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Abstract: Gene co-expression networks can be constructed in multiple different ways, both in the use
of different measures of co-expression, and in the thresholds applied to the calculated co-expression
values, from any given dataset. It is often not clear which co-expression network construction method
should be preferred. COGENT provides a set of tools designed to aid the choice of network construction
method without the need for any external validation data.
Availability and implementation: https://github.com/lbozhilova/COGENT

1 Introduction

Gene expression data is a powerful resource for understanding genetic function under different condi-
tions. A common way of exploring this data is through gene co-expression networks (Lee et al., 2004).
In these networks genes are represented by nodes and highly co-expressed gene pairs are connected by
edges. Such networks have been used in many ways, including for gene function prediction and the
identification of disease- or tissue-relevant gene modules (van Dam et al., 2017).

Gene expression data typically takes the form of a matrix, in which rows correspond to genes and
columns correspond to samples. Network construction commonly consists of three steps—the data
is pre-processed, a measure of co-expression is calculated for every pair of genes, and a score cut-off
is applied. Different approaches to data pre-processing and normalisation exist (Park et al., 2003;
Abbas-Aghababazadeh et al., 2018). Further, after normalisation co-expression can be calculated
in a number of different ways—for example, via a correlation coefficient or mutual information. A
score cut-off is then usually imposed in order to identify gene pairs which are highly co-expressed.
Alternatively, weighted networks can be analysed, in which edge weights correspond to levels of co-
expression (Langfelder and Horvath, 2008).

There are many available methods for network construction which can be applied to the same data
set, and which then lead to different networks. Enrichment analysis or comparison to orthogonal data,
such as protein interaction data, is commonly used for network selection and validation. However, for
many species and datasets poor or non-existent functional annotation makes this type of validation
difficult. It is therefore often not clear which of the available network construction methods should be
prioritised (De Smet and Marchal, 2010).

Here we introduce COGENT (COnsistency of Gene Expression NeTworks), an R package designed
to aid the choice of a network construction pipeline without the need for annotation or external data.
COGENT can be used to choose between competing co-expression measures, as well as to inform score
cut-off choice. While designed for gene expression data, COGENT can be applied to other cases where
network construction relies on similarity profiling, for example microbiome or synthetic lethality data.

2 Software description

2.1 Protocol schematic

Consistent co-occurrence of two gene products in the cell points towards a functional relationship be-
tween the genes. Gene product abundance, as well as co-occurrence, is a continuous-time phenomenon,
which is experimentally observed at discrete time points or samples. The construction of a gene co-
expression network can therefore be thought of as an estimation problem—we aim to infer general
co-expression patterns from a limited set of data points. One way of investigating the success of such
a procedure is through resampling. Networks constructed from a subset of all available samples will be
noisier than the network constructed from the full dataset. However, they should still resemble each
other: if subsetting the data results in networks with little to no overlap, then the network construction
procedure may be too sensitive to noise in the data.
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Figure 1: Sample output for data obtained from the Expression Atlas (accession number E-MTAB-5174,
Petryszak et al., 2015). See SI for details. (A) Global similarity indicates that Pearson correlation coeffi-
cients should be preferred over Kendall coefficients for measuring co-expression. (B) Consistency of the network
degree sequences also indicates Pearson should be preferred. (C) The optimal edge density for Pearson networks
is between 0.23 and 0.31.

COGENT evaluates network construction methods through iterative resampling. At each step, the
gene expression samples are split into two possibly overlapping sets of equal size. The same network
construction function f(·) is applied to both sets in order to obtain two gene co-expression networks
G1 = (V,E1) and G2 = (V,E2). COGENT then calculates several measures of consistency between
these two networks.

The entire procedure is repeated multiple times in order to obtain robust results. Network construc-
tion methods which result in highly similar pairs of networks G1 ≈ G2 are considered to be consistent.
When two or more competing methods are considered, the method exhibiting higher internal consis-
tency should be preferred.

2.2 Edge set consistency

Consistency in COGENT is measured through a network comparison step at each iteration. The two
networks G1 and G2 are considered to be similar if their edge sets are similar (E1 ≈ E2). We measure
agreement between E1 and E2 using a (weighted) Jaccard index to produce two measures of edge set
consistency—global and local similarity (Kao and Porter, 2018).

Since global similarity scales with network density, a density adjustment is required when methods
resulting in different network densities are compared. This is particularly important when choosing a
score cut-off. Density adjustment in COGENT is carried out through comparison to random networks
generated using a configuration model.

2

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 22, 2020. ; https://doi.org/10.1101/2020.06.21.163535doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.21.163535
http://creativecommons.org/licenses/by/4.0/


2.3 Node metric consistency

Density-independent network comparison can also be performed by calculating a node metric such as
degree or betweenness for all nodes in each of the two networks, and then comparing the obtained
metric values. If the aim of downstream network analysis is, for example, to identify genes with many
co-expression partners, the degree is a natural node metric to use.

At each COGENT iteration, a node metric set by the user can be applied to G1 and G2, resulting
in two node metric vectors d1 and d2, respectively. The two can be compared in three different ways:
via a correlation coefficient, rank k-similarity (Trajanovski et al., 2013; Bozhilova et al., 2019), and
Euclidean distance.

3 Application

Global and local similarity and adjusted edge consistency, as well as node metric comparisons can all
be used to evaluate network consistency. By iteratively resampling the data and measuring network
consistency, COGENT can be used to prioritise different network construction pipelines, as well as to
inform co-expression cut-offs without the need for external validation data. In Figure 1 we illustrate
how COGENT can be used to select between Pearson and Kendall correlation coefficients for measuring
co-expression, as well as how to select the score cut-off. A full worked example can be found in the SI.
COGENT has also been used to assess signed distance correlation as a measure of gene co-expression
(Pardo-Diaz et al., 2020).

While originally developed for gene expression data, COGENT can also be used for the inspection
of other data types. For example, it can be applied to microbiome data in order to identify symbiotic
organisms, or to synthetic lethality data in order to identify genetic interactions with high confidence.
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