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Abstract The endoplasmic reticulum (ER) is a complex subcellular organelle composed of14

diverse structures such as tubules, sheets and tubular matrices. Flaviviruses such as Zika virus15

(ZIKV) induce reorganization of endoplasmic reticulum (ER) membranes to facilitate viral16

replication. Here, using 3D super resolution microscopy, ZIKV infection is shown to induce the17

formation of dense tubular matrices associated with viral replication in the central ER. Viral18

non-structural proteins NS4B and NS2B associate with replication complexes within the19

ZIKV-induced tubular matrix and exhibit distinct ER distributions outside this central ER region.20

Deep neural networks trained to identify ZIKV-infected versus mock-infected cells successfully21

identified ZIKV-induced central ER tubular matrices as a determinant of viral infection. Super22

resolution microscopy and deep learning are therefore able to identify and localize23

morphological features of the ER and may be of use to screen for inhibitors of infection by24

ER-reorganizing viruses.25

26

Introduction27

The endoplasmic reticulum (ER) is a highly dynamic network composed of 30-100 nm ribosome-28

studded rough ER sheets and convoluted networks of smooth ER tubules (1, 2). ER shaping proteins29

such as the lumenal sheet spacer protein cytoskeleton-linking membrane protein 63 (CLIMP-63),30

membrane curvature stabilizing reticulons (RTN) and junction stabilizing atlastin (ATL) are responsi-31

ble for the generation of themorphologically distinct domains that comprise the ER (2-4). Recently,32

2D STimulated Emission Depletionmicroscopy (STED) super-resolutionmicroscopy combined with33

high-speed live cell or rapid fixation approaches showed that RTN and CLIMP-63 regulate not only34

the ER macrostructure of rough ER sheets vs smooth ER tubules but also the nanodomain orga-35

nization of sheets and tubules imaged in the cell periphery (5, 6). Increasing both 3D spatial and36

temporal resolution with various super resolution imaging techniques, including 3D structured il-37

lumination (SIM), grazing incidence structured illumination (GI-SIM) and lattice light sheet point ac-38

cumulation for imaging in nanoscale topography (LLS-PAINT), showed that peripheral sheets were39
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actually dense tubular matrices (7). While application of super-resolution microscopy to define40

morphology of peripheral ER (PER) structures has proven fruitful, its use to study the central ER41

(CER), and changes associated with cellular stressors has proven more challenging.42

The ER is often utilized by pathogens to subvert the cytoplasmic innate immune response and43

promote replication (8-10). Bacteria, such as Legionella pneumophila and Brucella abortus, RNA44

viruses, and some intracellular protist pathogens, such as Toxoplasma gondii, all utilize the unique45

functions of the ER to promote their own replication (11-13). Flaviviruses, and coronaviruses, re-46

organize ER membranes into novel structures to better facilitate viral replication (12, 14, 15). A47

well-studied ER reorganizing flavivirus is the Zika virus (ZIKV), a member of the flavivirus genera48

within the Flaviviridae viral family that includes the dengue virus (DENV), and has shown causative49

association with congenital microcephaly and other neurological diseases (16-18). ZIKV-induced50

ER structures include replication factories, 60-100 nm spherical vesicular invaginations within the51

rough ER lumen that contain viral double-stranded RNA (dsRNA), an intermediate in genomic repli-52

cation, that are the site of viral RNA genomic replication (19, 20). Associated with replication facto-53

ries are ZIKV-induced convoluted networks of ER tubules, known as convoluted membranes, that54

are for the most part smooth although rough convoluted membranes containing replication facto-55

ries have been reported in neural progenitor cells (19, 21).56

The ZIKV RNA genome encodes 10 proteins, corresponding to the DENV genome, including 357

structural proteins (Capsid (C), Membrane (prM/M), and Envelope (E) proteins), involved in assem-58

bly of the virus capsid and envelope, and 7 non-structural (NS) proteins (NS1, NS2A, NS2B, NS3,59

NS4A, NS4B, and NS5) (22, 23). The NS proteins form the replication complexes and play key roles60

in the evasion of the host innate immune response, the hijacking of host cellular pathways, and the61

reorganization of ER membranes to promote viral replication (24). All of the flaviviral NS proteins62

are believed to play a role in the formation of the genomic replication machinery and replication63

factories. ZIKV NS3 and NS4B have been shown to overlap with convoluted membranes and repli-64

cation factories by light microscopy (19, 25). NS2B is an integral membrane protein which localizes65

NS3 to replication factories and functions as a cofactor for the protease activity of NS3; NS2B and66

NS3 localize to both convoluted membranes and replication factories by electron microscopy (EM)67

(19, 26-28). NS4B is a transmembrane protein with five integral transmembrane domains, previ-68

ously shown to be involved in the formation of convoluted membranes in DENV-infected Huh769

cells (26).70

Virus-induced ER structures have been well-characterized by EM, however the cellular distribu-71

tion of these structures and associated viral proteins remains poorly understood. Here, we use 3D72

STED super-resolution microscopy to show that ZIKV infection induces the reorganization of the73

CER to form dense tubular matrices associated with ZIKV replication sites. We further apply deep74

learning approaches to identify ZIKV-infected cells based on changes in ER morphology. Quantita-75

tive detection of virus-induced changes to the ER represents proof-of-principle for the application76

of deep learning-based image analysis of ER reorganization for large scale drug screening and iden-77

tification of compounds inhibitory to viral infection.78

Results79

ZIKV infection induces the formation of a dense tubular matrix in the CER80

In order to study ER morphology following ZIKV infection, we first generated stable U87 glioblas-81

toma cells transfected with either ER monomeric oxidizing environment-optimized green fluores-82

cent protein (ERmoxGFP), a lumenal ER reporter containing the bovine prolactin signal sequence83

and KDEL ER retention sequence linked to inert, monomeric, cysteine-less moxGFP (29), or the84

membrane-associated ER reporter Sec61β-GFP. U87 cells stably expressing the ER reporters were85

then infected with ZIKV strain PRVABC59 (Puerto Rico 2015) at a multiplicity of infection (MOI) of 186

for 48 hours. Cells were fixedwith 3%paraformaldehyde/0.2% glutaraldehyde to preserve ER archi-87

tecture (6, 7, 30, 31) and labeled for dsRNA, a marker for ZIKV replication factories (19). Maximum88
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Figure 1. 3D STED microscopy reveals ZIKV-induced ER reorganization in human U87 glioblastoma cells. A) ERmoxGFP or Sec61β-GFP stably

transfected U87 cells were mock-infected or infected for 48 hours with the PRVABC59 2015 ZIKV strain (MOI= 1). ER reporter GFP and

immunostained dsRNA-labeled ZIKV replication factories were imaged by 3D STED microscopy. B) Fluorescence intensity of ERmoxGFP of

infected cells using a spectrum heat map and a segmentation mask of the ER that colocalizes with dsRNA (grey), both generated on Imaris x64

9.2.1 (Imaris), are depicted. Yellow squares in the panels indicate the magnified ROIs shown in the adjacent panels. Quantification of the mean

normalized ER density ((Intensity sum of mask/total cell intensity sum)/ (volume sum of mask/ total cell volume sum)) was performed for both

dsRNA-positive and dsRNA-negative ERmoxGFP and Sec61β-GFP in ZIKV-infected cells by Imaris segmentation. Scale bar= 10 microns. 5 cells per

biological replicate (N=3). Statistics were done using unpaired Student’s T tests: **= P<0.01, Error bars represent SEM.
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Figure 2. Defining the CER and PER of ZIKV- and mock-infected cells. A) Mock-infected ERmoxGFP and Sec61β-GFP stably transfected U87 cells

were imaged by 3D STED microscopy. Magnified ROIs (yellow ROIs identified by red Roman numerals) show that the PER extends over 3-5

sections (210 nm step size) and CER >10 sections. Graph shows average PER and CER Z-height for each ERmoxGFP or Sec61β-GFP labeled cell. A

Z-height cutoff of 1.26 microns (red line) was used to identify PER and CER objects. B) Segmented ER labeling from 48-hour ZIKV- or

mock-infected ERmoxGFP or Sec61β-GFP stably transfected U87 cells (MOI= 1) was visualized using a Z-height spectrum heat map and CER

(green; > 1.26 µm) and PER (red; < 1.26 µm) masks are shown. C) Volume percentage (left) and mean normalized density (right) of CER and PER

masks between mock- and ZIKV-infected cells. 5 cells per biological replicate were analyzed for a total of N=3. ANOVA with post-hoc Tukey HSD:

*= P<0.05, **= P<0.01, and ***= P<0.001. Error bars represent SEM. Scale bar= 10 microns.
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Figure 3. The ZIKV-induced dsRNA-positive CER region is a dense tubular matrix. A) Shown are representative mock-infected cells and CER

(green) and PER (red) masks overlaid with the dsRNA-positive ER mask (white) for ZIKV-infected ERmoxGFP and Sec61β-GFP transfected U87

cells. Enlarged images of ERmoxGFP transfected cells show 3x3 µm ROIs of the mock-infected CER (green box) and of the ZIKV-infected

dsRNA-positive (red box) and dsRNA-negative (yellow box) CER shown in B. Graphs show the volume percent of the CER or PER region that

contains dsRNA-positive ER (left) and the volume percent of the dsRNA-positive ER that resides within the CER mask. B) 2D images of ER (white)

and dsRNA (red) labeling in 3x3 µm ROIs of the ZIKV-infected dsRNA-positive (red) and dsRNA-negative (yellow) CER and mock-infected (green)

CER are shown above Imaris 3D surface rendering of 1x1 µm regions of the above ROIs. Graph shows mean normalized ER density for each of

the three CER zones by Imaris segmentation and masking. 5 cells per biological replicate were analyzed for a total of N=3. ANOVA with post-hoc

Tukey HSD: *= P<0.05, **= P<0.01, and ***= P<0.001. Error bars represent SEM. Scale bar: 10 microns (500 nm for zoomed ROIs).
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projections of 3D STED image stacks show high intensity ERmoxGFP and Sec61β-GFP labeling in a89

CER region and low intensity labeling in PER tubules in mock-infected cells (Figure 1A), as reported90

previously by diffraction limited confocal microscopy (3). Upon ZIKV infection, the CER reorganizes91

to form an intensely labeled crescent-shaped region surrounding a lower intensity perinuclear re-92

gion (Figure 1A). Interestingly, the crescent-shaped ZIKV-induced perinuclear ER overlapped exten-93

sively with dsRNA (Figure 1A). Imaris Bitplane software fragments the ER into distinct segments94

that can then be analyzed for different features, including reporter density, segment Z-height and95

segment overlap with other labels, such as dsRNA. Density-based segmentation of the ERmoxGFP-96

and Sec61β-GFP-labelled ER of ZIKV-infected cells showed that the higher density crescent-shaped97

CER region exhibited significant overlap with dsRNA-positive ER structures relative to the rest of98

the ER (Figure 1B). This suggests that ZIKV dsRNA associates with an ER region of high density for99

both lumenal and membrane ER reporters.100

Figure 4. Ultrastructural analysis of ZIKV-infected cerebral
brain organoids. Transmission EM images of 50 nm thin

sections of 48-hour mock- and ZIKV-infected cerebral brain

organoids (MOI=1). Yellow boxes show ROIs shown of

adjacent higher magnification images that highlight rough

ER sheets in mock-infected and tubular matrices

(convoluted membranes) in ZIKV-infected cells. Scale bars:

500 nm and 100 nm for zoomed image ROIs.

We then investigated the relation-101

ship between the dense ZIKV-induced102

crescent-like region and the CER and103

PER. Segmenting the ER based on Z-104

height of ER segments showed that105

PER tubules were present in 3-5 con-106

secutive frames of 210 nm each while107

CER regions were abundantly present108

across 7-10 consecutive frames (Figure109

2A). For both ERmoxGFP and Sec61β-110

GFP labeled cells, average max Z-height111

of PER tubular regions was 0.95 µmand112

for CER regions 1.8 µm (Figure 2A). No113

PER segments reached a height greater114

than 1.26 µm. ER segments with a115

height above 1.26 µm were therefore116

classified as CER and ER segments with117

a height below 1.26 µm as PER, effec-118

tively segmenting the ER into CER and119

PER regions (Figure 2B). Based on this120

ER segment height-based classification121

of CER and PER, the CER was found to122

present a two-fold increase in volume123

and increased density relative to the124

PER (Figure 2C). ER density in the height-125

based CER was elevated relative to PER126

and ZIKV infection showed minimal im-127

pact on the relative volumeor density of128

CER and PER regions (Figure 2D).129

Overlaying the CER and PER masks with the dsRNA-positive ER mask showed that the dsRNA-130

positive ER (>80% volume/volume) is predominantly included within the CER mask (Figure 3A). In-131

deed, only 10% of PER volume contains dsRNA while 35% of CER volume contains dsRNA for both132

ER reporters (Figure 3A). Morphological comparison of the dsRNA-positive and -negative CER of133

ZIKV-infected cells with the CER of mock-infected cells showed that the CER was composed of a134

convoluted network of tubules for both the ERmoxGFP- and Sec61β-labeled ER (Figure 3B). 3D re-135

constructions confirmed that these regions were predominantly tubular with a few small sheet-like136

structures, similar to the tubular matrix morphology of peripheral sheets (7). 3D voxel-based visu-137

alization and quantification showed that the density of ER tubular structures in the dsRNA-positive138

ER is higher, for both the ERmoxGFP or Sec61β-GFP ER reporters, than in the dsRNA-negative CER139
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regions of ZIKV-infected cells or the CER of mock-infected cells (Figure 3B). The lower ER reporter140

density reflects reduced spacing between tubules in the dsRNA-positive ER, suggesting that ZIKV141

infection induces tubular matrix reorganization in a subdomain of the CER in U87 cells. Consis-142

tently, EM analysis of the microcephaly relevant cerebral brain organoid model (32) showed that143

ZIKV-induced ER reorganization fromperinuclear stacked rough ER sheets to a perinuclear, circular144

region of convoluted smooth ER tubules (Figure 4). These results are consistent with ZIKV induction145

of a perinuclear tubular matrix.146

ER localization of ZIKV NS2B and NS4B structural proteins147

We then labeled cells for ZIKV NS proteins NS2B and NS4B to assess their relationship to the ZIKV-148

induced tubular matrix. 3D STED analysis showed a predominant distribution of both NS2B and149

NS4B to the CER and more particularly to the dense ZIKV-induced crescent-shaped tubular matrix150

in ERmoxGFP transfected U87 cells (Figure 5A). While NS2B is predominantly associated with the151

dsRNA-positive CER, NS4B labeling extended throughout the CER as well as to the PER (Figure 5A).152

To quantify this, we identified NS2B-positive and NS4B-positive ER segments and determined their153

overlap with total ER, CER and PER (Figure 5A). While NS4B was present at high levels on both PER154

and CER segments, NS2B was enriched in the CER relative to the PER and presented a similar ER155

distribution to dsRNA (Figure 5A).156

The majority (>55%) of dsRNA-labeled puncta were associated with NS2B or NS4B, consistent157

with the presence of both these NS proteins in the ZIKV-induced tubular matrix. In contrast, a158

minority of NS2B (~25%) and NS4B (~10%) spots overlapped with dsRNA spots (Figure 5B). In the159

dsRNA-positive CER, the highly punctate NS2B labeling differed from a more reticular NS4B label-160

ing. These two ZIKV NS proteins therefore exhibit distinct distributions within the ZIKV-induced161

tubular matrix when not associated with dsRNA replication complexes (Figure 5B). Together with162

the differential distribution of NS2B and NS4B within the ER as a whole (Figure 5A), these results163

highlight that these two ZIKV NS proteins do not associate exclusively with replication factories and164

suggest that following synthesis of the ZIKV polyprotein, NS2B and NS4B undergo distinct biosyn-165

thetic pathways before reuniting in ER-associated replication complexes.166

Deep learning identifies ZIKV-induced ER reorganization167

Deep learning has been successfully applied to the task of image recognition, distinguishing the168

category or class to which a given image belongs. Deep learning architectures have outperformed169

shallow architectures when benchmarked on ImageNet a dataset widely used by the computer170

vision community that contains roughly 14 million images belonging to 20,000 classes (e.g., cats,171

dogs, plant species, various modes of transportation) (33-35). Deep convolutional neural networks172

(CNNs) are capable of learning local and global spatial patterns from raw training data (i.e. pairs of173

images and corresponding classes) enabling inference of the correct class of unseen images, and174

have achieved state of the art performance when benchmarked on ImageNet (36). Importantly,175

compared to non-deep learning detection methods such as machine learning, deep learning ap-176

proaches: 1) avoid the need to design and select features for highly complex ER structures that177

are required by non-deep learning methods; and 2) provide the ability to move beyond simple178

classification to inspect discriminative regions (i.e. subregions of the ER within each cell).179

We therefore applied deep neural networks to identify and distinguish the morphological fea-180

tures of the ER of ZIKV-infected cells. A pipeline outlining our approach is shown in Figure 6A. We181

train a CNN using 2D frames (each representing a single Z-frame) from 3D STED volumes of ER-182

moxGFP and Sec61B-GFP labeled ZIKV- and mock-infected cells. Our CNN builds off of VGG16, a183

deep neural network architecture proposed by Simonyan et al. (35) which achieved state of the184

art results on the 2014 ImageNet Large Scale Visual Recognition Challenge (ILSVRC) (37, 38). To185

improve computation time, we initially performed the analysis on downsampled STED images. As186

the 3D STED data sets were relatively small to train the CNN from scratch, we leveraged a network187

already pretrained on natural images. This transfer learning technique speeds up the convergence188
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Figure 5. ER distribution of ZIKV NS2B and NS4B proteins. A) Mock- or ZIKV-infected ERmoxGFP (red) stably transfected U87 cells were

immunostained for ZIKV NS2B or NS4B (green) and dsRNA (white). Merged images show NS2B or NS4B (green) overlaid with the CER, PER or

dsRNA-positive ER (white). Graphs show quantification of volume percent of NS4B, NS2B and dsRNA ER regions relative to total ER, CER or PER.

B) Mock- or ZIKV-infected ERmoxGFP stably transfected U87 cells were immunostained for ZIKV NS4B or NS2B (green) and dsRNA (red). White

squares show ROIs of adjacent zoomed images in which white arrowheads show colocalization between NS protein and dsRNA puncta. Graphs

show percent of dsRNA puncta overlapping NS4B or NS2B puncta (left) and percent of NS4B or NS2B puncta overlapping dsRNA puncta. 5 cells

per biological replicate (N=3) with each dot representing a cell. ANOVA with post-hoc Tukey HSD: *=P<0.05, **=P<0.01, and ***=P<0.001. Error

bars represent SEM. All images are maximum projections from 3D STED stacks. Scale bar= 10 microns. ROI scale bar = 2 microns.
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rate of networks when dealing with small target datasets. Certain filters (combinations of weights)189

learned on the first dataset (i.e. ImageNet) may still be useful for classifying a second dataset190

(i.e. STED); as a result, less weight updates are needed before achieving good performance. Us-191

ing a pretrained VGG16 as our base model we obtained a 20% boost in test accuracy, compared192

against a random weight initialization. Using ERmoxGFP labelled ER alone, the CNN was able to193

distinguish between ZIKV- and mock-infected cells with an 82% accuracy (Figure 6B, top left). Ac-194
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Figure 6. Deep learning classification pipeline: Pretrained convolutional neural network accurately predicts
labels of 2D frames from 3D STED volumes. A) Leave-one-out cross validation is successively applied to each

cell. This prevents information from 2D frames leaking between training, validation and test sets. During

training, network uses 2D frames from 55 cells (specifically, 44 for training and 11 for validation). The trained

CNN then predicts a class label (i.e. ZIKV-infected or mock-infected) to each 2D frame of the remaining test

cell. Class Activation Maps are also generated for each 2D frame belonging to the test set. B) CNN

performance reported on a cell basis and across 2D frames. Normalized confusion matrices report the total

number of predicted labels (ZIKV-infected or mock-infected) over the total number of ground truth labels. For

example, 79% of all mock-infected 2D frames were predicted correctly by the CNN (top right). Predicted cell

labels correspond to the majority label of predicted frame labels for each cell (top left). When excluding

frames beyond the cell with reduced ERmoxGFP signal, performance metrics increase both in terms of cell

label predictions (bottom left) and individual frame label predictions (bottom right).
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curacy using Sec61β-GFP labelled ER was only 66%, whereas combining cells labeled with both195

ER markers, increasing the number of training samples seen by the network, still resulted in only196

71% accuracy. Based on the improved classification performance, further analysis was performed197

using ERmoxGFP labelled cells.198

With a limited sample size of 56 ERmoxGFP labelled cells, we applied leave-one-out cross vali-199

dation; 56 cells were split into a set of 55 cells used to train the CNN, and a test set consisting of200

Figure 7. Class Activation Mapping for Region of Interest Based Feature Analysis. A) For each test 2D frame

passed as input to the CNN, we generated Class Activation Maps (CAM) which are then thresholded to create

ROIs. These regions identified by deep learning are then used for further analysis of ERmoxGFP, dsRNA and

NS2B/4B. B) Contour maps of CAMs superimposed on ERmoxGFP labelled ER show regions identified by

CAMs. The contour color represents varying CAM intensity from 0.1 (low network attention) to 1.0 (high

network attention). For correctly labelled ZIKV-infected and mock-infected 2D frames, we show that the

respective CAM focuses on the cell. C) The top row shows representative downsampled images from true

positive (TP) instances highlighting the 0.8 ZIKV CAM in red. The bottom row shows 112x112 pixel patches

from high resolution STED images within the 0.8 ZIKV CAM region.
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the remaining cell. This process is outlined in Figure 6A, and is repeatedly applied using each cell201

as the test set. The 55 cells used to train the CNN are further split into a training and validation202

set, composed of 44 and 11 cells, respectively. During training, all 2D frames from cells belonging203

to the training set are passed individually to the CNN while 2D frames of the validation set cells204

are used to evaluate the performance and update the network’s parameters (weights) accordingly.205

This grouping of cells into training, validation and test sets ensures that information is not leaked,206

i.e., the CNN is only presented with unseen 2D frames during testing. ZIKV- and mock-infected207

class activation maps (CAMs) (39) are generated for each 2D frame to help define regions used by208

the CNNwhen inferring a class label (ZIKV or Mock). We achieved 82% accuracy and 82% specificity209

to identify ZIKV- and mock-infected cells based on a majority of frame predictions per cell. STED Z210

stacks extend beyond the cell and include Z sections that contain minimal ERmoxGFP signal and211

show poor accuracy to predict class label (Supp Fig 1). When considering those frames containing212

ERmoxGFP signal intensity greater than the median, we achieved 84% accuracy and 86% sensitiv-213

ity. On a per frame basis, accuracy for all frames was 78% and sensitivity 79% that increased to214

81% and 84%, respectively, when considering frames expressing ERmoxGFP greater than median215

intensity (Figure 6B, Supp. Fig. 1). Considering the confusionmatrix for all frames, cell label (Figure216

6B, top left), the 82% of ZIKV-infected 2D frames correctly predicted to be infected represent true217

positives (TP) while the 18% of ZIKV-infected 2D frames not predicted to be infected represent false218

negatives (FN). The 82% ofmock-infected 2D frames correctly predicted to be uninfected represent219

true negatives (TN) and the 18% of mock-infected 2D frames predicted to be ZIKV-infected repre-220

sent false positives (FP). The CNN has therefore accurately predicted which cells are ZIKV-infected221

based on the reorganization of ERmoxGFP-labeled ER. Improved accuracy for frames expressing222

higher ERmoxGFP highlights that the network is using the ERmoxGFP label to identify ZIKV-infected223

frames and cells.224

To determine the basis for CNN decision making we analyzed the respective CAMs for both225

classes, ZIKV- andmock-infected cells. This method, first proposed by (39) produces a heatmap (or226

CAM), corresponding to a given image input, which can help localize the discriminating regions of227

the image that the CNN uses to infer a class label (Figure 7A). For instance, identification of ZIKV-228

infected slices (true positive; TP; orange) is primarily based on regions highlighted by the ZIKV CAM229

while identification of mock-infected cells (true negative; TN; green) is based on the mock CAM230

(Figure 7B). The range of values of the generated CAMs is between 0 and 1. Class activation maps231

have been used for weakly supervised segmentation, i.e. to delineate regions of interest (ROIs) (40,232

41) We consider regions of interest (ROIs) to be areas of the CAM with values greater than 80%233

of the maximum. For example, if a CAM has maximum value of 1, the CAM thresholded at 80%234

considers only CAM regions with values greater than 0.8, corresponding to regions of high network235

attention. Representative examples of ZIKV (red) and mock (blue) CAMs are shown in Figure 7B; as236

they transition to yellow, concentric rings correspond to smaller CAMs and increasing thresholds237

from 10-95%. In general, themock CAMwas centered over the cell for correctly labelled uninfected238

cells (TN) cells as was the ZIKV CAM for correctly labeled ZIKV-infected cells (TP) cells (Figure 7B).239

Representative downsampled ERmoxGFP-labeled images from true positive (TP) instances show240

the 80% ZIKV CAM in red covering the central ER region. Higher resolution TP patches (112x112241

pixels) from these regions of high network attention (ZIKV CAM with a threshold of 80%) show ER242

structures used to correctly label ZIKV-infected cells (Figure 7C).243

Deep learning identifies ZIKV-infected cells based on the high density CER244

As seen in Figure 8A, ROIs identified by the ZIKV CAM show consistently higher ER density at all245

thresholds when comparing correctly identified infected frames (TP, orange) to the mock-infected246

frames (TN, green). Similarly, for 2D frames correctly identified as mock-infected (TN), the regions247

found by the mock CAM show increased ER density at all thresholds compared to the TP frames.248

This suggests that the CAMs used to identify both ZIKV- andmock-infected cells correspond to high249

ER density regions localized over the cell (see Figure 7B) and that VGG16 is using differences in the250
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ER label (ERmoxGFP) to identify slices as either ZIKV- or mock-infected. Consistently, the density251

profile of the ZIKV CAM for cells falsely identified to be infected (false positive; FP; blue) matched252

that of TP (orange) ZIKV-infected cells while that of the mock CAM for cells falsely identified to be253

uninfected (false negative; FN; purple) matched themock TN (green) profile. ER density for the ZIKV254

and mock TP and TN profiles at a CAM threshold of 80% show clearly that regions identified by the255

thresholded ZIKV CAM have significantly increased ER density when comparing TP to TN frames256

(Figure 8B, left). Conversely, regions identified by the thresholded mock CAM have increased ER257

density for TN compared to TP cells (Figure 8B, right). We then calculated the average Euclidean258

distance between the weighted center of mass of the CAMs and the weighted center of mass for259

all ERmoxGFP labelled pixels (Figure 8C). The center of mass of the ZIKV CAM for TP and for the260

mock CAM for TNwere closest to the ERmoxGFP center of mass. As for the ER density profile of the261

CAMs, Euclidean distance of FPs for the ZIKV CAMmatched TP, and FNs for themock CAMmatched262

TNs. Together, these data argue that the CAMs used to identify ZIKV- and mock-infected cells are263

located in dense ER regions near the center of mass of the ERmoxGFP label.264

To determine the relationship of the ZIKV CAM to the dense tubular matrix region that we iden-265

tified by 3D STED super-resolution microscopy (Figure 3), we assessed CAM overlap with dsRNA,266

NS2B, NS4B and ERmoxGFP labeling. To do this, we calculated the normalized CAM intensity, de-267

fined as the intensity sum of a given channel in the ZIKV CAM normalized by the total area of that268

channel. The 80% ZIKV CAM shows a higher degree of overlap with the NS4B- positive ER relative269

to the ERmoxGFP-, dsRNA- and NS2B-labeled ER (Figure 9A, left). Further, based on Euclidean dis-270

tance analysis, the center of mass of the ZIKV CAM was closer to the NS4B center of mass (Figure271

9A, right). Relative to NS2B and dsRNA, NS4B density is present throughout the CER and increased272

in the PER (Figure 5). Therefore, to further define the ER zone contributing to CNN discrimination273

of ZIKV-infected cells, we assessed overlap of the ZIKV CAM with the dsRNA-positive and dsRNA-274

negative CER as well as the PER, as defined previously (Figure 3). The PER, determined based on275

Z-height of ER segments, includes the subnuclear ER and to ensure we were assessing strictly the276

PER we segmented out the nuclear region using a semi-automated annotation approach (See Ma-277

terials and Methods). As seen in Figure 9B, the ZIKV CAM shows increased overlap and proximity278

with the dsRNA-positive CER relative to either the dsRNA-negative CER or PER. The region closest279

to and most overlapping with the ZIKV CAM is the nuclear region, cropped from the PER channel.280

As the center of mass of the ZIKV CAM presents the shortest Euclidean distances to the dsRNA-281

positive CER and the nucleus, this locates the ZIKV CAM center of mass to the perinuclear CER282

region between the dense dsRNA-positive tubular matrix and the nucleus.283

This can be visualized in Figure 9C, where increased grey scale density highlights the weighted284

overlap of the ZIKV CAM with these four ER regions. Increased ZIKV CAM overlap with the dsRNA-285

positive ER, the perinuclear zone of the dsRNA-negative CER as well as the nuclear zone adjacent286

to this region can be clearly observed. The ZIKV CAM encompasses the dsRNA, NS2B and NS4B-287

positive dense tubular matrix region that houses ZIKV replication factories, but also includes the288

adjacent perinuclear region enriched for NS4B but not NS2B. Individual patches do not encompass289

the totality of the CER (see Figure 7C) and the precise nature of the features that the CNN uses to290

discriminate between ZIKV- and mock-infected cells remains to be determined. CAM localization291

analysis shows that the neural network uses the same CER region that we have observed to be292

modified upon ZIKV infection. Deep learning therefore has the ability to identify the ER morpho-293

logical changes associated with ZIKV infection.294

Discussion295

ZIKV infection is characterized by re-organization of the ER to create replication factories and con-296

voluted ER membranes involved in viral replication, whose ultrastructure has been elegantly char-297

acterized by EM (19, 25). Here, 3D STED super resolution microscopy reveals the formation of a298

novel, perinuclear, crescent-shaped region of dense tubular ER, or convoluted membranes, within299

the CER of ZIKV-infected cells. This region is enriched for dsRNA and ZIKV non-structural proteins300
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NS2B and NS4B and therefore corresponds to the site of ZIKV replication factories and genomic301

replication (19, 20). 3D STED microscopy therefore shows that ZIKV infection induces CER reorga-302

nization. Importantly, based in large part on the formation of this dense CER region, deep learning303

image analysis is able to identify ZIKV-infected cells based solely on ER morphology. This high-304

lights the potential utility of ER reorganization as a sensitive host cell reporter for use in screens305

for inhibitors of infection by ZIKV and other flaviviruses, as well as coronaviruses, such as severe306

acute respiratory syndrome coronavirus 2 (SARS-CoV-2), that induce extensive ER rearrangement307
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Figure 8. Normalized CAM ER density across subgroups. ROIs are defined by various CAM thresholds. For a

given ROI, ER density is defined as total ERmoxGFP intensity within the ROI divided by ERMoxGFP area inside

the ROI. ER density for each ROI defined by the CAM is then normalized by the ER density of the whole cell. A)

ER density of ROIs defined by CAM thresholds from 10-95% with increments of 5% is compared across 4

subgroups: ZIKV-infected 2D frames correctly predicted to be infected (true positives); mock-infected 2D

frames correctly predicted to be uninfected (true negatives); ZIKV-infected 2D frames incorrectly predicted to

be uninfected (false negatives); mock-infected 2D frames incorrectly predicted to be infected (false positives).

B) ER densities of 80% CAMs ROIs compared across subgroups. C) Euclidean distances between center of

mass of 80% CAMs ROIs and weighted center of mass of ERmoxGFP signal.
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(15, 42).308

The ER is a morphologically complex organelle, containing smooth ER tubules and ribosome-309

studded rough ER sheets identified ultrastructurally by EM since over 60 years (43). In confocal im-310

ages of cultured cells, thesemorphological structures correspond, respectively, to PER tubules and311

the dense perinuclear CER (3). Here, we approximate CER and PER regions based upon Z bound-312

ing box height of segmented 3D STED ER volumes and show that the dense ER zone enriched for313

dsRNA is within the CER. The CER of both ZIKV- andmock-infected U87 cells is composed of tubular314
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Figure 9. ZIKV CAM intensity relative to ER Regions. A) ZIKV CAM localization with respect to ERmoxGFP,

dsRNA, NS4B and NS2B labelling. Left: Normalized CAM intensity refers to the total ZIKV CAM intensity

colocalized with a given channel, normalized by the channel area. Mean Euclidean distances measured

between the 80% ZIKV CAM region center of mass and all pixels of the indicated labelled protein. B) ZIKV CAM

localization with respect to ER regions: dsRNA-positive CER (dsRNA+ CER), dsRNA-negative CER (dsRNA- CER),

PER with nuclear region removed (PER), segmented nuclear PER region (nucleus). Same metrics are used as

(B), replacing channels with ER regions. C) Representative images of NS2B and NS4B labelled ZIKV-infected

cells with ER regions weighted by ZIKV CAM intensity. Darker pixels (closer to 1.0) reflect presence of

ERmoxGFP and high ZIKV CAM intensity.
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networks that correspond to previously described PER tubular matrices (7). While we were unable315

to detect ER sheets by super-resolution analysis of cultured U87 cells, EM of brain organoids shows316

the transformation of ER sheets to convolutedmembranes upon ZIKV infection. This suggests that317

organoid structures present more highly developed ER structures than cultured cells; application318

of 3D live cell super-resolution analysis (44) to this model of the developing fetal brain, composed319

of a heterogenous population of cell types, may lead to better definition of complex ER structures320

and their dynamic transitions in response to stress, such as viral infection. Nevertheless, the fixed321

cell 3D STED analysis applied here demonstrates that convolutedmembranes associated with ZIKV322

replication derive from tubular matrix reorganization in the CER.323

The ZIKV-induced CER-localized, high ER density tubular matrices are enriched for dsRNA. As324

dsRNA is specifically associated with viral replication, this localizes active replication factories to325

this CER domain that therefore corresponds to convoluted membranes (19). Functionally, the for-326

mation of tubular matrix is suggested to stabilize high curvature regions of the ER with increased327

membrane surface area that act as a reservoir for membrane proteins and lipids (7). ZIKV-induced328

dense tubular matrix may serve to provide material required for formation of replication facto-329

ries and viral replication. Previously, tubular matrices were shown to shaped by both RTN and330

ATL proteins (Nixon-Abell et al., 2016). Consistently, depletion of RTN3.1A, ATL2 and ATL3 have331

been shown to reduce ER reorganization and replication of multiple flaviviruses, including ZIKV332

(25, 45, 46). Here, NS2B and NS4B are shown to associate with the ZIKV-induced tubular matrix333

and colocalize with dsRNA, localizing these proteins to replication factories. NS2B distribution is334

highly restricted to the ZIKV-induced tubular matrix, consistent with NS2B recruitment of NS3 to335

the ER and its role as a cofactor for NS3 protease function, necessary for ZIKV genomic replication336

and polyprotein cleavage (25, 28, 47). In contrast, NS4B has been shown to be a multifunctional,337

membrane protein involved in many processes of ZIKV infection and pathogenesis, including pro-338

moting ER membrane proliferation, curvature of ER membranes to produce replication factories339

and disruption of ER-mitochondria contacts allowing the virus to successfully subvert the host in-340

nate immune response (26, 48, 49). Demonstration here that NS4B presents a broad distribution341

throughout the ER is consistent with such a role and implicates NS4B in the ER reorganization that342

leads to tubular matrix formation. A complete understanding of the spatial and temporal role of343

NS and ER shaping proteins in ZIKV-induced tubular matrix formation remains to be determined.344

Weshow that deep convolutional neural networks can accurately classify ZIKV- andmock-infected345

cells based on ER labeling. Through the use of CAMs, we focus on regions which are more likely to346

be used by the network to infer a class label. Importantly, our analysis shows that the VGG16 neu-347

ral network uses dense ERmoxGFP in the CER as an indicator of ZIKV infection. This demonstrates348

that the neural network is detecting the ZIKV-induced reorganization of the CER that leads to the349

formation of the tubular matrix associated with ZIKV replication. Accuracy obtained for VGG16350

classification of ZIKV-infected cells from 3D STED image stacks is comparable to prior classification351

using VGG16. VGG16 achieved 79.2% accuracy when classifying disease (e.g., melanoma) versus352

benign skin lesions from the ISIC 2016 challenge dataset of dermoscopy images (37, 50). Analysis of353

dystrophic MRI data classified Duchenne and congenital muscular dystrophies with an accuracy of354

84.1% using VGG16, which was boosted by 7.6% when implementing their improved CAMmethod355

into a ResNet50 basemodel (51). For an entirely different task anddataset, VGG16 achievedhighest356

accuracy (92.6%) compared to ResNet50 (79.4%), when trained to classify histopathological breast357

cancer images (as benign or malignant breast tissue) from the publicly available BreakHis Dataset358

(38, 52). Here, our analysis of a novel 3D STED data set introduces a baseline for classification per-359

formance for 3D super-resolution microscopy data sets that will be of service to other researchers360

applying deep learning approaches to super-resolution microscopy.361

The interpretability of artificial intelligence is an evolving field and we believe that interpretable362

methods, such as Grad-CAM (53), are important tools for the understanding of deep neural net-363

works applied to exploratory data sets. This approach has now allowed us to identify features of364

discriminatory regions, and has not, to our knowledge, been applied to subcellular morphology,365
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nor to 3D super resolution images of the ER. Comparison of downsampled low-resolution images366

from 2D sections of cells presenting ER reorganization into a denser CER tubular matrix was suf-367

ficient to train the neural network to identify ZIKV-infected cells. This highlights the sensitivity of368

deep learning image analysis and augurs well for future identification not only of tubular matrix369

but also of the peripheral tubules, 3-way junctions, sheets and organelle contacts that comprise370

the ER (54). However, defining the morphological characteristics associated with deep learning-371

based decision making from isolated 2D patches of ER remains a challenge. Future application of372

similar deep learning approaches to super-resolution 3D analysis of both fixed and live cells may373

lead to novel understanding of the dynamic, local changes to ERmorphology associatedwith the di-374

verse functions of this cellular organelle. To the best of our knowledge, interpreting the network’s375

decisions is a novel approach to study ER morphology using deep learning.376

Screening of siRNA or small molecule libraries to identify inhibitors of viral infection is a valid377

and urgent research endeavour, given the current SARS-CoV-2 pandemic. Such high-throughput378

screens require robust, sensitive assays to identify potential inhibitors for subsequent secondary379

screens and drug development. The intent of this study is not the use of deep learning to identify380

virus-infected cells (55) but rather the use of deep learning to identify and localize the morpholog-381

ical features of the ER. This includes but is not limited to the central ER tubular matrices induced382

by ZIKV infection and therefore, in combination with 3D super-resolution microscopy, has tremen-383

dous potential to identify distinct, local morphological features of the ER and other cellular or-384

ganelles. Nevertheless, application of a deep learning framework to host-cell ER labeling correctly385

identified ZIKV-infected cells from 2D sections of downsampled STED super-resolution images; this386

indicates that VGG16 and other deep CNN architectures are capable of finding discriminatory fea-387

tures in lower resolution images for correct identification of infected cells. Importantly, our deep388

learning approach is translatable to ER reorganization induced by other pathogenic human en-389

veloped viruses. As for flaviviruses (i.e. ZIKV), the ER is the key replication site for coronaviruses,390

likely including SARS-CoV-2 responsible for COVID-19, whose infection is also associated with ER391

reorganization to form convoluted membranes (15, 42, 56). Deep learning analysis of host cell392

reorganization of the ER may therefore represent a sensitive detection approach to identify virus-393

infected cells.394

Methods and Materials395

Antibodies, plasmids, chemicals and viruses396

ERmoxGFP was a gift from Dr. Erik Snapp (Albert Einstein College of ERmoxGFP was a gift from397

Dr. Erik Snapp (Albert Einstein College of Medicine, presently at Howard Hughes Medical Institute,398

Janelia Research Campus, Virginia) (Addgene plasmid #68072), and Sec61β-GFP fromDr. Gia Voeltz399

(University of Colorado, Boulder). Mouse anti-dsRNA antibody (Cat#: J2-1904) was purchased from400

Scicons English and Scientific Consulting, goat anti-rabbit Alexa Fluor 532 from ThermoFisher Sci-401

entific (Cat#: A-11009), goat anti-mouse Alexa Fluor 568 from ThermoFisher Scientific (Cat#: A-402

11031), and goat serum from Thermo Fisher Scientific (Cat#: 16210-064). Rabbit anti-NS2B (Cat#:403

GTX133308) and NS4B (Cat#: GTX133321) were kindly provided by Genetex (Cat#: GTX133321).404

16% paraformaldehyde (Cat#: 15710) and 25% glutaraldehyde (Cat#: 16220) were from Electron405

Microscopy Sciences, USA. All other chemicals were obtained from Sigma. ZIKV strain (PRVABC59)406

was obtained from ATCC (Cat#: VR-1843).407

Cells and organoids408

U87 MG cells from ATCC (Cat#: HTB-14) were grown at 37°C with 5% CO2 in Gibco Minimum Es-409

sential Media (MEM) (Cat#: 11095080) containing 10% FBS, 1% MEM non-essential amino acids410

(Cat#: 11140050), and 1% sodium pyruvate (Cat#: 11360070) (ThermoFisher Scientific) unless oth-411

erwise stated. Plasmids were transfected in U87 cells with Effectene (Qiagen, Germany) according412

to the manufacturer’s protocols. Following 24 hours of plasmid transfection cells were incubated413
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in MEM with 800 mg/mL of Geneticin (Cat#: 10131027) to select for transfected cells. Media was414

changed every 24 hours for a week and then every 2 days. Once colonies grew to confluency the415

resultant GFP positive cells were sorted by FACS. Plasmid stable lines weremaintained inMEMwith416

400 mg/mL of Geneticin where media was changed every two days. Human pluripotent stem cell417

(hPSC)-derived cerebral organoids were grown at 37°C with 5% CO2 in STEMdiff Cerebral Organoid418

Kit cell culture media from STEMCELL Technologies Inc. (Cat#: 08570).419

Immunofluorescence labeling420

Cells grown on #1.5H coverslips (Paul Marienfeld GmbH& Co, Germany) for 24 hours were washed421

once with phosphate buffered saline (PBS) and incubated with ZIKV, diluted in MEM, at a MOI of422

1 for 48 hours. Then cells were: 1) fixed with 3% paraformaldehyde with 0.2% glutaraldehyde at423

room temperature for 15 minutes and washed with PBS-CM (PBS supplemented with 1 mM CaCl2424

and 10mMMgCl2) (all PBS-CM washes consist of two quick washes and then two 5minute washes425

unless otherwise specified); 2) permeabilized with 0.2% Triton X-100 for 5minutes followed by PBS-426

CM washes; 3) quenched of glutaraldehyde aldehydes with 1 mg/mL of NaBH4 for 10 minutes and427

washed with PBS-CM; 4) blocked with 10% Goat serum (ThermoFisher Scientific) and 1% bovine428

serum albumin (Sigma) in PBS-CM for 1 hour; 5) incubated with primary antibodies in the same429

blocking solution as described above for 1 hour at room temperature (RT) then washed quickly430

with PBC-CM once followed by three 5 minute washes with Antibody Wash Buffer (20x SSC, 0.05%431

Triton-X100 in Milli-Q H2O); 6) incubated with secondary antibodies in Antibody Buffer (1% BSA,432

2% goat serum, 0.05% Triton-X100, 20X sodium/sodium citrate buffer in Milli-Q H2O) for 1 hour at433

RT then washed quickly with PBS-CM once followed by six 10 minute washes with Antibody Wash434

Buffer on a rocker; 7) rinsed with Milli-Q H2O and mounted with ProLong Diamond (ThermoFisher435

Scientific) and cured for 24-48 hours at RT (6).436

3D STED microscopy437

3D STED imaging was performed with the 100X/1.4 Oil HC PL APO CS2 objective of a Leica TCS SP8438

3X STED microscope (Leica, Germany) using white light laser excitation with HyD detectors, and439

Leica Application Suite X (LAS X) software. Sample acquisition was done at a scan speed of 600Hz440

with a line average of 6. Time-gated fluorescence detection was used to further improve lateral441

resolution. GFP was excited at 488 nm and depleted using the 592 nm depletion laser. Alexa442

Fluor 532 was excited at 528 nm, and Alexa Fluor 568 was excited at 577 nm. Both were depleted443

using the 660 nm depletion laser. To avoid crosstalk, image stacks for each channel were acquired444

sequentially, in the order of Alexa Fluor 568, Alexa Fluor 532 and then GFP. A step size of 210 nm445

was utilized for 3D STED. Images were then deconvoluted using Huygens Professional software446

(Scientific Volume Imaging). 3D STED ER segmentation and ER region mask generation were done447

using Imaris x64 9.2.1. dsRNA associated ER andNS4B/NS2B associated ER regionswere generated448

by partial overlap analysis after surface generation. All data produced from Imaris were parsed and449

analyzed with a custom made Jupyter notebook. Two-tailed unpaired Student’s t-tests or ANOVA450

with post-hoc Tukey HSD were done using Graph Pad Prism 6.0.451

Transmission electron microscopy452

63-day old cerebral organoids were infected with the PRVABC59 ZIKV strain, MOI of 1, for 48 hours.453

Organoids were then processed by replacingmedia with the primary fixative [0.1M sodium cacody-454

late, 1.5% paraformaldehyde, 1.5% glutaraldehyde, pH 7.3, room temperature] (57) and allowed to455

sit for 1 hour before placing them at 4°C overnight. The organoids were washed three times (10456

minutes each wash) with buffer (0.1M sodium cacodylate) and then post-fixed for 1 hour on ice in457

0.1M osmium tetroxide in 0.1M sodium cacodylate (pH7.3). They were then washed three times458

with distilled water (10 min each wash, room temperature) and stained en bloc with 1% aqueous459

uranyl acetate for 1 hour at room temperature. They were washed again three times with distilled460

water and then dehydrated through an ascending concentration series of ethyl alcohol (30%, 50%,461
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70%, 95%, 100%), passed through two changes of propylene oxide, and then infiltrated overnight in462

a 1:1 solution of propylene oxide:EMBED 812 resin. The organoids were then passed through two463

changes of 100% EMBED resin, embedded and the resin polymerized at 60°C for 48 hours. Thin464

sections were cut using a diamond knife and sections were collected on copper grids. The sections465

were then stained with uranyl acetate and lead citrate, and images collected using a FEI tecnai G2466

Spirit transmission electron microscope operated at 120 kV.467

Image data processing for CNN analysis468

A custompipeline was created usingMATLAB R2019a (TheMathworks, Inc., Natick, MA) and Python469

3 (Python Software Foundation, Scotts Valley, CA) scripts to convert data stored in Leica proprietary470

format (.lif) to an accessible and lightweight format, which could easily feed as input to state of the471

art CNNs. Once an imaging session is complete, the biologist exports Leica STED data without472

need for further processing or file conversion. The pipeline takes Leica .lif files of 3D STED vol-473

umes of multiple cells as input and outputs a single NumPy array per cell. The pipeline relies on474

open-source Matlab package Bio-Formats, modified to handle our needs. This pipeline has been475

validated through manually inspection of cells with Imaris image rendering software.476

Deep learning477

The Keras open-source neural network library was used to modify and train neural networks us-478

ing Tensorflow backend. VGG16 was used as a base model to predict infected from non-infected479

2D frames (removing the original fully-connected output layers). This architecture and pretrained480

weights (learned using the ImageNet dataset) are easily accessible using Keras. The pretrained481

weights can be loaded when instantiating the base model. On top of the VGG16 max pooling layer,482

we add (in order): a global average pooling layer, a dropout layer (with a dropout rate of 0.5), dense483

layer (using ReLu activation, output dimension 1024), a second dropout layer (0.5 dropout rate) fol-484

lowed by a final dense layer (with softmax activation) for making predictions. These additional485

layers helped prevent overfitting of the CNN to the training data.486

56 individual CNNs (with identical architecture as outlined above) were trained using a softmax487

loss function and RMSprop optimizer. Each model was then used to predict the class labels (i,e.488

assign either ’Mock’ or ‘ZIKV’ to each 2D frame) of a single test cell. The CNNs were fine-tuned for489

a total of 24 epochs, after which only the best weights (resulting in highest classification perfor-490

mance on the validation set) were then reloaded during test time. CAMs were generated following491

the procedure outlined by (39), where global average pooling is applied to the output of the final492

convolutional layer of VGG16 followed by a weighted sum, according to the specified class (e.g.,493

ZIKV). Models were trained on 2 Nvidia GPUs (GeForce GTX TITAN X, each with 32 GB of RAM).494

ROIs generated through the deep learning framework were analyzed using python program-495

ming. Statistical analysis across channels and ER regions relied on several open-source python496

packages. SciPy’s statistical functions module, was used to perform Kruskal-Wallis non-parametric497

tests, statsmodules pythonmodulewas used forOne-wayANOVA, and scikit-posthocs pythonpack-498

age was used to perform Dunn’s post hoc test.499

Code availability500

All code related to data processing and deep learning andwas written using open-source packages.501
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Supplemental Material647

Supplemental Figure I: Network Performance Analysis

Selection Criterion Accuracy Sensitivity Specificity

Frame 
Label 

All frames 78.2 77.7 78.8

 ERmoxGFP > mean 80.9 77.6 84

 ERmoxGFP > median 81.1 78 84.1

Cell 
Label 

All frames 82.1 82.1 82.1

 ERmoxGFP > mean 83.9 82.1 85.7

ERmoxGFP > median 83.9 82.1 85.7

B

A

C

Figure 10. Network Performance Analysis A) Performance metrics are reported across predictions of frame

labels and cell labels, where cell labels correspond to the majority label of predicted frame labels for each cell.

Results are reported using a given selection criteria: using all frames (rows 1, 4), using only frames with

normalized ERmoxGFP signal greater than mean normalized ERmoxGFP signal (rows 2, 5) or greater than

median normalized ERmoxGFP signal (rows 3, 6). Mean and median thresholds are computed on a cell basis.

The rug plot (above x-axis) visualises distribution of z-frames. B) Accuracy reported across corrected z-frames,

z=0 is where normalized ERmoxGFP Intensity Sum is maximal. C) Normalized ERmoxGFP Intensity sum

plotted against corrected z-frame. Dashed lines indicate the median (orange) and mean (red) Normalized

ERmoxGFP Intensity sum computed across all frames.
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