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Abstract

High dimensional linear regression problems are often fitted using LASSO-type approaches.

Although the LASSO objective function is convex, it is not differentiable everywhere, making the

use of gradient descent methods for minimization not straightforward. To avoid this technical

issue, we apply Nesterov smoothing to the original (unsmoothed) LASSO objective function,

leading to the following threefold contribution of this work: (1) We introduce a closed-form

smoothed LASSO which preserves the convexity of the LASSO objective function, is uniformly

close to the unsmoothed LASSO, and allows us to obtain closed-form derivatives everywhere for

efficient and fast minimization via gradient descent; (2) we prove that the estimates obtained

for the smoothed LASSO problem can be made arbitrarily close to the ones of the original (un-

smoothed) problem and provide explicit bounds on the accuracy of our obtained estimates; and

(3) we propose an iterative algorithm to progressively smooth the LASSO objective function

which increases accuracy and is virtually free of tuning parameters. Using simulation studies for

polygenic risk scores based on genetic data from a genome-wide association study (GWAS) for

chronic obstructive pulmonary disease (COPD), we compare accuracy and runtime of our ap-

proach to the current gold standard in the literature, the FISTA algorithm. Our results suggest

that the proposed methodology, in particular the proposed progressive smoothing algorithm,

provides estimates with equal or higher accuracy than the gold standard while guaranteeing

a bound on its error. The computation time of our initial implementation of the progressive

smoothing approach increases only by a constant factor in comparison to FISTA.

Keywords: COPD; FISTA; LASSO; Nesterov; Penalized linear regression; Polygenic risk scores;

Smoothing.
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1 Introduction

Many substantive research questions in health, economic and social science require solving a classical

linear regression problem Xβ = y. Here, the data matrix X ∈ Rn×p, the parameter vector β ∈ Rp,

and the response vector y ∈ Rn encode n ∈ N linear equations in p ∈ N variables. The approach

remains one of the most widely used statistical analysis tools.

Traditionally, linear regression problems have been solved by finding parameter estimates β that

minimize the squared error, leading to the least squares estimate arg minβ ‖Xβ−y‖22. However, their

lack of robustness, as well as sparsity requirements in high dimensional settings with p � n, are

two problems that have led to the development of alternative estimation approaches, e.g. the least

absolute shrinkage and selection operator (LASSO) of Tibshirani (1996) or least-angle regression

(LARS) of Efron et al. (2004).

This article focuses on LASSO regression. The LASSO obtains regression estimates β̂ by solving

β̂ = arg min
β

1

n
‖Xβ − y‖22 + λ ‖β‖1 , (1)

where ‖ · ‖2 is the Euclidean norm, ‖ · ‖1 is the L1 norm, and λ > 0 is a tuning parameter (called

the LASSO regularization parameter) controlling the sparseness of the solution β̂.

As the objective function in eq. (1) is convex, minimization via steepest descent (quasi-Newton)

methods is sensible. However, many applications in biostatistics, especially those that are focused

on ”big data”, such as the simultaneous analysis of genome-wide association studies (Wu et al.,

2009) or the calculation of polygenic risk scores (Mak et al., 2016), involve data sets with several

thousand parameters and are often sparse. In such applications, conventional gradient-free solvers

can lose accuracy. This is due to the non-differentiability of the L1 penalty term in eq. (1), i.e. the

term ‖β‖1 =
∑p

i=1 |βi|.

We address this issue by smoothing the LASSO objective function. We apply Nesterov smooth-

ing (Nesterov, 2005) to the non-differentiable ‖β‖1 term in eq. (1). This will result in an approxi-

mation of the LASSO objective function that is differentiable everywhere. The Nesterov formalism

depends on a smoothing parameter µ that controls the smoothness level. Our approach has three

major advantages: (1) The smoothing preserves the convexity of the LASSO objective function;
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(2) it allows us to obtain closed-form derivatives of the smoothed function everywhere which we

use in a gradient descent algorithm; and (3) it provides uniform error bounds on the difference

between the smoothed and the original objective functions. The error bounds depend only on the

smoothing parameter µ.

The contributions of our article are threefold: (1) We introduce a closed-form smoothed LASSO

which allows for fast and efficient minimization with the help of explicit gradients; (2) we prove ex-

plicit error bounds on the difference between the minima of the smoothed and unsmoothed LASSO

objective functions, and we show that the smoothed regression estimates can be made arbitrarily

close to the ones of the unsmoothed LASSO; (3) starting with a high degree of smoothness, an iter-

ative algorithm is proposed to progressively approximate the minimum of the unsmoothed LASSO

objective function which facilitates minimization and yields superior accuracy in our simulation

experiments. Since setting the smoothing parameter does not play a major role in the performance

of the latter approach, it is virtually free of tuning parameters. We evaluate our algorithms in a

detailed simulation study with respect to both accuracy and runtime.

We benchmark our proposed smoothing approach against the current gold standard for mini-

mizing the LASSO objective function, the FISTA algorithm of Beck and Teboulle (2009). FISTA is

a proximal gradient version of the algorithm of Nesterov (1983) which combines the basic iterations

of the Iterative Shrinkage-Thresholding Algorithm (Daubechies et al., 2004) with a Nesterov accel-

eration step. Among others, the algorithm is implemented in the R-package fasta on CRAN (Chi

et al., 2018). We use this package as a benchmark. The FISTA algorithm requires the separate

specification of the smooth and non-smooth parts of the objective function including their explicit

gradients. In contrast to our approach, a variety of tuning parameters need to be selected by the

user, e.g. an initial starting value, an initial stepsize, parameters determining the lookback window

for non-monotone line search and a shrinkage parameter for the stepsize.

This article is structured as follows. We first provide a detailed literature review in Section 1.1

to highlight previous work, distinguish it from ours and emphasise the contribution of our article.

Section 2 applies Nesterov smoothing to the LASSO objective function. We refine our approach in

Section 3 by proposing a progressive and virtually tuning-free smoothing procedure for the LASSO,

as well as by deriving guarantees of correctness on the obtained LASSO estimates. Using polygenic

risk scores as an example, we evaluate the proposed methodology in simulation study in Section 4.
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The article concludes with a discussion in Section 5. Details of Nesterov smoothing and all proofs

are provided in the appendix.

Throughout the article, X·,i denotes the ith column of a matrix X. Similarly, XI,· (and yI)

denote the submatrix (subvector) consisting of all rows of X (entries of y) indexed in the set I.

Moreover, X−I,· (and y−I) denote the submatrix (subvector) consisting of all rows of X (entries of

y) not indexed in the set I. Finally, |·| denotes the absolute value, and ‖·‖∞ denotes the supremum

norm.

1.1 Literature review

Since the seminal publication of the LASSO in Tibshirani (1996), numerous approaches have fo-

cused on (smoothing) approaches to facilitate the minimization of the LASSO objective function.

The following publications differ from our work in that they do not consider the same bounds on

the accuracy of the unsmoothed and smoothed LASSO objective functions and their resulting min-

imizers which we present. Moreover, no progressive smoothing procedure yielding stable regression

estimates is derived.

Fan and Li (2001) consider smoothing approaches for the LASSO L1 penalty, the SCAD

(Smoothly Clipped Absolute Deviation) penalty, and hard thresholding penalties. However, their

smoothing approaches are not based on the Nesterov (2005) framework. Instead, the authors em-

ploy a quadratic approximation at the singularity of the penalties to achieve a smoothing effect,

and they propose a one-step shooting algorithm for minimization. However, their main focus is

on root-n consistency results of the resulting estimators and asymptotic normality results for the

SCAD penalty, results which the authors state do not all apply to the LASSO.

Some smoothing approaches (Belloni et al., 2011; Chen et al., 2010a; Banerjee et al., 2008)

build upon the first-order accelerated gradient descent algorithm of Nesterov (2005). Those vari-

ants of Nesterov’s algorithm are iterative methods which are unrelated to our adaptive smoothing

procedure. A detailed overview of several variants of the first-order accelerated gradient descent

algorithm can be found in Becker and Candès (2011).

Beck and Teboulle (2012) can be regarded as an extension of the work of Nesterov (2005). The

authors consider a more general smoothing framework which, as a special case, includes the same

smoothing we establish for the absolute value in the L1 penalty of the LASSO (though without the

4

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted June 21, 2020. ; https://doi.org/10.1101/2020.03.06.980953doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.06.980953


guarantees we derive).

Haselimashhadi and Vinciotti (2016) smooth the absolute value in the L1 penalty of the LASSO

using Nesterov’s technique in the same way as we do, and they state the same bound on the dif-

ference between the unsmoothed and smoothed objective functions taken from Nesterov’s results.

However, no results on the accuracy of the obtained minimizers are given. Importantly, Haselimash-

hadi and Vinciotti (2016) deviate from our work in that they enforce that the smoothed LASSO

penalty passes through zero, leading the focus of their article to be on another smoothed LASSO

approach which is based on the error function of the normal distribution.

Further work available in the literature employs Nesterov’s smoothing techniques for a variety

of specialized LASSO objective functions. For instance, Chen et al. (2010b) consider the group

LASSO and employ Nesterov’s formalism to smooth the LASSO penalty using the squared error

proximity function which we also consider. Nevertheless, they focus on adapting Nesterov’s first-

order accelerated gradient descent algorithm in order to compute the LASSO regression estimate,

whereas we focus on adaptive smoothing. Chen et al. (2012) also consider the group LASSO,

separate out the simple nonsmooth L1 penalty from the more complex structure-inducing penalties,

and only smooth the latter. This leaves the L1 norm on the parameters unchanged, thus still

enforcing individual feature level sparsity.

The joint LASSO is considered in Dondelinger and Mukherjee (2020) who state an iterative

minimization procedure which smoothes the LASSO penalty using Nesterov’s techniques. The

authors state closed form derivatives for the minimization, but no other theoretical results are

given.

One variant of the original LASSO which has recently gained attention is the concomitant

LASSO. The concomitant LASSO augments the original LASSO with a term σ/2 for which a

second regularization parameter σ is introduced (Ndiaye et al., 2017). The parameter σ is meant

to be decreased to zero. Smoothing the concomitant LASSO has the advantage that Nesterov’s

techniques do not need to be applied to the L1 penalty. Instead, the smooth concomitant LASSO

has a closed form expression which is different from the smoothed LASSO approaches we consider

(Ndiaye et al., 2017), and results in the literature (Massias et al., 2018) are only named in analogy

to the smoothing terminology introduced in Nesterov (2005).
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2 Smoothing the LASSO objective function

This section lays the theoretical foundation for the modified LASSO approach we propose to address

the non-differentiability of the L1 penality term in eq. (1), while the smooth L2 term remains

unchanged. The substitute of the term ‖β‖1 =
∑p

i=1 |βi| in eq. (1) will be computed with the help

of a technique called Nesterov smoothing, whose details are given in Section A. In Section 2.1, we

simplify the general Nesterov smoothing approach for the particular case of the LASSO penalty and

show how our approach results in explicit closed-form expressions for both the smoothed LASSO

and its gradient.

The results of this section will be used in Section 3 to develop an adaptive procedure which

iteratively smoothes the LASSO, yielding more stable estimates for linear regression than the

approaches in this section, and to provide theoretical guarantees on the smoothed LASSO.

We briefly summarize the results of Section A. We are given a piecewise affine and convex

function f : Rq → R which we aim to smooth, where q ∈ N. We assume that f is composed

of k ∈ N linear pieces (components) and can thus be expressed as f(z) = maxi=1,...,k

(
A[z, 1]>

)
i
,

where A ∈ Rk×(q+1) is a matrix whose rows contain the linear coefficients for each of the k linear

pieces (with the constant coefficients being in column q + 1), z ∈ Rq, and [z, 1] ∈ Rq+1 denotes the

vector obtained by concatenating z and the scalar 1.

Let µ ≥ 0 be the Nesterov smoothing parameter. Using a so-called proximity (or prox) func-

tion, f is replaced by an approximation fµ which is both uniformly close to f and smooth (see

Section A.1). The larger the value of µ the more f is smoothed, while µ = 0 recovers the original

function f = f0. Two choices of the prox function are considered in Section A.2. Smoothing with

the so-called entropy prox function results in the smooth approximation fµe having a closed-form

expression given by

fµe (z) = µ log

(
1

k

k∑
i=1

e
(A[z,1]>)

i
µ

)
, (2)

which satisfies the uniform bound

sup
z∈Rq
|f(z)− fµe (z)| ≤ µ log(k). (3)
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Similarly, the smooth approximation of f with the help of the squared error prox function ρs(w) =

1
2

∑k
i=1

(
wi − 1

k

)2
for w ∈ Rk can be written as

fµs (z) = 〈ĉ(z), A[z, 1]>〉 − µρs(ĉ(z)), (4)

where ĉ(z) ∈ Rk is the Michelot projection (Michelot, 1986) of the vector c(z) = (c1(z), . . . , ck(z)),

given componentwise by ci(z) = 1/µ ·
(
A[z, 1]>

)
i
− 1/k for i ∈ {1, . . . , k}, onto the k-dimensional

unit simplex Qk (see Section A.2.2). The approximation fµs via squared error prox function satisfies

the uniform bound

sup
z∈Rq
|f(z)− fµs (z)| ≤ µ

(
1− 1

k

)
. (5)

2.1 Application to the LASSO objective function

For given X ∈ Rn×p, y ∈ Rn, and λ > 0, according to eq. (1), the LASSO objective function

L : Rp → R given by

L(β) =
1

n
‖Xβ − y‖22 + λ‖β‖1 (6)

is smooth in its first term but non-differentiable in ‖β‖1 =
∑p

i=1 |βi|. We thus smooth the latter

term, where it suffices to apply Nesterov smoothing to each absolute value independently.

Let k = 2. Using one specific choice of the matrix A ∈ R2,2 given by

A =

 −1 0

1 0

 ,

we rewrite the (one dimensional) absolute value as f(z) = max{−z, z} = maxi=1,2

(
A[z, 1]>

)
i
,

where here and in the following subsections z ∈ R is a scalar.
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2.1.1 Entropy prox function

For the entropy prox function, eq. (2) with A as in Section 2.1 simplifies to

fµe (z) = µ log

(
1

2
e−z/µ +

1

2
ez/µ

)
,

which according to eq. (3) satisfies the approximation bound

sup
z∈R
|f(z)− fµe (z)| ≤ µ log(2). (7)

The first and second derivatives of fµe are given by

∂

∂z
fµe (z) =

−e−z/µ + ez/µ

e−z/µ + ez/µ
=: gµe (z),

∂2

∂z2
fµe (z) =

4

µ(e−z/µ + ez/µ)2
=: hµe (z).

Together, smoothing eq. (6) with the entropy prox function results in

Lµe (β) =
1

n
‖Xβ − y‖22 + λ

p∑
i=1

fµe (βi),

∂Lµe
∂βi

(β) = − 2

n
〈y −Xβ,X·,i〉+ λgµe (βi),

∂2Lµe
∂βi∂βj

(β) =
2

n
(X>X)ij + I(i = j) · λhµe (βi),

(8)

where the entropy prox smoothed LASSO is Lµe , its explicit gradient is ∂Lµe /∂βi, and its Hessian

matrix is given by ∂2Lµe /∂βi∂βj . The function I(·) denotes the indicator function.

In principle, the LASSO objective can be minimized using a (second order) Newton-Raphson

or a (first order) quasi-Newton approach. However, since X ∈ Rn×p with n < p, the matrix X>X

is singular, meaning that for the Hessian to be invertible one needs the added diagonal elements

λhµe (βi) to be large. However, this is usually not true, since if βi is nonzero, then in a neighborhood

of the true LASSO estimate the term (e−βi/µ + eβi/µ)−2 will be exponentially small. Thus to make

λhµe (βi) large for a fixed µ, we need λ to be exponentially large. Likewise, given λ and βi, too

small or too large values of µ will make hµe vanish. However, since typically λ and µ are fixed, the

Hessian in eq. (8) will be singular except for a few artificial cases and thus the second order Newton-
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Raphson method will not be applicable. In the simulations we therefore focus on quasi-Newton

methods which require only Lµe and its gradient ∂Lµe /∂βi.

2.1.2 Squared error prox function

Similarly, eq. (4) with A as in Section 2.1 simplifies to

fµs (z) = 〈ĉ(z), [−z, z]〉 − µρs(ĉ(z)).

where ĉ(z) ∈ R2 is the Michelot projection of the vector c(z) = 1/µ · [−z, z] − 1/k onto the two-

dimensional unit simplex Q2. According to eq. (5), we obtain the approximation bound

sup
z∈R
|f(z)− fµs (z)| ≤ 1

2
µ. (9)

The derivative of fµs is given by

∂

∂z
fµs (z) = 〈ĉ(z), [−1, 1]〉 =: gµs (z),

see (Hahn et al., 2017, Lemma 4) for a proof of this result. The second derivative ∂2fµs /∂z2 does

not have a closed form expression, though it can be approximated numerically. Analogously to

the results for the entropy prox function, smoothing eq. (6) with the squared error prox function

results in

Lµs (β) =
1

n
‖Xβ − y‖22 + λ

p∑
i=1

fµs (βi),

∂Lµs
∂βi

(β) = − 2

n
〈y −Xβ,X·,i〉+ λgµs (βi),

∂2Lµs
∂βi∂βj

(β) =
2

n
(X>X)ij + I(i = j) · λ ∂

2fµs
∂z2

∣∣∣∣
z=βi

(10)

where as before, the squared error prox smoothed LASSO is Lµs , its explicit gradient is ∂Lµs /∂βi,

and its Hessian matrix is ∂2Lµs /∂βi∂βj .

As in Section 2.1.1 we observe that the Hessian matrix is singular since X>X is singular, and

since the additional diagonal entries stemming from λ∂2fµs /∂z2 are usually too small to make the
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Algorithm 1: Progressive smoothing

input: X ∈ Rn×p, y ∈ Rn, λ > 0, µ0 > 0, N ∈ N;

1 Set β̂N+1 ∈ Rp randomly;
2 for i = N, . . . , 0 do
3 µ← 2iµ0;

4 β̂i ← arg minβ L
µ(β) with starting value β̂i+1, where Lµ is either Lµe or Lµs which both

depend on X, y, and λ;

5 end

6 return β̂0;

Hessian invertible. We therefore again resort to a quasi-Newton method to minimize Lµs with the

help of its gradient ∂Lµs /∂βi only.

3 Progressive smoothing and theoretical guarantees of correctness

This section proposes an adaptive smoothing technique for the LASSO in Section 3.1 which will

be shown in the simulations of Section 4 to yield stable estimators for linear regression. Moreover,

theoretical guarantees are derived in Section 3.2. The results bound the error of the unsmoothed

to the smoothed LASSO objective functions, as well as the L2 distance between the estimators

obtained from either the unsmoothed on smoothed LASSO, thus giving additional validity to our

approach.

3.1 Progressive smoothing

Instead of solving the smoothed LASSO problem β̂ = arg minβ L
µ(β) directly for some µ > 0,

where Lµ denotes either Lµe or Lµs , we employ a progressive smoothing procedure along the following

rationale: We start with a large value of the smoothing parameter µ to facilitate the minimization.

After computing β̂, we decrease the smoothing parameter and repeat the minimization using the

previously found minimizer as the new starting value. This approach is based on the heuristic idea

that as µ decreases and the smoothed LASSO objectives Lµe or Lµs approach L (see Proposition 1

below), the found minimizers in each iteration remain close to each other and converge to the

minimizer of L.

Algorithm 1 formalizes our approach. The input of the algorithm are the input matrix X ∈

Rn×p, the response y ∈ Rn, and the LASSO parameter λ > 0 which are implicitly used in the
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smoothed LASSO functions Lµe or Lµs . We also specify a target smoothing parameter µ0 > 0 and

a number of smoothing steps N ∈ N.

After initializing a random starting value β̂N+1 ∈ Rp for the first minimization, we gradually

decrease the degree of smoothness according to µ = 2iµ0 from i = N to the target level µ0 at

i = 0. In each iteration i, we compute a new estimate β̂i using the current smoothing level µ and

the previous estimate β̂i+1 as the starting value. The output of the algorithm is β̂0, the LASSO

parameter estimate corresponding to the target smoothing degree µ0.

Importantly, the advantage of Algorithm 1 consists in the fact that the precise specification of

the smoothing parameter does not play a major role. It suffices to start with any sufficiently large

value (that is, 2Nµ0 � 1) and to end the iteration with any sufficiently small value µ0, for instance

of the order of the machine precision or of the square root of the machine precision. This effectively

makes Algorithm 1 free of tuning parameters. The choice of the LASSO regularization parameter

λ remains problem specific and is thus left to the user.

3.2 Theoretical guarantees

The bounds on both fµe in eq. (7) and fµs in eq. (9) carry over to a bound on the overall approxi-

mation of the LASSO objection function of eq. (6):

Proposition 1. The entropy and squared error prox smoothed LASSO objective functions in eqs. (8)

and (10) satisfy the following uniform bounds:

sup
β∈Rp

|Lµe (β)− L(β)| ≤ λpµ log(2),

sup
β∈Rp

|Lµs (β)− L(β)| ≤ λpµ

2
.

Moreover, both Lµe and Lµs are strictly convex.

In Proposition 1 the LASSO parameter λ > 0 and the dimension p are fixed for a particular esti-

mation problem, thus allowing to make the approximation error arbitrarily small as the smoothing

parameter µ→ 0.

Following (Seijo and Sen, 2011, Lemma 2.9), the following proposition shows that the uniform

proximity (in the supremum norm) of the unsmoothed and smoothed LASSO objective functions
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implies that their global minimizers also converge to each other in the supremum norm metric.

Proposition 2. Let f1 : Rs → R be continuous and strictly convex for s ∈ N. Then x1 =

arg minx∈Rs f1(x) is continuous at f1 with respect to the supremum norm.

Proposition 2 states that supβ∈Rp |L
µ
e (β)− L(β)| → 0 for µ → 0 implies that the minimizers

of L and Lµe converge to each other in the supremum norm. Similarly, the same result holds true

for Lµs . This result is stronger than the one of (Beck and Teboulle, 2009, Theorem 4.4), who prove

that the FISTA method finds a minimizer which is of similar quality than the true minimizer.

Although Proposition 2 shows convergence, it does not give an explicit error bound on the

distance between the two minimizers. This is done in the next result.

Proposition 3. Let s ∈ N and ε > 0. Let f1 : Rs → R be differentiable and strictly convex.

Let f2 : Rs → R be such that supx∈Rs |f1(x)− f2(x)| ≤ ε. Let xi = arg minx∈Rs fi(x) be the

two minimizers for i ∈ {1, 2}. Then for any δ > 0 and any y1 ∈ Rs satisfying y1 6= x1 and

‖y1 − x1‖2 ≤ δ, there exist two constants Cδ > 0 and Lδ > 0 independent of x2 such that

‖x1 − x2‖2 ≤ Cδ
[
‖∇f1(y1)‖−12 (δLδ + 2ε) + δ

]
.

Note that Proposition 3 does not generalize to non strictly convex functions. Applying Propo-

sition 3 with f1 taken to be the differentiable and strictly convex Lµe (β) and f2 taken to be L(β)

immediately gives an explicit bound on the distance between the two minimizers. As before, the

same result holds true when taking f1 to be Lµs .

4 Simulation studies for polygenic risk scores for COPD

In this section, we evaluate four approaches to compute LASSO estimates using simulated data (Sec-

tion 4.1) as well as real data coming from a genome-wide association study for COPDGENE (Regan

et al., 2010), in which polygenic risk scores are computed and evaluated (Section 4.2). Of the four

approaches we consider, the first two utilize existing methodology, while the last two approaches

implement the methodologies we developed in this paper:

1. We carry out the minimization of eq. (1) using R’s function optim. The optim function

implements the quasi-Newton method BFGS for which we supply the explicit (though non-
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smooth) gradient ∂L/∂βi = −2/n · 〈y−Xβ,X·,i〉+ λsign(βi). This approach will be referred

to as the unsmoothed LASSO ;

2. we use the FISTA algorithm as implemented in the fasta R-package (Chi et al., 2018), available

on The Comprehensive R Archive Network (R Core Team, 2014);

3. we minimize the smoothed LASSO objective function of eq. (8) using its explicit gradient;

4. we employ the progressive smoothing approach of Section 3.1. As suggested at the end of

Section 3.1, we set the target smoothing parameter to µ0 = 2−6 and employ N = 9 smoothing

steps (thus implying an initial value of the smoothing parameter of µ = 2−6 · 29 = 8).

The main function of the fasta package which implements the FISTA algorithm, also called fasta,

requires the separate specification of the smooth and non-smooth parts of the objective function

including their explicit gradients. We follow Example 2 in the vignette of the fasta R-package

in Chi et al. (2018) and supply both as specified in eq. (6). Additionally, we employ a uniform

random starting value as done for our own approaches (unsmoothed and smoothed LASSO, as well

as progressive smoothing). The initial stepsize is set to τ = 10 as in Example 2 of Chi et al. (2018).

The lookback window for non-monotone line search and the shrinkage parameter for the stepsize

are left at their default values.

Three potential implementations are unconsidered in this simulation section for the following

reasons. The glmnet algorithm of Friedman et al. (2010), available in the R-package glmnet, is

a variant of FISTA which performs a cyclic update of all coordinates, whereas FISTA updates

all coordinates per iteration. We thus focus on FISTA. Since the R-package SIS accompanying

Fan and Li (2001) does itself rely on glmnet for computing regression estimates, we omit it in this

section. The LARS algorithm of Efron et al. (2004) is implemented in the R-package lars on CRAN

(Hastie and Efron, 2013). As remarked in Friedman et al. (2010), LARS is slower than glmnet/

FISTA. Additionally, since the implementation of Hastie and Efron (2013) always computes a full

LASSO path, it is considerably slower than the other methods.

All results are averages over 100 repetitions. The choice of the LASSO regularization parameter

λ varies in each experiment and is given individually.
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4.1 Application to simulated data

We designed our simulation study so that it mimics the application to a genome-wide association

study, i.e. we simulate X ∈ Rn×p from a multidimensional normal distribution, where the entries

of the mean vector of the multidimensional normal distribution are sampled independently from a

uniform distribution in [0, 0.5]. To ensure positive definiteness of the covariance matrix Σ of the

multidimensional normal distribution, we set Σ = 1
2(A+ A>) + nDn, where Dn is a n× n matrix

with ones on its diagonal, and zeros otherwise. The added term nDn ensures positive definiteness.

After X is obtained, we generate the entries of the true β independently from a standard normal

distribution, and set all but nz ∈ {0, . . . , p} out of the p entries to zero. The number of non-zero

entries nz ∈ N is a parameter of the simulations. The response y ∈ Rn is then easily obtained

as y = Xβ + ε, where the entries of the noise vector ε ∈ Rn are generated independently from a

Normal distribution with mean zero and some variance σ2. The smaller the variance, the easier

the recovery of β will be. We will employ σ2 = 0.1 in our simulations. In this subsection, we fix

the number of true non-zero parameters at 20% (that is, nz = 0.2p), resulting in sparse parameter

vectors.

The regularization parameter of the LASSO was chosen as λ = 1 for the experiments in this

subsection.

Figure 1 (left) shows results on simulated data of dimension n ∈ [1, 10000] while keeping p =

1000 fixed. We measure the accuracy of the obtained LASSO estimates through their L2 norm to

the generated true parameters. We observe that the unsmoothed and smoothed LASSO approaches

seem to suffer from numerical instabilities for small n. As n increases, both the unsmoothed and

smoothed LASSO approaches stabilize. Both FISTA and the progressive smoothing approach yield

stable estimates for all n. Progressive smoothing achieves better estimates for n < p, although

FISTA slightly outperforms it for n > p. As expected, all methods become more accurate as the

number of data points n increases. The smoothed LASSO approach, the progressive smoothing

algorithm and FISTA roughly draw equal in accuracy for large n.

Figure 1 (right) shows that the unsmoothed and smoothed LASSO approaches have an almost

identical runtime. The progressive smoothing approach essentially calls the smoothed LASSO

algorithm a fixed number of times, and is thus a constant factor slower than the other approaches.
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Figure 1: L2 norm of parameter estimate to truth (left) and runtime in seconds (right) as a function
of n ∈ [1, 10000] while p = 1000. Logarithmic scale on the y-axes.

This seems to be a reasonable trade-off for the considerably improved accuracy that the progressive

smoothing provides. We find that although highly optimized, FISTA is only a low multiple factor

faster than our approaches.

Similarly to the previous experiment, in Figure 2 (left) we keep n = 1000 fixed and investigate

the dependence of all four approaches on p ∈ [1, 5000]. Here, the unsmoothed and smoothed

LASSO approaches seem to suffer from numerical instabilities, while the progressive smoothing

approach finds good quality solutions much more reliably. Notably, progressive smoothing seems to

outperform FISTA for p > n. As expected, while keeping the data size n fixed, estimation becomes

more challenging for all methods as p increases.

Figure 2 (right) confirms the timing results seen in the assessment of the dependence on n.

The unsmoothed and smoothed approaches have virtually equal speeds, while as expected, the

progressive smoothing approach is roughly a constant factor slower. FISTA is again slightly faster

than the other approaches. Importantly, the scaling of the runtimes seems to be roughly equal for

all four methods.

Since the unsmoothed LASSO does not come with the guarantees we established for our smooth-

ing approach (see Section 3.2) and never outperforms any of the two smoothing approaches in
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Figure 2: L2 norm of parameter estimate to truth (left) and runtime in seconds (right) as a function
of p ∈ [1, 5000] while n = 1000. Logarithmic scale on the y-axes.

the previous experiments, we will focus in the remainder of the simulations on FISTA, smoothed

LASSO, and progressive smoothing.

4.2 Application to polygenic risk scores

We evaluate the smoothed LASSO approaches on polygenic risk scores of the COPDGene study

(genetic epidemiology of COPD), a multi-center case-control study designed to identify genetic

determinants of COPD and COPD-related phenotypes (Regan et al., 2010). The study has been

sequenced as part of the TOPMED Project. The data is available through NHLBI TOPMed (2018).

For the study, non-Hispanic Whites and African Americans aged 45 to 80 were recruited as COPD

cases and controls. The dataset contains n = 4010 individuals (rows), all of which had at least 10

pack-years of smoking history. For each individual, we observe p = 9153 datapoints, among them

the covariates age, sex, packyears, height and five PCA vectors. The remaining entries are SNP

data per individual. The input data are summarized in a matrix X ∈ Rn×p. The response y ∈ Rn is

the fev1 ratio, also called the Tiffeneau-Pinelli index, per individual. It describes the proportion of

lung volume that a person can exhale within the first second of a forced expiration in a spirometry

(pulmonary function) test.
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method L2 norm runtime [s]

FISTA 284.6 66.6
smoothed LASSO 26.3 116.6

progressive smoothing 33.6 373.6

Table 1: L2 norm of fitted to true response and runtime in seconds for a single application of any
method to the dataset of polygenic risk scores.

The regularization parameter of the LASSO was chosen as λ = 0.05 for the following two

experiments.

4.2.1 Results from a single run

We solve y = Xβ for the given X and y using our smoothed LASSO approach of eq. (8), as well as

the progressive smoothing approach of Section 3.1, and compare both to the FISTA algorithm.

Table 1 shows results for a single application of the three algorithms. After computing the

estimate β̂ with each method, we consider ‖y−Xβ̂‖2, the L2 norm between the fitted and generated

(true) response. We observe that FISTA with standard choices of its tuning parameters seems to

have trouble locating the minimum of the LASSO objective function, and is thus worse than

smoothed LASSO and progressive smoothing. However, in this experiment it turns out that a

single application of the smoothed LASSO is actually advantageous over the progressive smoothing

approach. Not surprisingly, progressive smoothing takes a constant factor longer due to its repeated

application of the smoothed LASSO, see Section 4.1. The FISTA method beats our approaches in

terms of runtime.

4.2.2 Cross validation

To quantify the accuracy of our approaches further, we perform a simple cross-validation experiment

in which we withhold a random set of row indices I (of varying size) of the dataset X and the

corresponding entries of the response y and fit a linear model to the rest of the data, that is we fit

y−I = X−I,·β. After obtaining an estimate β̂, we use the withheld rows of X to predict the withheld

entries of y, that is we compute XI,·β̂. We evaluate the quality of the prediction by computing the

L2 norm ‖XI,·β̂ − yI‖2 between predicted and withheld data.

Figure 3 (left) shows results of this cross-validation experiment. We observe that FISTA with

standard choices of its tuning parameters seems to have difficulties to converge to the minimum
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Figure 3: L2 norm of predicted to withheld data in cross-validation (left) and runtime in seconds
(right) as a function of the number of withheld entries. Dataset of polygenic risk scores of X.
Logarithmic scale on the y-axes.

of the LASSO objective function, whereas smoothed LASSO and progressive smoothing perform

better. Not surprisingly, the quality of the prediction becomes worse in general for any method as

the number of withheld entries increases, since predictions are based on fewer and fewer datapoints.

Interestingly, the progressive smoothing approach is not as powerful here as it was in Section 4.1,

as the simple smoothed LASSO and progressive smoothing basically draw equal in this experiment.

Finally, Figure 3 (right) displays runtime measurements for all three approaches. We observe

that our two smoothing approaches seem to be rather insensitive to the number of withheld entries

apart for a very large number of withheld entries. As usual, progressive smoothing is a constant

factor slower than the smoothed LASSO. The FISTA algorithm is the fastest method, and moreover

it exhibits a greater sensitivity to the number of withheld entries, that is the size of the estimation

problem.

4.3 Application to synthetic polygenic risk scores

We aim to extend the simulations of Section 4.2 in order to vary the sparsity of the parameter

estimate β̂. To this end, we change the simulation setting as follows. Leaving X unchanged,

we simulate a parameter vector β ∈ Rp in which nz ∈ {0, . . . , p} entries are drawn from a Beta
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Figure 4: L2 norm of parameter estimate to truth (left) and runtime in seconds (right) as a function
of the number of non-zero entries in the simulated true parameter vector. Dataset of polygenic risk
scores of X. Logarithmic scale on the y-axis of the time plot.

distribution with shape parameters 1.5 and 10. This will produce nonzero entries in the vector β

of magnitude around 0.15, which is realistic in practice. The remaining p − nz entries are set to

zero. We then calculate the response as y = Xβ + ε, where the entries of the noise vector ε ∈ Rn

are generated independently from a Normal distribution with mean 0 and standard deviation 0.1.

After generating X and y, we again use FISTA, smoothed LASSO, and progressive smoothing

to recover an estimate β̂. We evaluate the quality of the estimate using ‖β − β̂‖2, that is using the

L2 norm between truth and estimate.

Figure 4 (left) shows results as a function of the number nz of non-zero entries in the generated

true β. We observe that smoothed LASSO and progressive smoothing yield considerably more stable

estimates than FISTA (as expressed through a lower deviation in L2 norm). Only for very dense

vectors (having a number of non-zero entries of more than 7000 out of p = 9153), we observe that

FISTA draws equal with the smoothed LASSO approaches. Surprisingly, progressive smoothing

performs less well than the simple smoothed LASSO in this experiment.

Figure 4 (right) shows runtime results in seconds for all three approaches. The runtime scalings

of all methods seem to be rather insensitive to the simulation scenario. Interestingly, smoothed

LASSO draws equal in speed with the FISTA algorithm, while progressive smoothing is again a
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constant factor slower.

Overall, we conclude from the simulations that the smoothed LASSO and the progressive

smoothing approach of Section 3.1 yield stable LASSO estimates which often outperform FISTA,

exhibit roughly the same runtime scaling as FISTA, and come with a guarantee on their accuracy.

We suggest employing the progressive smoothing approach with the target smoothing parame-

ter µ0 = 2−N set to a small value, for instance of the order of the machine precision or the square

root of the machine precision, and N chosen such that the initial value of the smoothing parame-

ter is sufficiently large, meaning 2Nµ0 � 1. This will make the progressive smoothing algorithm

essentially independent of the choice of its smoothing parameter and thus free of tuning param-

eters. Either the entropy or the squared error prox function can be employed within progressive

smoothing.

5 Discussion

This article investigated a smoothing approach for penalized regression using the LASSO. The

smoothing approach allowed us to obtain smooth gradients, which facilitate minimization of the

convex but non-smooth LASSO objective function.

Most importantly, the presented approach comes with two guarantees. First, a uniform bound

on the distance between the unsmoothed and smoothed LASSO functions is guaranteed. This dis-

tance can be made arbitrarily small. Second, we show that the uniform closeness of the unsmoothed

and smoothed objective functions translates to an explicit bound on the norm between the mini-

mizers of the unsmoothed and smoothed LASSO objective functions. Since we can carry out the

latter optimization efficiently, our approach yields easily computable LASSO regression estimates

which are guaranteed to be close to the actual estimates obtained had we minimized the original

LASSO objective.

Simulations show that our proposed progressive smoothing algorithm yields equally reliable or

more reliable estimates than the gold standard in the literature, the FISTA algorithm of Beck and

Teboulle (2009), while (a) being essentially free of tuning parameters, (b) having roughly the same

runtime scaling, and (c) coming with a guarantee on the accuracy of its regression estimates.
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A Nesterov smoothing

This section follows (Nesterov, 2005, Sections 2 and 4). It introduces the basic formalism of Nesterov

smoothing in Section A.1 and concretizes the approach in Section A.2.

A.1 Description of Nesterov smoothing

We are given a piecewise affine and convex function f : Rq → R which we aim to smooth, where

q ∈ N. We assume that f is composed of k ∈ N linear pieces (components). The function f can be

expressed as

f(z) = max
i=1,...,k

(
A[z, 1]>

)
i
, (11)

where in the remainder of the section, A ∈ Rk×(q+1) is a matrix whose rows contain the linear

coefficients for each of the k pieces (with the constant coefficients being in column q + 1), z ∈ Rq,

and [z, 1] ∈ Rq+1 denotes the vector obtained by concatenating z and the scalar 1.

Let ‖ · ‖k be a norm on Rk and 〈·, ·〉 be the Euclidean inner product. Define the unit simplex

Qk ⊆ Rk as

Qk =

{
w = (w1, . . . , wk) ∈ Rk :

k∑
i=1

wi = 1, and wi ≥ 0 for all i = 1, . . . , k

}
.

To introduce the smoothing procedure, Nesterov (2005) first defines a proximity function, or prox

function, on Qk. A prox function ρ is any nonnegative, continuously differentiable, and strongly

convex function (with respect to the norm ‖ · ‖k). The latter means that ρ satisfies

ρ(s) ≥ ρ(t) + 〈∇ρ(t), t− s〉+
1

2
‖t− s‖k

for all s, t ∈ Qk.

For any µ > 0, consider the function

fµ(z) = max
w∈Qk

{
〈A[z, 1]>, w〉 − µρ(w)

}
. (12)
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According to (Nesterov, 2005, Theorem 1), the function fµ defined in eq. (12) is convex and

everywhere differentiable in z for any µ > 0. The function fµ depends only on the parameter µ

controlling the degree of smoothness. For µ = 0, we recover the original unsmoothed function since

f0(z) = maxw∈Qk
{
〈A[z, 1]>, w〉

}
= f(z). The gradient z 7→ ∂

∂zf
µ(z) is Lipschitz continuous with a

Lipschitz constant that is proportional to µ−1. A closed form expression of both the gradient and

the Lipschitz constant are given in (Nesterov, 2005, Theorem 1).

Importantly, the function fµ is a uniform smooth approximation of f = f0 since

f0(z)− µ sup
w∈Qk

ρ(w) ≤ fµ(z) ≤ f0(z) (13)

for all z ∈ Rq, meaning that the approximation error is uniformly upper bounded by

sup
z∈Rq
|f(z)− fµ(z)| ≤ µ sup

w∈Qk
ρ(w) = O(µ). (14)

Indeed, eq. (13) holds true since for all z ∈ Rq,

fµ(z) ≥ sup
w∈Qk

〈A[z, 1]>, w〉 − µ sup
w∈Qk

ρ(w) = f0(z)− µ sup
w∈Qk

ρ(w),

fµ(z) = sup
w∈Qk

{
〈A[z, 1]>, w〉 − µρ(w)

}
≤ sup

w∈Qk
〈A[z, 1]>, w〉 = f0(z),

where it was used that both the function ρ and the parameter µ are nonnegative.

A.2 Two choices for the proximity function

We consider two choices of the prox function ρ.

A.2.1 Entropy prox function

The entropy prox function ρe : Rk → R is given by

ρe(w) =

k∑
i=1

wi log(wi) + log(k)

for w ∈ Rk.
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Setting the norm ‖ · ‖k as the L1 norm in Rk, Nesterov (2005) shows that ρe is strongly convex

with respect to the L1 norm and satisfies supw∈Qk ρe(w) = log(k), see (Nesterov, 2005, Lemma 3).

Using eq. (14), we obtain the uniform bound

sup
z∈Rq
|f(z)− fµe (z)| ≤ µ log(k)

for the entropy smoothed function fµe obtained by using ρe in eq. (12). Interestingly, smoothing

with the entropy prox function admits a closed-form expression of fµe given by

fµe (z) = max
w∈Qk

{
k∑
i=1

wi

(
A[z, 1]>

)
i
− µ

(
k∑
i=1

wi log(wi) + log(k)

)}
= µ log

(
1

k

k∑
i=1

e
(A[z,1]>)

i
µ

)
,

see (Nesterov, 2005, Lemma 4).

A.2.2 Squared error prox function

The squared error prox function is given by

ρs(w) =
1

2

k∑
i=1

(
wi −

1

k

)2

.

Mazumder et al. (2019) show that the optimization in eq. (12) with squared error prox function is

equivalent to the convex program

fµs (z) = min
w∈Qk

(
1

k

k∑
i=1

w2
i −

k∑
i=1

wici(z)

)
, (15)

where ci(z) = 1/µ ·
(
A[z, 1]>

)
i
− 1/k depends on A and µ and is defined for any i ∈ {1, . . . , k}.

The problem in eq. (15) is equivalent to finding the Euclidean projection of the vector c(z) =

(c1(z), . . . , ck(z)) onto the k-dimensional unit simplex Qk. This projection can be carried out effi-

ciently using the algorithm of Michelot (1986), for which a computationally more efficient version

was proposed in Wang and Carreira-Perpiñán (2013) that we use in our implementations. De-

noting the Euclidean projection of the vector c(z) onto Qk as vector ĉ(z), the squared error prox
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approximation of f can be written as

fµs (z) = 〈ĉ(z), A[z, 1]>〉 − µρs(ĉ(z)).

As supw∈Qk ρs(w) = 1− 1
k (Nesterov, 2005, Section 4.1), we obtain the uniform bound

sup
z∈Rq
|f(z)− fµs (z)| ≤ µ

(
1− 1

k

)

for the squared error smoothing approach.

B Proofs

Proof of Proposition 1. The bounds on Lµe and Lµs follow from eq. (7) and eq. (9) after a direct

calculation.

Since both fµe and fµs are convex according to (Nesterov, 2005, Theorem 1), see also Section A.1,

it follows that both Lµe and Lµs remain convex. To be precise, the second derivative of the entropy

smoothed absolute value (Section 2.1.1) is given by

∂2

∂z2
fµe (z) =

4e2x/µ

µ
(
e2x/µ + 1

)2
and hence always positive, thus making fµe strictly convex. From the LARS objective function

(Efron et al., 2004) we know that the part 1
2‖Xβ − y‖22 is strictly convex as well, thus making

eq. (8) in fact strictly convex. Similar arguments show that eq. (10) is strictly convex.

Proof of Proposition 2. Since f1 is continuous and strictly convex, it lays in the Skorohod topol-

ogy DK as defined in (Seijo and Sen, 2011, Definition 2.2). According to (Seijo and Sen, 2011,

Lemma 2.9), the argmax functional is continuous at f1 with respect to the supremum norm met-

ric.

Proof of Proposition 3. Since f1 is differentiable, we know that ∇f1 exists. Since f1 is strictly

convex, the minimum x1 is unique and ∇f1(y1) 6= 0 as y1 6= x1. Since f1 is also convex, the tangent

24

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted June 21, 2020. ; https://doi.org/10.1101/2020.03.06.980953doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.06.980953


at every point stays below the function. Thus considering the tangent at y1 we have for all z0 that

f1(y1) +∇f1(y1)>(z0 − y1) ≤ f1(z0),

and thus we can bound f1 − ε from below as

f1(y1) +∇f1(y1)>(z0 − y1)− ε ≤ f1(z0)− ε.

Observe that at x1 we have f2(x1) ∈ [f1(x1)− ε, f1(x1) + ε], and similarly at x2 we have f2(x2) ∈

[f1(x2)− ε, f1(x2) + ε]. Thus for any z satisfying

f1(y1) +∇f1(y1)>(z − y1)− ε = f1(x1) + ε, (16)

we know that the minimum x2 of f2 cannot be further away from x1 than z, thus ‖x1 − x2‖2 ≤

‖x1 − z‖2. The quantity z satisfying eq. (16) is not unique, and thus without loss of generality

we choose z such that ∇f1(y1) and z − y1 are not orthogonal. Rewriting z − y1 in eq. (16) as

z − x1 + x1 − y1 and rearranging terms yields

∇f1(y1)>(z − x1) = f1(x1)− f1(y1) + 2ε−∇f1(y1)>(x1 − y1).

Rewriting the non-zero scalar product on the left hand side as ‖∇f1(y1)‖2 ·‖z−x1‖2 ·cos(θ) for some

θ ∈ [0, π/2) and applying the L2 norm on both sides yields, after applying the triangle inequality

on the right hand side,

‖∇f1(y1)‖2 · ‖z − x1‖2 · |cos(θ)| ≤ ‖f1(x1)− f1(y1)‖2 + 2ε+ ‖∇f1(y1)‖2 · ‖x1 − y1‖2,

which after rearranging yields

‖z − x1‖2 ≤
‖f1(x1)− f1(y1)‖2 + 2ε+ ‖∇f1(y1)‖2 · ‖x1 − y1‖2

|cos(θ)| · ‖∇f1(y1)‖2
.

We write |cos(θ)|−1 = Cδ and note that θ is determined by z and y1 but independent of x2. Since

x1 and y1 are fixed, and f1 is differentiable, it is also locally Lipschitz in a ball around x1 that
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includes y1 (note that the Lipschitz parameter is independent of x2). Thus there exists Lδ > 0 such

that ‖f1(x1)− f1(y1)‖2 ≤ Lδ‖x1− y1‖2. Using that ‖x1− y1‖2 ≤ δ by construction of y1, we obtain

‖z − x1‖2 ≤ Cδ
[
‖∇f1(y1)‖−12 (δLδ + 2ε) + δ

]
.

Since ‖x1 − x2‖2 ≤ ‖x1 − z‖2, the result follows.
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