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ABSTRACT

Fighting the COVID-19 epidemic summons deep understanding of the way SARS-CoV-2 taps into its host 

cell metabolic resources. We describe here the singular metabolic background that creates a bottleneck 

constraining coronaviruses to evolve towards likely attenuation in the long term. Cytidine triphosphate (CTP) 

is at the crossroad of the biosynthetic processes that allow the virus to multiply. This is because CTP is in 

demand for three essential steps. It is a building block of the virus genome, it is required for synthesis of the 

cytosine-based liponucleotide precursors of the viral envelope and, finally, it is a critical building block of the 

host transfer RNAs synthesis. The CCA 3’-end of all the transfer RNAs required to translate the RNA 

genome and further transcripts into the proteins used to build active virus copies is not coded in the human 

genome. It must be synthesized de novo from CTP and ATP. Furthermore, intermediary metabolism is built 

on compulsory steps of synthesis and salvage of cytosine-based metabolites via uridine triphosphate (UTP) 

that keep limiting CTP availability. As a consequence, accidental replication errors tend to replace cytosine 

by uracil in the genome, unless recombination events allow the sequence to return to its ancestral 

sequences. We document some of the consequences of this situation in the function of viral proteins. We 

also highlight and provide a raison d’être to viperin, an enzyme of innate antiviral immunity, which 

synthesizes 3ʹ-deoxy-3′,4ʹ-didehydro-CTP (ddhCTP) as an extremely efficient antiviral nucleotide.
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IINTRODUCTION

The COVID-19 pandemic motivated a deluge of literature investigating the SARS-CoV-2 coronavirus and its 

epidemic propagation patterns—see (1) and https://pages.semanticscholar.org/coronavirus-research. 

Detailed compositional and structural analyses both of the virus genome and of the proteins it encodes keep 

accumulating at a fast pace (https://viralzone.expasy.org/8996). Yet, studies dealing with the way the virus 

taps into its cell host’s metabolism are scarce. Exploring the nucleotide complement of the virus genome 

setup in parallel with the corresponding constraints on the proteins it encodes, we investigated here how 

unique metabolic features impact on the virus’ functions, as we aim at understanding and possibly revealing 

alleviation of its virulence. A major feature explaining its pathogenicity is that the coronavirus genome mimics

the structure of cellular mRNAs, starting with a conventional 5’-end methylated cap (2) and ending up with a 

3’-polyadenylated tail. While remarkably apt to create a stealthy contraption, this particular organization 

makes that the general outline of the viral genome is an obstacle to antiviral therapy. The SARS-CoV-2 

genome is so similar to that of the host’s mRNAs that standard interference with the virus expression 

machinery will often also interfere with that of non-infected cells and be toxic to the host. A second hallmark 

of the virus is that it is an enveloped virus. Being directly derived from the host, both these features are a 

handicap when looking for therapeutic solutions. Consequently, these attributes imply drawing resources 

from the cell’s nucleotide and lipid metabolism. Because the virus had to evolve ways to discriminate its fine 

attributes from those of the host mRNAs and membranes, it must display idiosyncratic metabolic features 

that might be used as antiviral targets.

A noteworthy feature shared by envelope construction and RNA synthesis is that both processes rely on 

cytosine triphosphate (CTP) availability. This prompted us to analyse the consequences of the nucleotide 

requirement for lipid construction of the viral envelope and the synthesis of its genome, as compared to the 

host cell’s metabolism that ends up as mRNAs and membranes. We previously discussed how the series of 

events which begins with copying the virus positive-sense RNA into a general template minus-sense RNA 

that serves to generate new viral genomes and several individual transcripts of that template (3, 4) is tightly 

linked to the metabolism of cytosine-containing nucleotides (5). We document here a further singular role of 

CTP in its mandatory requirement for tRNA maturation into a functional entity, as this impacts availability of a 

functional translation machinery. It had been noticed that the virus exploits a critical set of pyrimidine-related 

metabolic pathways to access the pool of ribonucleoside triphosphates needed for the RNA-dependent 

replication and transcription of the replicated RNA minus strand (6). However, the specific role of CTP was 

overlooked. In addition to construction of copies of the genome a subset of lipid metabolism—based on 

cytosine-containing nucleotides—is also recruited to allow for the synthesis of its enveloped capsid. This 

makes the viral sequence highly sensitive to metabolic details of the cell’s CTP pool synthesis and 

maintenance, likely to be reflected in the virus evolution as it mutates with a slow general decrease in 

cytosine nucleotides, attributed at this time to causes that widely differ from what we present here—see e.g. 

(7). By contrast, functional analysis could help us reveal unexpected key functions of the virus, marked by a 

divergent trend in the local content of cytosine nucleotides. For example, if the presence of a subset of amino

acids—e.g. proline residues—in viral proteins was essential for key functions required for long term survival, 

then a local increase in cytosine residues would expand the evolutionary landscape of the virus. This type of 

local bias has indeed been highlighted in a previously discovered feature of coronavirus adaptation to the 
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human host: in SARS-CoV-1 a GC-rich critical sequence of the virus spike protein—a leucine to alanine 

mutation derived from a GC local enrichment, with a UUA codon changed into GCA—displayed positive 

selection in the course of evolution of the SARS disease in 2003 (8). Here we depict first, with emphasis on 

SARS-CoV-2, the details of cytosine-based metabolism that must be retained as a unique coordinator of the 

global cell metabolism. We then explore the likely consequences of this dependency on the evolution both of 

cytosine-related innate immunity processes and of the viral genome sequence. Subsequently, we delineate 

critical details of the impact on the virus biological functions on the nucleotide composition of its genes and 

consequences for its evolution.

RESULTS

In-depth analysis of pyrimidine metabolism highlights the unique position of CTP in metabolism

To understand how viruses recruit the functions of their host cells to their benefit, we must understand what 

would be the point of view of a virus if it were to sustain continuous propagation. Essentially lacking 

biosynthetic potential, a virus must tap into the host’s metabolic resources. This introduces a considerable 

limitation in the metabolic options offered to viral replication. For this reason many viruses ended up coding 

for functions that are missing or deficient in their hosts (9). Some even help their hosts to upgrade their built-

in ability to make the most of their environment, thus ensuring a wealthy propagation of the viral progeny. 

Auxiliary metabolic genes are commonplace in bacteriophages (10), but also in a variety of eukaryotic 

viruses, such as herpes viruses (11). Selection pressure via efficacy of transmission multiplied by number of 

replicates per cell, coupled to selection stemming from intracellular availability of essential precursors 

(nucleotides, amino acids, lipids and carbohydrates) creates a variety of bottlenecks that shape the virus 

evolutionary landscape (12–14). Furthermore, the envelope of many animal viruses is built up from 

components of the host cell’s membranes (15, 16), as well as a capsid made of virus-specific proteins (17, 

18). To harden them against environmental offences and provide them with addressing tags, some of these 

proteins are glycosylated, which involves tapping into the cell’s resources of UDP-sugars and GDP-sugar 

precursors (19, 20). Besides this uracil metabolism-dependent protective and tagging feature, we highlighted

here the relevance of the membrane lipids, which uniquely derive from precursors involving pyrimidines, 

specifically liponucleotides based on a CDP skeleton (21–23). We also emphasized the need for a virus to 

express its protein to have an active tRNA complement, necessitating the function of host CCAse. How the 

construction of the building blocks are put together in an uninfected cell is therefore the very first challenge 

faced by the virus after it has accessed the cytoplasm of the host cell. Finding an answer to this question 

dictates the exploration of the mystery of the cells’ assembly lines that prepare them for growth. Before 

exploring quantitative consequences of this unique design, we summarize how cytosine-based metabolism is

organized in the next couple of paragraphs.

The logic of energy management for nucleic acids synthesis

Synthesis of the viral RNA genome draws resources not only from the metabolism of pyrimidines but also 

from the general logic of the cell’s energy management. A key chemical feature of the related processes is 

that they rest on hydrolysis or synthesis of phosphate bonds (24). Versatility of these processes is ensured 

by the usage of the shortest polyphosphate structure, that of nucleoside triphosphates, NTPs—we do not 

consider here the special case of purely mineral polyphosphates (25). General metabolism is developed 
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along two lines with respect to its energy demands (this is illustrated in Figure 1 for pyrimidine metabolism). 

Figure 1. Energy-driven pyrimidine-based nucleic acid metabolism

ATP is the general donor in the biosynthesis of pyrimidines. CDP, required as a precursor of dCTP synthesis 
is produced by RNA turnover via hydrolysis or phosphorolysis (red arrows). RNA and DNA synthesis is driven
by pyrophosphate hydrolysis (green arrows indicate irreversible reactions). dTTP is results from a 
pyrophosphate-driven reaction producing dUMP, and is finely tuned by thymidylate kinase, which makes its 
immediate precursor dTDP.

When energy is meant to be used in a reversible way, NTPs are hydrolysed into NDP+Pi. This is where the 

role of mitochondria is critical in non-proliferating cells (26). These organelles restore the ATP complement of

the cell, in particular to the endoplasmic reticulum—ER, (27), and in the present context this is crucial for the 

generation of new viral particles. In contrast— and this is relevant not only for intermediary metabolism but 

also for macromolecule biosynthesis, with more than 500 such reactions reported in the KEGG database 

(28)—when the relevant pathways have to be driven forward, triphosphate hydrolysis produces 

pyrophosphate (PPi). PPi is subsequently hydrolysed irreversibly into two phosphates by omnipresent 

pyrophosphatases: NTP => NMP + PPi => NMP + 2 Pi, and this drives syntheses forward. Biosynthesis of 

macromolecules rests to a great extent on this two-pronged strategy.

Diverging from this general design, DNA synthesis is an exception in most organisms. In this case, dNTP 

synthesis is indirect. It is a two steps process. NDPs are used instead of NTPs as precursors of the dNDPs, 

which are subsequently phosphorylated to dNTPs (29). The underlying metabolic logic is that, if DNA 

synthesis used NTPs instead of NDPs, the nucleotide availability would build up a considerable metabolic 

pressure driven by the cellular concentration of nucleotide precursors. This would affect genomes by 

expanding progressively their length —which already usually occupies a sizeable portion of the cell’s volume
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—from generation to generation. Using NDPs alleviates the difficulty: nucleotide reductases evolved so as to 

use ribonucleoside diphosphates not triphosphates to make deoxyribonucleotides (30–32). The 

concentration of NDPs is of the order of 1% that of NTPs because metabolism is poised to supply energy via 

steady synthesis of ATP, used to keep the other NTPs at a high level as well. This lowers by two orders of 

magnitude the metabolic pressure on DNA synthesis. Yet, using NDPs in this pathway leads to a logistic 

metabolic cost, and this is specific to cytosine nucleotides, placing them in a singular position in metabolism. 

De novo synthesis of cytidine triphosphate (and hence of all cytosine derivatives) does not go via a CDP 

intermediate. It is the direct product of amidation of UTP (33), using glutamine as the nitrogen donor and 

ATP, with CTP synthetase as a catalyst [EC 6.3.4.2 (34)]. This functional arrangement requires specialized 

biochemical reactions in order to maintain a significant level of cytosine in DNA sequences. Synthesis of 

CMP (and subsequently, or in parallel, CDP) is only achieved via RNA and membrane lipid precursors 

turnover (red arrows in Figure 1 and red and purple arrows in Figure 2). A widespread consequence of this 

feature is that DNA-based genomes tend to become progressively more AT-rich—note that depleting C in 

double stranded DNA genomes must be followed by G depletion because of the first Chargaff’s parity rule 

(35)—in a variety of conditions (36).

An unexpected secret of life: cytosine metabolism provides both a rheostat and a flywheel to 

integrate growth of the various cell structures, constraining coronavirus development

Does this original role of cytosine nucleotides extend to RNA genomes? Not in any straightforward way: 

synthesis of RNA utilizes NTPs, not NDPs. The singular requirement for NDP precursors for DNA synthesis 

might even be a selective force that drove the evolution of viruses away from DNA-dependent forms, despite 

the high intrinsic instability of RNA as compared to DNA. The dCDP bottleneck would prevent DNA viruses to

reach a high virus burst size and could make easier the emergence of some kind of innate immunity. It would

also favour emergence of viruses based on RNA metabolism and this should be taken into account when 

exploring the origin of viruses (37, 38). Yet, we may ask: are RNA viruses still submitted to patent metabolic 

constraints, and what would they be? At first sight, the answer looks negative, at least involving nucleotide 

biosynthesis, because de novo synthesis of nucleotides allows direct production of each of the nucleoside 

triphosphates. All the same, there might remain some persisting negative trend against cytosine 

accumulation, because CTP synthesis requires both ATP and a nitrogen source, which makes availability of 

the molecule highly sensitive to energy and nitrogen availability (Figure 2). However, this type of negative 

pressure equally applies to synthesis of ATP, for example (39). Then, if anabolic processes are not preset to 

modulate the stoichiometry of specific NTPs, what about their degradation and salvage? 

All metabolites wear off with time. This implies that they must be degraded and recycled, either as a whole or

as parts. In the case of ribonucleotides, three units—a phosphate, a ribose, and a heterocyclic base—can go

through specific degradation or salvage pathways. During DNA turnover or following proofreading steps, a 

fast track converts CMP to CDP then CTP, but in the case of dCMP, while this track exists, there is a parallel,

unexpected one that begins with deaminating dCMP into dUMP, which subsequently feeds into the TTP 

biosynthetic pathway—see (40, 41) and Figure 1. Another pathway produces cytidine after hydrolysis of the 

5’-phosphate of CMP, then deaminates it to uridine (42), or, in bacteria but not in multicellular organisms, 

producing cytosine then deaminated to uracil (43), which is mainly scavenged directly by uracil 
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phosphoribosyltransferase (EC 2.4.2.9, Figure 2 blue arrow) directly into UMP. That this indirect route plays 

a crucial role in cells is witnessed for example in the fact that the whole RNA-derived salvage pathway 

(cytidylate phosphatase and cytidine deaminase) is critical in embryonic development (44). This is because 

any imbalance in dNTP pools is highly mutagenic (45). Furthermore, the enzymes of this salvage pathway 

are also important to recycle the modified derivatives of cytosine which result from frequent metabolic 

accidents or are encountered as epigenetic markers (46) .

Remarkably, the salvage pathways are straightforward for all nucleobases, cytosine excepted (Table 1).

Table 1. Cytosine-related salvage in human cells: present and missing enzymes with bacteria for 
comparison

H. sapiens E. coli B. subtilis Enzyme name
Catabolism

3.5.4.12 DCTD absent comEB  dCMP/CMP deaminase

3.1.3.5 NT5E 
NT5C3 
NT5C1A

umpG
pynN(yjjG)

nucF(yutF)
pynN(yfnB) 
ycsE
yktC

 5’-nucleotidase

3.5.4.5 CDA cdd cdd  cytidine deaminase

3.5.4.1 absent codA (cda) absent  cytosine deaminase

3.2.2.8 absent rihA(ybeK) 
rihB(yeiK) 
rihC(yaaF)

absent  ribosylpyrimidine nucleosidase

Synthesis
6.3.4.2 CTPS1

CTPS2
pyrG pyrG  CTP synthetase

Salvage
2.7.4.14 CMPK1

CMPK2
absent absent  UMP/CMP kinase

2.7.4.25 absent cmk cmk  cytidylate kinase

Recovery
from U

2.4.2.3 UPP1
UPP2

udp
pdp

 uridine phosphorylase

2.4.2.9 UPRT upp upp  uracil phosphoribosyltransferase

2.7.1.48 UCK1
UCK2
URKL1

udk udk  uridine kinase

2.7.4.22 absent pyrH pyrH  uridylate kinase

2.7.4.6 NME1 – 
NME7 (7 
genes)

ndk ndk  nucleoside diphosphate kinase

The purine salvage pathways have been thoroughly explored, in particular in animal pathogens and in plants 

(47–49), while the pyrimidine salvage pathways have remained somewhat less studied (50). The 

omnipresent roles of ATP and S-adenosylmethionine (AdoMet) often ends up with adenine as a waste 
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product. As a consequence, natural selection retained a variety of enzymes meant to scavenge adenine 

wastes, so that any downwards trend in the ever critical ATP supply would be easily overcome—see e.g. (51,

52). A key enzyme in this salvage process is adenine phosphoribosyltransferase [EC 2.4.2.7, (53), 1286 

references at PubMed on 18/06/20]. In the same way, guanine or uracil are salvaged via (hypoxanthine)-

guanine phosphoribosyltransferase [EC 2.4.2.8, 1536 references at PubMed on 18/06/20, (54)], or uracil 

phosphoribosyltransferase EC 2.4.2.9, (55), 310 references at PubMed on 18/06/20]. Further comparable 

activities exist, such as orotate phosphoribosyltransferase EC 2.4.2.10 (56)—which inputs orotate at the 

beginning of the pyrimidine biosynthetic pathway—and the somewhat less similar nicotinamide 

phosphoribosyltransferase EC 2.4.2.12 (57). These enzymes share a common descent, showing that life has

easily evolved a panoply of related activities.

Figure 2. Synthesis and salvage of pyrimidine nucleotides

Synthesis of UMP begins with orotate phosphoribosyltransferase followed by decarboxylation (brown 
arrows). The anabolic pathway ends up with UTP and CTP (green arrows). Salvage of CTP stems from RNA 
metabolism (red arrows) and lipid metabolism (purple arrows). Degradation and scavenging of cytosine-
based nucleotides goes through uracil-based scavenging and return to the CTP biosynthetic pathway, with 
cytosine deamination of intermediates as critical steps. Uracil phosphoribosyltransferase matches the role of 
the orotate counterpart in the ultimate salvage of the base (blue arrow). No counterpart has been yet 

.CC-BY-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 21, 2020. ; https://doi.org/10.1101/2020.06.20.162933doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.20.162933
http://creativecommons.org/licenses/by-nd/4.0/


9

identified, to our knowledge (see text), for scavenging cytosine (crossed out light blue arrow). Distribution of 
relevant enzymes in H. sapiens and model bacteria is illustrated in Table 1.

It was therefore expected that the same would hold true for cytosine, allowing the cell to scavenge the base 

easily from its environment. Yet, it appears that no cytosine phosphoribosyltransferase exists in any extant 

organism (light blue arrow, Figure 2). Preliminary work with the protozoon Giardia lamblia suggested that 

this activity might be present in the organism (58, 59). Surprisingly however, deciphering the genome 

strongly suggested that CTP was derived from cytosine deamination into uracil, followed by salvage of uracil 

and amidation. Indeed in the most recent release of GiardiaDB, there appears to be no sequence in the 

genome of the organism that could be attributed to cytosine phosphoribosyltransferase—see (60) for access 

to the genome database. At this point, therefore, no extant organism codes for such an enzyme. By contrast, 

despite the lack of de novo biosynthesis pathways for pyrimidines in this organism, the genome still codes for

a CTP synthetase (PyrG). This is in line with the general observation that cytosine and related cytosine-

containing derivatives are systematically deaminated into uracil-containing derivatives, subsequently 

processed to regenerate CTP (Figure 2, and Figure 1 for salvage of processed DNA derivatives). As a 

further case in point pyrG has also been found as a necessary complement required for life in the smallest 

genome of an autonomous synthetic construct (61). This strongly suggests that recovering CTP requires a 

uracil-dependent pathway as well as that independent management of cytosine-based nucleotides is critical 

to govern metabolism, even in the presence of a rich supply of metabolites from the outside—note that 

Giardia is a parasite.

This singular positioning of CTP synthesis in metabolism makes CTP synthetase a convenient enzyme to 

adjust the flow of cytosine-containing nucleotides, acting as a rheostat does in an electric contraption—see 

e.g. (62). Substantiating this unique role, the functional structure of the enzyme displays a very unusual 

architecture. It makes filaments, named cytoophidia—specific membrane-less organelles that control the 

spatial distribution of cytosine-dependent intermediary metabolism (63, 64)—in all the organisms where its 

organization has been explored (65). The structure of CTP synthetase is important in the present context 

because the synthesis of membrane lipids is a further metabolic step that involves the nucleotide, with most 

membranes deriving from cytosine-based liponucleotides (66, 67). While the precise membrane lipid 

composition differs in the three domains of life, the general organisation of the cognate pathways is similar. 

Because the lipid content of cells can vary over a wide range, the stores of CDP-containing liponucleotides, 

in particular in eukaryotes—with an important network of intracellular membranes—is preset to play the role 

of a flywheel, allowing fine tuning of the availability of cytosine-derived metabolites in the cell when 

conditions vary. This property could have been advantageously recruited for innate immunity. Finally, as 

perhaps could be expected at this point of our demonstration, the very first enzymes for de novo synthesis of

pyrimidines, carbamoyl-phosphate synthetase (CPSase), aspartate transcarbamylase (ATCase), and 

dihydroorotase (DHOase) are associated into a multifunctional structure, named CAD (68). Besides a 

general role in management of cell growth, CAD is highly expressed in leukocytes, where it enables Toll-like 

receptor 8 expression in response to cytidine and single stranded RNA (69), a situation met upon infection by

RNA viruses. Supporting a role of CAD in antiviral innate immunity, its activity is modulated by a dedicated 

viral protein during Enteroviral infection (70) .
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Consequences of cytosine-related imbalance in the nucleotids composition, evolution and coding 
capacity of coronavirus genomes

The most straightforward consequence of the metabolic qualitative design just outlined is that a metabolic 

force will keep driving the cytosine content of RNAs to lower values, unless opposite processes—and 

selection pressure leading to discard organisms with too low cytosine content, for example because this 

would create unbearable biases in the amino acid composition of the proteins coded by these genomes—

had the upper hand during evolution. This prompted us to develop a brief quantitative analysis of pyrimidine 

metabolism in relation with SARS-CoV-2 infection, as we now document.

Cytosine content-related phylogeny of some virus isolates 

The constraint on cytosine availability witnessed in the composition of coronaviruses—in particular SARS-

CoV-2—is likely to reflect the coupling between synthesis of viral particles and the host cell’s metabolic 

capacity. In order to assess the evolution of the virus with these metabolic constraints we decided to evaluate

the C content using 89 representative strains from the four genera of coronaviruses, which were selected 

based on their phylogenetic and host background. Here we developed two distinct approaches in order to 

take into account 1/ the nucleotide patterns across the virus group, and 2/ the coding sequence-related 

limitations that constrain the function of the viral proteins as they adapt to their host.

To study the evolution of coronaviruses, we used standard techniques to generate a phylogenetic tree of 

representative strains (see Methods section), where we highlighted the average cytosine content of each 

viral genome (Supplementary Figure 1). There is significant variation between the cytosine content of 

viruses of different clades. Based on 89 representative genomes we found that coronaviruses have 27.3% A,

17.9% C, 21.5% G and 33.3% U on average. Overall, the coronavirus genomes contain a bit more 

pyrimidines than purines, with a mean content for C+U of approximately 51.2%.

Currently, seven coronaviruses are known to infect humans. These include four epidemic CoVs causing mild 

respiratory symptoms in humans (HCoV-229E, HCoV-NL63, HCoV-HKU1 and HCoV-OC43), the severe 

acute respiratory syndrome coronavirus (SARS-CoV-1) causing the pneumonia outbreak during 2002-2003 

in China (71), the Middle East respiratory syndrome coronavirus (MERS-CoV) still causing small outbreaks 

through camel-to-human transmissions in the Middle East and the newly emerged SARS-CoV-2 (72). These 

viruses all originated from bat species, although the exact intermediate hosts involved in human infections 

remains obscure (73–77). Interestingly, the cytosine content of bat viruses is variable (from 16.0% to 21.5%),

reflecting the diverse virus species harboured by bats, which make a very diverse natural reservoir for many 

coronaviruses. Intriguingly, we observed a lower cytosine content for the four human established epidemic 

viruses (HCoV-HKU1, 13.0%; HCoV-NL63, 14.4%; HCoV-OC43, 15.2%; HCoV-229E, 16.7%) than the three 

spillover-related viruses infecting humans (SARS-CoV, 20.0%; MERS-CoV, 20.3%; SARS-CoV-2, 18.4%) 

and most bat viruses. The four human epidemic viruses have been established in human populations for 

decades. The significantly low cytosine content observed for these two viruses may indicate host-related 

features impacting cytosine-containing metabolites availability. Several studies of the codon usage biases in 

emerging coronaviruses have been published, providing a general view of the situation—see e.g. (78), 

without, however, exploring the contextual constraints in terms of metabolic properties of their hosts.
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If the adaptation of coronaviruses to the human species was to drive down the cytosine level in the virus 

genome, then we might expect the cytosine content of SARS-CoV-2 strains to decrease as the epidemic 

unfolds. Our regression model is consistent with this view (Figure 3). 

Figure 3: Dynamic of base composition at the coding regions of SARS-CoV-2. 

The base composition of the coding regions concatenated by 26 ORFs of SARS-CoV-2 is displayed. Each 
dot represents one sequence. The calculation was based on 2,574 unique SARS-CoV-2 strains isolated from
December 24th, 2010 to April 17th, 2020.

It allowed us to estimate that SARS-CoV-2 may lose its C complement by 0.000516 base per position per 

year (y = −0.000516x + 1.226, adjusted R2 = 0.1459) while gaining U by 0.000634 per year (y = 0.000634x - 

0.9591, adjusted R2 = 0.1835), under its current circulation dynamics in susceptible populations. A parallel 

increased trend for A and a decrease for G was also observed, but with more moderate slopes than those for

C and U. A Wilcoxon rank sum test showed that the content of the four bases in the SARS-CoV-2 sequences

was significantly different in each case, while somewhat correlated with each other. The strongest 

correlations were observed between two groups (Supplementary Figure 2): a decrease in A was 

significantly correlated with an increase in G (adjusted R2 = 0.5738), while a decrease in C was significantly 

correlated with an increase in U (adjusted R2 = 0.7177). As a consequence the SARS-CoV-2 virus is on its 

way to gradually lose C during its adaptation in humans, resulting in a genomic base composition more like 

those of the four previously established human endemic coronaviruses.

The second approach did not aim at creating a phylogeny of the viruses, but, rather, a cladistic tree showing 

structural properties shared by viruses that are likely to indicate affinity of functional features. This approach 

assumes that, after sufficient time of evolution, the nucleotides present at the majority of sites in the 
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sequence have had chances to be modified several times reaching local saturation, so that it is difficult or 

impossible to link those with specific features of the proteins encoded in the virus (the beginning and end of 

the sequence, that are critical for RNA-dependent replication are not taken into account). By contrast, the 

presence of insertions or deletions (indels) will affect considerably the overall structure of the proteins, and 

this should impact their function in a way that is not likely to be reversible—see for example (79). An earlier 

such report (80) demonstrated the usefulness of this approach. 

Figure 4a

Figure 4b
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Figure 4. Phylogeny of coronavirus representatives based on full genome sequences (panel A) and 
on indels (panel B)
A genome-based tree is generated based on the full genome sequence alignment of the group (panel A) and 
a gap-based tree is created, based on insertions and deletions (indels) only (see Methods). The seven 
known human coronavirus strains are highlighted by a red colour for the corresponding branches. A panel on
the right indicates the four coronavirus groups; in panel B, the two incongruent sub-groups are shown by the 
same colour code with reduced opacity (alpha and beta sub-groups). For details, please see text.

The use of cladograms in this case attempts to show the relative distances and should not necessarily reflect

the evolutionary history of the group. Compared to the standard alignment of the 89 reference genomes 

(Supplementary Table S1 and Supplementary Figure 1), the equivalent gap-based alignment uses 

undefined characters for nucleotides and ‘dummy’ characters for gaps to cheat the algorithms for tree 

construction so that distances are calculated on the basis of the sums of scores for gap positions (presence 

of indels, see Methods). While it is not possible to check one by one each and every gap, the common ones 

are likely to reflect a common structure or function characteristic of the corresponding region (Figure 4).

Remarkably, both the standard, genome-based tree and the gap-based tree are quite congruent—i.e. 

knowing only the indel content is enough to draw a tree that describes the relationships between the 

coronavirus groups (Figure 4). In the genome-based tree, the four groups of coronaviruses are detected 

clearly, and the seven human virus strains are highlighted, in groups alpha and beta (Figure 4a). In the 

gap/indel-based tree, the four groups are also consistently derived, with the exception of a beta sub-group 

that contains the two human viruses with reduced pathogenicity potential, compared to the beta sub-group 

that contains the SARS, MERS and SARS-2 strains (Figure 4b). At the same time, a tiny alpha sub-group 

exhibits similar indel patterns with the latter beta sub-group, presumably with similar indel patterns. It is 

tempting to speculate that these alpha sub-group strains may share certain hitherto unknown properties that 

might render them potentially dangerous in terms of zoonotic disease capacity. The observed patterns could 

be interpreted as showing that what is coded in the indel regions has a considerable weight on the virus 

adaptation to their hosts and does not strictly depend on the base composition and amino acid coding 

potential of the genome sequences. More research is needed to establish the nature of indel-based trees in 

the future.

Biased codon composition of the regions coding for individual viral proteins

Coronaviruses, and many positive-sense single-stranded RNA viruses as well, produce plus strands at a 50- 

to 100-fold excess of their minus-strand replicated template. Because several regions in the 3’ half of the 

virus are « transcribed » from the template RNA minus-strand of the virus (81), a further deviation from parity

should appear in the nucleotide usage for virus construction. This means that the overall nucleotide 

consumption is not strictly constrained by the second Chargaff’s parity rule, that would result in an amount of 

A equal to that of U, and G to that of C (82). The virus multiplication rests on a RNA-dependent replication 

process, so that any pressure on a given base availability—here C—would affect its complement—G in our 

case. As discussed in the previous section, we expected a general selection pressure operating on CTP and 

tending, in the long run, to decrease the C content of the RNA virus, but also that of G.

Furthermore, this implies a particular imbalance in the nucleotide composition of the viral RNA, allowing it to 

differ from standard mRNAs of the host cell. We therefore expect that the virus will interfere with the host’s 
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translation machinery in a way that allows it to be discriminated positively against the cell’s mRNAs (see 

Discussion). This should have consequences for the translation of the viral genome. The virus encodes 

proteins that have essential functions for its development, not only for the replication machinery and the 

formation of a capsid, but also for several ancillary functions needed for hijacking the host metabolism. The 

constraint on the genome nucleotide composition must be reflected in the codon usage bias of the virus 

protein coding sequences, with important consequences on the way tRNAs are used. Furthermore because 

natural selection acts on viral functions, it can be expected that the outcome of the general C lowering trend 

will differ in different proteins encoded by the virus, depending on the selection pressure constraining their 

functions. Taking advantage of the degeneracy of the genetic code, SARS-CoV-2 could also limit its C 

content via the use of alternatives at the third codon position by selective codon usage.

To explore this hypothesis, the relative synonymous codon usage (RSCU) values were calculated for each 

coding region of SARS-CoV-2 to reveal any differential usage of synonymous codons. An RSCU value of 0, 

0~0.6, 0.6-1.6 or >1.6 implies that a codon is not-used, under-represented, normally-used, or over-

represented—respectively for the four value ranges (83). Among the 26 major coding regions, six (Nsp11, 

ORF10, ORF7b, ORF6, E and Nsp7) have a translated peptide length of less than 100 amino acids, which 

would result in codon usage profiles of low statistical significance. For example, Nsp11 encodes only 33 

amino acids, which explains the very limited number of codons utilized by the corresponding gene. These 

sequences were not further analysed (Figure 5). The three codon positions do not have the same 

importance in the selection of specific amino acids. Pressure against C must have consequences in terms of 

the protein coding landscape of the virus. In general, in regions where tRNA choice allows a wobble between

U and C, the virus sequence is considerably enriched in U. It seems noteworthy that the codon usage bias 

and bias in tRNA choice differs between genes of the human host and the virus genes, except for two viral 

proteins, accessory protein Nsp1 and nucleocapsid protein N, notwithstanding preference of U over C—e.g. 

preference for GGU and CGU codons in protein Nsp1 (Supplementary Figure 3).

coding regions
The 20 SARS-CoV-2 ORFs with a length of over 300 nucleotides were submitted to RSCU calculation. The 
codon usage for 120,426 human coding regions was also displayed to facilitate comparison. Codons are 
displayed with the first letter denoting the amino acid and the three letters following a dot representing the 
codon. Codons containing a CpG dinucleotide are suffixed by an asterisk. The four panels separate the 
codons according to the nucleotide located at the third codon position. Codons that are not used (RSCU=0), 
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under-represented (RSCU<0.6), normally utilized (RSCU ranges between 0.6-1.6), or over-represented 
(RSCU>1.6) are labeled in gray, blue, ice cold and yellow, respectively.

The first C codon position is used to input histidine, glutamine, proline, and arginine or leucine in proteins. 

This is particularly significant for the proline residue, essential in the folding of key viral protein domains (Li et

al., 2014), because it is encoded by CCN codons. All proteins of SARS-CoV-2 prefer the usage of CCA or 

CCU codons for proline, avoiding the usage of C and G (Figure 5). Histidine and glutamine are in two-codon 

boxes, discussed below. Arginine presents a different situation because CGN codons can be replaced by 

AGR codons: SARS-CoV-2 favours the AGA codon especially, with only one compulsory G. AGG codons are

enriched in proteins Nsp5, Nsp8 and Nsp9. Remarkably however, the Nsp1 protein, which corresponds to 

the initial domain of the ORF1a(b) protein, and is translated very early on in the virus expression cycle, 

contains only CGH codons (H = A, U or C) and this is in total contrast with the other viral proteins (except for 

Nsp10, yet this protein has only two arginine residues, making this observation possibly irrelevant). Codon 

CGG is only present 11 times in the coding sequences of the virus, suggesting that when present, it has 

been submitted to positive selection, possibly at a site important for the translation-coupled folding of the 

protein. The most interesting location of this codon is a doublet that corresponds to a four codon insertion in 

the spike protein of the virus. Finally, the pressure on leucine content is also lower. CUN codons are used to 

code for leucine, with the majority using codon CUU, but this amino acid can be introduced using the 

alternative UUR codons. Yet, UUA is used more frequently than UUG. UUG is relatively enriched in proteins 

Nsp6, Nsp8, ORF3a and N (Figure 5 and Supplementary Figure 3).

In the second position requiring a C we find proline again, and also threonine (ACN), alanine (GCN) and 

serine (UCN). For threonine, codon ACU is the most used codon, progressively being generally replaced by 

ACA as we progress along the genome sequence, ACC and ACG are rare. Alanine is mainly encoded by 

GCU codons, followed by GCA, with protein Nsp1, again, differing somewhat from the other viral proteins in 

that the frequency of GCA and GCU are the same. Serine (UCN) is able to escape much of the constraint 

imposed by C availability as it can use the alternative AGY codons. Codons UCU and UCA are more or less 

used in an equivalent way, except, again, in protein Nsp1, which mainly uses AGU and AGC codons. In 

general AGC is seldom used while AGU is the dominant serine codon.

Finally, the third position can be replaced by A, U or G in the four codon boxes, two of which, valine and 

glycine, are further discussed below. In general the corresponding NNC codons are rarely used. Again, 

protein Nsp1 is an exception, with codon GGC used more frequently than GGU. Overall GGU is dominating 

with some contribution of GGA, while GGG is often absent. In the case of valine (GUN codons), the 

dominating codon is GUU, followed by GUA. By contrast, U-ending codons which are rarer than expected 

are clustered in several proteins: UGU, UUU and UAU in protein N; AUU in Nsp10; CGU in Nsp16; GAU in 

protein M, CAU in ORF8 and AAU and UCU in Nsp1. NAU codons correspond to two codon boxes (NAN 

codons). These codons are discriminated along a pyrimidine / purine axis. A pyrimidine (NAY) is used to 

maintain the same nature of the coded residue whether the codon uses a U or a C as its 3’ end (aspartate, 

asparagine, histidine and tyrosine), while a purine (NAR) allows coding for glutamate, glutamine and lysine. 

UAR codons are also specifying the terminal step of translation. As stated above, the SARS-CoV-2 genes 

avoid the usage of C containing codons whenever possible (Figure 5). Moreover, probably due to the base-

pairing requirement imposed during transcription and replication, the virus also avoids the usage of G-ending
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codons. This avoidance is maintained in the overall choice of NAR codons, except in protein Nsp6 where 

CAG is preferred to CAA, as well as GAG over GAA and CAA over CAG, which suggests that this results 

from a significant selection pressure. This is the more remarkable because Nsp proteins are cleaved off large

ORF1a and ORF1ab precursors. In general, and this is as expected, codons NAU are preferred over NAC 

for the pyrimidine ending codons of NAN boxes. The exceptions are, for GAC, protein Nsp5 and protein M; 

for CAC, Nsp10 and ORF7a; for AAC, protein Nsp1 and protein M; and for UAC, proteins Nsp1, Nsp5, Nsp9, 

M, Orf7a and N. 

tRNA-dependent modulation of synonymous codon translation

Consistent with metabolic pressure against CTP and despite their uneven coding length, most of the genes 

of SARS-CoV-2 avoid the usage of the C-ending codons (Figure 5 and Supplementary Figure 3). A similar 

low preference for C-ending codons was also observed for coronaviruses of other species and genera, as 

calculated using the ORF1ab coding region (Supplementary Figure 4). The way tRNAs are utilized as a 

function of the first anticodon (third codon) nucleotide is highly unsymmetrical. For this reason the 

corresponding tRNA position (N34) is usually heavily modified, while specific tRNAs are deciphering 

individual codons (Table 2). 

A G U C

A Gm (uuu 0, uuc
10) Phe I (ucu 9, ucc 0)

Ser

G/Q (uau 0,
uac 13*) Tyr G [C32 mod Ψ]
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A

G
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4
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ncm5U (uca)
4 ter ter

C C (uug)
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7 Trp

A
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U U (cua)
3

ncm5U (cca)
7
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U

G

U Ψ (aua)
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6
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5
C( aag)

15
C (agg)

5

A
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I (gcu 22, gcc
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G/Q (gau 0,
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7
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9

C C (gug)
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4
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8

C (ggg)
5

Table 2. Table of the genetic code with emphasis on decoding by individual tRNAs
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The table displays the distribution of the 415 tRNAs coded in the human genome, among which 28 (noted 
with an asterisk) must splice out an intron as a maturation step: 5 tRNAArg (AGA), 5 tRNALeu (UUG), 5 tRNAIle 
(AUA) and 13 tRNATyr (UAC).

Interestingly, this constraint is easily matched by the tRNA supply of the cell because, contrary to codons 

ending with a purine, which require distinct tRNAs to be decoded, codons ending with a pyrimidine (U or C, 

Y) are mainly decoded by a common tRNA species. In the case of NAY codons, the position 34 of tRNAs is a

G, replaced by queuine (Q), if this metabolite of bacterial origin is present in the host. Availability of Q in the 

environment may not have major consequences for translation of NAC codons, but it may alter the speed 

and accuracy of translation of the NAU codons. G-ending codons are generally rare in the virus, but they do 

not systematically correspond to rare tRNAs (Table 2). Because the anticodon position 34 of the cognate 

tRNAs is either a guanine or a queuine (Q) residue (depending on a specific input from the environment) and

because NAU codons are translated in the absence of Q more slowly and less accurately than NAC codons, 

a pressure towards NAC in a context where C availability seems to be limiting is probably significant. This 

may apply to protein Nsp1 and to a lesser extent to protein M (see Discussion). All transfer RNA (tRNA) 

decoding strategies depend on the type and extent of modifications at position 34 of the tRNA anticodon 

(84). The codon usage bias in SARS-CoV-2 differs from that of average human proteins. In particular it is 

enriched in codons that require tRNAs modified at position N34 of the anticodon with complex modifications 

that are linked to zinc homeostasis (85), an important feature knowing that several of the virus functions are 

Zn2+-dependent, while antiviral protein ZAP is a zinc-finger protein (86). 

A prominent feature is that two A-ending codons, CUA and CGA are generally rare in the virus sequence 

(Figure 5 and Supplementary Figure 3). This is significant, as witnessed by the facts that the cognate 

codons CUU and CGU are particularly frequent (remember that A and U are both abundant in the virus 

genome). CUA is decoded by a specific tRNALeu which is subject to specific regulation (87). In general NNA 

codons are decoded by tRNAs which have heavily modified U34 residues (88). This imposes a burden on 

the translation machinery that may impact the viral development, leading to negative selection. An exception 

is, as reported above, the AGA codon, which is particularly frequent, and this makes protein Nsp1 stand out, 

highlighting further A-ending codon deficiencies (GGA, CUA, CCA, AGA and GUA). The deficiency of A-

ending codons for nucleocapsid protein N, which is very rich in arginine residues and has the expected 

excess of AGA is limited to UUA, AUA, CUA and GUA, which corresponds to a UpA deficiency in mammalian

genomes (89).

While the virus must certainly manage tRNA availability and adapt this resource to its specific codon usage 

bias, it must also curb the innate antiviral immunity which affects the pool of tRNAs directly. In human cells, 

tRNA molecules are synthesised as precursors that are maturated into pre-tRNAs that lack their CCA 

terminal end and need to be further modified (90). Remarkably, stress-induced synthesis of the specific 

protease angiogenin removes these CCA termini, stopping translation (91). Cells can overcome this process 

using tRNA nucleotidyl transferase and CTP and ATP. This is yet another CTP-controlled function that must 

be overcome by the virus. The specificity of angiogenin is modulated by tRNA modifications—this protease 

can also cut the tRNA molecules at sites located in their anticodons (92)—and this may create an uneven 

selection pressure on the various tRNAs used to decode the virus genes.
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DISCUSSION

Coronaviruses must tap into their host resources to build up multiple copies of their RNA genome and of their

envelope. In the present study we have documented the unique role of CTP as a general coordinator of the 

cell’s metabolism. Metabolic availability of this nucleotide drives synthesis of the viral genome, its envelope 

and maintains the translation machinery. This coordinated role makes us understand the presence of the 

general innate immunity antiviral metabolite, 3'-deoxy-3',4'-didehydro-CTP (ddhCTP), produced from CTP by 

the interferon-induced protein viperin (93). Indeed the role of ddhCTP has been somewhat elusive, with 

experiments suggesting interference with RNA replication/transcription (94), while others demonstrated 

interference with lipid metabolism (95), and none, at this time, showing that it should impact tRNA synthesis 

via inhibition of CCAse, a plausible action of this analog of CTP.How did this integrative role of CTP emerge 

during evolution?

Cells do not have to grow during viral infection. Yet, they result from billion years of evolution based on 

growth. In a three-dimensional space—the physical space where material entities such as cells flourish—this

is akin to squaring the circle. Growth of the cytoplasm (three dimensions) must be matched with growth of 

the membrane (two dimensions) and growth of the genome (one dimension). Putting together these three 

facets while sharing a common metabolism cannot be straightforward. Alas, as often in biology, solving a 

clear functional problem results more often than not in ad hoc solutions built on a fairly haphazard collection 

of bits and pieces, with considerable differences between different species. This would then preclude any 

consistent view of the anecdotes invented during evolution and end up in a catalog of solutions, as witnessed

in the millions of articles that tackle biological questions. We could anticipate that the extensive evolutionary 

time scale allowed for a slow progression, exploring an infinite variety of directions.

Yet, we could be lucky and discover a universal set-up that may have some generality or even span the 

whole tree of life. Because the number of the cell’s building blocks is small (mainly nucleotides, amino-acids, 

phospholipids and carbohydrates), natural selection may have recruited a limited number of those 

components to implement homeostatic regulation of the growth of the various cell compartments. From 

detailed analysis of the genome signatures of various organisms and their metabolic constraints, we have 

demonstrated that the biosynthetic and salvage pathways leading to CTP had remarkable consequences in 

organizing core cellular functions. A first account of this discovery is presented in (5) and a detailed view is 

presented in Figure 2. The highly involved set-up of this metabolic facet is significant for the manner and 

process by which a virus invades a cell and subsequently evolves a progressively better adapted progeny. 

Here we explored, using a functional analysis approach, how understanding this exceptional setup of 

intermediary metabolism allowed us to anticipate this particular aspect of the evolution of RNA viruses. The 

main conclusion we reached is that, overall, the coronavirus genomes had a tendency to shed their cytosine

—respectively guanine—complement, essentially replacing it by uracil—and guanine by adenine.

While this tendency constrains the genome as a whole, it is obvious that this will dramatically restrict the 

evolutionary trajectory of the virus, presumably leading to attenuation. However, because a major component

of the antiviral innate immunity results from the production of the CTP analog ddhCTP, losing C residues in 

the genome will transiently alleviate some of the negative pressure created by this antiviral response. This 

may somehow account for the increase in virulence when a fairly GC-rich virus of an animal infects a foreign 
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host. Furthermore, local C-enrichment, resulting from inevitable template misreading, may be stabilized if the

function of the corresponding translated polypeptide contributes to the production of a larger progeny of the 

virus. This makes identification of the functions associated to loci that do not readily comply with the loss of C

(and G) residues as likely candidates important for a stable virus evolutionary potential.

Immediately upon internalization of the virus, its 3’-capped RNA genome begins to be translated into two 

large proteins coded from ORF1a and ORF1ab which contain a protease domain that cuts off 16 accessory 

proteins required for specific functions of the virus (96). Its N-terminal domain, processed into non structural 

protein Nsp1, immediately interferes with translation of the host proteins—it is also inhibiting its own 

translation thus producing homeostatic regulation—by blocking the assembly of ribosomes that are in the 

process of translating host mRNAs and disrupting nuclear-cytoplasmic transport (97). Subsequently a large 

complex forms with all the other Nsp proteins generated from the processed precursor, generating a RNA-

dependent replication/transcription complex (RTC). Remarkably, this complex is tightly linked to key 

elements of the translation machinery. It has been demonstrated that, besides inhibition of interferon 

signalling, Nsp1 binds to the 40S ribosomal subunit (98) and that it further triggers host mRNA degradation 

(99). Nsp1 binds translation factors eIF3, eIF1A, eIF1 and eIF2-tRNAi-GTP (100) and inhibits formation of 

the translation initiation complex—48S complex and formation of active 80S ribosomes (101). Early 

interaction with the host translation machinery will stop translation, triggering host mRNA decay, which both 

produces nucleotide precursors for replication of the virus and hijacks the machinery to perform further 

translation of the viral genome. This implies that the complex between Nsp1 and the translation initiation 

complex is able to discriminate between different classes of mRNAs to allow or prevent their translation. 

Among the factors bound to Nsp1 the enigmatic ATP-dependent enzyme ABCE1 has been identified (100). 

Remarkably, this protein is expected to behave as a “Maxwell’s demon” as do proteins of the EttA family in 

Bacteria, allowing partition of specific mRNA families the expression of which needs to be co-expressed or 

co-repressed (102).

This role of translation is apparent in the codon usage bias of Nsp1, which differs from that of subsequent 

domains cleaved off ORF1a and ORF1ab polypeptides. Here the role of arginine residue codons seems to 

have been submitted to strong selection, with a majority being CGU codons, while AGA and AGG codons—

AGA translation being over-represented in the subsequent polypeptides—are totally absent from the 

sequence. Also, the arginine codon CGG is extremely rare overall in the genome sequence, and its locations

are revealing, likely to be important for the co-translational folding of cognate proteins. This is particularly 

important in SARS-CoV-2 as the insertion generating its furin-like cleavage site in the spike protein that 

mediates cell entry (103–105) is located right at a CGG doublet. Besides protein Nsp1, we demonstrated 

that the nucleocapsid protein N had also a general distribution of the codon usage bias that differed from that

of the bulk of proteins coded from the ORF1a and ORF1ab regions. This is likely to be due to the fact that 

the corresponding transcripts also code for another protein in a different reading frame, protein ORF9b (106),

and we can assume that this observations substantiates that this protein has indeed an important role in the 

biology of the virus. Remarkably, this also makes that the codon and tRNA usage bias of protein N 

resembles that of the human host. Whether this is meaningful should be further explored.
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PERSPECTIVES

Here, we reviewed the role of a specific intracellular metabolic pressure that must constrain the evolution of 

the genome sequence of RNA viruses, with emphasis on SARS-CoV-2 and in the context of the entire 

coronavirus family. Several studies have noticed the cytosine deficiency in the genome of evolving 

coronaviruses, with concomitant deficiency in the position of codons, but these observations were ascribed 

to deamination of cytosine resulting from the action of the host APOBEC system (107) or to methylation of 

CpG dinucleotides (108) as driving forces for evolution. By contrast, our working hypothesis is that the 

availability of CTP (and hence of cytosine-based precursors) is a dominating driving force in the way the 

virus evolves a new progeny. We are well aware that, due to the small number of samples and fairly short life

time (as compared to usual evolutionary trajectory of a virus species), sequence analyses would provide only

a limited view of sequence evolution and should be used more as a “rule of thumb” than a view based on 

trustworthy statistics. However we believe that, in view of the urgent situation we are facing, it is important to 

communicate our observations while relating them to previously unrecognised pressure that must have 

considerable importance in the evolution of viruses and the metabolic backdrop of its biology in the host cell. 

In this respect it seems worthwhile to explore whether unappreciated functions coded by viruses will be 

involved in controlling CTP availability.

MATERIAL AND METHODS

Data preparation

Dataset of reference coronaviruses: viral genomes were downloaded from GenBank 

(https://www.ncbi.nlm.nih.gov/genbank/) and GISAID (https://www.gisaid.org/). Representative coronaviruses

of different species were selected from complete genomes, with reference genomes recommended by the 

Coronaviridae Study Group of the International Committee on Taxonomy of Viruses 

(https://talk.ictvonline.org/) and NCBI retained preferentially. For viruses containing isolates from different 

hosts, at least one representative strain from each host was kept. The genomes were aligned using MAFFT 

v7.427 (109) and manually checked with BioEdit. Alignment of full genomic sequences were used for 

phylogeny reconstruction, while the coding regions for ORF1ab were extracted for codon usage analysis.

Dataset of SARS-CoV-2: a total of 17037 SARS-CoV-2 related sequences were available from GISAID on 

May 6th, 2020 (110). Only SARS-CoV-2 genomes isolated from human, with a full length over 27,000 bp, no 

ambiguous sites and detailed collection date information were used for alignment. For duplicate sequences, 

only the earliest isolate was kept. Sequences for 26 coding regions, including Nsp1, Nsp2, Nsp3, Nsp4, 

Nsp5, Nsp6, Nsp7, Nsp8, Nsp9, Nsp10, Nsp11, Nsp12, Nsp13, Nsp14, Nsp15, Nsp16, S, ORF3a, E, M, 

ORF6, ORF7a, ORF7b, ORF8, N and ORF10 were extracted for each strain, using NC_045512 as 

reference. The coding sequences were checked manually to exclude those with abnormal mutations and 

early stop codons. A total of 4,110 strains with all 26 coding regions of complete ORF length were retained. 

After further deduplication based on the concatenated sequences comprised of the 26 ORFs, the final 

dataset contained a total of 2,574 unique SARS-CoV-2 isolates.
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Phylogeny reconstruction

Phylogenetic tree of the 89 representative coronaviruses was inferred using the Maximum Likelihood (ML) 

method implemented in IQ-TREE v1.6.12 with the GTR+F+I+G4 substitution model determined by 

ModelFinder (111–113). Ultra-fast bootstrap support values were calculated from 1,000 pseudo-replicate 

trees (112). Visualization of phylogenies were conducted with ggtree package (114).

Gap-based alignment

The full alignment of the 89 reference strains was used to generate a tree, using FastTree 2.1.10 (115) (with 

gamma distribution and the nucleotide option on – namely with the command options -gamma -nt), on the 

NGPhylogeny.fr server (116). The Jukes-Cantor model with balanced support Shimodaira-Hasegawa test 

was selected (117). Total branch length was: 14.267.

Furthermore, a gap-based alignment was created, using gaps as follows: all dinucleotides were replaced 

with the ‘undefined’ symbol ‘x’ and the ‘dummy’ symbols (W for 3, Y for 6 and F for 9 consecutive gaps and 

the V symbol for all single gaps), leaving only single-nucleotides in-between gaps as anchor points (7% of 

total). The encoding in gaps of 3/6/9 are use to emulate the importance of potential codon gaps (reflected in 

the BLOSUM45 matrix). Total branch length was: 1.673.

Gap-based genome-based phylogenetic reconstruction for this group is based on the fact that, as also 

mentioned recently elsewhere (118), these viruses undergo significant recombination and a large number of 

nucleotide positions achieve saturation thus confounding phylogenetic signal. Tree visualization was 

facilitated by IcyTree (119)

Base content calculation

Base content was calculated by dividing the occurrence of each base by the total length of the sequence. 

Genomic base contents of representative coronaviruses were calculated with the full viral genome 

sequences. For the base content dynamic analysis of SARS-CoV-2, base compositions were calculated 

using the 2754 unique sequences concatenated by 26 ORFs.

Codon usage analysis

Codon usage analysis was conducted based on the ORF1ab region of representative coronaviruses and the 
26 individual ORFs of SARS-CoV-2 strains. Relative synonymous codon usage (RSCU) value was defined 
as the ratio of the observed codon usage to the expected value (120). Codons with an RSCU value of 0, 
0~0.6, 0.6~1.6 or > 1.6 were regarded as not-used, under-represented, normally-used, or over-represented  
(121). RSCUs for the 120,426 human coding regions were determined based on the Homo sapiens codon 
usage table retrieved on 2020 June 14th from TissueCoCoPUTs (122).
Statistical analysis and plots

Statistical test, linear regression and data visualization were all conducted in R. Kruskal-Wallis test by rank 

and Wilcoxon rank sum test for pairwise comparisons were applied as appropriate. P values are labeled as 

follows: < 0.0001, ****; 0.0001 to 0.001, ***; 0.001 to 0.01, **; 0.01 to 0.05, *; ≥ 0.05, not labeled. p<0.05 was 

considered as significant.
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FIGURE CAPTIONS

Figure 1. Energy-driven pyrimidine-based nucleic acid metabolism

ATP is the general donor in the biosynthesis of pyrimidines. CDP, required as a precursor of dCTP synthesis 

is produced by RNA turnover via hydrolysis or phosphorolysis (red arrows). RNA and DNA synthesis is driven

by pyrophosphate hydrolysis (green arrows indicate irreversible reactions). dTTP is results from a 

pyrophosphate-driven reaction producing dUMP, and is finely tuned by thymidylate kinase, which makes its 

immediate precursor dTDP.

Figure 2. Synthesis and salvage of pyrimidine nucleotides

Synthesis of UMP begins with orotate phosphoribosyltransferase followed by decarboxylation (brown 

arrows). The anabolic pathway ends up with UTP and CTP (green arrows). Salvage of CTP stems from RNA 

metabolism (red arrows) and lipid metabolism (purple arrows). Degradation and scavenging of cytosine-

based nucleotides goes through uracil-based scavenging and return to the CTP biosynthetic pathway, with 

cytosine deamination of intermediates as critical steps. Uracil phosphoribosyltransferase matches the role of 

the orotate counterpart in the ultimate salvage of the base (blue arrow). No counterpart has been yet 

identified, to our knowledge (see text), for scavenging cytosine (crossed out light blue arrow). Distribution of 

relevant enzymes in H. sapiens and model bacteria is illustrated in Table 1.
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Figure 3: Dynamic of base composition at the coding regions of SARS-CoV-2. 

The base composition of the coding regions concatenated by 26 ORFs of SARS-CoV-2 is displayed. Each 

dot represents one sequence. The calculation was based on 2,574 unique SARS-CoV-2 strains isolated from

December 24th, 2010 to April 17th, 2020.

Figure 4. Alignment-derived distances of the 89 reference coronavirus genomes represented by 
cladograms

A genome-based tree is generated based on the full genome sequence alignment of the group (panel A) and 

a gap-based tree is created, based on insertions and deletions (indels) only (see Methods). The seven 

known human coronavirus strains are highlighted by a red colour for the corresponding branches. A panel on

the right indicates the four coronavirus groups; in panel B, the two incongruent sub-groups are shown by the 

same colour code with reduced opacity (alpha and beta sub-groups). For details, please see text.

Figure 5. Codon usage of SARS-CoV-2 ORFs based on the third codon position compared to human 
coding regions

The 20 SARS-CoV-2 ORFs with a length of over 300 nucleotides were submitted to RSCU calculation. The 

codon usage for 120,426 human coding regions was also displayed to facilitate comparison. Codons are 

displayed with the first letter denoting the amino acid and the three letters following a dot representing the 

codon. The four panels separate the codons according to the nucleotide located at the third codon position. 

Codons that are not used (RSCU=0), under-represented (RSCU<0.6), normally utilized (RSCU ranges 

between 0.6-1.6), or over-represented (RSCU>1.6) are labeled in gray, blue, ice cold and yellow, 

respectively.

SUPPLEMENTARY MATERIAL

Supplementary Table S1. List of representative coronaviruses for phylogeny reconstruction and 
codon usage analysis with ORF1ab

Supplementary Table S2. Acknowledgement Table for the 2,574 SARS-CoV-2 isolates retrieved from 
GISAID (www.gisaid.org)

Supplementary Figure 1: Phylogeny and nucleotide composition of representative coronaviruses. 
The Maximum Likelihood phylogeny (left panel) was reconstructed based on the complete genomic 

sequences. Bootstrap values over 70 are displayed on nodes. Coronaviruses that infects human are 

highlighted by a red dot at tip. Genus of each strain is indicated by the prefix of the taxa name. The 

nucleotide composition (right panel) was calculated based on the full genome sequences. 

Supplementary Figure 2: Correlation between base content of SARS-CoV-2 coding regions. The 

calculation was based on 2,574 unique SARS-CoV-2 coding sequences concatenated by 26 ORFs.

Supplementary Figure 3: Details of the codon usage bias of SARS-CoV-2 ORFS viewed from the 
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human tRNA complement. The X-axis displays codons sorted by amino acid and then by tRNA usage. The 

Y-axis indicates the mean RSCU value determined for each ORF or the human total coding sequences. 

Codons using the same tRNA are labeled with the same color.

Supplementary Figure 4: Phylogeny and codon usage of representative coronaviruses
A Maximum Likelihood phylogeny (left panel) was reconstructed based on complete genomic sequences of 

coronaviruses. Bootstrap values over 70 are displayed on nodes. Coronaviruses that infect human are 

highlighted by a red dot. The genus of each strain is indicated by the prefix of the taxon name. The codon 

usage (right panel) was calculated based on the ORF1ab region as recorded at GenBank, except for those 

with incomplete annotations. The X-axis displays codons sorted by the third position, with the first letter 

denoting the amino acid and the three letters suffix following a dot representing the codon. Codons that are 

under-represented (RSCU<0.6), normally utilized (RSCU ranges between 0.6-1.6), or over-represented 

(RSCU>1.6) are labeled in blue, ice cold and yellow, respectively.
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