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Abstract 

The generation of personalised and patient-specific musculoskeletal models is currently a cumbersome 

and time-consuming task that normally requires several processing hours and trained operators. We 

believe that this aspect discourages the use of computational models even when appropriate data are 

available and personalised biomechanical analysis would be beneficial. In this paper we present a 

computational tool that enables the fully automatic generation of skeletal models of the lower limb 

from three-dimensional bone geometries, normally obtained by segmentation of medical images. This 

tool was validated against four manually created lower limb models finding remarkable agreement in 

the computed joint parameters, well within human operator repeatability, with the only exception 

being the subtalar joint axis estimation, which was sensitive to the bone segmentation quality. To 

prove the robustness of the methodology, the models were built from datasets including both genders, 

anatomies ranging from juvenile to elderly and bone geometries reconstructed from high-quality 

computed tomography as well as lower-quality magnetic resonance imaging scans. The entire 

workflow, implemented in MATLAB scripting language, executed in seconds and required no 

operator intervention, creating lower extremity models ready to use for kinematic and kinetic analysis 

or as baselines for more advanced musculoskeletal modelling approaches, of which we provide some 

practical examples. We auspicate that this technical advancement will promote the use of personalised 

models in larger-scale studies than those hitherto undertaken. 

 

Keywords: Anatomical Coordinate System, Lower Limb, Skeletal Model, Musculoskeletal Model, 

Kinematics, Three-dimensional bone model, Surface Fitting, 3D Imaging 
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1 Introduction 

Musculoskeletal models have proven to be powerful computational tools to study muscle function and 

internal forces in healthy (Hamner et al., 2010; Saxby et al., 2016) and clinical populations (Barber et 

al., 2017; Fox et al., 2018; Montefiori et al., 2019b). Recent technical progress in predictive simulation 

approaches (Dembia et al., 2019; Falisse et al., 2019) has enabled the investigation of if-then scenarios 

that could support planning and execution of physical interventions. However, applications of 

personalised medicine often require highly accurate representations of the anatomy of the 

musculoskeletal system based on medical images such as magnetic resonance imaging (MRI) or 

computed tomography (CT) scans. For example, accurate models of bone geometries are essential in 

orthopaedics for planning surgeries  and designing personalised surgical equipment (Barrett et al., 

2006; Clarke et al., 2018; Jones et al., 2018; Victor and Premanathan, 2013). Personalised (or subject-

specific) anatomical models are also of paramount importance in investigations of human motion to 

ensure accurate estimations of joint kinematics and kinetics (Kainz et al., 2017; Stagni et al., 2000), 

muscle moment arms (Scheys et al., 2008) and internal forces (Gerus et al., 2013; Lenaerts et al., 

2008; Marra et al., 2015). 

Previous studies presented methods to generate subject-specific models of the entire lower limb 

(Marra et al., 2015; Modenese et al., 2018) or individual joints (Barzan et al., 2019; Brito da Luz et al., 

2017; Montefiori et al., 2019a; Nardini et al., 2020) and dedicated modelling tools like NMSBuilder 

(Valente et al., 2017a) or specialized features in the AnyBody software (Damsgaard et al., 2006) are 

available to implement those workflows. Nevertheless, patient-specific musculoskeletal models are 

currently employed in small-sized clinical applications (Falisse et al., 2020; Montefiori et al., 2019b; 

Pitto et al., 2019; Taddei et al., 2012; Valente et al., 2017b), mostly because the generation of each 

model is a time-demanding operation requiring manual intervention by specialized operators. For 

example, a codified approach proposed in Modenese et al. (2018) reported around 10 hours to build a 

complete bilateral musculoskeletal model of the lower limbs from segmented bone geometries, while 

Scheys et al. (2006) reported on average 65 minutes to define the lower limb musculature using an 

atlas-based semi-automated approach. We believe that validated and fully automatic workflows are of 

paramount importance to enable large-scale use of these computational models. 

Multiple studies with orthopaedic focus have explored the possibility of defining anatomical 

coordinate systems (ACSs) in the lower extremity bones based on key geometrical features. Miranda 

et al. (2010) and Rainbow et al. (2013) proposed fully automatic methods for defining ACSs for the 

distal femur, proximal tibia and patella, that showed minimum variability with the bone morphology. 

Kai et al. (2014) developed an automatic approach to identify the reference systems of the pelvis, 

femur and tibia based on principal axes of inertia, principal component analysis and longitudinal 
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slicing, obtaining ACSs compatible with those created by human operators, except for the pelvis 

where anterior tilt was up to 18.8° higher. More recently, Renault et al. (2018) proposed multiple 

algorithms based on the automatic identification of the articular surfaces at the hip and knee joints, 

showing high repeatability of these methods when applied on 24 CT scans by three operators. 

However, in these previous works the ACSs were not defined consistently across publications and 

none of these methods has been employed for creating articulated skeletal models yet.  

Statistical shape modelling workflows have recently demonstrated high potential for reconstructing 

bone geometries from sparse anatomical datasets (Davico et al., 2019; Nolte et al., 2016; Suwarganda 

et al., 2019) and landmarks digitized in the gait lab (Nolte et al., 2020; Zhang et al., 2016), but to the 

best of the authors’ knowledge they do not yet offer methods to generate articulated skeletal models of 

the complete lower limb. The bone reconstructions are limited to the long bones (Nolte et al., 2020; 

Nolte et al., 2016) or omit the talus and foot bones (Davico et al., 2019; Suwarganda et al., 2019; 

Zhang et al., 2016), and in musculoskeletal modelling contexts they have been employed to perform 

non-linear scaling of pre-existing muscle attachments (Nolte et al., 2016) with scarce focus towards 

joint modelling. Hence, a comprehensive approach to generate entire lower limb models from 

personalised bone geometries is still missing.  

The aim of this paper is to present a tool to create complete models of the complete lower limb from 

three-dimensional bone geometries in a completely automatic way. The tool implements a workflow 

that executes in negligible computational time and generates models usable immediately in kinematic 

and kinetic analyses or employable as baselines for fully featured musculoskeletal models. The models 

produced by this tool are validated against manually created models that were employed in previous 

research and the joint parameters computed by competing algorithms are compared to assess their 

interchangeability. Examples of further technical developments, such as joint articular mechanics and 

integration with anatomical models of musculature, are finally provided to demonstrate the tool’s 

potential for enabling large-scale studies and broader musculoskeletal research.  

2 Materials and methods 

2.1 Workflow to generate automatic skeletal models 

A set of computational methods proposed in previous literature to define ACSs automatically (Kai et 

al., 2014; Miranda et al., 2010; Renault et al., 2018) were acquired and included in a more extensive 

modelling workflow. The geometrical methods from Renault et al. (2018), available in the public 

“GIBOC-KNEE” MATLAB toolbox, were forked directly from the GitHub repository 

(https://github.com/renaultJB/GIBOC-Knee-Coordinate-System) and extensively modified and 

expanded, while the methods described by Kai et al. (2014) were independently reimplemented and 
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those of Miranda et al. (2010) were obtained through contacting the authors of the publication. 

Additional algorithms were developed ad hoc for the purposes of this investigation (Table 1).  

The implemented workflow (Figure 1) consisted of the following steps: a) obtaining segmented three-

dimensional bone geometries of the pelvis, femur, patella, tibia, fibula, talus, calcaneus and the other 

foot bones from medical images; b) automatically processing these bone models to extract the 

geometrical parameters required to define ACSs and appropriate joint coordinate systems (JCSs) for 

the parent and child bodies of each joint of the lower limb; c) creating an articulated skeletal model of 

the lower limb in OpenSim format (Delp et al., 2007) using the identified JCSs and ACSs.  

In step b), bone geometries were analysed starting with a transformation to the ACSs defined by their 

principal axes of inertia (Gonzalez-Ochoa et al., 1998; Mirtich, 1996), followed by bone-specific 

features extraction. The complete list of algorithms available to define each JCS is reported in Table 1 

and the details of the methodologies are described in their reference publications, and for the newly 

developed algorithms for the pelvis, talus and foot, in the supplementary materials. The articulated 

skeletal models were generated leveraging the MATLAB (The MathWorks, Natick, MA, USA) 

application programming interface (API) of OpenSim 4.1 (Seth et al., 2018): a rigid body with 

appropriate inertial properties (Winter, 2009) was created for each leg segment and a 

SpatialTransform for each joint based on the JCSs identified at step c). The individual JCSs, consistent 

with Modenese et al. (2018), are described in Table 1. For convenience in the validation step, all rigid 

bodies shared a local coordinate system that was coincident with that of the medical images, as they 

would have in a model generated using NMSBuilder. The lower limb models included five bodies: 

pelvis, femur, tibia (including fibula and a rigidly attached patella), talus and foot (including calcaneus 

and foot bones), and five joints: a free joint between pelvis and ground, a ball and socket joint for the 

hip joint and hinge joints for the tibiofemoral, talocrural and subtalar joints. The models also included 

fourteen landmarks (Table 2) automatically identified on the bone surfaces and intended for 

registration with the skin markers used in standard gait analysis.  

The entire set of scripts implementing this workflow was organized in a MATLAB toolbox named 

STAPLE (Shared Tools for Automatic Personalised Lower Extremity modelling). 

2.2 Validation of automatic models 

The models produced by the automatic tool were validated against musculoskeletal models of the 

lower limb generated for other purposes using NMSBuilder (manual models) and previously 

employed in published research (Montefiori et al., 2019b) or contributions at international conferences 

(Modenese et al., 2020; Modenese et al., 2019). These subject-specific models were built following 

the codified approach of Modenese et al. (2018) and using bone geometries available in public 

datasets plus an in vivo MRI dataset collected with the approval of the Imperial College Research 
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Ethics Committee. A complete description of the datasets, characterized by quality of the bone 

geometry meshes ranging from very good (LHDL-CT) to low (JIA-MRI), is provided in Table 3 and 

Figure 2. 

Articulated skeletal models for all datasets were generated using the STAPLE toolbox (automatic 

models) and their JCSs compared against those of the manual models, reporting differences in their 

origin location and axes orientation. These quantities were evaluated in the common global coordinate 

system of the medical images. The automatic models were created using algorithms that resembled the 

manual approach (pelvis: STAPLE-pelvis, femur: GIBOC-Cylinder, tibia: Kai-Tibia, talus: STAPLE-

Talus and foot: STAPLE-Foot). It is worth noting that not all JCSs in the model were independent, as 

detailed in their description (Table 1).  

2.3 Comparison of joint parameters estimated by different algorithms 

The JCSs of those joints for which more than one algorithm was available (ground-pelvis and knee 

joint) were then calculated using all the available options and the resulting JCSs compared to those 

employed in the validation part of the study, used as reference. Linear distances between origins and 

angular differences between axes were quantified and expressed in the JCS of the reference algorithm.  

3 Results 

All the automatic models employed in the study were successfully generated in less than 30s each 

using a standard Z640 Dell Workstation (RAM: 64 GB, CPU: 2 Intel Xeon E5-2630 2.40 GHz). 

The comparison of automatic and manual models (Table 4) resulted in an overall strong similarity of 

the joint parameters across all considered datasets. The hip and talocrural joint centres were in 

excellent agreement with the manual estimations (maximum errors hip: 0.5 mm, talocrural: 1.2mm), 

whereas the maximum error was 2.5 mm at the knee joint and 5.9 mm at the subtalar joint in the JIA-

MRI model due to the low quality of bone reconstruction (error range in the other datasets: 0.4-3.2 

mm). The cranial-caudal position of the pelvis-ground joint origin differed by up to 4.9 mm (range: 

0.8-4.9 mm) causing minor differences in pelvic tilt (range: 1.8°-3.6°, see Figure 3-A) that propagated 

to the hip-parent JCS. The axes of the knee and talocrural hinge joints (medio-lateral Z axes) were 

estimated with maximum differences from manual models of 1.0° degree, while the subtalar joint axes 

presented maximum differences up to 2.9° in the datasets with good quality bone geometries but 

reached 11.3° in the JIA-MRI model (Figure 3-B). 

When comparing competing algorithms for the same joints, we observed that differences among their 

JCSs were not always negligible (Table 5). The Kai-Pelvis algorithm presented larger pelvic tilt 

offsets than STAPLE-Pelvis, due to different identification of the anterior superior iliac spines, while 

the posterior landmarks were coincident. The Miranda-Femur algorithm failed twice but also provided 
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the knee-parent JCSs closest to the reference algorithm together with GIBOC-Spheres, for which 

differences were smaller than 1° for all cases except JIA-MRI. Kai-Femur and GIBOC-Ellipsoid 

resulted in more posteriorly and anteriorly located JCSs respectively, with maximum angular 

differences for the knee joint axis up to 4.7° (LHDL-CT) for the former and 5.2° (TLEM2-CT) for the 

latter. 

At the proximal tibia, all GIBOC algorithms computed more proximal origins than Kai-Tibia’s (range: 

5.8-12.5 mm), with angular differences in the range 0.5°-11.5° for the medio-lateral axis but smaller 

for the proximal-distal axis (range: 0.9°-2.9°). Overall, GIBOC-Plateau and Miranda-Tibia, which 

failed processing TLEM2-CT, identified similar JCSs, as expected by their very similar algorithms. 

The JCSs from GIBOC-Ellipse and GIBOC-Centroids were also found more similar to each other than 

to the Kai-Tibia reference. 

4 Discussion 

The aim of this paper was to present a tool to automatically create personalised models of the lower 

limb from three-dimensional bone geometries segmented in medical images. To validate the proposed 

methodology, we generated four automatic models and compared them against models manually 

created from the same data in other research projects. We employed anatomical datasets representative 

of both genders and a wide range of ages that included bone geometries of various quality derived 

from both CT and MRI scans (Table 3). We found that the automatic and manual models were 

remarkably similar (Table 4), with largest differences observed for the pelvis-ground and subtalar 

joints. In the pelvis, the JCS origin was misplaced by up to 4.9 mm cranially due to the identified bony 

landmarks (Figure 3-A). This error causes a systematic anterior tilt offset in the range 1.8°-3.6° that 

would propagate to the hip joint flexion-extension angle in kinematic analysis (see an example in 

supplementary materials). Although not negligible, this offset represents a substantial improvement 

(almost 15°) compared to the results reported by Kai et al. (2014). Since our implementation of Kai-

Pelvis also yielded smaller pelvic tilt than the original publication, it is likely that their results were 

affected by considering the sacrum bone in the analysis and using the pubic symphysis to define the 

JCS. More recent algorithms, e.g.  Fischer et al. (2019), could be considered for future additional 

comparisons. The automatic subtalar joint axis was the other joint parameter for which we observed, 

although only in the JIA-MRI dataset, a noticeable difference from the equivalent manual model 

(11.3°, Figure 3-B). This discrepancy appeared to be caused by the low-quality of the talus bone 

reconstruction since in all the other models the same axis was estimated within 2.9°.  

It is worth noting that the differences between JCSs of automatic and manual models were compatible 

with the human inter-operator variability reported as standard deviations in previous literature. The 

ranges of origin displacements and joint axes angular differences observed at the hip, knee and 
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talocrural joint (referred to as “ankle joint” in some publications)  were well within the ranges of inter-

operator repeatability reported by previous investigations (Hannah et al., 2017; Martelli et al., 2014; 

Montefiori et al., 2019b) and even the largest difference observed at the subtalar axis was close to the 

maximum inter-operator variability (9.6°) reported by Montefiori et al. (2019a). Although further 

investigation is needed to confirm this, based on previous studies (Kainz et al., 2016; Martelli et al., 

2014; Montefiori et al., 2019a; Valente et al., 2014) it is reasonable to expect minimal differences in 

joint angles and moments calculated by manual and automatic models presenting such similar JCSs. 

Indeed, that was the case when simulating the gait data made available by Montefiori et al. (2019a) 

with the JIA-MRI manual and automatic model (see supplementary materials). Moreover, simulation 

results obtained using the STAPLE models will have zero inter- and intra- operator variability due to 

model construction because of the automatic nature of their generation. 

In the validation part of the study the JCSs of all models were defined as in Modenese et al. (2018) for 

consistency, but we considered other algorithms (Table 1) to enable different modelling approaches. 

At the pelvis, using Kai-Pelvis instead of STAPLE-Pelvis resulted in larger displacements between the 

automatic and manual JCSs origins and consequently larger pelvis tilt offsets, suggesting that using 

the pelvis largest convex hull instead of the principal axes of inertia is a better approach to identify its 

anterior bony landmarks. For the long bones, JCSs estimated by different algorithms exhibited 

variability comparable with Renault et al. (2018), that was using bone segmentations from CT scans. 

At the distal femur the differences observed among JCSs were small (<5° in the 93% of estimations) 

but not negligible, therefore the choice of the algorithm, e.g. fitting ellipsoids (Sholukha et al., 2011) 

or spheres (Yin et al., 2015) to the femoral condyles articular surface, must be justified with careful 

functional anatomy considerations relevant to the research question. At the proximal tibia, the 

mechanical axis (Y axis) was similar between Kai-Tibia and GIBOC algorithms (range: 0.9°-2.9°) but 

less for Miranda-Tibia (up to 7°). Larger differences among algorithms were observed in the medio-

lateral axis (range: 0.5°-11.5°) and anterior-posterior axis (range: 1.9°-11.7°). Despite this variability, 

it is interesting to note that the tibiofemoral alignment, i.e. the angle between knee-parent and knee-

child medio-lateral Z axis, was 5.7°±3.8° external rotation across all algorithms for the in vivo MRI 

datasets, which is compatible, although slightly larger, with the offset in tibiofemoral alignment 

observed by Hirschmann et al. (2015) comparing upright and supine non-weight-bearing CT scans in 

26 patients (2.7°±5.1° and 2.6°±5.6° external rotation, from two readers). This suggests that the 

automated methods could be used to correct tibial alignment offsets introduced in standard imaging, 

although further investigations are required to identify the most suited adjustment algorithm. Finally, 

in this study the algorithms of Miranda et al. (2010) failed to process some of the datasets. However, it 

must be considered that a) we plug them in our workflow with minimal modifications and b) we used 

rather different input data than those they were intended to process, i.e. partial bone reconstructions 

from high resolution CT scans. 
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A current limitation of the study is that our validation datasets were only four, and despite their 

heterogeneity, did not include bone geometries presenting abnormalities or deformities that could be 

encountered clinically. This limitation is partially mitigated by the availability of multiple algorithms 

usable in place of a failing one, but additional validation is undoubtedly required before creating 

automatic models from pathological skeletal anatomies. An additional limitation of use could be the 

availability of partial bone reconstructions, e.g. from CT scans aiming to minimize exposure to 

ionizing radiations (Henckel et al., 2006) or in amputees’ studies. In fact, this is not an issue for the 

long bones (femur and tibia) because some algorithms were specifically developed for working with 

incomplete geometries (Miranda et al., 2010; Renault et al., 2018). Incomplete bone models, however, 

may represent an obstacle to the identification of the muscle attachments when the aim is generating a 

complete musculoskeletal model. This issue can be solved by combining the STAPLE toolbox with a 

statistical shape workflow to reconstruct entire bone geometries from sparse datasets (Nolte et al., 

2016; Suwarganda et al., 2019). It is worth mentioning that, although statistical shape modelling 

workflows present the advantage of reconstructing bone geometries from sparse segmentations or 

even skin landmarks, bone models from medical image segmentation still provide the most accurate 

estimations of joint parameters; for example, median root-mean-squared errors up  to 11.09 mm 

(Zhang et al., 2016) and larger than 13.8 mm (Nolte et al., 2020) have been reported in the 

identification of the centre of the femoral head using statistical shape models. Considering that 

radiological scans are routinely collected to plan musculoskeletal surgical interventions and that the 

time required to segment bones (Noguchi et al., 2020) has decreased by orders of magnitudes thanks 

to recent deep learning techniques, the generation of personalised lower limb models in a number of 

clinical applications appears technically feasible. 

The implemented MATLAB tool is intentionally modular and can automate the generation of entire or 

partial lower limb models; for example it can be easily modified to produce models of the ankle 

complex similar to Montefiori et al. (2019a), as demonstrated in the supplementary materials. 

Moreover, the GIBOC and STAPLE algorithms make available a large amount of anatomical 

information such as articular surfaces (Figure 4-A) and bone profiles that can be used for 

implementing more advanced joint models than those proposed here, e.g. contact models (Brandon et 

al., 2017; Conconi et al., 2015; Smith et al., 2018) or parallel mechanisms (Sancisi and Parenti-

Castelli, 2011). Current work is focusing on a robust implementation of a personalised patellofemoral 

joint similar to Barzan et al. (2019).  

It is worth noting that extending skeletal models with models of muscle anatomy can also be 

completely automated (Modenese and Kohout, 2020). In a previous contribution (Modenese et al., 

2020) we have used a non-rigid iterative closest point registration (Audenaert et al., 2019) to map the 

muscle attachment areas from a cadaveric dataset to the ICL-MRI participant’s bones, generating 

highly-discretized, personalised muscle representations from segmented muscle geometries and 
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simulating their kinematics during gait (Figure 4-B). Future efforts will focus on streamlining these 

methodologies towards a comprehensive, fully automated, modelling tool for generating subject-

specific musculoskeletal models. 

In summary, this work presents a computational tool enabling researchers to generate articulated, 

subject-specific skeletal models of the lower limb in negligible time through a completely automatic 

workflow that takes three-dimensional bone geometries as inputs. These models can be used 

immediately for kinematic and kinetic analyses or can serve as extendable baselines for complete 

musculoskeletal models including musculotendon actuators. This work is framed in a long-term plan 

aiming to advance the state of the art of anatomical modelling and promote large-scale clinical 

adoption of personalised computational models of the musculoskeletal system through complete 

automation of the most challenging modelling tasks.  

All the models and scripts used in this investigation will be made available for download at 

https://simtk.org/projects/auto-sk-models after publication of the manuscript. 
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Figure 1 Workflow for automatic generation of articulated skeletal models: the three-dimensional bone geometries segmented from medical ima

fed to a MATLAB toolbox that computes the joint coordinate systems (B) used to assemble a fully functional OpenSim model inclusive of the mo

bony landmarks used in gait analysis (C). For clarity only the child joint reference systems are shown in (B) for all joints. 
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Figure 2 Musculoskeletal models of the lower limb from previous research used for validating the automatically generated skeletal models (first row). The 

models were built using bone reconstructions of variable quality (second row). Details about these models are available in Table 3. 
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Figure 3 Maximum differences between manual and automatic models found at the pelvis-ground joint of TLEM2-CT using the STAPLE-Pelvis algorithm 

(A) and at the JIA-MRI subtalar joint using the STAPLE-Talus algorithm(B). 
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Figure 4 Examples of articular surfaces identified at the femur, tibia and talus by the automatic algorithms (A) and example of augmentation of the ICL-MRI 

lower extremity model using an automatically generated subject-specific hip musculature including muscle fibres and attachment areas (B).  
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Table 1 Joint coordinate systems and available algorithms to calculate their parameters. Kai-algorithms are described in Kai et al. (2014), GIBOC-algorithms are described in 
Renault et al. (2018), Miranda-algorithms are described in Miranda et al. (2010) and STAPLE-algorithms are described in the Supplementary Materials of this publication. 
Please note that the ground coordinate system coincides with that of the medical images in all models and that the algorithms used at the pelvis were always applied to bone 
geometries excluding the sacrum bone (considered challenging to segment in MRI scans). The algorithms applied to the “tibia” rigid body processed the geometry of the 
proximal tibia, full tibia or full tibia and fibula, depending on the algorithm. Note that the “foot” rigid body, including the geometries of calcaneus and foot bones, is called 
“calcn” in the OpenSim models for consistency with the other models included in the software distribution.  

Rigid Body Joint Coordinate 
System 

Algorithms  Description of joint coordinate systems used for validation (from Modenese et al. 2018) 

pelvis ground-pelvis child Kai-Pelvis 
STAPLE-Pelvis 

Origin: midpoint of ASIS. 
Axes: ISB recommendations for pelvis. 

hip parent N/A Origin: coincident with hip child origin. 
Axes aligned with those of ground-pelvis child. 

femur hip child 
 

Kai-Femur  
GIBOC-Femur 

Origin: center of femoral head (hip joint center). 
Axes: defined as in ISB recommendations for femur. 

knee parent Kai-Femur 
Miranda-Femur 
GIBOC-Spheres 
GIBOC-Ellipsoids 
GIBOC-Cylinder 

Origin: the knee joint center, as defined by selected algorithm.  
Axes: Z axis is the medio-lateral axis as defined by the selected algorithm.  

Y axis is perpendicular to Z, lying in the same plane of Z and the hip joint center.  
X axis is perpendicular to Y and Z. 

tibia knee child 
 

Kai-Tibia 
Miranda-Femur 
GIBOC-Ellipse 
GIBOC-Centroids 
GIBOC-Plateau 

Origin: coincident with knee parent origin. 
Axes: Z axis aligned with medio-lateral axis of knee parent 

Y axis is perpendicular to Z lying in the same plane as talocrural-child origin 
X axis is perpendicular to Y and Z. 

talocrural parent N/A Origin: coincident with the talocrural child.  
Axes: Z is aligned with the Z axis of the talocrural child.  

 Y axis is perpendicular to Z, lying in the same plane of Z and the knee joint center. 
 X axis is perpendicular to Y and Z. 

talus talocrural child STAPLE-Talus Origin: point at midpoint of the length on the axis of the cylinder fitter to the talar trochlea articular surface. 
Axes: Z is the axis of the cylinder fitted to the talar trochlea articular surface.  

 X is perpendicular to Z, lying on a plane parallel to the foot sole XZ plane. 
 Y is perpendicular to X and Z. 

subtalar parent STAPLE-Talus Origin: center of the sphere fitted to the articular surface of the talocalcaneal joint. 
Axes: Z axis on the line from the center of sphere fitted to the talocalcaneal articular surface to that fitted 

    to the talonavicular articular surface. 
 Y is perpendicular to Z, lying in the same plane of Z and the knee joint centre.  
 X axis is perpendicular to Y and Z. 

foot subtalar child N/A Origin and axes defined by subtalar parent. 
 foot sole (auxiliary) STAPLE-Foot Origin: most distal point of the calcaneus. 

Axes: X axis pointing from the most caudal point on the talus to the midpoint of the most caudal points on the 1st and 
5th metatarsal heads. 
Y axis perpendicular to the plane identified by the points defining X. 
Z axis is perpendicular to X and Y. 

.
C

C
-B

Y
-N

C
 4.0 International license

available under a
(w

hich w
as not certified by peer review

) is the author/funder, w
ho has granted bioR

xiv a license to display the preprint in perpetuity. It is m
ade 

T
he copyright holder for this preprint

this version posted June 23, 2020. 
; 

https://doi.org/10.1101/2020.06.23.162727
doi: 

bioR
xiv preprint 

https://doi.org/10.1101/2020.06.23.162727
http://creativecommons.org/licenses/by-nc/4.0/


 

 

Table 2 Landmarks identified on the three-dimensional bone geometries by the automated algorithms. 

Rigid Body Bony landmark Description 
pelvis ASI Anterior superior iliac spine 
 PSI Posterior superior iliac spine 
femur TRO Great trochanter 
 MFC Medial femoral epicondyle 
 KNE Lateral femoral epicondyle 
tibia/fibula MMA Medial malleolus 
 ANK Lateral malleolus 
 TTB Tibial tuberosity 
 HFB Fibular head 
foot D1M Head of first metatarsal bone 
 D5M Head of fifth metatarsal bone 
 HEE Heel  

 

  

.
C

C
-B

Y
-N

C
 4.0 International license

available under a
(w

hich w
as not certified by peer review

) is the author/funder, w
ho has granted bioR

xiv a license to display the preprint in perpetuity. It is m
ade 

T
he copyright holder for this preprint

this version posted June 23, 2020. 
; 

https://doi.org/10.1101/2020.06.23.162727
doi: 

bioR
xiv preprint 

https://doi.org/10.1101/2020.06.23.162727
http://creativecommons.org/licenses/by-nc/4.0/


Table 3 Description of the anatomical datasets employed in the current study. Please note that the LHDL-CT and ICL-MRI bone geometries were pre-processed using 
MeshLab. The details of the medical images are presented as reported in the reference publications. 

 

Dataset Gender Age Height 
[m] 

Mass 
[kg] 

MSK 
conditio

ns 

Imaging 
type 

Details of medical images  Quality of 
bone 

geometry 

Reference publication (R)/ 
previous use in the authors’ work (U) 

LHDL-CT F 78 1.71 64 No CT CT scans collected with Siemens Sensation 64, 
pixel spacing and slice thickness: 0.98 mm x 
0.98 mm x 1.0 mm, 1 mm slice spacing. 

Very Good R: Viceconti et al. (2008) 
U: Modenese et al. (2016, 2019),  
Modenese et Kohout (2020) 

TLEM2-CT M 85 N/A 45* No CT CT scans collected with Siemens SOMATOM® 
Sensation 16 CT Scanner, voxel size of 0.977 
mm x 0.977mm x 0.75 mm. 

Good R: Carbone et al. (2015) 
U: Modenese et al. (2019) 

ICL-MRI M 38 1.80 87 No MRI 3D T1-weighted VIBE, axial field of view: 
450x450 mm, pixel size: 1.41x1.41 mm, slice 
thickness and increment: 1 mm 

Average R/U: Modenese et al. (2020) 

JIA-MRI** M   14 1.74 76.5 JIA*** MRI 3D T1-weighted fat-suppression sequence 
(e-THRIVE) with 1 mm in-plane resolution 
and 1 mm slice thickness. 

Low R/U: Montefiori et al. 2019b 

* estimated by Carbone et al. (2015). 
** the OpenSim model, but not the medical images, is available with the reference publication.  
*** this model represents an individual affected by rheumatoid-factor-negative polyarticular juvenile idiopathic arthritis with no signs of inflammation at the time of MRI scans 
(patient P3 in Montefiori et al. 2019b). 
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Table 4 Differences between the joint coordinate systems in the manual and automatic skeletal models. The automatic models were created using the algorithms STAPLE-
Pelvis, GIBOC-Femur, Kai-Tibia, STAPLE-Talus and STAPLE-Foot. Linear distances between the origins of the joint coordinate systems are expressed in the reference 
system of the medical images, for which axes directions are: Z pointing cranially, Y posteriorly, X to the left for LHDL-CT, TLEM2-CT and JIA-MRI; Z pointing cranially, Y 
anteriorly and  X to the right for ICL-MRI.  
 

Dataset Joint Origin displacement vector [mm] Axes Differences - Parent [deg] Axes Differences - Child [deg] 

  X Y Z norm X Y Z X Y Z 

LHDL-CT 
  
  
  
  

pelvis-ground -0.7 0.8 -3.0 3.1 0.0 0.0 0.0 3.1 3.4 1.2 
hip -0.2 -0.2 0.2 0.3 3.1 3.4 1.2 0.7 0.2 0.7 
knee -0.8 1.0 0.2 1.3 0.7 0.4 0.7 0.6 0.4 0.7 
talocrural 0.1 0.3 -0.9 0.9 0.2 0.4 0.5 1.7 1.7 0.5 
subtalar -0.3 0.3 0.0 0.4 0.8 2.6 2.7 0.8 2.6 2.7 

TLEM2-CT 
  
  
  
  

pelvis-ground -1.0 0.2 -4.9 5.0 0.0 0.0 0.0 3.4 3.5 0.9 
hip -0.1 -0.1 0.2 0.3 3.4 3.5 0.9 0.1 0.2 0.2 
knee 1.0 -0.3 0.2 1.1 0.1 0.2 0.2 0.2 0.3 0.2 
talocrural 0.1 -0.9 0.4 1.0 0.7 0.7 1.0 1.9 1.6 1.0 
subtalar -0.1 1.0 -0.1 1.0 0.3 2.1 2.0 0.3 2.1 2.0 

ICL-MRI 
  
  
  
  

pelvis-ground -0.5 0.0 0.8 0.9 0.0 0.0 0.0 1.8 2.0 1.0 
hip 0.0 0.1 0.1 0.1 1.8 2.0 1.0 0.1 2.0 2.0 
knee 2.0 0.5 1.4 2.5 0.1 0.1 0.1 0.2 0.2 0.1 
talocrural 0.7 -0.6 0.0 0.9 0.3 0.4 0.4 2.5 2.6 0.4 
subtalar -0.2 -2.8 -1.4 3.2 0.3 2.9 2.9 0.3 2.9 2.9 

JIA-MRI 
  
  
  
  

pelvis-ground 0.5 1.0 -4.4 4.5 0.0 0.0 0.0 3.4 3.6 1.0 
hip -0.2 0.1 -0.4 0.5 3.4 3.6 1.0 0.9 0.1 0.9 
knee 0.3 -0.2 -1.0 1.1 0.9 0.1 0.9 0.9 0.1 0.9 
talocrural -0.2 0.1 1.2 1.2 3.0 3.0 0.2 2.1 2.1 0.2 
subtalar -1.4 -0.4 -5.7 5.9 2.2 11.3 11.3 2.2 11.3 11.3 
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Table 5 Comparison among the joint coordinate systems estimated by  all the available algorithms and the one used in 
the validation step, considered as reference algorithm. Components of the displacement vectors are expressed in the 
joint coordinate system of the reference algorithm. N/S means “not solved” and indicates that the algorithm crashed or 
computed a manifestly incorrect solution. 

 

Joint Coordinate System 
[Reference Algorithm] 

Algorithm Dataset Origin displacement vector [mm] Axes Differences 
[deg] 

  X Y Z norm X Y Z 

ground-pelvis-child Kai-Pelvis LHDL-CT -0.4 5.7 0.5 5.7 2.3 2.4 0.8 

[STAPLE-Pelvis]  TLEM2-CT -0.2 1.1 -0.2 1.1 0.5 0.7 0.5 

  ICL-MRI -1.3 5.8 -0.1 6.0 2.1 2.4 1.3 

  JIA-MRI -0.1 0.4 0.1 0.4 0.2 0.2 0.2 

Knee-parent Miranda-Femur* LHDL-CT 0.6 -1.4 -0.2 1.6 2.9 2.6 1.5 

[GIBOC-Cylinder]   TLEM2-CT -3.2 -1.7 0.4 3.7 0.7 0.9 0.6 

    ICL-MRI N/S N/S N/S N/S N/S N/S N/S 

    JIA-MRI N/S N/S N/S N/S N/S N/S N/S 

  Kai-Femur LHDL-CT -2.4 -0.3 0.9 2.5 3.6 3.0 4.7 

    TLEM2-CT -3.8 -0.8 0.6 4.0 3.0 0.6 3.0 

    ICL-MRI -3.8 -1.0 -0.1 3.9 3.6 2.8 4.5 

    JIA-MRI -3.6 -1.1 0.0 3.7 1.9 1.5 2.2 

  GIBOC-Spheres LHDL-CT 0.0 -0.5 1.4 1.5 0.1 0.1 0.1 

    TLEM2-CT 0.9 0.1 2.0 2.2 0.2 0.2 0.2 

    ICL-MRI 0.0 -0.6 1.3 1.4 0.6 0.5 0.8 

    JIA-MRI -1.3 -1.4 2.2 2.8 5.0 4.6 6.7 

  GIBOC-Ellipsoids LHDL-CT 9.1 1.2 1.2 9.3 4.4 2.3 4.5 

    TLEM2-CT 8.6 -0.4 2.0 8.8 4.4 3.6 5.2 

    ICL-MRI 9.0 0.4 1.6 9.2 3.6 1.9 3.6 

    JIA-MRI 7.8 1.2 2.1 8.1 2.6 3.0 3.4 

Knee-child Miranda-Tibia** LHDL-CT -0.1 7.5 -1.7 7.7 10.9 7.0 9.9 

[Kai-Tibia]   TLEM2-CT N/S N/S N/S N/S N/S N/S N/S 

    ICL-MRI -0.5 8.7 -1.5 8.8 7.8 5.4 5.7 

    JIA-MRI 0.6 0.3 0.5 0.8 4.4 3.8 2.9 

  GIBOC-Plateau LHDL-CT -1.7 10.4 -1.2 10.6 9.3 1.7 9.1 

    TLEM2-CT -0.9 10.3 -1.6 10.5 2.7 0.9 2.6 

    ICL-MRI -1.8 12.5 -2.2 12.9 6.0 1.8 5.8 

    JIA-MRI -1.4 6.2 -1.3 6.5 5.4 1.4 5.2 

  GIBOC-Ellipse LHDL-CT -3.5 10.1 -2.1 10.9 2.8 2.1 1.9 

    TLEM2-CT -2.6 10.0 -2.8 10.7 4.0 1.2 3.8 

    ICL-MRI -4.9 12.1 -2.7 13.3 2.6 2.3 1.3 

    JIA-MRI -4.5 5.8 0.1 7.4 6.7 2.0 6.4 

  GIBOC-Centroids LHDL-CT -2.1 10.4 -1.6 10.7 1.9 1.8 0.5 

    TLEM2-CT -2.4 10.0 -1.5 10.4 2.3 1.2 2.0 

    ICL-MRI -8.7 11.7 -2.8 14.8 4.2 2.9 3.2 

    JIA-MRI -3.3 6.0 0.0 6.9 11.7 1.8 11.5 
 

* Miranda-Femur crashed when processing JIA-MRI and fitted the shaft of the femur of ICL-MRI.  

**Miranda-Tibia identified inverted axes direction for TLEM2-CT and was not able to process the JIA-MRI tibial geometry 
unless the fibula was included as well. 
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