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Abstract 53 

Stratified medicine requires discretisation of disease populations for targeted treatments. We 54 
have developed and applied a discrete Morse theory clustering algorithm to a Topological Data 55 
Analysis (TDA) network model of 498 gene expression profiles of peripheral blood from 56 
asthma and healthy participants. The Morse clustering algorithm defined nine clusters, BC1-9, 57 
representing molecular phenotypes with discrete phenotypes including Type-1, 2 & 17 58 
cytokine inflammatory pathways. The TDA network model and clusters were also 59 
characterised by activity of glucocorticoid receptor signalling associated with different 60 
expression profiles of glucocorticoid receptor (GR), according to microarray probesets targeted 61 
to the start or end of the GR mRNA’s 3’ UTR; suggesting differential GR mRNA processing 62 
as a possible driver of asthma phenotypes including steroid insensitivity.  63 

Key words: asthma, topological data analysis, discrete Morse theory, inflammation, cytokines 64 

 65 

Introduction 66 

Asthma is ranked 16th among the leading causes of years lived with disability and affects 339 67 
million people worldwide. Asthma is characterised by an expiratory airflow limitation, 68 
typically reported as forced expiratory volume in one second (FEV1). Treated is primarily with 69 
β2-agonists which relax airway smooth muscle, and corticosteroids which reduce underlying 70 
inflammation. Drugs have also been developed to target specific inflammatory pathways such 71 
as the T2 biologics, which reduce asthma exacerbation frequency by around 50%1,2. Improved 72 
understanding of asthma disease progression and molecular sub-phenotypes should improve 73 
the use and development of new targeted therapeutics. In this study, we used data from the U-74 
BIOPRED (Unbiased BIOmarkers for the Prediction of respiratory disease outcomes) project, 75 
the largest multi-centre asthma programme to date, involving 20 academic institutions, 11 76 
pharmaceutical companies and patient groups and charities, with the aim to improve 77 
understanding of the complex molecular mechanisms underpinning asthma and identify useful 78 
biomarkers3–10.  79 

Asthma is characterized by variability in symptoms and treatment response. Around half of 80 
asthma is thought to arise from T-2 immunity, driven by IL4, IL5 and IL13 cytokine associated 81 
with recruitment of  eosinophils into airways11. Additionally, high sputum neutrophil counts 82 
are associated with reduced post-bronchodilator FEV112. Corticosteroids are routinely used to 83 
reduce airway inflammation in asthma by activating glucocorticoid receptor (GR) and 84 
suppressing NF-κB activity which regulates expression of pro-inflammatory cytokines and 85 
cyclo-oxygenase 2 (COX2) as well as inducible nitric oxide synthase (iNOS). However, 86 
patients with severe asthma, particularly T-2-low and T-17-high asthma13, respond poorly to 87 
corticosteroids, but it is not known why. The relative expression of GR-α and GR-β protein 88 
isoforms, resulting from alternative splicing, influences steroid insensitivity, as GR-β does not 89 
bind GC and inhibits GR-α activity by forming a heterodimer14. GR protein expression is 90 
further regulated by ARE-mediated degradation of GR mRNA targeting the AU-rich elements 91 
within the 3’ UTR15. 92 

Topological Data Analysis (TDA) is an unsupervised machine learning tool suitable for 93 
analysis of high-dimensional datasets16,17,18. Application of TDA via the Mapper algorithm 94 
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generates a TDA network model, a compressed representation of high-dimensional data with 95 
major features embedded where similar data points are grouped into nodes, and nodes with 96 
common data points are connected by edges. We have previously reported an analysis of 97 
differentially expressed genes (DEGs) from gene expression profiling of 498 gene expression 98 
profiles of peripheral blood from participants in the U-BIOPRED (Unbiased Biomarkers in 99 
Prediction of Respiratory Disease Outcomes) study10. Unbiased hierarchical clustering of 100 
DEGs identified two sub-groups, one enriched for patients with severe asthma, use of oral 101 
corticosteroids and blood neutrophilia, and a second cluster composed of mixed-severity 102 
asthmatics and healthy individuals. We generated a Topological Data Analysis (TDA) network 103 
model of the same gene expression data using the Ayasdi TDA software platform and found 104 
these two clusters represented by different regions of the TDA network model. In this study, 105 
we investigated the continuous variation of clinical and molecular biology in the TDA network 106 
model representing the shape of asthma disease pathology; shedding light on possible routes 107 
of disease progression. 108 

Stratification of disease allows targeted treatment for improved patient outcome, so we 109 
developed and applied a Morse-clustering algorithm to discretise the continuous TDA network 110 
model of patients into clusters representing different molecular phenotypes of asthma sub-111 
types. Clusters within TDA networks have typically been delineated by eye18,19,20, without 112 
algorithmic reproducibility and few studies have used the standard network clustering 113 
algorithm, community clustering, via the Ayasdi Python SDK. The community clustering 114 
algorithm is limited as it only analyses connectivity between nodes without considering the 115 
density of data points clustered within nodes, an important dimension in TDA network models. 116 
This 3rd dimension in the TDA network can be visualised by colouring (Fig. 3A & B) and the 117 
TDA network can, therefore, be considered as a connected 3D map of data points clustered 118 
around peaks that represent conserved sub-types or phenotypes of major features, which in the 119 
study of patient gene expression reflect biological pathway modulations underlying disease 120 
phenotypes. Discrete Morse theory relates the flow (gradients) on a discrete object, such as a 121 
network, with its topology21. Here we apply Morse theory to measure the gradients and 122 
connected peaks within a TDA network, thus delineating clusters according to key features of 123 
the dataset. We have developed a Python script to apply Morse-based clustering of TDA 124 
networks in the open source Mapper TDA software or through the Ayasdi Python software 125 
development kit (SDK) which we believe will add value to future analyses. This Morse-126 
clustering algorithm identified nine clusters, BC1-9, representing discrete molecular 127 
phenotypes characterised by differences in circulating immune cell populations, activation of 128 
T-1, -2 & -17 cytokine inflammatory pathways, and the activity of glucocorticoid receptor 129 
signalling and novel differences in glucocorticoid receptor mRNA isoforms.  130 

 131 

 132 

 133 

 134 

Results 135 
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The TDA network model of peripheral blood gene expression from 498 participants in the U-136 
BIOPRED asthma study consisted of a hub with an increased prevalence of healthy participants 137 
and connected flares with increased prevalence of severe asthma and decreased FEV1, 138 
reflecting multiple interconnected possible routes of disease progression (Fig. 1). Regions of 139 
the TDA network with highest eosinophil counts (Fig. 1G) had high prevalence of severe 140 
asthma (Fig. 1E) and were associated with high COX2, NF-κB, IL5, IL13 (Fig. 1J, N, O, P), 141 
and low IFN-γ and GR mRNA (Fig. 1T, Q, R). There was a distinct pattern across the TDA 142 
network model of GR mRNA expression according to probesets targeting the start of the 3’ 143 
UTR (probesets 201865_x_at and 211671_s_at, illustrated as Δx NR3C1 mRNA in Fig. 1R) 144 
and a different pattern according to probesets targeting towards the end of the 3’ UTR 145 
(probesets 201866_s_at and 216321_s_at, illustrated as FL NR3C1 mRNA in Fig. 1Q). The 146 
binding locations of the Affymetrix NR3C1 probes and corresponding NCBI RefSeq sequences 147 
are shown mapped onto the Human genome in figure 2. We hypothesized that the Δx NR3C1 148 
mRNA has a truncated 3’ UTR compared to the FL NR3C1; meaning Δx NR3C1 has fewer 149 
AU-rich elements (AREs), and is missing a miR 486 target sequence, compared to the FL 150 
NR3C1 mRNA. The TDA network was polarised by FL NR3C1 (Fig. 1Q) and associated GR-151 
responsive genes, COX2, ANXA1 and IFNγ (Fig. 1J, L, T). Probesets targeting the start of the 152 
3’ UTR of GR mRNA indicated a different pattern of expression across the TDA model (Fig. 153 
1R) and corresponded to OCS dose (Fig. 1I) and GR-responsive gene expression, ZPF36, 154 
GILZ, FKBP5 (Fig. 1K, M, S).  155 

To define groups of people with similar gene expression signatures from the TDA network 156 
model, we developed and applied a Morse-clustering algorithm. The Morse-clustering 157 
algorithm identified 9 clusters which we termed BC1 to 9. The reporter operating characteristic 158 
(ROC) area under the curve (AUC) for the 9 clusters ranged from 0.76 to 0.97, representing 159 
very good to excellent prediction of cluster classification in the test set based on a logistic 160 
regression model identifying predictors of the cluster in the training set (Fig. 4). BC1-9 were 161 
found to have activation of cytokine-mediated inflammatory pathways consistent with their 162 
distribution on the TDA network model with trends identified in pathway and upstream 163 
regulator activation across the clusters (Table1 & 2). BC1 was predominantly severe 164 
asthmatics, with reduced lung function, represented by low FEV1. BC1 also had a T-17 165 
signature of gene expression22, with increased expression of IL17A, IL21 and IL22 (q = 1.31E-166 
5, 7.99E-4, 1.71E-3). BC1 had decreased expression of β-2 adrenergic receptor (ADRB2) mRNA 167 
the protein product of which is involved in smooth muscle relaxation and bronchodilatation. 168 
Cystatin D (CST5) was predicted as the most activated upstream regulator of gene expression 169 
in BC1 but was also highly activated in BC9 and 8 (Table 2). 170 

Discussion 171 

The TDA network model identified familiar phenotypes of asthma and gave insight into 172 
potential routes of disease progression. For example, the furthest eosinophilic region from the 173 
‘healthy hub’ was associated with high T-17 markers, TGFβ, IL17A, IL21, IL22 (Fig. 1D, V, 174 
W, X) and increased neutrophilia (Fig. 1H). The T-17 region was connected to the ‘healthy 175 
hub’ via the solely T-2 high region, suggesting disease progression from healthy to T-17 high 176 
via an only T-2-high phenotype. Differential expression of FL NR3C1 and Δx NR3C1 and 177 
corresponding expression patterns of GR-responsive genes suggests different functional 178 
responses to steroids across the TDA network model, associated with differential expression 179 
of GR mRNA isoforms. 180 
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The Morse-clustering algorithm identified 9 clusters, however, clusters BC4, 6 and 8 were 181 
small (n=35, 37, 33, respectively), with correspondingly low representation in the training and 182 
test sets which resulted in ROC curves whose shapes were not smooth and may have 183 
represented overfitting. The identified clusters represented groups of patients with significant 184 
differences in the activation of pathways related to inflammation, including pathways 185 
associated with glucocorticoid receptor (GR) signalling, Type (T)-2, T-1 and T-17 186 
inflammatory responses. Transglutaminase (TGM2), a marker of T-2 inflammation23, was 187 
predicted in this study as the most activated upstream regulator of gene expression in BC2, 3, 188 
7 and 8 (Table 2). It is known to catalyse the serotonin transamidation of glutamines 189 
(serotonylation), which regulates cell signalling and actin polymerization. BC2 and 3 were 190 
characterised by high TGM2-mediated gene expression, including Toll-like receptors (TLR) 191 
and iNOS signalling. TGM2 is also implicated in recruitment of eosinophils into asthmatic 192 
airways11, which was reflected in the highest sputum eosinophil count in BC2, but high sputum 193 
eosinophils counts were not seen in BC3 (Table 3). Melatonin, the end product of the serotonin 194 
pathway is a free radical scavenger, acting to suppress inflammation24. Pathways associated 195 
with tryptophan metabolism were enriched in cluster BC1; serotonin degradation was the most 196 
activated pathway identified by IPA (Table 1). Serotonin levels are known to be implicated in 197 
asthma pathology, and serum serotonin levels tend to be increased in patients with active 198 
asthma25. The increased activation of melatonin degradation in BC1 may contribute to the 199 
severe asthma phenotype. 200 

T-cell acute lymphocytic leukemia protein 1 (TAL1) was identified as the top upstream 201 
regulator of gene expression in BC9, together with miR-486, which has previously been 202 
identified as a potential marker of childhood asthma in plasma26 and a promoter of NF-κB 203 
activity27. Our analysis predicted CD24 as the most activated upstream regulator of gene 204 
expression in BC6, 4, and 5. CD24 can reflect activity of one of its key transcription factors, 205 
c-myc, whose expression is inhibited by CST5. BC5 had high expression of IFN-γ mRNA (Fig. 206 
1T), indicative of a T-1 response; however, IFN-γ-mediated gene expression was not 207 
upregulated in this group (Table 3).  208 

The shape of the TDA network and patterns of gene expression representative of differentially 209 
activated pathways reflected both corticosteroids use and expression of GR mRNA. 210 
Clusters BC1-3, mostly representing those of the Severe Asthma enriched cluster previously 211 
reported10 (Fig. 1C), had the highest percentages of patients on OCS (Table 3). These clusters 212 
were also characterised by enrichment for patients on high doses of OCS, but other clusters 213 
were also enriched for patients with high OCS dose; particularly cluster BC5 (Fig. 1I). We 214 
observed common patterns of gene expression under the control of glucocorticoid response 215 
elements (GRE) that were differentially expressed between clusters, although the patterns were 216 
not necessarily consistent between GRE genes. This suggests different types of steroid response 217 
between the clusters. We did not find GR-signalling as a top upstream regulator of gene 218 
expression using IPA, because there are two signatures of GR-signalling which are alternately 219 
up and down regulated in the TDA structure. The expression of GRE genes, glucocorticoid-220 
induced leucine zipper (GILZ), FK506-binding protein 5 (FKBP5) and Tristetraprolin (ZFP36) 221 
(Fig. 1M, S and K) were similarly distributed across Morse-clusters high in neutrophilic 222 
clusters of the top of the TDA network, BC1, 2, 3 & 4 and higher in the predominantly healthy 223 
cluster, BC7. However, the expression of Annexin A1, a classical indicator of steroid response, 224 
was very differently distributed between clusters (Fig. 1L) and was significantly higher in BC5 225 
when compared to the other patients (q = 2.3E-10). Serotonin degradation, which is 226 
interdependent on GR signalling, was identified as the top canonical pathway enriched in BC1 227 
(Table 1). In clusters BC1-3, there was increased expression of the RNA-binding protein, 228 
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tristetraprolin (TTP), a negative regulator of mRNA half-life, binding to AREs in the 3’ UTR 229 
of target genes (Fig. 1K). Since the expression of TTP is regulated by a GRE site, GR-signalling 230 
causes increased ARE-mediated mRNA decay.  231 

BC1 had low expression of short (Δx NR3C1) and long (FL NR3C1) GR mRNA and low 232 
expression of steroid-inducible anti-inflammatory mRNAs ANXA1 (Fig. 1L), SOCS1 and high 233 
expression of pro-inflammatory COX genes (Fig. 1J). We detected mixed levels of GILZ and 234 
FKBP5 (Fig. 1M & S). There was moderate expression of DUSP1 mRNA, another marker of 235 
GR activity. In the clusters on the left side of the TDA network there was high expression of 236 
NUPR1 which increases expression of p38MAPK, a key regulator of asthma pathogenesis28. 237 
Additionally, NUPR1 is known to activate phosphatidylinositol 3-kinases (PI3K)29 which 238 
activate phosphoinositide pathways; inositol-related metabolism was highly upregulated in 239 
BC5 and 6, where the expression of phosphoinositol (PI) phosphatases was increased relative 240 
to health. Conversely, the expression of PI phosphatases was decreased when compared to 241 
health in BC8 and 9. Clusters BC5 and 6 showed increased expression of the enzyme which 242 
catalyses the dephosphorylation of 1D-myo-inositol (3)-monophosphate to myo-inositol, 243 
inositol-1 (or 4)-monophosphatase, when compared to health, whereas BC1, 7, 8 and 9 had 244 
decreased expression relative to health. It has previously been reported that myo-inositol is 245 
increased in animal asthma models following steroid treatment30, suggesting differential 246 
steroid responses between these clusters. In contrast to BC1, BC5 and 6 had gene expression 247 
profiles characteristic of low GR responses, as indicated by activation of CD24-mediated gene 248 
expression and inactivation of CST5-mediated gene expression. CST5 is activated by vitamin 249 
D receptor (VDR) expression31, whose expression is regulated by steroid-induced 250 
GR signalling32 (Fig. 5). The enriched expression of inositol pathways in BC5 and 6 provided 251 
further support of a low GR response. Contraction of airway smooth muscle is initiated by 252 
increased cytosolic calcium ions (Ca2+), so this may, in part, explain the reduced FEV1 seen in 253 
these clusters.  254 

We propose that Morse clustering can be applied to TDA networks of patient ‘omics data to 255 
identify sub-phenotypes of disease, thereby offering new insights into disease mechanisms and 256 
stratification of patients for more targeted drug development based on molecular mechanisms.  257 

 258 

Materials and Methods 259 

Study population 260 

U-BIOPRED is a multi-centre prospective cohort study, involving 16 clinical centres in 11 261 
European countries. Blood samples were analysed from 498 study participants; 246 non-262 
smoking severe asthmatics, 88 smoking severe asthmatics, 77 non-smoking mild/moderate 263 
asthmatics and 87 non-smoking non-asthmatic individuals. It is registered on 264 
ClinicalTrials.gov (identifier: NCT01982162). 265 

Ethics Statement 266 

The study was conducted in accordance with the principles expressed in the Declaration of 267 
Helsinki. It was approved by the Institutional Review Boards of all the participating 268 
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institutions; Academic Medical Centre (AMC), Amsterdam; University Hospital Southampton 269 
NHS Trust; South Manchester Healthcare Trust; Protisvalor Méditerranée SAS; Karolinska 270 
University Hospital; Nottingham University Hospital; NIHR-Wellcome Trust Clinical 271 
Research Facility; and adhered to the standards set by the International Conference on 272 
Harmonization and Good Clinical Practice. All participants provided written informed consent.  273 

Microarray Analysis 274 

RNA was isolated using the PAXgene Blood RNA kit (Qiagen, Valencia, CA) with on-column 275 
DNase treatment (Qiagen). RNA integrity was assessed using a Bioanalyzer 2100 (Agilent 276 
Technologies, Santa Clara, CA). Samples with RIN≥6 were processed for microarray as 277 
described (19) and hybridized onto Affymetrix HT HG-U133PM+ arrays (Affymetrix, Santa 278 
Clara, CA) using a GeneTitanR according to Affymetrix technical protocols. The microarray 279 
data are deposited in GEO under GSE69683. 280 

Training and Test Data Analysis Sets 281 

The 498 samples available for analysis were randomized into training (n = 328) and validation 282 
sets (n = 170).  283 

Topological Data Analysis 284 

Generating TDA graphs in Ayasdi Platform 285 

The transcriptomics data were clustered by topological data analysis (TDA) as previously 286 
reported10, using Ayasdi Platform with a norm correlation metric and two Neighbourhood 287 
lenses. Correlation was measured using normalised values for the expression of each probeset 288 
(Metric: norm correlation). The space for clustering was generated using 100 bins in each 289 
dimension according to t-SNE -calculated vectors and 60% overlap between neighbouring bins 290 
(Fig 3A): two neighbourhood lenses, resolution = 100; gain, ×6). 291 

Clustering of high patient density regions of TDA graphs 292 

Using the Ayasdi TDA Platform, the magnitude of nodes was represented by a colour heatmap 293 
where the colour spectrum from blue to red represent the range from the lowest to highest 294 
levels. Discrete Morse theory was applied to cluster TDA nodes according to patient density. 295 
Data from each node’s neighbours were also used in calculating the annotation function, giving 296 
context to where a node lies within the broader topology, effectively ‘smoothing’ the data, 297 
decreasing noise and allowing identification of the most prominent peaks. To each node we 298 
assigned the annotation 𝑓𝑓:𝑉𝑉 → ℜ2where for each node 𝐶𝐶𝑖𝑖we have 299 

𝑓𝑓(𝐶𝐶𝑖𝑖) = �𝑠𝑠(𝐶𝐶𝑖𝑖), �𝑠𝑠(𝐶𝐶𝑖𝑖) + ∑𝑠𝑠 �𝐶𝐶𝑗𝑗�� ∗ 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝐶𝐶𝑖𝑖)�, 300 
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and 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝐶𝐶𝑖𝑖) is the average correlation among all the patient in cluster-node 𝐶𝐶𝑖𝑖. Differently 301 
from other clustering algorithms, as k-nearest neighbours, we do not assume that cluster-nodes 302 
with similar value with respect to 𝑓𝑓 are similar, neither we expect that 𝑓𝑓 is a kernel-based 303 
function which fits the data. Our approach instead assumes that 𝑓𝑓gives the cluster-nodes a 304 
hierarchical structure and the nodes’ connectivity is supplied by the Mapper network. In this 305 
way, with Morse, each cluster of nodes in the network has a structure of rooted tree and each 306 
leaf connects a cluster-node to a higher one (with respect to 𝑓𝑓) with the root the highest cluster-307 
node.  308 

Robustness of TDA network clusters evaluated by ROC analysis  309 

We applied logistic regression to test the tightness of the clusters according to key features 310 
identified by logistic regression. A logistic regression model was trained on a pre-defined 311 
training set of (n = 328) and the classification accuracy tested on a test data set (n = 170). 312 
Accuracy of the logistic regression reflects reproducibility in the clustering, ie. robust 313 
classification assigned by clustering results in accurate classification of test data by an 314 
independently trained logistic regression model.  315 

Affymetrix probes for NR3C1 were aligned with NCBI RefSeq genes using the Ensembl 316 
Genome browser 94. 317 

Pathway analysis identified trends and discrete molecular features of clusters 318 

The shape of data represented by a TDA network is defined by the lenses (t-SNE in this study), 319 
which are implicitly used as coordinates for plotting the network. These coordinates focus on 320 
differentially activated pathways because genes of a common pathway are more likely to be 321 
co-expressed, and patients are clustered by similarity in key features in a TDA network. 322 
Ingenuity pathway analysis (IPA) was used to identify pathways with enriched gene expression 323 
within each of the clusters (Table 1), many of which were activated in clusters neighbouring 324 
each other in the TDA network, reflecting a trend in the activation of key pathways across the 325 
TDA network.  326 

 327 

  328 
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Figure 1 Selected gene expression distribution across the TDA network  329 

Figure 1. Selected gene expression distribution across the TDA network. Colours in legends denote the 330 
concentrations of the gene expression, ranging from blue (low) to red (high). 331 

  332 
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Figure 2: The chromosome binding locations of the Affymetrix NR3C1 probes 333 

334 
Figure 2. The binding locations of the Affymetrix NR3C1 probes and corresponding NCBI RefSeq sequences aligned to the 335 
Human genome. NR3C1 probesets 201865_x_at and 211671_s_at target isoforms with truncated 3’ UTR: Δx NR3C1. 336 
Probesets 201866_s_at and 216321_s_at target NR3C1 mRNAs towards the end of the 3’ UTR annotated in the RefSeq genes. 337 
Image generated using the Ensembl Genome Browser: https://genome.ucsc.edu 338 

 339 

 340 
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Figure 3: Morse-clustering of the TDA network of UBIOPRED gene expression profiling of 342 
peripheral blood 343 

 344 

Figure 3. TDA network landscape of correlated gene expression (54,613 probesets, n = 498). Metric: 345 
norm correlation. Lenses: neighbourhood lens 1 (resolution, 100 bins; gain, ×6), neighbourhood lens 2 346 
(resolution, 100 bins; gain, ×6) (A). The vector (node value) is a 3rd dimension in TDA networks, in a 347 
standard heatmap colouring of a TDA network, the colour represents the 3rd dimension (B). Arrows 348 
indicate the gradients of the 3-dimensional topology measured by Morse-based clustering identifying 349 
the ‘peaks’ as clusters of subjects with similar profiles of analysed variables.  350 

 351 
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Figure 4: Clusters identified by Morse-clustering of the TDA network  353 

 354 

Figure 4. Centre: TDA network coloured by clusters (BC1-9) identified using the Morse-based 355 
algorithm. Outside: Colour-coded ROC curves of cluster prediction success representative of cluster 356 
robustness. 357 

 358 

 359 

 360 

 361 

 362 

 363 

 364 

 365 
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Table 1. Molecular pathways enriched in the 9 clusters 367 

Table 1. IPA identified significantly enriched (p<0.05) canonical pathways of gene expression in 368 
clusters (the top 5 pathways for clusters BC1-9 are shown). Values are z-scores, reflecting both the 369 
enrichment of specific transcription factor-regulated genes in the pathways and the degree of 370 
activation/inhibition. The z-scores are coloured blue (greatest downregulated transcription factor-371 
regulated gene expression) to red (greatest upregulated transcription factor-regulated gene expression). 372 

  373 

BC1 BC9 BC8 BC2 BC7 BC3 BC6 BC4 BC5
Serotonin Degradation 3.1
Superpathway of Melatonin Degradation 2.5
Melatonin Degradation I 2.5
Glutamate Receptor Signaling 2.4
Neuropathic Pain Signaling In Dorsal Horn 
Neurons

2.4 -0.9 -1.8 0.0 -0.6

Oxidative Phosphorylation 3.5 3.5 4.0 -4.4 -4.1
Glycolysis I 3.0 2.8 -1.9 -2.5

Role of p14/p19ARF in Tumor Suppression
1.4 0.0 0.3 -0.3 0.5 -0.9

Cyclins and Cell Cycle Regulation 2.1
TNFR1 Signaling 1.9 1.7 0.9 2.1 0.3 -1.6 -2.2 -0.3
tRNA Charging 1.4 2.7 3.1 -2.7 -1.6
Gluconeogenesis I -1.1 -1.7
iNOS Signaling 0.8 2.3 3.3 3.5 3.1 -2.5 -2.2
Toll-like Receptor Signaling 3.2 3.5
Type I Diabetes Mellitus Signaling 1.0 2.1 3.0 3.3 2.4 -2.6 -2.9 -0.4
TREM1 Signaling 2.9 3.7
Neuroinflammation Signaling Pathway 2.7 2.3 -2.2
IL-1 Signaling -1.0 -0.2 2.5 1.5 2.8 -0.8 1.1
Inflammasome pathway 2.4 2.6
D-myo-inositol (1,4,5,6)-Tetrakisphosphate 
Biosynthesis

-3.0 -0.3 0.0 0.9 2.8 0.3 4.4

D-myo-inositol (3,4,5,6)-tetrakisphosphate 
Biosynthesis

-3.0 -0.3 0.0 0.9 2.8 0.3 4.4

3-phosphoinositide Biosynthesis -3.8 -0.7 0.5 0.2 2.7 -0.3 4.5
3-phosphoinositide Degradation -3.0 -0.1 0.6 0.7 2.4 0.1 4.0
Superpathway of Inositol Phosphate 
Compounds

-3.5 -0.5 1.2 0.0 2.1 -0.9 4.2

Cell Cycle: G1/S Checkpoint Regulation -1.7 0.6 2.0 1.4
Antioxidant Action of Vitamin C 0.0 -0.7 -0.9 2.0
HIPPO signaling 0.7 -0.5 -1.5 1.2 0.0
Cardiac β-adrenergic Signaling -1.1 -2.2 -1.0
ERK5 Signaling -3.3 -1.3 0.2 1.1 1.8 1.6 2.0
D-myo-inositol-5-phosphate Metabolism -2.5 -0.2 0.8 0.7 2.1 0.0 4.3

Canonical Pathway Sub-phenotype
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Table 2. Activated upstream regulators enriched in the clusters 374 

 375 

Table 2. Upstream regulators of gene expression (p<0.05) in clusters predicted by IPA (the top 5 376 
upstream regulators for clusters BC1-9 are shown). Values shown are z-scores, reflecting both the 377 
enrichment of specific transcription factor-regulated genes in the pathways and the degree of 378 
activation/inhibition. The z-scores are coloured blue of varying intensity (greatest downregulated 379 
transcription factor-regulated gene expression) to varying red (greatest upregulated transcription factor-380 
regulated gene expression). 381 

  382 

BC1 BC9 BC8 BC2 BC7 BC3 BC6 BC4 BC5
CST5 3.45 2.56 2.01 3.24 1.69 2.02 -2.6 -1.5 -3.4
TP63 1.79 0.17
HSF1 1.31 2.13
TGM2 5.91 3.85 -4.4
ERG -1.6 -0.3 -1.4 -0.9
TAL1 3.31 2.42
miR-486-5p (and other miRNAs w/seed 
CCUGUAC) 2.91 0.37 1.33 -1.2 -3.3 -2 -2.6
mir-486 2.89 0.24 -1.2 -3.3 -2.1 -2.6
NUPR1 0.76 2.86 2.98 2.54
RAE1 1.34 2.83 0.45 -1.9
SPP1 2.37 -2.2
TFEB 2.98
IL15 1.15 2.67 1.22 -0.8 -1.3 -1.5
miR-30a-3p (and other miRNAs w/seed 
UUUCAGU) 2.82 2.63 1.63 -1.3 -1.6 -2.2
EIF2AK2 3.05 1.44
CEBPA 2.77 2.8
PCGEM1 2.28 -1.2 -1.4
LINC01139 1 2.24 0.45
PLA2R1 1.25 1.04 -1.6
LDL 1.39 1.93
PPRC1 3.46
PDGF BB 3.31
TNF 3.11
IL5 1.26
CD24 -5.3 -5.2 -3.9 1 4.41 4.67 5.11
MYC -2.9 -2.6 -4.5 -2 3.06 0.74
HELLS -1 2.45 2.24
MAPK1 -2
SAFB -2.1 -1.9 2.35
SLC29A1 -1.2 1.63 2.65 1.41
WT1 -1.6 -1.1 1.61 -0.2
FSH -2.1 -2.3 -0.4 0.43 1.96 2.62 2.72
TCR -0.7 -0.8 -1.8 2.49
THOC5 -2.2 1.63 2.45

Upstream regulator Sub-phenotype
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Table 3. Clinical characteristics of the clusters  

Cluster BC1 BC2 BC3 BC4 BC5 BC6 BC7 BC8 BC9 
Number of participants 52 (10.44%) 59 (11.84%) 88 (17.67%) 35 (7.02%) 68 (13.65%) 37 (7.42%) 96 (19.27%) 33 (6.62%) 47 (9.43%) 
FEV1 (%) 72.21 ± 24.64 66.04 ± 20.76 67.89 ± 25.16 76.06 ± 23.28 79.63 ± 23.62 87 ± 21.03 83.33 ± 23.83 78.57 ± 22.97 71.69 ± 24 
FVC (%) 88.97 ± 20.9 88.83 ± 19.43 85.52 ± 23.42 95.12 ± 24.11 98.13 ± 21.01 99.77 ± 17.12 98.67 ± 19.96 95.12 ± 22.5 86.68 ± 21.35 
Severe Asthma (non-smoker) (%) 69.2 50.8 38.6 42.8 33.8 43.2 18.7 51.5 51 
Severe Asthma (smoker) (%) 9.6 23.7 21.5 17.1 19.1 10.8 15.6 18.1 17 
Mild-moderate Asthma (%) 9.6 11.8 9 22.8 13.2 8.1 25 18.1 10.6 
Healthy (%) 11.5 1.6 9 17.1 22 37.8 23.9 12.1 21.2 
Severe Asthma cluster (%) 75 81 39 22 25 5 5 3 2 
Age 51.44 ± 14.73 53.03 ± 14.44 51.07 ± 14.45 46.88 ± 16.45 44.07 ± 13.97 44.51 ± 14.87 45.22 ± 14.95 47.57 ± 15.47 50.8 ± 15.58 
Smoking (Pack Years) 3.3 ± 11.44 6.38 ± 16.00 5.05 ± 11.69 3.64 ± 7.11 4.59 ± 10.87 2.66 ± 7.69 3.69 ± 10.56 5.07 ± 10.72 5.87 ± 14.52 
Mean ACQ5 1.69 ± 1.49 1.95 ± 1.23 1.83 ± 1.34 1.46 ± 1.51 1.44 ± 1.39 1.03 ± 1.41 1.18 ± 1.23 1.58 ± 1.36 1.65 ± 1.48 
Mean ACQ7 2 ± 1.65 2.31 ± 1.36 2.17 ± 1.5 1.66 ± 1.65 1.67 ± 1.52 1.15 ± 1.52 1.4 ± 1.37 1.82 ± 1.46 1.98 ± 1.61 
Mean AQLQ 3.68 ± 2.24 4.64 ± 1.57 4.08 ± 2 3.6 ± 2.52 3.98 ± 2.35 3.16 ± 2.81 3.78 ± 2.59 3.74 ± 2.48 3.36 ± 2.24 
Admitted to ICU (%) 0.25 ± 0.4 0.2 ± 0.54 0.17 ± 0.37 0.17 ± 0.17 0.23 ± 0.19 0.05 ± 0.13 0.13 ± 0.13 0.18 ± 0.18 0.17 ± 0.19 
Oral steroids (%) 40.38 ± 46.57 54.24 ± 38.46 37.50 ± 40.45 17.14 ± 41.23 19.12 ± 39.79 13.51 ± 45.32 13.54 ± 44.21 18.18 ± 46.09 19.15 ± 44.31 
Blood periostin (ng/ml) 46.57 ± 24.62 38.46 ± 23.24 40.45 ± 27.57 41.23 ± 27.09 39.79 ± 22.02 45.32 ± 24.13 44.21 ± 21.45 46.09 ± 19.88 44.31 ± 23.59 
Atopy (% positive) 0.65 ± 29.81 0.67 ± 31.71 0.67 ± 32.66 0.68 ± 36.58 0.72 ± 31.78 0.56 ± 30.74 0.67 ± 33.75 0.66 ± 28.72 0.8 ± 26.34 
Exhaled NO (ppb) 29.81 ± 22.04 31.71 ± 30.11 32.66 ± 26.52 36.58 ± 32.73 31.78 ± 30.61 30.74 ± 32.05 33.75 ± 31.02 28.72 ± 26.51 26.34 ± 14.71 
Blood eosinophils (x10^3/µL) 0.31 ± 0.3 0.18 ± 0.17 0.25 ± 0.28 0.21 ± 0.14 0.25 ± 0.25 0.23 ± 0.21 0.23 ± 0.2 0.29 ± 0.24 0.35 ± 0.33 
Blood neutrophils (x10^3/µL) 5.63 ± 2.3 6.78 ± 2.94 5.41 ± 2.35 4.35 ± 1.52 4.18 ± 1.86 3.32 ± 1.37 3.42 ± 1.09 3.99 ± 1.2 4.06 ± 1.75 
Blood lymphocytes (x10^3/µL) 2.06 ± 0.7 1.57 ± 0.7 1.83 ± 0.76 2 ± 0.47 1.91 ± 0.82 2.03 ± 0.73 1.87 ± 0.46 2.22 ± 0.66 2.14 ± 0.75 
Sputum Eosinophils (%) 1.67 ± 5.16 6.37 ± 14.89 2.33 ± 9.42 1.77 ± 8.27 3.84 ± 12.49 5.79 ± 16.41 5.28 ± 12.42 4.47 ± 10.25 3.32 ± 12.41 
Sputum Neutrophils (%) 30.18 ± 36.16 29.48 ± 34.25 5.7 ± 17.38 3.45 ± 12.12 17.37 ± 25.54 21.7 ± 28.31 28.65 ± 28.88 28.48 ± 29.83 24.83 ± 31.74 
Sputum Macrophages (%) 13.65 ± 20.15 12.66 ± 17.96 3.16 ± 10.9 2.79 ± 9.48 17.89 ± 27.24 25.88 ± 33.44 30.62 ± 30.57 29.99 ± 30.84 26.38 ± 32.85 
Sputum Lymphocytes (%) 0.62 ± 1.26 0.61 ± 1.06 0.15 ± 0.65 0.53 ± 2.29 0.57 ± 0.99 0.64 ± 0.84 1.04 ± 1.34 0.68 ± 0.95 0.74 ± 1.21 

Table 3. Clinical features associated with the TDA-defined asthma phenotypes. Values are shown as means and are colour coded on a heat scale for each 
variable; highest variable value is in red, lowest value in blue. FEV1: forced expiratory volume in one second (measured by spirometry). FVC: forced vital 
capacity. (%) Severe Asthma cluster (%) is the percentage of study participants previously identified in the severe asthma enriched cluster identified by 
hierarchical clustering10. ACQ5 or 7: asthma quality questionnaire consisting of 5 or 7 questions. AQLQ: asthma quality of life questionnaire. Sputum cells are 
shown as percentages of total inflammatory cells. 
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. 

 

Figure 5. The regulatory gene pathway of NR3C1 transcript variants, and VDR, CST5, MYC & TGM2; identified as top 
upstream regulators by IPA (Table 2). Colours indicate gene expression relative to healthy participants, where green represents 
lower gene expression and red represents higher gene expression, white indicates no change (negative, positive and zero-fold 
change). Left column shows gene expression in cluster BC1, right column shows gene expression in BC5. Image generated 
using IPA. 
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