and tumor cells marker gene expression through flow 
cytometry analysis (Table S3 in the Supplementary Text).  

 
To reproduce the tumor relapse process, we performed model simulations to mimic 

the process of tumor cells proliferation, death, and terminally differentiation, and cell 
plasticity during cell proliferation (Figure 1c). For detail formulations, parameter 
estimations, and numerical schemes of the model, referred to the Supplementary Text.  

 
RESULTS 
 
Tumor relapse after CD19-targeted CAR-T treatment in mice injected with 
NALM-6-GL leukemic cells 

  We developed a mouse model and applied second-generation CAR-T cells to mice 
injected with NALM-6-GL leukemic cells. The functions of the modified CD19-28z T 
cells in response to tumor cells were tested through in vitro experiments. CD19-28z T 
cells were co-cultured with various types of target cells at different effector to target 
ratios (E:T ratios). The target cells were effectively killed when the E:T ratio was 
larger than 5:1 (Figure S1c), which confirmed the CD19-targeted lysis of the CAR-T 
cells. Moreover, the carboxyfluorescein succinimidyl ester (CFSE) proliferation assay 
showed that the CD19-28z T cells underwent multiple rounds of cell division when 
co-cultured with NALM-6-GL, but not with K562 (Figure S1d). This result revealed 
the proliferative ability of CD19-28z T cells in response to cognate-antigen 
recognition on target cells.  

 To investigate CD19-28z CAR-T treatment to B-ALL, we applied a rapid 
expansion protocol (REP) (46,47) to obtain clinically relevant numbers of T cells for 
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adoptive T cell transfer and applied NALM-6-GL to the mouse model. We injected 
mice with NALM-6-GL tumor cells on day 1, followed by T cell infusion on days 2, 3, 
4, and 12 (Figure 2a). The mice were divided into two groups: infusion with control 
NGFR-28z T cells and infusion with CD19-28z T cells. In the NGFR-28z groups, all 
mice showed similar dynamics of rapid tumor growth after injection and died within 7 
weeks (Figure 2b-c). The mice treated with CD19-28z T cells, however, showed 
diverse responses in the tumor cell population dynamics. All mice showed complete 
remission (CR) in the first few weeks, but 60% (16/27) showed tumor relapse in 
long-term tracking (Figure 2b-c).  

To investigate the phenotype of relapsed tumor cells, we isolated the GFP+ tumor 
cells from the bone marrow of relapsed mice at days 37 and 72, respectively, and 
sored the isolated cells by flow cytometry. Most cells from both the early (day 37) and 
late (day 72) stages showed CD19 positivity (Figure 3a), as confirmed by CD19 
immunohistochemistry (Figure 3b). Flow cytometry showed the existence of 
CD19+CD34+ and CD123+CD34+ tumor cells in the CD19-28z-treated relapsed mice, 
which were not presented in NGFR-28z-treated mice (Figure 3c-f). These results 
shown the presence of CD34+ tumor cells in relapsed mice, which suggest the 
possibility of tumor cell plasticity after CAR-T treatment.    

Model simulations of tumor relapse after CAR-T treatment 
 

In the proposed individual cell-based model, we introduced key assumptions of 
CAR-T stress-induced cell plasticity, CAR-T signals promote the expressions of 
CD34 and CD123, so that tumor cells can escape CAR-T targeting. To verify the 
proposed hypothesis, we mimicked the experimental process to simulate tumor 
growth after NALM-6-GL cells injection and CAR-T treatment. In simulations, we 
initialized the system with 1x106 tumor cells, which were all CD19+ with low 
expressions of CD34, CD22, and CD123. First, we turned OFF the CAR-T signaling 
and adjusted the parameters for cell proliferation and death rates to fit the 
experimental data from NGFR-28z-treated mice (Figure S2). Next, we turned ON the 
CAR-T signaling and adjusted the parameters related to tumor cells response to fit the 
process of tumor relapse (Figure 4a). Simulations reproduce the diverse tumor cell 
population dynamics of different relapsed mice after CD19-28z T cell infusion, which 
revealed heterogeneous responses among different mice. In simulations, the 
heterogeneous responses in different mice were represented by varying the two 
parameters, the ability of CAR-T stress-induced CD34 expression (𝐴Z[) and the 
inhibition of CAR-T signals by CD34 expression (𝑋% ) (Figure 1b). Here, the 
parameter for CAR-T stress-induced CD34 expression measures the stem-like cell 
plasticity induced by CAR-T stress, and the inhibition of CAR-T signaling by CD34 
expression indicates the capacity for immune escape of stem-like cells. In additional 
to the relapse process, the individual cell-based model enables us to simulate the 
expression levels of marker genes at single cell level, which are comparable with 
experimental data obtained from the flow cytometry analysis (Figure 4b).   
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We further changed the values of 𝐴Z[ and 𝑋% to investigate how the dynamics 
of tumor relapse depends on these two parameters. When we turned the CD34 
induction off (𝐴Z[ = 0), the simulated relapse rate significantly decreased; and in the 
relapsed cases, the time to relapse was clearly postponed (Figure 4c, Group 1 vs. 
Control). By contrast, a decrease in the parameter X0 resulted in faster relapse (Figure 
4c, Group 2 vs. Control). When we varied both parameters, an outcome of complete 
tumor cells clearance can be achieved when 𝐴Z[  was small and 𝑋%  was large 
enough, which represent the conditions of weakenness the CD34 induction by CAR-T 
and the CAR-T signal inhibition of stem-like cells (Figure 4d). Moreover, model 
simulations predicted the situations of no remission when 𝑋% was small so that 
CAR-T signal inhibition by CD34 was strong enough (Figure 4d). These results 
shown that the diverse responses of different mice to CAR-T treatment can be 
explained by the variance in the interactions between the CAR-T signal and tumor 
cell stemness (Figure 1b). 
 
The in-silico process of tumor relapse 
 

Our model provides an in-silico laboratory to explore the process of tumor 
relapse. Based on the simulated cell population dynamics (Figure 4a), a typical 
process of tumor relapse without CD19 loss includes three stages, beginning with CR 
at the early stage, followed by a critical transition to the relapse phase, and finally an 
accelerated growth after CAR-T cell exhaustion (Figure S3). During tumor relapse, 
most tumor cells maintained a high level of CD19 expressions, and the CD34 
distribution showed obvious switches from low to high levels in the early stage and 
back to the lower level distribution in the later stage after CAR-T cell exhaustion 
(Figure 5a).  

 
We further analyzed the dynamics of various subpopulation cells during tumor 

relapse (Figure 5b). After the CAR-T infusion, the CD19+CD34-CD123- cell number 
decreased immediately due to CAR-T lysis, while the CD19+CD34+ and 
CD19+CD123+ cells significantly increased during the relapse phase. At the latter 
stage, the CD19+CD34+ and CD19+CD123+ subpopulations decreased, whereas 
CD19+CD34-CD123- cell number obviously increased, regaining the original 
phenotype of the injected NALM-6-GL cells. These results revealed the dynamics of 
cell lineage switches during tumor relapse, with lymphoid pre-B cells 
(CD19+CD34-CD123-) switch to a stem-like phenotype (CD19+CD34+) after the 
CAR-T treatment, followed by further switch to a myeloid-like cell phenotype 
(CD34+CD123+). The stem-like cells regenerated lymphoid pre-B cells after the 
CAR-T exhaustion/disappearance.  

 
To explore cell plasticity during tumor relapse, we analyzed the relative 

expressions of marker genes at single cell level along the simulated relapse process. 
From the simulated process (mouse #2 in Figure 4a), the antigen CD19 maintained 
high level expression in most tumor cells, the fraction of CD34+ subpopulation cells 
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obviously increased from days 5 to 23 after CAR-T cells infusion (Figure 5c), in 
agree with the above analysis. Moreover, there were small subpopulations of cells that 
showed upregulation of CD22 and CD123 expressions on days 5-23 after the CAR-T 
cells infusion (Figure 5c); but the changes in the CD123 and CD22 expression 
distributions were imperceptible over the relapse process (Figure 5a). These results 
show a process of tumor cell plasticity with upregulation of CD34 expression in 
response to CAR-T stress.  
 
Predictability of the computational model 
 
 In the above simulations, tumor relapse dynamics in different mice can be fitted 
by varying the parameters 𝐴Z[ and 𝑋% for the heterogenous responses in individual 
mice. This raise a possibility of predicting the outcome of CAR-T treatment by 
identifying the personalized parameters through an estimation of parameter values 
based on a short-term observation after CAR-T infusion(48). Clinically, it is crucial to 
predict, according to the responses at early stage after CAR-T infusion, whether the 
patient would be cured with tumor cells free, or, if otherwise, the day of tumor 
relapse.  
 

To test the predictability based on in silico relapse process, we examine how the 
days of tumor relapses may depend on the heterogeneous response at different mice. 
We varied the parameters 𝐴Z[ and 𝑋% to mimic different mice (0 < 𝐴Z[ < 0.8, 0 <
𝑋% < 0.6), and analyzed the cases showed initially remission with tumor cells 
decreasing (Figure 6a). For each simulated case, we calculated the relative tumor 
burden (𝑇) and the fraction of CD34+ tumor cells (𝑓CDZ[) at day 5 after CAR-T 
infusion (dashed line in Figure 6a). Here 𝑇 measures the relative tumor cells with 
respect to the initial number before CAR-T infusion, and 𝑓CDZ[	is the fraction of 
tumor cells with CD34>0.3. Figure	 6b	 shows	 𝑓CDZ[	 and	 𝑇	 for	 each	 simulated	
case,	 the	 fraction	 𝑓CDZ[	 shows	 nonlinear	 correlation	with	 the	 tumor	 burden	 𝑇	
when	 𝑇	 is	small	 (𝑇 < 10iE).	Moreover,	 the	cases	developed	to	tumor	cells	 free	
usually	have	low	relative	tumor	burden	(𝑇 < 10iE)	 and	small	fraction	of	CD34+	
cells.	We	 further	 calculated	 the	 timing	 of	 tumor	 cells	 clearance,	 which	 show	 a	
Poisson	 distribution	 with	 a	 mean	 of	 about	 30	 days	 after	 CAR-T	 cells	 infusion	
(Figure	6c).	  
	
	 For	 those	 cases	with	 tumor	cells	 reoccur	 in	 the	 later	 stage,	we	defined	 the	
timing	of	 tumor	 relapse	as	 the	day	when	 the	 tumor	cell	number	 reached	again	
the	 initial	 level	 after	 the	 early	 remission	 stage	 (red	 line	 in	 Figure	 6a).	 Data	
analysis	 shown	 that	 the	 relapse	 time	 (day)	 can	 be	 predicted	 from	 the	 relative	
tumor	burden	(𝑇) and	the	fraction	of	CD34+	tumor	cell	(𝑓CDZ[) through a nonlinear 
function	

Relapse	time = s 𝜃t,u𝑥t𝑦u
%xtTux[

, 𝑥 = logB%𝑇, 𝑦 = 𝑓CD34.		
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The coefficients 𝜃t,u were obtained from nonlinear regression based on the data from 
model simulations. The predicted relapse time shown well agreement with the 
simulated relapsed time for each case (Figure 6d). Our in-silico experiments shown 
the ability of predicting the outcome of CAR-T treatment through model simulation 
based on early stage observations of tumor burden and tumor cells analysis.  
 
Discussions 
 

We developed an individual cell based computational model to study the process of 
CD19+ tumor cells relapse in B-ALL after CD19 targeting CAR-T therapy. The model 
simulates the collective dynamics of tumor growth in accordance with the kinetic 
(proliferation, differentiation, or death) rates of individual cells, and highlights the 
heterogeneity and plasticity at single cell level. In the model, we introduced 
epigenetic states for each cell, and the kinetic rates of each cell are dependent on the 
associated epigenetic states. Moreover, the epigenetic states randomly change during 
cell cycling according to an inheritance probability that was introduced to represent 
the cell plasticity in response to CAR-T stress. The proposed model enables us to 
simulate the population dynamics as well as the changes of epigenetic states at 
individual cells. The model outlines a general computational model framework of 
simulating collective stem cells regeneration with cell heterogeneous and plasticity. In 
the model framework, we can overlook detail cellular signaling networks, and focus 
at how the kinetic rates may depend on the epigenetic states and how the epigenetic 
states may change during cell cycling.    

 
In our study, to model the process of tumor relapse, we proposed a major 

hypothesis that CAR-T stresses may induce stem-like cell transition of tumor cells 
and the immune escape of the stem-like cells. Flow cytometry analysis of tumor cells 
from relapsed mice shown the existence of CD19+CD34+ cells that were not presented 
in the non-treated mice. In the model, we introduced CD34 as the marker gene to 
represent the stemness of tumor cells. Model simulations nicely reproduce the process 
of tumor relapse, during which hematopoietic-stem like cells emerge due to CAR-T 
stress after CAR-T cells infusion. The hematopoietic stem-like tumor cells give rise to 
downstream cell lineages and may lead to mixed-phenotype acute leukemia, which is 
crucial for the development of personalized therapy.  
 

Tumor relapse is a common issue in refractory B-ALL therapy; however, wet 
laboratory experiments are incapable of studying the relapse process. The proposed 
computational model provides an in-silico laboratory to investigate this process in 
detail and to predict the outcome of CAR-T therapy. For example, if we can measure 
the tumor burden and estimate the fraction of CD34+ tumor cells at the early stage 
after CAR-T cells infusion, we may turn the model parameters to fit the data and 
predict long-term responses according to modeling simulations. Moreover, by varying 
the model conditions, we are able to study other issues of immunotherapy, such as the 
effects of memory CAR-T cell efficiency(49) and CD19 loss on tumor relapse(11), as 
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well as the dynamical systems perspective on CAR-T cell dosing(50). To the best of 
our knowledge, this is the first computational model for CAR-T therapy that 
combines gene expression variations at the single cell level with population dynamics, 
and that is capable of investigating cell plasticity in response to drug stress. 
Combinations between in vivo experiments and in silico simulation can lead to the 
quantitative design of an optimal strategy and the prediction of therapy effects, which 
are important for personalized medicine in individual patients.   
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Figure	1	
	

	
	

Figure	1.	Schematic	 representation	of	 the	single-cell	based	computational	
model.	a.	Main	hypotheses	of	the	computational	model	(see	the	Supplementary	
Text	 S2).	 All	 tumor	 cells	 were	 classified	 as	 hematopoietic	 stem-like	 cells,	
progenitors,	or	terminally	differentiated	cells.	CD19-28z	CAR-T	cells	can	kill	CD19+	
pre-B	tumor	cells	and	induce	the	transition	from	pre-B	cell	to	hematopoietic	stem-
like	 cell	 by	 promoting	 the	 expression	 of	 CD34.	 b.	Major	 assumptions	 of	 the	
interactions	 between	 the	marker	 genes,	 CAR-T	 cell	 signaling,	 and	 cell	 behavior.	
Green	arrows	show	the	interactions	independent	of	the	CAR-T	signal,	black	and	
red	arrows	represent	the	 interactions	associated	with	the	CD19-28z	CAR-T.	The	
two	key	assumptions,	the	induction	of	stemness	by	the	CAR-T	signal	and	immune	
escape	 of	 the	 stem-like	 cells,	 are	 marked	 red.	 c.	 Numerical	 scheme	 of	 model	
simulation.	 	
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Figure	2	
	

	

Figure 2. Tumor	 relapse	 in	mice	 treated	with	CAR-T	 cells.	 a.	Experimental	
process.	On	day	1,	1x106	NALM-6-GL	cells	were	injected	through	the	tail	vein	into	
the	 NOD-SID	 mice.	 On	 days	 2,3,4,	 and	 12,	 5x106	 CD19-28z	 CAR-T	 cells	 were	
injected	 through	 the	 tail	 vein	 into	 each	 NALM-6-GL-bearing	 NOD-SCID	mouse.	
Cancer	 development	was	measured	with	 bioluminescence	 imaging,	 and	 tumor	
cells	were	isolated	from	the	bone	marrow	for	further	flow	cytometry	analysis.	b.	
Bioluminescence	 imaging	 of	 mice	 to	 detect	 tumor	 progresses.	 c.	 Evolution	 of	
tumor	progresses	represented	by	bioluminescence	data.	The	data	were	obtained	
from	mice	receiving	control	NGFR-28z	T	cells	(black)	and	mice	that	relapsed	after	
CD19-28z	CAR-T	cell	treatment	(red).	  
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Figure	3	
	

	

Figure 3. Phenotype of relapsed tumor cells. a. Flow	cytometry	analysis	of	CD19	
expression	on	the	tumor	cells	pooled	from	three	relapsed	mice	at	days	37	and	72,	
respectively.	b.	CD19	immunohistochemistry	of	bone	marrow	sections	obtained	
from	CD19-28z	CAR	T	cell-treated	mouse	(week	4).	c.	Flow	cytometry	plot	of	CD34	
expression	versus	CD19	expression	in	the	bone	marrow	tumor	cells	isolated	from	
the	 relapsed	 mice	 at	 day	 72.	 Red	 circle	 indicates	 the	 cells	 with	 phenotype	
CD34+CD19+.	d.	Flow	cytometry	plot	of	CD123	expression	versus	CD34	expression	
in	the	bone	marrow	tumor	cells	isolated	from	the	relapsed	mice	at	day	72.	Red	
circles	indicate	the	cells	with	phenotype	CD123+CD34+	and	CD123+CD34-.	e.	Flow	
cytometry	plot	of	CD123	expression	versus	CD34	expression	in	the	bone	marrow	
tumor	cells	isolated	from	the	NGFR-28z-treated	mice	at	day	30.	f.	Flow	cytometry	
plot	of	CD34	expression	versus	CD19	expression	in	the	bone	marrow	tumor	cells	
isolated	from	the	NGFR-28z-treated	mice	at	day	30.	  
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Figure	4	
	

	

Figure 4.  Simulation results and experimental data for a mouse with the CD19-
28z CAR-T treatment. a.	Tumor	growth	after	the	NALM-6-GL	injection	and	CD19-
28z	 CAR-T	 treatment.	 The	 markers	 show	 the	 bioluminescence	 imaging	 (BLI)	
experimental	data,	and	the	solid	curves	were	obtained	from	the	model	simulation.	
Simulated	 tumor	cell	numbers	are	 scaled	 (x106)	 to	 compare	with	 the	BLI	data.	
Black	indicates	mice	treated	with	the	control	NGFR-28z,	and	red	indicates	mice	
treated	with	CD19-28z.	Here,	simulation	results	for	5	mice	treated	with	CD19-28z	
are	shown;	#1-#3	were	fit	to	the	data	from	three	mice,	#4	models	the	case	with	
slow	relapse,	and	#5	models	the	case	of	tumor	cell	clearance.	Refer	to	Table	S4	in	
the	 Supplementary	Text	 S2	 for	 the	 parameters	 used	 for	#1-#5.	b. Scatter plots 
marker gene expression at day 72, from the simulation (upper panel) and the flow 
cytometry analysis (bottom panel). Data obtained from the mice #2 in a. c.	Time	of	
relapse	 under	 the	 three	 conditions:	 Control	 (A34=0.4,	 X0=0.4(±20%)),	 Group	 1	
(A34=0,	 X0=0.4(±20%)),	 and	 Group	 2	 (A34=0.4,	 X0=0.2(±20%)).	 In	 each	 case,	 we	
performed	30	independent	runs,	each	of	which	the	parameter	X0	for	the	inhibition	
the	CAR-T	signal	by	CD34	varied	over	a	given	range.	Numbers	on	the	error	bar	
show	the	cases	with	tumor	relapse	in	the	30	runs.	d.	Simulated	relapse	time	with	
different	 parameters	 for	 CD34	 induction	 (A34)	 by	 the	 CAR-T	 and	 CAR-T	 signal	
inhibition	 by	 the	 stem-like	 cells	 (X0).	 Black	 triangles	 show	 the	 cases	 with	 no	
remission	(NR)	after	the	CAR-T	cell	injection,	red	squares	show	the	cases	became	
tumor	 free	 (TF)	 after	 CAR-T	 treatment,	 and	 solid	 circles	 show	 the	 cases	 with	
remission	at	the	beginning	and	tumor	relapse	in	the	later	stages.	Here,	increasing	
the	CD34	 induction	by	the	CAR-T	cells	corresponds	to	an	 increasing	of	A34,	and	
increasing	the	CAR-T	signal	inhibition	corresponds	to	a	decreasing	of	X0.	The	color	
of	the	solid	circles	indicates	the	day	of	relapse.	The	time	of	relapse	was	defined	as	
the	time	when	the	tumor	cell	number	regain	the	initial	value	after	early	remission.	 	
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Figure	5	
	

	
	

	
Figure	5.	 in	 silico	 process	 of	 tumor	 relapse.	 a.	Simulated	 distribution	of	 the	
marker	genes	CD34,	CD19,	CD22,	 and	CD123	at	days	2,	5,	16,	23,	 and	72	post-
tumor	cell	and	CAR-T	cell	injections.	b.	Time	evolution	of	the	percentages	of	the	
three	 subpopulations	 of	 cells:	 original	 tumor	 cells	 (CD19+CD34-CD123-),	
hematopoietic	 stem-like	 cells	 (CD19+CD34+),	 and	 myeloid-like	 cells	
(CD19+CD123+).	c.	Simulated	relative	levels	of	CD22,	CD123,	CD34,	and	CD19	in	
tumor	cells	during	the	tumor	relapse	process.	Numbers	show	the	percentages	of	
cells	in	each	quadrant.	Data	obtained	from	the	mice	#2	in	Figure	4a.	
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Figure	6	
	

	
	

Figure	 6.	 Predictability	 of	 the	 computational	 model.	 a.	 Simulated	 tumor	
growth	 (gray	 lines)	 after	 CAR-T	 cells	 infusion.	 The	 simulation	 results	 were	
obtained	by	randomly	varying	the	parameters	 𝐴"#	 and	 𝑋%	 over	the	range	 0 <
𝐴"# < 0.8, 0 < 𝑋% < 0.6.	Black	dashed	 line	 shows	marks	day	5	after	CAR-T	cells	
infusion,	 red	 line	 shows	 initial	 tumor	 cells	 number	 before	 CAR-T	 treatment.	 b.	
Fraction	of	CD34+	tumor	cells	versus	relative	tumor	burden	of	all	simulated	cases	
in	a.	c.	Histogram	of	the	days	of	tumor	cells	clearance	for	the	cases	with	tumor	free.	
d.	Simulated	versus	predicted	relapse	days	of	all	cases	with	tumor	relapse.	 	 	
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Supplemental Figures 
 
Figure S1 

 

 

Figure	S1.	Functional	assessment	of	CD19-28z	CAR-T	cells.	a.	Flow	cytometry	plots	
showing	CD107a	expression	in	the	CD19-28z	CAR-T	cells	co-cultured	with	K562,	K562-
NGFR,	K562-CD19,	or	NALM-6-GL	pre-B-ALL	cells.	b.	Flow	cytometry	plots	showing	IFN-
γexpression	in	CD19-28z	CAR-T	cells	co-cultured	with	K562,	K562-NGFR,	K562-CD19,	
or	NALM-6-GL	cells.	c.	The	lysis	percentages	of	various	types	of	cells	co-cultured	for	24h	
with	CD19-28z	CAR-T	cells.	d.	CFSE	plots	showing	the	proliferation	of	the	CD19-28z	T	
cells	co-cultured	with	NALM-6-GL	or	K562	cells	at	days	0	and	5. 
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Figure S2 
 

 
 
Figure S2. Simulation results with control NGFR-28z T cells.  a. Evolution of tumor cell 
numbers (rescaled to compare with the BLI data). The solid lines from the model simulation, 
and the black dots are from BLI of mice injected with NALM-6-GL cells. b. Distribution of the 
simulated marker expression levels at day 30. c. Scatter plots of the marker gene expression 
levels at day 30, from the simulation (upper panel) and from the flow cytometry analysis 
(bottom panel).    
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Figure S3 
 

 
 
Figure S3. Dynamics of tumor relapse after the CAR-19 T cell treatment. a. Three stages of 
tumor relapse. b. Evolution of the density of the relative CD34 expression in tumor cells after 
the CAR-T cell infusion. 
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Supplementary Text

S1 Experimental Protocols

Cell culture and antibodies

NALM-6 pre-B-ALL cells were obtained from ATCC. NALM-6-GFP-Luc cells
(NALM-6-GL cells stably transfected with the gene for green fluorescent protein
(GFP) and luciferase) were cultured in RPMI 1640 medium supplemented with
10% heat-inactivated foetal bovine serum (FBS) (Gibco), 50 U/ml penicillinstrep-
tomycin (Gibco), 2 mM GlutaMAX (Lonza), and 1 mM sodium pyruvate (Lonza).
The PG-13 and Phoenix ECO retroviral producer cell lines were cultured in DMEM
supplemented with 10% FBS (Gibco), 50 U/ml penicillinstreptomycin (Gibco), 2
mM GlutaMAX (Lonza), and 1 mM sodium pyruvate (Lonza). T cells were always
cultured in T cell medium, which consisted of X-VIVO-15 medium supplemented
with 5% AB serum (Sigma-Aldrich), 100 U/ml IL-2, and 50 U/ml penicillinstrep-
tomycin (Gibco). All cells were routinely tested for mycoplasma and found to
be negative. The following antibodies were used: anti-CD3-PE (555340, BD Bio-
sciences); anti-CD4-BV421 (562424, BD Biosciences); anti-CD8-Alex Fluor 750
(MHCCD0822, Invitrogen); anti-CD19-PE-Cy7 (SJ25C1, BD Biosciences); anti-
CD123-APC (560087, BD Biosciences); anti-CD20-V450 (561164, BD Biosciences);
anti-CD22-PerCP-Cy5.5 (561441, BD Biosciences); and anti-CD34-Alexa Fluor
700 (561441, BD Bioscience).

Immunohistochemistry analysis

Sections of the obtained bone marrow were analyzed by immunohistochemistry
(anti-human CD19 staining) after the NALM-6-GL tumor was explanted. Images
were acquired at room temperature using a Nikon Ci Eclipse microscope system
(Nikon) with a Nikon Plan Apo VC 20/0.75 objective lens, Nikon DigiSight Digital
Camera Head and Nikon NSI-Elements SF 46000 software. Representative regions
at 20 magnification were shown.

Retroviral transduction

All peripheral blood samples were obtained after volunteers had provided written
informed consent under an institutional review board-approved protocol. Retro-
viral supernatant was generated from the CD19-28z PG-13 Producer Cell Clone
as previously described[1] and was collected at 24 and 48 hours. Peripheral blood
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mononuclear cells from healthy donors were isolated by Ficoll gradient centrifuga-
tion (GE Healthcare) and activated with anti-CD3/CD28 T cell Activator Dyn-
abeads (Invitrogen) immediately after purification at a 1:1 bead-to-cell ratio. Af-
ter 48 hours of bead activation, the T cells were transduced with the retroviral
supernatants by centrifugation on Retronectin (Takara)-coated plates to obtain
CD19-28z CAR T cells. The transduction efficiency was verified 7 days later
by flow cytometry (FITC-conjugated goat anti-mouse IgG(H+L)) (F2653, Sigma-
Aldrich). The CAR T cells were injected into mice 12 days after the first T cell
activation.

Mice

Mice were treated under a protocol approved by the animal ethics committee of
Beijing Shijitan Hospital, Capital Medical University. All relevant animal use
guidelines and ethical regulations were followed. Female NOD-SCID mice were
purchased from the Charles River Laboratories (Beijing, China) and maintained
under pathogen-free conditions. After adaptive feeding for 1 week, the mice were
intravenously injected on day 1 with 1 × 106 NALM-6-GFP-Luc (NALM-6-GL)
cells in 0.2 mL of RPMI 1640 medium, and on days 2, 3, 4 and 12, the mice were
injected with 5×106 CD19-28z, CD123-BBz or control NGFR-28z T cells daily. In
all experiments, the mice that developed hind limb paralysis or decreased respon-
siveness to stimuli were sacrificed for flow cytometry analysis. Bioluminescence
imaging utilized a Xenogen IVIS Imaging System (Xenogen) with Living Image
software (Xenogen) for the acquisition of imaging datasets. Both dorsal and ven-
tral views were obtained for all animals. Tumor burden was assessed as previously
described[2].

S2 Model framework

The computational model was developed to simulate the dynamical response to
CD19 chimeric antigen receptor (CAR) T cell therapy for acute B lymphoblastic
leukemia (B-ALL). In the model, we mimic the process of CD19 CAR-T treatment
to mouse injected with B-ALL tumor cells (NALM-6-GL), and consider the tumor
cells population dynamics as well as the cell plasticity in response to CAR-T
treatment.

In the model, we mainly consider the dynamics of tumor cells produced by
the injected NALM-6-GL that are essential for the study, and neglect the normal
hematopoietic cells. Base on the cell lineage of hematopoietic and progenitor
stem cells (HPSCs) [3], all tumor cells in the pool under considered are classified
into three subpopulations, which are marked by their CD34 expression levels:
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the hematopoietic stem cell like (HSC-like) cells with high CD34 expression, the
progenitors (either myeloid or lymphoid) with intermediate CD34 expression, and
terminal differentiated (TD) cells with extreme low CD34 expression. The three
population cells different from each other by their dynamical properties: HSC-like
cells have low proliferation rate, and can escape CAR-T treatment; progenitors
cells have high proliferation rate, can differentiate to TD cells, and CD19 positive
lymphoid progenitor cells can be killed by CD19 CAR-T; the TD cells are not
renewable and can actively be destroyed from the body. We further assume that
the expression levels of marker genes change during cell division, which result in the
plasticity of tumor cells (to be detailed below). In comparing with experimental
data, we mainly considered renewable cells (HPSC-like cells).

The developed model is single-cell based, in which a pool of renewable hematopoi-
etic and progenitor cells are considered, each cells is described individually through
its own epigenetic state; the epigenetic state of each cells is dynamically changed
during cell regeneration. The model only consider tumor cells in the body, which
are originally injected into the mice through blood injections. Normal cells are
not considered explicitly. Moreover, only self-renewal cells are considered in the
model, the terminal differentiated cells that loss the ability of self-renewal are not
included explicitly. The population dynamics of tumor cells including prolifera-
tion, apoptosis, and removal through CAR-T cells are modeled with single cell
stochastic behaviors.

In the model, each cell is represented by the expression of marker genes CD19,
CD34, CD22, CD123. Here, CD34 is a marker of HSCs, and can be used to present
the ability of self-renew (proliferation rate)[4, 5, 6]. CD19 is a marker of CAR-T
target, and represent the ability of being recognized and killed by CAR-T cells
(CD19-28z). CD22 expression can be considered as mostly constant in precursor
B-cells, and can be promoted in CD19+ Pro-B cells under stress with CD19 CAR-
T[7]. Moreover, CD22 can block the effect of CAR-T to CD19, and induce the
homing of recirculating B cells[8]. CD123 (IL3RA) encodes an interleukin 3 specific
subunit of a heterodimeric cytokine receptor, which is a marker of myeloid cell line.
CD123 expression is often seen in B-ALL patients [9, 10, 11]. Figure S4 shows
the distribution of expression levels of the four marker genes based on single-cell
RNA-sequencing for HPSC.

S3 Major assumptions and formulations

Here, we shown major assumptions and formulations of the model. Sketch of the
main assumptions are shown at Figure 1a-b, and are listed below:

1. Epigenetic state of tumor cells The epigenetic state of each cell is
represented by the expressions of CD34 ([CD34]), CD19 ([CD19]), CD22
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Figure S4: Distribution of the four marker genes CD34, CD19, CD22, and CD123
in hematopoietic and progenitor cells obtained from single-cell RNA-sequencing
(GSE75478) [12]. Here we note that in single-cell RNA-seq, events of ‘dropout’
often happen to those genes with low transcription level. Hence, there are a lot
of dropout events in low expression genes. In this data set, 217, 1345, 1310, 957
cells, within total 1414 cells, are dropout for genes CD34, CD19, CD22, CD123,
respectively.

([CD22]), and CD123 (CD123]). All expression levels are normalized with
respect to their maximum level, respectively, so that the corresponding values
vary continuously over the interval from 0 to 1. The continuous distribution
of marker gene expressions are supported by single-cell RNA sequencing of
HPSC [12, 13]. Figure S4 shows the distribution of these markers genes
based on single-cell RNA-sequencing of 1414 hematopoietic stem and pro-
genitor cells from health persons (1035 cells from a 25-year-old male, and
379 cells from a 29-year-old female) [12]. Here, we note that the stem cell
marker CD34 show bimodal distribution for health persons. There are lots
of dropouts for genes CD19, CD22, and CD123, which indicate that they are
usually low expression in normal HPSC.

2. CAR-T activity In experiments, CAR-T cells (CD19 18Z) were injected
into mice at days 2-4 and 12, respectively, with 5 × 106 cells daily. CFSE
tracking show that CAR-T cells are capable of proliferation after being active
with NALM-6-GL cells (Figure S1d). Immunocytochemistry shown that
there are T cells remained at various tissues at weeks 2-5 of the experiments,
which show the persistence of T cells at least for 5 weeks. In the model, we
do not explicitly model the dynamics of CAR-T activity after injecting into
the mice; however we introduce a predefine function R(t) for the CAR-T
activity. We take the function so that R(t) increase at the early stage, and

4

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 20, 2020. ; https://doi.org/10.1101/2020.06.20.163170doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.20.163170
http://creativecommons.org/licenses/by-nc-nd/4.0/


then exhaust at 7 weeks. Explicitly, we have

R(t) = R0
1 + (t/τ1)

0.2

1 + (t/τ2)10
. (1)

Here, R(t) first increases from R = R0 (here we set R0 = 1 by normalizing
the CAR-T activity with the initial level) at t = 0, and then decreases to 0
when the time t is long enough. The parameters τ1 and τ2 (day) are time
constants of CAR-T activation and exhaustion, respectively. Figure S5A
shows the function R(t) with typical parameters used in model simulation.
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Figure S5: Plots of functions used in the model. (A) The function R(t) for CAR-
T activity (refer Eq. (1)). Here R0 = 1.0, τ1 = 230 day, τ2 = 50 day. (B) The
proliferation rate function β/β̄ (blue, Eq. (2)), and the terminal differentiation
rate function κ/κ0 (red, refer Eq. (4)). (C) Dependence of CAR-T signal with
CD34 and CD123 expression levels (refer Eq. (7)).

3. Proliferation rate The proliferation rate β (day−1) of each cell is depen-
dent on the transcription level of CD34 that represents the stemness of the
cell. We formulate the dependence as Hill type function as

β = β̄ × 5.8[CD34] + (2.2[CD34])6

1 + (3.75[CD34])6
. (2)
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Here β̄ is the maximum proliferation rate with high CD34, which depends
on the total cell number due to saturation

β̄ = β0
θ

θ +N
, (3)

where N is the number of tumor cells. Figure S5B shows the relative rate
β/β0 (blue curve).

4. Differentiation rate All mature precursor cells can under go terminal
differentiation with a rate κ that depends on the stemness (through CD34)
as

κ([CD34]) = κ0
1

1 + (4.0[CD34])6
. (4)

Figure S5B shows the function κ (red curve).

5. Death rate Each cell under cell death (either spontaneous apoptosis or due
to CAR-T treatment) with a rate µ (day−1). Mathematically, we write the
death rate as

µ = µ0 + µ1 × Signal, (5)

where µ0 represents the basal apoptosis rate that is independent to CAR-T,
and µ1 is the maximum death rate due to CAR-T treatment, and Signal
measures CAR-T signal that is detailed below.

6. CAR-T signal The CAR-T signal in tumor cells is determined by the
interactions between CAR-T cells and tumor cell surface markers. The in-
teraction is complex and depending on detail reactions in the T cell receptor
signaling pathways. Here, we omit the detail reactions, however, focus at
the overall dependence of CAR-T signaling with cell types.

The signal strength is dependent on the interaction between CD19 and CAR-
T, and CD22 expression can repress the interaction, which is formulated as

Signal = f([CD34], [CD123])
γ19[CD19]

1 + γ19[CD19] + γ22[CD22]
R. (6)

Here a19 and a22 are weight coefficients that CD19 and CD22 are recognized
by CAR-T. The function f represents the signaling factor for the effects of
CD34 and CD123 to the CAR-T signal.

HSC-like cell (high CD34 expression) is protected from the response to CAR-
T, and the role of CD19 CAR-T is limited in myeloid-like cells that expres-
sion CD123. Hence, the CAR-T signal is repressed with CD34 and CD123
expression. Hence, we define the signaling factor f as

f([CD34], [CD123]) =
1

(1 + ([CD34]/X0)n0)(1 + ([CD123]/X1)n1)
. (7)
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Figure S5C shows the function f([CD34], [CD123]).

7. Epigenetic state transition Finally, we consider the transition of epi-
genetic states of each single cell during cell cycling. At each cell cycle, a
cell divides into two daughter cells, expressions of [CD34], [CD19], [CD22],
and [CD123] in the daughter cells change randomly from the mother cell
following a rule of random inheritance. The random inheritance of epige-
netic state can be originated from the rearrangement of epigenetic states,
i.e., histone modification or DNA methylations [14, 15, 16]. In our previ-
ous study of gene expression with epigenetic modifications [17, 18], we have
seen that the distribution of modified nucleosomes of daughter cells depends
on that of mother cells through binomial distribution. Analogically, we in-
troduce Beta-distribution, a continuous version of the binomial distribution,
to describe the cross cell division epigenetic state transition. Moreover, we
assume that CAR-T signals can interfere the transitions of epigenetic state
over cell cycling. Detail assumption and formulations the markers are given
below.

CD34 Let the transcription level of CD34 at the kth cycle as [CD34] = uk
(0 ≤ uk ≤ 1). After a cell division, the state of two daughter cells u1k+1

and u2k+1 are given below: uik+1 are Beta-distribution random numbers
with probability density

p(u|uk) =
ua−1(1− u)b−1

B
, B =

Γ(a)Γ(b)

Γ(a+ b)
, (8)

the parameters a and b are dependent on uk. For the simplicity, let ūk+1

the perspective average level of uk+1 at the (k + 1)’th cycle given the
expression uk at the k’th cycle, and assume that the mean and variance
of uk+1 are

E(uk+1) = ūk+1, var(uk+1) =
1

m
ūk+1(1− ūk+1).

Here m is a parameter for the variance (here we take m = 60). Then

a = (m− 1)ūk+1, b = (m− 1)(1− ūk+1). (9)

Hence, to obtain the dependence between uk+1 and uk, we only need to
write down how ūk+1 depends on uk. For CD34, we take

ūk+1 = 0.08 + 1.06
(α34uk)2.2

1 + (α34uk)2.2
, (10)
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the coefficient α34 depends on the CD19 expression level and the CAR-T
signal

α34 = 1.45 + 0.16× [CD19] + A34 × Signal. (11)

Here, the function (10) is chosen to reproduce the stationary CD34
distribution of injected NALM-6-GL under control NGFR 28Z T cells
(Figure S6). We can adjust the parameter α34 for different stationary
distribution of CD34 expression level. The dependence (11) is intro-
duced for the promotion of CD34 expression by CD19 and the CAR-T
signaling, with varying coefficient a34 for the induction of CD34 expres-
sion through CAR-T signals.
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Figure S6: Distributions of simulated marker genes expression of NALM-6-GL
cells under control NGFR-28z T cells.

CD19 The transcription level of CD19 at the kth cycle is [CD19] = vk (0 ≤
vk ≤ 1). After cell division, the two daughter cells are v1k+1 and v2k+1,
respectively; and vik+1 are Beta-distribution random numbers with the
probability density function f(v|vk; a, b) given by (8), and the param-
eters a and b are given by (9) through the mean and variance of vk+1.
The function for how the average value of v̄k+1 depends on vk is selected
in according to the distribution of CD19 at NALM-6-GL cells, so that

v̄k+1 = 0.05 + 1.06
(α19vk)1.6

1 + (α19vk)1.6
. (12)

Here, the parameter α19 can be adjusted for the distribution of different
types of progenitor B cells. Figure S6 shows the simulated stationary
distribution of [CD19] in NALM-6-GL cells.

CD22 The transcription level of CD22 at the kth cycle is [CD22] = wk (0 ≤
wk ≤ 1). After cell division, the two daughter cells are w1

k+1 and w2
k+2,

respectively; wi
k+1 are Beta-distribution random numbers with the prob-

ability density function f(w|wk; a, b) given by (8), and the parameters
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a and b are given by (9) through the mean and variance of wk+1. The
average value w̄k+1 depends on wk in a way similar to (12). We as-
sume that CD19 promote CD22 expression, and CAR-T signal can also
increase the expression of CD22. Hence, we have

w̄k+1 = 0.04 + 0.96
(α22wk)1.6

1 + (α22wk)1.6
, (13)

where the coefficient α22 depends on CD19 expression and the CAR-T
signal so that

α22 = 1.54 + 0.25× [CD19] + A22 × Signal. (14)

Figure S6 shows the distribution of CD22 expression in the absence of
CAR-T signal.

CD123 The transcription level of CD123 at the kth cycle is [CD123] = zk (0 ≤
zk ≤ 1). After cell division, the two daughter cells are z1k+1 and z2k+2,
respectively; zik+1 are Beta-distribution random numbers with the prob-
ability density function f(z|zk; a, b) given by (8), and the parameters
a and b are given by (9) through the mean and variance of zk+1. The
average value z̄k+1 depends on zk in a way similar to (13), which is given
by

z̄k+1 = 0.05 + 1.02
(α123zk)1.8

1 + (α123zk)1.8
, (15)

where the parameter α123 depends on CD34 and the CAR-T signal

α123 = 1.54 + 0.45× [CD34] + A123 × Signal. (16)

Here we assume that CD34 promote the expression of CD123, which
mimic the differentiation from HSC-like to myeloid-like cells. More-
over, we assume that CAR-T signal can also promote the expression of
CD123. Figure S6 shows the distribution of CD123 expression in the
absence of CAR-T signal.

S4 Parameter values

To estimate parameters used in the simulation, we first find the maximum prolifer-
ation rate β0 and basal death rate µ0 of tumor cells by in vitro cell cultures. Next,
we adjust the differentiation rate κ0, and proliferation saturation coefficient θ, and
other related parameters by comparing simulation results with experimental data
under control condition. Finally, we find the parameter values related to CAR-T
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signaling and the responses by comparing numerical simulation with experimental
data.

First, to estimate the proliferation and death rate of tumor cells, we culture the
NALM-6-GL cell lines and fit the experimental data with the population dynamics
model.

Table S1 shows the cell numbers from day 0 to 3 after cell culturing. The cell
number dynamics are modeled with a differential equation

dN

dt
= β0

N

N + θ0
(1− N

K0

)− µ0N, (17)

where N(t) is the cell number at time t, β0 is the maximum proliferation rate, θ0
is a parameter associated with growth inhibition, K0 is a parameter for saturation
due to nutrition limitation, and µ0 is the death rate. Fitting model simulation
with experimental data at Table S1, the parameters for the three cell lines are
list at Table S2. Comparison between experiment data and simulation is shown
at Fig. S7(A). Based on this estimation, we take the maximum proliferation rate
of tumors cells as β0 = 0.12h−1 (slightly less than that in cell culturing), and the
basal death rate as µ0 = 8.3× 10−5h−1.

Time (day)
0 1 2 3

C
e

lls
 (

1
0

6
)

0

1

2

3

4

5

6

7

NALM-6-GL
Raji
CD19-28z

Figure S7: Cell growth dynamics. Markers are experimental data, solid lines are
simulation results based on the equation (17). In simulations, initial condition is
N(0) = 0.2, and parameters are listed in Table S2.

Next, we fit the experimental data to identify the differentiation rate κ0 =
0.058h−1 (Figure S2). Figure S2 shows simulation results with control NGFR-
28z. Both cell number and the distribution fo marker gene expressions are in good
agreement with experimental data.

Parameter values used in model simulation are listed at Table S3 and S4.
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Table S1: Cell numbers of culturing NALM-6-GL, Raji, and CD19-28z (T cells).
Here, cell numbers are in 106 cells per hole.

NALM-6-GL Raji CD19-28z
Day 0 0.2 0.2 0.2
Day 1 1.57 1.45 0.30
Day 2 3.84 2.18 0.37
Day 3 5.99 2.37 0.63

Table S2: Cell growth parameter values for the three cell lines.

Cell line β0 (h−1) θ0 (106) K0 (106) µ0 (h−1)
NALM-6-GL 0.1375 0.8 20 8.3× 10−5

Raji 0.15 0.6 2.5 8.3× 10−5

CD19-28z 0.01875 0.85 5.0 2.08× 10−2

Table S3: Default parameter values.
Parameter Description Value Unit
β0 Maximum proliferation rate 0.12 h−1

µ0 Basal death rate 8.3× 10−5 h−1

µ1 CD19 CAR-T induced death rate 0.12 h−1

κ0 Differentiation rate 0.05 h−1

θ Proliferation saturation coefficient 5.0× 105 106 cells
X0 Inhibition coefficient of CAR-T by CD34 [0, 0.6] (a) −
n0 Hill coefficient 10 −
X1 Inhibition coefficient of CAR-T by CD123 0.2 −
n1 Hill coefficient 2 −
γ19 coefficient of CD19 in CAR-T signal 3.0 −
γ22 coefficient of CD22 in CAR-T signal 1.0 −
γ123 coefficient of CD123 in CAR-T signal 1.5 −
α19 CD19 regulation coefficient 1.73 −
A22 Effective coefficient of CAR-T signal to CD22 0.1 −
A123 Effective coefficient of CAR-T signal to CD123 0.20 −
A34 Effective coefficient of CAR-T signal to CD34 [0, 0.8] (a) −

(a) We varied the parameters (A34, X0) over the random [0, 0.8]×[0, 0.6]
to find parameters to fit experimental data. Parameters to fit ex-
perimental data are listed in Table S4.

11

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 20, 2020. ; https://doi.org/10.1101/2020.06.20.163170doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.20.163170
http://creativecommons.org/licenses/by-nc-nd/4.0/


Table S4: Parameters used for the mice #1-#5 in Figure 4a.
Mouse A34 X0

#1 0.66721 0.2814
#2 0.54208 0.2403
#3 0.48216 0.2195
#4 0.18339 0.4275
#5 0.12093 0.4476

S5 Numerical scheme

In simulations, we start from N0 = 106 cells, each with initial condition of high
CD19 (0.6 < [CD19] < 1.0), low CD34 (0.01 < [CD34] < 0.1), low CD123 (0.01 <
[CD123] < 0.1), and low CD22 (0.01 < [CD22] < 0.1). We took the time step
∆t = 0.25h to simulate the model dynamics. Each cell in the pool proliferates, dies,
or differentiates randomly and independently according the rate function defined
by the above formulations; when a cell proliferates, it produces two daughter cells,
each has their own marker gene expression levels according to the rules of epigenetic
state transition. The sketch of the numerical scheme is given below.
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Initialize the time t = 0, the cell number Q, and all cells Σ ={
[Ci(xi)]

Q
i=1

}
. Here x represents the vector of epigenetic states

([CD19], [CD34], [CD22], [CD123]).

for t from 0 to T with step ∆t do

for all cells in Σ do

• Calculate the proliferation rate β, the apoptosis rate µ, and
the terminate differentiation rate κ.

• Determine the cell fate during the time interval (t, t + ∆t):
The cell is removed (through apoptosis) with a probability
µ∆t, or undergo terminal differentiation with a probability
κ∆t, or divides into two cells with a probability β∆t.

• If the cell undergo cell division, it is replaced by two daugh-
ter cells, and the epigenetic state of each daughter cell is
determined according to the inheritance probability function
p(x|y).

end for

Update the system Σ with the cell number, epigenetic states of
all surviving cells, and the ages of the proliferating phase cells, and
set t = t+ ∆t.

end for
The tumor cells number can increase to a high number of 1012, which may cause a

challenge issue in simulations while we simulate and store each cell. To overcome this
issue, we applied a method of sub-culturing. We predefined a maximum number of cells
to be simulated and stored (Nmax = 106 cells in the current simulation). Let Nk the
number of cells under simulation at step k, we first open a storage space for 2Nk cells
(the maximum number of cells if all Nk cells are divided). After performing cell fate
decision for each cell, we have potentially Ntemp (Ntemp ≤ 2Nk) cells. If Ntemp > Nmax,
we randomly select at most Nmax cells (select each cells with a probability p = Nmax <
Ntemp, and totally no more than Nmax cells) to obtain Nnext cells for the next step
simulation. Finally, we store the state of all selected Nnext cells, let fpro,k = Ntemp/Nk

for the proliferation rate, and Nk+1 = Nnext for the cell number simulated at the next
step.

According the approach of sub-culturing simulation, at step k, there are Nk ≤ Nmax

cells under simulation, and the states of these cells are stored; the real cell number in
tumor is given by

Nreal number at step k = N0

k−1∑
i=0

fpro,k. (18)

This gives the tumor cells number, which is to be compared with the luminescence (after
scale a factor) from experiments.
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S6 Prediction of the day of tumor relapse

To examine the predictability of the computational model, we varied the parameters
A34 and X0 over a range of 0 < A34 < 0.8, 0 < X0 < 0.6. For each parameter pair,
we simulated the model and obtained the day of tumor relapse as the timing when the
tumor cell number reached agin the initial level before CAR-T infusion. Moreover, for
each case, we calculated the relative tumor burden (T ) and the fraction of CD34+ cells
fCD34 at day 5 after CAR-T infusion. Here, we only considered the cases with early
stage remission, and hence the relative tumor burden T < 1.

Based on the simulation data, we find the fitting of relapse time with a nonlinear
function

Relapse time =
∑

0≤i+j≤4

θi,jx
iyj , x = log10 T, y = fCD34.

The coefficients θi,j we obtained by nonlinear regression through the function FindFit in
Mathematica. The program and results of fitting are shown at Figure S8. The fitting
result gives the coefficients

θ0,0 = 12.391, θ1,0 = −112676, θ0,1 = −83.4255,

θ2,0 = 21.79, θ1,1 = 52.0342, θ0,2 = 179.002, θ4,0 = −2.20877,

θ2,2 = 36.8151, θ0,4 = −132.942,

and other coefficients are zero.

Figure S8: Fitting of the relapse time through Wolfram Mathematica 12.
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