Semantic and Prosodic Threat Processing in Trait Anxiety: Is Repetitive Thinking Influencing Responses?

Simon Busch-Moreno, Jyrki Tuomainen, David Vinson

Division of Psychology and Language Sciences, University College London

Corresponding author: email: d.vinson@ucl.ac.uk

Abstract

The present study attempts to identify how trait anxiety, measured as worry-level, affects the processing of threatening speech. Two experiments using dichotic listening tasks were implemented; where participants had to identify sentences that convey threat through three different information channels: prosody-only, semantic-only and both semantic and prosody (congruent threat). We expected different ear advantages (left or right) depending on task demands, information type, and worry level. We used a full Bayesian approach for statistical modelling and analysis. Results indicate that when participants made delayed responses (Experiment 1), reaction times increased with worry level, but under time pressure (Experiment 2) worry level only affected reaction times for semantically neutral, prosodically threatening stimuli. We explain this effect by proposing a fourth stage, associated with goal-oriented deliberation, for a three-phasic multistep model of emotional language processing. Higher levels of trait anxiety could induce verbal repetitive thinking (i.e. worry and/or rumination), which might prolong the mentioned deliberation stages, thus slowing down responses.

Keywords: anxiety, speech, prosody, semantics
Introduction

Humans can convey emotion information through different channels, and in the particular case of language the manipulation of tone and/or meaning (i.e. prosody and semantics) are common ways to do so. While prosodic information relies on suprasegmental variation of intensity, pitch, voice quality and duration, semantic information relies on segmental information: morphemes (minimal meaningful language units) composed of varying combinations of phonological segments (Liu et al., 2013). These different informational features (suprasegmental information associated with prosody, and segmental information associated with semantics) can develop together in a complex language emission such as an emotional sentence, and can convey emotional information simultaneously (Nygaard et al., 2009; Schirmer and Kotz, 2003). To our knowledge, whether intrinsic affect differences between individuals (e.g. variation in trait anxiety) has differentiable effects on prosody and semantics remains an unexplored problem in language perception and comprehension research. Investigating this possible connection can bring to light possible effects of anxiety on language processing, moving forward the understanding of individual differences in language processing but also refining understanding of speech information properties.

The present study aims to understand the effect of trait anxiety on these information properties of speech. We use dichotic listening (DL) which provides a robust test of functional hemispheric lateralization (Hugdahl, 2011), tapping into features of both speech (language) and anxiety (affect) processing. DL can provide a behavioural test of laterality in such a way that information- and affect-related aspects of processing can be disentangled. Normally, responses to DL tasks that do not involve prosody or emotion indicate a right ear advantage (REA): faster response times and/or higher accuracy for language processing at stimuli presented at the right ear, (Hugdahl, 2011). Differently, DL responses to emotional and/or
prosodic stimuli show either diminished REAs or a left ear advantage (LEA) (Godfrey and Grimshaw, 2015; Grimshaw et al, 2003).

The idea of exploring laterality in this way is based on previous theoretical models and supporting evidence indicating that brain hemispheres have different processing functions for both speech’s information features and intrinsic affect. On the language side, evidence suggests the left lateralization of segmental aspects of speech and right lateralization of suprasegmental features of speech (Poeppel, 2003; Poeppel et al., 2007; Zatorre, 2001; Zatorre et al., 2002). On the affect side, the relationship between affect and cognition in anxiety is understood to be mediated by right-lateral prefrontal cortex (Gable et al., 2019). Other approaches distinguish between anxious arousal (physiological hyperarousal) and anxious apprehension (worry), where the first is posited as right lateralized and the second as left lateralized or bilateral (Heller et al., 1997; Nitschke et al., 1999; Spielberg et al., 2013). This could imply that intrinsic lateralization patterns induced by individual differences (e.g. anxiety) could match emotional speech’s lateralization patterns. Hence, different information properties (i.e. semantics or prosody) conveying similar emotions (i.e threat) could affect anxious people in different ways by enhancing or dampening their inherent lateralization patterns when processing emotional stimuli. This motivates the question: what is the difference between semantic and prosodic comprehension in natural emotional expression as processed by anxious people? Before answering this question, we need to find out the points of connection between speech, emotional language and anxiety processing, if any.

Emotional Language Lateralization

Neuroscientific research has observed that information conveyed through prosody or semantics/syntax is processed via differently lateralized brain routes (Belin et al, 2004). Other findings indicate that this difference might be due mainly to the emotional content of language
stimuli (Liebenthal et al., 2005). These differences, however, may not be exclusive. Indeed, if emotional language lateralization is considered as a phasic process, then differences in lateralization might change at any point of the processing time-course (Schirmer and Kotz, 2006). Hence, some of these differences might be related to informational processing and others to the processing of affect/cognition. Therefore, hemisphericity patterns might be due to both emotional and speech processing, but a particular observed left, right or bilateral orientation might be evident depending on the observed time phase. One model addressing this issue is the multistep model of emotional language, which proposes three main processing stages: early stage perceptual processing, mid stage recognition processing, late stage evaluation processing (Kotz and Paulmann, 2011).

Under this model, early stages involve the processing of acoustic properties (purely acoustic information), where greater right hemisphere (RH) engagement would be associated to prosodic processing and left hemisphere engagement (LH) would be associated to phonological processing (Poeppel, 2003; Zatorre, 2001). This leads to the interpretation that LH might process segmental (phonologically composed words) information better, while RH privileges suprasegmental (prosody) information. Mid stages might involve the emotional recognition of stimuli (e.g. integration of previously processed information), implying greater involvement of RH or LH depending on stimulus type and/or conveyed emotion (Schirmer and Kotz, 2006). Late stages would be associated to informational integration and evaluation of emotional stimuli (Kotz and Paulmann, 2011). Another crucial aspect of the model is that it also considers information transferring between hemispheres (Kotz and Paulmann, 2011). Mechanism of callosal relay have been proposed as important aspects for RH to LH (and vice versa) communication of prosodic and syntactic information (Friederici et al, 2007), and also interhemispheric communication of emotional prosody processing (Ross et al, 1997). In addition, callosal relay mechanisms have been proposed as an explanation for different effects
of emotional semantics and prosody processing in a dynamic model of DL (Grimshaw et al., 2003). Hence, the observation of bilateral involvement does not necessarily mean that both hemispheres are processing the same information/task, and the observation of unilateral processing does not necessarily mean that the contralateral hemisphere does not play a role.

With all this in mind, there are some relevant issues that this model does not take into account. First, the process does not need to end at an evaluation stage, as natural responses to emotional stimuli are, in general, behaviourally oriented (Vuilleumier, 2005). Thus, a fourth stage associated to goal-orientation might be required to fully grasp emotional language processing. Goal-orientation can be understood as the interruption or pursuing of an organism’s current goals (Bar-Haim et al., 2007), such as the interruption of current behaviour after the perception of a threatening stimulus in order to re-assess situation and environment. Multistage models of intrinsic affect (i.e. anxiety) have proposed that goal-orientation comprises a fourth stage following three initial stages: pre-attentive evaluation of threat, re-orientation of attention, and threat evaluation (Bar-Haim et al., 2007). This is a remarkable match with models of emotional language processing (Kotz and Paulmann, 2011), which match well with the first three of these stages, characterized in the language literature as: identification, recognition, and evaluation. Hence, after evaluation, a deliberation (goal-orientation) stage is a theoretically relevant (if not necessary) theoretical addition. In this sense, tasks that induce overt behaviour should make such a deliberation stage evident, in which participants need to decide about their responses after evaluating the stimuli. Whether this stage has idiosyncratic lateralization patterns as proposed for the previous three stages (Kotz and Paulmann, 2011) is something that has not been consistently explored yet.
Anxiety and Threat: Affect Lateralization

The strong effects of anxiety over deliberation processes, such as those induced by worry (Corr and McNaughton, 2012; McLaughlin et al., 2007), could imply that people high in trait anxiety process and respond differently to threatening semantics or prosody, including diversified lateralization patterns. The lateralization of affect might not only depend upon processing the emotional content of a particular stimulus, of any type (not only language), that can induce a specific emotion (e.g. threat-inducing fear or anxiety), but also upon individual differences between participants that may also cause different lateralization patterns. This is especially indicated by studies that demonstrate such variation not only when processing emotional stimuli but also during resting state (Nietschke et al., 2000; Engels et al., 2007).

Variation in lateralization patterns related to anxiety have been discussed from a number of different theoretical perspectives. First, anxiety has been proposed to be elicited by a behavioural inhibition system (BIS), which stops approaching behaviour of the organism in order to allow this organism to scan the environment in search of potential threat (McNaughton and Gray, 2000; Corr and McNaughton, 2012). Second, in the approach-withdrawal model, LH would be more engaged in approach-related emotions, while RH would show more involvement on withdrawal-related emotions (Davidson, 1992). This has been also captured by the valence-arousal model (Heller et al, 1997), where two types of anxiety are distinguished: anxious apprehension (worry-related) and anxious arousal (physiological hyperarousal), processed by LH and RH respectively.

In effect, models of anxiety processing propose BIS as a conflict resolution system (Corr and McNaughton, 2012), where anxiety can be interpreted as a plausible intermediate state between approach and withdrawal, or calm and fear. Here, behaviour inhibition and arousal increase in preparation to approach/withdraw responses when possible or needed (McNaughton and Corr, 2014). In other words, behavioural inhibition for environmental...
scanning might increase arousal levels (McNaughton and Gray, 2000), which can induce fear-related responses if stimuli within the environment appear threatening enough. Thus, the interplay of lateralization patterns associated to worry and arousal might develop differently through the time-course of stimulus evaluation. Indeed, evidence from a functional magnetic resonance imaging (fMRI) study indicates that emotional language induces different lateralization responses, at different processing stages, for different types of anxiety (Spielberg et al, 2013). Where anxious apprehension is associated to a later and continued involvement of LH structures, interpreted as over-engagement with threat (e.g. rumination), and matching evaluation (mid-phase) and orientation/deliberation (late phase) stages (Bar-Haim et al., 2007). Differently, anxious arousal was associated with a faster and of shorter duration RH response interpreted as over-attention to threat, thus matching pre-attentive (early) and re-orientation (early-mid) stages (Bar-Haim et al., 2007).

Electroencephalography (EEG) research using the event-related potential technique (ERP), which offers high temporal resolution, has observed this over-attention and over-engagement response when threatening faces are used as stimuli (Eldar et al, 2010). Over-engagement with threat has also been observed when people with generalized anxiety disorder respond to threatening images (MacNamara and Hajcak, 2010). Furthermore, recent research has observed that socially anxious people present a right lateralized over-attention response to threatening words (Wabnitz, 2015). Hence, trait anxiety might directly affect the processing of emotional language. Previous EEG evidence indicates that anxiety has an effect on the recognition of prosody (Pell et al, 2015). However, not much is known about the interaction between emotion (threat) as conveyed through different information channels (prosody, semantics) and intrinsic affect (anxiety). If phasic lateralization patterns are integrated in a multistage model of anxiety (Bar-Haim et al, 2007) and this is compared to a multistep model of emotional language (Kotz and Paulmann, 2011), then it might be possible to predict very
specific behavioural responses for anxious and non-anxious people. More precisely, there is a possible overlap between language processing mechanisms and anxiety processing mechanisms, which could become evident by comparing how people with higher trait anxiety processes different types of speech (i.e. prosody and semantics) as compared to less anxious people.

Present Experiment

As previously mentioned, emotional and/or prosodic stimuli show either diminished REAs or a left ear advantage (LEA) in some DL studies (Godfrey and Grimshaw, 2015; Grimshaw et al, 2003), indicating a RH processing preference for emotion and/or prosody. However, few dichotic listening (DL) experiments have researched the effects of anxiety on emotional speech processing (Gadea et al, 2011). They either use speech/prosody as an emotion-eliciting stimulus or use DL mainly as an attentional manipulation technique (Bruder et al., 1999; 2005; Leshem, 2018; Peschard et al., 2016; Sander et al., 2005). As a result, they are limited in the extent to which they reveal the relationship between dynamic variations in emotion language processing (prosody/semantics). Instead, studies focusing on the dynamic properties of emotional language, whether using DL or not (e.g. measuring laterality through electrophysiological measures), do not tend to consider individual differences (e.g. Godfrey and Grimshaw, 2015; Grimshaw et al., 2003; Kotz and Paulmann, 2007; Paulmann and Kotz, 2012; Techentin et al., 2009; Wabacq and Jerger, 2004). Therefore, on one side of the picture speech stimuli are typically treated as generic threatening stimuli, so possible differences induced by the informational features of speech that may vary over time are overlooked. On the other side, participants are typically regarded as a homogeneous group, so possible differences induced by anxiety-related processing, that may vary over time and may differ across informational features are overlooked.
Another important thing to consider is that in natural speech, emotional prosody might not be constrained to a single word, as is the case in the experimental manipulations of most of the studies we have cited above. However, semantics is always constrained by sentence’s structure and lexical meaning. In other words, while a lexical item needs to be identified within a sentence in order for emotional semantics to be recognized, prosody might be expressed from the beginning of a sentence. This makes difficult to generalize from word level, or highly controlled sentences, to real world emotional utterances.

To address these issues, we designed two web-based DL experiments, using semi-naturalistic sentences in order to ensure dynamic language processing beyond the single word level. Participants were asked to discriminate between neutral and threatening sentences (the latter expressing threat via semantics, prosody or both), in a direct-threat condition: identifying whether a threatening stimulus was presented to the left or right ear, and in an indirect-threat condition: identifying whether a neutral stimulus was presented the left or right ear. Participant’s anxiety level was measured by using a psychometric scale. By so doing we were able take advantage of past studies researching the attentional effects of threatening language on anxiety and of studies researching the dynamics of speech’s informational properties within a single study.

Both speech processing and anxiety literature seem to converge on theoretical perspectives incorporating multistep models, so we designed two experiments to tap into different points in processing for which individual variation in anxiety may affect speech. In particular, we aimed to differentiate responses made at late evaluative stages (delayed response) vs. responses made at earlier attentive stages (online response) as early over-attention to threat (Bar-Haim et al., 2007) might affect earlier prosody/semantic lateralization patterns (Kotz and Paulmann, 2011), and later over-engagement with threat (Bar-Haim et al., 2007) might affect later emotional language evaluation stages (Kotz and Paulmann, 2011). Thus,
Experiment-1 required participants to wait until after sentences’ offset to respond (delayed response), and Experiment-2 required participants to respond during sentence presentation (online response).

For Experiment-1 we hypothesize that anxious over-engagement with threat at mid-late evaluative stages (Bar-Haim et al., 2007) should increase left hemisphere (LH) engagement (Spielberg et al., 2013), disturbing possible LH to right hemisphere (RH) information transferring (Grimshaw et al., 2003; Kotz and Paulmann, 2011). Hence, we predict that a left ear advantage (LEA), usually observed in DL experiments as an effect of prosody/emotional stimuli (Godfrey and Grimshaw, 2015; Grimshaw et al., 2003), should decrease as a function of anxiety, especially for semantic threat. This implies slower and less accurate responses for anxious people at their left ear when responding to semantically threatening but prosodically neutral stimuli (which we named Semantic stimuli). As present sentences are naturalistic, they have varied durations, but are long on average (~2s). This implies that answering after sentence’s offset emphasizes late stage processing, understood to start at around 400ms (Kotz and Paulmann, 2011), followed by deliberation (~600ms). This late stage could be sustained for a long period of time, as it is characterized by a cyclic BIS process (McNaughton et al., 2013). Hence, if trait anxiety extends deliberation through excessive worry, then responses locked to sentence’s offset should be slower.

For Experiment-2 we expect that, as responses are forced to be faster (online), prosody should induce the most noticeable effects, as online responses may overlap with early-mid emotional processing stages (Kotz and Paulmann, 2011). Therefore, we hypothesize that higher anxiety should reduce LH involvement (Spielberg et al., 2013) due to over-attention to threat effects, characteristic of earlier-mid processing stages (Bar-Haim et al., 2007). Hence, we predict an enhanced LEA for highly anxious participants, especially for prosodically threatening but semantically neutral stimuli (which we named Prosody stimuli). Thus, faster
and more accurate responses for anxious people at their left ear when attending prosodic stimuli. In other words, as participants are required to answer as fast as possible, and prosody is readily identifiable in each sentences, but semantics required the identification of lexical items, processes before quick responses (~100, ~200ms) should take precedence for prosody, while semantics might be affected by later processes (~400ms) as responses could be naturally slower independent of anxiety.

Methods

Experiment 1: Delayed Response

Participants

Participants were recruited using Prolific (prolific.ac). Only participants reporting being right-handed, having English as first language, without hearing and neurological/psychiatric disorders, and using only a desktop or laptop to answer the experiment were recruited. After exclusion, due to poor accuracy or not finishing the task properly, 44 participants (mean age = 31.7, 27 females) were retained (26 excluded). Participants were remunerated on a £7.5/hour rate. All participants gave their informed consent before participating. It is important to clarify, the web-based nature of the experiment implies that task compliance levels could be low, as there is no direct control over participants meeting requested requirements (e.g. appropriate headphones) or performance (e.g. answering randomly). For this reason, and also to avoid issue related to possible impulsive behaviour or to age-related audition loss, we decided to accept participants well above the adolescence threshold and amply below critical ages for audition loss. Hence, only participants between 24 and 40 years old were accepted to take part.
Materials

Four types of sentences were recorded: Prosody (neutral-semantics and threatening-prosody), Semantic (threatening-semantics and neutral-prosody), Congruent (threatening-semantics and threatening-prosody), and Neutral (neutral-semantics and neutral-prosody). We first extracted semantically threatening sentences from movie subtitles by matching the subtitles them with a list of normed threatening words from the extended Affective Norms for English Words (ANEW) (Warriner et al., 2013). For the present study, any word over 5 points in the arousal scale, and below 5 points in the valence and dominance scales was considered threatening (these scales ranged from 1 to 9 points). Every word with less than 5 arousal points and between 4 and 6 (inclusive) valence points was considered neutral. Words’ frequencies were extracted from SUBTLEX-UK (van Heuven et al., 2014), only sentences containing words with Zipf log frequencies over 3 were included. Before recording, ten participants rated the threat level of each visually presented sentence by using a 0-8 Likert scale presented in Gorilla (gorilla.sc). Sentences’ mean ratings were analysed using the Bayesian Estimation Superseeds t-test (BEST) method (Kruschke, 2013). Threatening semantics’ ratings (m = 2.92) were considerably higher than neutral semantics’ ratings (m = 0.76). See Annex for detailed results.

After this, sentences were recorded in an acoustically isolated chamber using a RODE NT1-A1 microphone by a male English speaker. The speaker was not a professional actor or voice actor (i.e. untrained or naïve speaker), as we wanted to warrant naturalistic prosody production, not mediated by histrionic emphasis. The speaker was instructed to speak in what he considered his own angry threatening/angry or neutral voice for recording Prosody/Congruent and Semantic/Neutral sentences respectively. Sentences were not repeated across type (i.e. each type has a unique set of sentences). Neutral dichotic pairs were also unique across conditions (480 different sentences). Due to a technical problem several
sentences were recorded with very low amplitude. Therefore, sentences were normalized and cleaned from noise in Audacity (audacityteam.org). Figure 1 shows oscillograms and spectrograms of four example sentences, Table 1 in the Results section also includes a summary of stimulus properties by condition, and the full set of materials can be downloaded from our Open Science Framework (OSF) repository (link in the Data Statement section).

![Oscillograms and Spectrograms](image)

Figure 1. Example of sentences used as stimuli with corresponding oscillograms and spectrograms. Upper left: neutral prosody and neutral semantics. Upper right: neutral prosody and threatening semantics. Lower left: threatening prosody and threatening semantics ("congruent"). Lower right: threatening prosody and neutral semantics.

Sentences’ average length is 1720.65ms, and their prosodic bio-informational dimensions (BIDs) were extracted using ProsodyPro (Xu, 2013) in Praat (praat.org). Three BIDs measures were compared using BEST: Hammarberg index (maximum energy differences
between the 0-2000hz and 2000-5000hz ranges), harmonicity (amplitude signal to noise ratio), and median pitch (F0). Spectral and intensity measures (i.e. Hammarberg index and harmonicity) did not show consistent similarities between types, where Neutral presents the lowest harmonicity and Semantic the highest Hammarberg index, inconsistencies which might be the result of the normalization and cleaning process.

However, F0 comparisons, crucial for defining angry or threatening voices (Banse and Scherer, 1996), indicate a higher median F0 for prosodically threatening stimuli, Prosody (m = 137.17Hz) and Congruent (m = 129.04Hz), over prosodically neutral stimuli, Semantic (90.33Hz) and Neutral (m = 97.37Hz). This aligns prosodically threatening stimuli with hot anger (rage), which has higher F0 than cold anger or neutral prosody (Banse and Scherer, 1996; Hammerschmidt and Jürgens, 2007). This is also consistent with previous dichotic listening studies’ F0 values of angry prosody stimuli (Godfrey and Grimshaw, 2015; Grimshaw et al., 2009). See Annex for statistical results.

To check this, a random subset of 7 prosody-only sentences was compared to a random subset of 7 neutral sentences in an online rating questionnaire in the same manner as semantic threat. Ten participants rated these spoken sentences in Gorilla (gorilla.sc). These ratings were analysed using BEST (see Annex for results). Results showed that threatening prosody (m = 4.06) is rated as more threatening than neutral prosody (m = 1.2). Next, sentences were paired using Audacity: sentences were paired such as their durations were as similar as possible. Silences between words were extended, never surpassing 40ms, to match sentences’ latencies as closely as possible. After this, sentences were allocated to one of the stereo channels (left or right) of the recording; each pair was copied with mirrored channels. A silence (~50ms) was placed at the beginning and at end of each pair. This resulted in a total of 480 pairs where 80 sentences of each type (congruent, semantic, prosody) were each paired with a neutral sentence of the same length twice, so every sentence was presented once at each ear.
Procedure

Before starting the experiments, participants answered the Penn State Worry Questionnaire (PSWQ) (Meyer et al., 1990) to assess their worry-level, and the Anxious Arousal sub-scale of the Mood and Anxiety Symptoms Questionnaire (MASQ-AA) (Watson et al., 1995) to assess their arousal level. This follows previous approaches (Nitschke et al., 1999), with the difference that we used PSWQ scores as continuous predictor instead of splitting participants between high and low anxiety groups. Also, we did not use MASQ scores as no participants scored above the median (indicating that all participants presented low arousal levels), which is understood as an essential criterion for assuming that part of the sample actually presents higher arousal levels (Heller et al., 1997). Differently, PSWQ results indicated a distribution which is varied enough in terms of worry level (mean = 47.31, median = 48.0, range [33, 67]). PSWQ measures worry in a scale ranging from 16 to 80 points (median = 48 points), showing a consistent normal distribution in tested samples (mean close to median, as in our samples), and has been shown to have high internal consistence and validity (for details see: Meyer et al., 1990).

After a practice session, participants were randomly assigned to a list containing half of the total number of dichotically paired sentences (threat-neutral pairs) per threatening type (Prosody|Neutral, Semantic|Neutral, Congruent|Neutral), that is 40 pairs per type (120 in total). Sentences’ lists were created previous to the experiment using randomly selected sentences from the total pool. Sentences were presented randomly to participants. In one half of the study they were instructed to indicate at which ear they heard the threatening sentence by pressing the right or left arrow keys (direct-threat condition). In the other half of the study they were instructed to respond in the same way, but indicating which ear they heard the neutral sentence in the dichotic pair (indirect-threat condition). This was intended to address attention effects
(Aue et al., 2011; Peschard et al., 2016). Starting ear (left or right) and starting condition (direct- or indirect-threat) were counterbalanced. Participants were told to answer, as fast as possible, only when the sentence finished playing and a bulls-eye (target) image appeared on the screen. A 1400ms inter-stimulus-interval (ISI) was used, and the target image stayed on the screen during this period.

Analysis

Reaction time (RT) data were recorded in milliseconds, locked to sentence’s offset. Accuracy was coded as correct=1 and else=0 (including misses and false alarms). Participants with hit rates below 70% were excluded, as lower thresholds are too close to chance. This is mainly due to the nature of web-based experiments, where compliance levels cannot be more directly controlled. Thus, we believe that using too low exclusion criteria (e.g. ~50% or chance) is not methodologically warranted, as we cannot attest for how much variance or bias is added by unidentified non-compliance. Moreover, by setting a higher criterion for inclusion, we ensure that participants are understanding the sentence content sufficiently for the various proposed stages of processing to occur. Two Bayesian hierarchical models were built for reaction time (RT) and accuracy. The RT model, shown on Figure 2, was the basic model structure for all analyses, based on Kruschke (2015) and Martin’s (2018) guidelines. The model for indirect-threat RT was identical excepting the number of observations (obs. = 5,427). Models for accuracy differ in the following. 1) No reparameterization of general and varying intercepts. 2) Use of a Bernoulli distribution for the likelihood, as we used percentage of correct responses as measure of accuracy (hit = 1, miss/false alarm = 0, i.e. Bernoulli trials). 3). A sigmoid distribution wrapping of the probability of success parameter, technically resulting in a logistic regression. 4). Different number of observations, where direct-threat = 6,181 obs., and indirect-threat = 5,767 obs. Differences in the number of observations are due to the fact
that RT data used only correct responses; also, overlapping responses (those going beyond the ISI), were treated as false alarms.

RT models used a robust regression (Kruschke, 2015) in order to account for outliers through a long-tailed Student-t distribution. In this way, RTs that are implausibly fast or implausibly slow do not need to be removed, but can be dealt with statistically. Both accuracy and RT models were sampled using Markov Chain Monte Carlo (MCMC) No U-turn Sampling (NUTS) as provided by PyMC3 (Salvatier et al., 2016). Two chains of 1000 tuning steps and 1000 samples each were used. Plots and model comparisons were produced using Arviz (Kumar et al, 2019) and Matplotlib (Hunter, 2007). A region of practical equivalence (ROPE) of 2SDs, compared with a 90% high posterior density interval (HPD), was established as main criterion for deciding whether posterior distributions indicated strong or weak effects/differences.

In other words, 90% HPDs which fall completely outside the ROPE are considered to have very high chances of never overlapping with a distribution centred around zero and spanning the ROPE, namely a distribution indicating no change from one condition to another (if categorical) or no change as a variable progresses (if continuous). Otherwise, HPDs partially overlapping with ROPEs indicate that chances of distributions being equivalent increases, thus when HPDs completely overlap a ROPE we can consider that both distributions are indeed equivalent and that the variable had no effect or an extremely negligible effect. We urge the reader to interpret ROPEs as a heuristic of thresholding, but not as an “effect barrier”. This implies a basic science interpretation where we are interested in continuous changes in nature rather than an applied science one, where threshold decisions are necessary (see Kruschke, 2018). Note that when HPDs are narrower than ROPEs, this indicates high precision of the estimates.
Experiment 2: Fast Response

Experiment 2’s methods were the same as Experiment 1’s methods, same inclusion criteria, same platform, and same materials. Again, the arousal scale did not show any scores above the scale’s median. PSWQ scores indicated a sufficiently varied distribution (mean = 45.22, median = 45.0, range = [26,61]). The only elements that changed from Experiment-1 were the following: 1) As this experiment is understood as more difficult as participants have to answer as fast as possible (before sentence ending) to a widely varied set of sentences, and they are compelled to refrain from any answer as soon as sentences end, accuracy rejection threshold was relaxed to 60% (slightly closer to chance). Given this, 24 participants were excluded and 52 participants (mean age = 31, 24 females) were kept for the final analysis. 2) Participants were instructed to answer, as fast and as accurately as possible, before the sentence finished playing, and to withhold any response when a stop sign image appeared on the screen after sentences’ end. 3) The same robust regression model was applied without duration, which would be inappropriate as participants answer before offset (incomplete sentence’s duration).
Table 1

Average number of words, duration and reaction time per stimulus type

<table>
<thead>
<tr>
<th>Type</th>
<th>Words Threat</th>
<th>Words Neutral</th>
<th>Stimulus Duration</th>
<th>Delayed RT</th>
<th>Fast RT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Congruent</td>
<td>4.44 (0.88)</td>
<td>4.9 (0.96)</td>
<td>1744.49 (321)</td>
<td>535.32 (108)</td>
<td>1218.47 (148)</td>
</tr>
<tr>
<td>Prosody</td>
<td>4.45 (1.04)</td>
<td>5.01 (0.81)</td>
<td>1853.55 (256)</td>
<td>639.34 (104)</td>
<td>1328.92 (159)</td>
</tr>
<tr>
<td>Semantic</td>
<td>4.41 (1.03)</td>
<td>4.4 (1.05)</td>
<td>1554.44 (364)</td>
<td>590.65 (91)</td>
<td>1207.93 (155)</td>
</tr>
</tbody>
</table>

Note. Standard deviation appears in brackets. Duration and reaction times (RT) are expressed in milliseconds (ms).

Results

Experiment 1: Delayed Response

All models sampled properly ($\hat{R} \equiv 1$, ESS > 400); energy plots, traceplots and autocorrelation plots also indicate excellent convergence. Plots and results from these checks, including raw data and full summaries of parameters and conditions, can be found in our Open Science Framework (OSF) repository (link in the Data Statement section). In addition, HPD widths indicate high precision of the estimates, as each HPD was narrower than its associated ROPE.

Results for accuracy models are summarized in Table 1: Direct-threat, and Table 2: Indirect-threat. Tables show summaries for each condition at the lowest and highest worry levels (PSWQ score). As an important reminder, we emphasise that when variables are included in an interaction, their parameters are not free anymore, so main effects (lower-order effects) cannot be understood independently. For the present model, all effects are modulated by the Worry by Ear by Type interaction. Indeed, when taking worry level into account, slopes show HPDs widely overlapping with zero and/or ROPEs. This makes safe to conclude that evidence supporting accuracy effects is not strong (i.e. weak or negligible effects).
Table 2
Experiment 1 (Delayed response). Direct-threat task, accuracy logistic regression slopes

<table>
<thead>
<tr>
<th>Worry Slopes</th>
<th>Stimulus Type</th>
<th>Ear</th>
<th>PSWQ Score</th>
<th>Posterior Mean</th>
<th>Posterior SD</th>
<th>HPD 5%</th>
<th>HPD 95%</th>
<th>Probability %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Semantic</td>
<td>Left</td>
<td>33</td>
<td>1.00</td>
<td>0.67</td>
<td>-0.08</td>
<td>2.13</td>
<td>73.12</td>
<td></td>
</tr>
<tr>
<td>Prosody</td>
<td>Left</td>
<td>33</td>
<td>0.07</td>
<td>0.66</td>
<td>-0.94</td>
<td>1.24</td>
<td>51.75</td>
<td></td>
</tr>
<tr>
<td>Semantic</td>
<td>Right</td>
<td>33</td>
<td>0.74</td>
<td>0.56</td>
<td>-0.21</td>
<td>1.65</td>
<td>67.66</td>
<td></td>
</tr>
<tr>
<td>Prosody</td>
<td>Right</td>
<td>33</td>
<td>-0.01</td>
<td>0.56</td>
<td>-0.93</td>
<td>0.91</td>
<td>49.64</td>
<td></td>
</tr>
<tr>
<td>Semantic</td>
<td>Left</td>
<td>67</td>
<td>2.03</td>
<td>1.37</td>
<td>-0.17</td>
<td>4.32</td>
<td>88.41</td>
<td></td>
</tr>
<tr>
<td>Prosody</td>
<td>Left</td>
<td>67</td>
<td>0.14</td>
<td>1.34</td>
<td>-1.91</td>
<td>2.51</td>
<td>53.54</td>
<td></td>
</tr>
<tr>
<td>Semantic</td>
<td>Right</td>
<td>67</td>
<td>1.50</td>
<td>1.14</td>
<td>-0.43</td>
<td>3.35</td>
<td>81.74</td>
<td></td>
</tr>
<tr>
<td>Prosody</td>
<td>Right</td>
<td>67</td>
<td>-0.03</td>
<td>1.14</td>
<td>-1.89</td>
<td>1.85</td>
<td>49.27</td>
<td></td>
</tr>
</tbody>
</table>

Note. Posterior estimates are expressed in log-odds, the rightmost column contains the mean derived probability.

Table 3
Experiment 1 (Delayed response). Indirect-threat task, accuracy logistic regression slopes

<table>
<thead>
<tr>
<th>Worry Slopes</th>
<th>Stimulus Type</th>
<th>Ear</th>
<th>PSWQ Score</th>
<th>Posterior Mean</th>
<th>Posterior SD</th>
<th>HPD 5%</th>
<th>HPD 95%</th>
<th>Probability %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Semantic</td>
<td>Left</td>
<td>33</td>
<td>-0.43</td>
<td>0.66</td>
<td>-1.49</td>
<td>0.66</td>
<td>39.51</td>
<td></td>
</tr>
<tr>
<td>Prosody</td>
<td>Left</td>
<td>33</td>
<td>-0.86</td>
<td>0.62</td>
<td>-1.95</td>
<td>0.12</td>
<td>29.72</td>
<td></td>
</tr>
<tr>
<td>Semantic</td>
<td>Right</td>
<td>33</td>
<td>1.06</td>
<td>0.56</td>
<td>0.12</td>
<td>1.92</td>
<td>74.35</td>
<td></td>
</tr>
<tr>
<td>Prosody</td>
<td>Right</td>
<td>33</td>
<td>-0.19</td>
<td>0.55</td>
<td>-1.12</td>
<td>0.66</td>
<td>45.29</td>
<td></td>
</tr>
<tr>
<td>Semantic</td>
<td>Left</td>
<td>67</td>
<td>-0.87</td>
<td>1.34</td>
<td>-3.02</td>
<td>1.33</td>
<td>29.63</td>
<td></td>
</tr>
<tr>
<td>Prosody</td>
<td>Left</td>
<td>67</td>
<td>-1.75</td>
<td>1.26</td>
<td>-3.97</td>
<td>0.25</td>
<td>14.84</td>
<td></td>
</tr>
<tr>
<td>Semantic</td>
<td>Right</td>
<td>67</td>
<td>2.16</td>
<td>1.14</td>
<td>0.24</td>
<td>3.89</td>
<td>89.66</td>
<td></td>
</tr>
<tr>
<td>Prosody</td>
<td>Right</td>
<td>67</td>
<td>-0.38</td>
<td>1.12</td>
<td>-2.28</td>
<td>1.34</td>
<td>40.53</td>
<td></td>
</tr>
</tbody>
</table>

Note. Posterior estimates are expressed in log-odds, the rightmost column contains the mean derived probability.

Results for reaction time (RT) data in both the direct-threat and indirect-threat tasks indicated strong effects of worry level. Table 4 and 5 summaries show that worry level did not have particularly strong differences between ear or type effects. Slope estimates for worry, however, indicate a strong effect of worry. Increases from lowest worry level (33 PSWQ points) to highest (67 PSWQ points) are almost the same across conditions (~290ms to ~309ms); a negligible difference when considering error. Note that seemingly slower responses to Semantic can be disregarded due to HPDs overlapping. In short, independent of type or ear, estimates indicate that RT increases around 8ms (± ~0.3ms) per PSWQ score point. At the
highest worry level participants answer around 300ms later than at the lowest worry level. Summaries of duration effects can be found in the Annex.

Table 4
Experiment 1 (Delayed responses). Direct-threat task, reaction time robust regression estimates

<table>
<thead>
<tr>
<th>Worry Slopes</th>
<th>Stimulus Type</th>
<th>Ear</th>
<th>PSWQ Score</th>
<th>Posterior Mean</th>
<th>Posterior SD</th>
<th>HPD 5%</th>
<th>HPD 95%</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Semantic</td>
<td>Left</td>
<td>33</td>
<td>285.21</td>
<td>8.95</td>
<td>271.01</td>
<td>299.88</td>
</tr>
<tr>
<td></td>
<td>Prosody</td>
<td>Left</td>
<td>33</td>
<td>280.51</td>
<td>9.98</td>
<td>265.42</td>
<td>298.46</td>
</tr>
<tr>
<td></td>
<td>Semantic</td>
<td>Right</td>
<td>33</td>
<td>280.06</td>
<td>7.97</td>
<td>267.14</td>
<td>293.42</td>
</tr>
<tr>
<td></td>
<td>Prosody</td>
<td>Right</td>
<td>33</td>
<td>266.88</td>
<td>8.86</td>
<td>253.23</td>
<td>282.11</td>
</tr>
<tr>
<td></td>
<td>Semantic</td>
<td>Left</td>
<td>67</td>
<td>579.06</td>
<td>18.16</td>
<td>550.23</td>
<td>608.84</td>
</tr>
<tr>
<td></td>
<td>Prosody</td>
<td>Left</td>
<td>67</td>
<td>569.52</td>
<td>20.27</td>
<td>538.88</td>
<td>605.96</td>
</tr>
<tr>
<td></td>
<td>Semantic</td>
<td>Right</td>
<td>67</td>
<td>568.61</td>
<td>16.18</td>
<td>542.37</td>
<td>595.73</td>
</tr>
<tr>
<td></td>
<td>Prosody</td>
<td>Right</td>
<td>67</td>
<td>541.85</td>
<td>17.99</td>
<td>514.14</td>
<td>572.77</td>
</tr>
</tbody>
</table>

Table 5
Experiment 1 (Delayed responses). Indirect-threat task, reaction time robust regression estimates

<table>
<thead>
<tr>
<th>Worry Slopes</th>
<th>Stimulus Type</th>
<th>Ear</th>
<th>PSWQ Score</th>
<th>Posterior Mean</th>
<th>Posterior SD</th>
<th>HPD 5%</th>
<th>HPD 95%</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Semantic</td>
<td>Left</td>
<td>33</td>
<td>296.34</td>
<td>9.25</td>
<td>280.50</td>
<td>310.79</td>
</tr>
<tr>
<td></td>
<td>Prosody</td>
<td>Left</td>
<td>33</td>
<td>283.14</td>
<td>10.50</td>
<td>264.45</td>
<td>298.82</td>
</tr>
<tr>
<td></td>
<td>Semantic</td>
<td>Right</td>
<td>33</td>
<td>288.38</td>
<td>8.02</td>
<td>275.42</td>
<td>301.63</td>
</tr>
<tr>
<td></td>
<td>Prosody</td>
<td>Right</td>
<td>33</td>
<td>285.20</td>
<td>9.34</td>
<td>270.94</td>
<td>301.46</td>
</tr>
<tr>
<td></td>
<td>Semantic</td>
<td>Left</td>
<td>67</td>
<td>601.66</td>
<td>18.77</td>
<td>569.50</td>
<td>630.99</td>
</tr>
<tr>
<td></td>
<td>Prosody</td>
<td>Left</td>
<td>67</td>
<td>574.85</td>
<td>21.31</td>
<td>536.91</td>
<td>606.70</td>
</tr>
<tr>
<td></td>
<td>Semantic</td>
<td>Right</td>
<td>67</td>
<td>585.50</td>
<td>16.28</td>
<td>559.18</td>
<td>612.40</td>
</tr>
<tr>
<td></td>
<td>Prosody</td>
<td>Right</td>
<td>67</td>
<td>579.05</td>
<td>18.97</td>
<td>550.09</td>
<td>612.06</td>
</tr>
</tbody>
</table>

Overall, results from Experiment 1 (delayed responses) indicate that whether participants answer to threat directly (pressing a button to indicate which ear the threatening sentence was presented to) or indirectly (indicate which ear the neutral sentence was presented to), they are similarly accurate. There are negligible effects of ear and type due to variability in uncertainty and error. Experiment 1’s results for RTs also indicate that small effects of Semantic stimuli type, slowing down RTs for higher worry, can also be considered negligible.
due to overlapping HPDs. RTs are strongly affected by worry level, where at both direct- and indirect-threat tasks responses increase about eight milliseconds per PSWQ score point.

![Figure 3. Experiment 1 (delayed responses), direct-threat regression lines. Images show posterior distributions across worry levels by Semantic and Prosody at left and right ears for both conditions. Faded lines are samples from the posterior and indicate uncertainty. Grey circles indicate total RT average across worry level (independent of condition). Note that certainty of the estimates is good, and that differences between conditions are small. This indicates that, independent of condition, reaction times substantially increased as worry level increased.](image-url)

Experiment 2: Fast Response

Models for Experiment 2 did not include duration in the regression, as the relationship between duration and worry level is not clear, as participants must always answer before the end of each sentence. Again, all effects show good precision and all models sampled properly ($\hat{R} \approx 1$, ESS > 400), with energy plots, traceplots, and autocorrelation plots showing excellent convergence (for images see our OSF repository, link in the Data Statement section).
Accuracy results are summarised in Tables 6 and 7. Note that the Direct-threat results seemingly high effect of highest anxiety participants (61 points) of dis-preferring their right ear for Prosody with a 9.7% probability still slightly overlaps the ROPE, and given it is a moderate-small effect (~40% below chance) it cannot be considered good evidence in support for a Prosody right ear disadvantage. Similar conclusions can be drawn for the 12.6% probability (~37% below chance) for Prosody at left ear for indirect-threat. All other effects are more clearly near 50% probability, or zero log-odds, with HPDs spanning zero and ROPEs.

Table 6
Experiment 2 (Fast responses). Direct-threat task, accuracy logistic regression slopes

<table>
<thead>
<tr>
<th>Worry SLOpes</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Stimulus Type</td>
<td>Ear</td>
<td>PSWQ Score</td>
<td>Posterior Mean</td>
<td>Posterior SD</td>
<td>HPD 5%</td>
</tr>
<tr>
<td>Semantic</td>
<td>Left</td>
<td>26</td>
<td>0.35</td>
<td>0.37</td>
<td>-0.24</td>
</tr>
<tr>
<td>Prosody</td>
<td>Left</td>
<td>26</td>
<td>0.11</td>
<td>0.38</td>
<td>-0.48</td>
</tr>
<tr>
<td>Semantic</td>
<td>Right</td>
<td>26</td>
<td>-0.62</td>
<td>0.30</td>
<td>-1.07</td>
</tr>
<tr>
<td>Prosody</td>
<td>Right</td>
<td>26</td>
<td>-0.95</td>
<td>0.30</td>
<td>-1.49</td>
</tr>
<tr>
<td>Semantic</td>
<td>Left</td>
<td>61</td>
<td>0.81</td>
<td>0.88</td>
<td>-0.57</td>
</tr>
<tr>
<td>Prosody</td>
<td>Left</td>
<td>61</td>
<td>0.25</td>
<td>0.90</td>
<td>-1.12</td>
</tr>
<tr>
<td>Semantic</td>
<td>Right</td>
<td>61</td>
<td>-1.44</td>
<td>0.71</td>
<td>-2.52</td>
</tr>
<tr>
<td>Prosody</td>
<td>Right</td>
<td>61</td>
<td>-2.23</td>
<td>0.71</td>
<td>-3.50</td>
</tr>
</tbody>
</table>

Note. Posterior estimates are expressed in log-odds, the rightmost column contains the mean derived probability.

Table 7
Experiment 2 (Fast responses). Indirect-threat task, accuracy logistic regression slopes

<table>
<thead>
<tr>
<th>Worry SLOpes</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Stimulus Type</td>
<td>Ear</td>
<td>PSWQ Score</td>
<td>Posterior Mean</td>
<td>Posterior SD</td>
<td>HPD 5%</td>
</tr>
<tr>
<td>Semantic</td>
<td>Left</td>
<td>26</td>
<td>-0.47</td>
<td>0.34</td>
<td>-1.01</td>
</tr>
<tr>
<td>Prosody</td>
<td>Left</td>
<td>26</td>
<td>-0.83</td>
<td>0.34</td>
<td>-1.35</td>
</tr>
<tr>
<td>Semantic</td>
<td>Right</td>
<td>26</td>
<td>-0.48</td>
<td>0.27</td>
<td>-0.90</td>
</tr>
<tr>
<td>Prosody</td>
<td>Right</td>
<td>26</td>
<td>-0.10</td>
<td>0.28</td>
<td>-0.54</td>
</tr>
<tr>
<td>Semantic</td>
<td>Left</td>
<td>61</td>
<td>-1.10</td>
<td>0.79</td>
<td>-2.38</td>
</tr>
<tr>
<td>Prosody</td>
<td>Left</td>
<td>61</td>
<td>-1.94</td>
<td>0.81</td>
<td>-3.17</td>
</tr>
<tr>
<td>Semantic</td>
<td>Right</td>
<td>61</td>
<td>-1.13</td>
<td>0.64</td>
<td>-2.11</td>
</tr>
<tr>
<td>Prosody</td>
<td>Right</td>
<td>61</td>
<td>-0.23</td>
<td>0.66</td>
<td>-1.26</td>
</tr>
</tbody>
</table>

Note. Posterior estimates are expressed in log-odds, the rightmost column contains the mean derived probability.
Results from RT data are summarised in Tables 8 and 9. These indicate a more consistent, but small, effect of Prosody at the highest worry level in the direct-threat task. This effect is independent of ear (but slightly stronger at the left), where increases from lower (26 points) to higher worry (67 points) at the left ear are ~369ms for Semantic but ~418ms for Prosody, and ~368ms for Semantic and ~400ms for Prosody at the right ear. However, estimates still indicate this as weak effects, as HPDs of Prosody at higher worry still overlap with HPDs of Semantic at higher worry. Furthermore, these effects tend to fade in the indirect-threat task. Hence, the strong general effects of worry must be emphasised, which indicate a strong increase of about 400ms, independent of ear or stimulus type, from the lowest to the highest worry level (see Figure 4).

Table 8
Experiment 2 (Fast responses). Direct-threat task, reaction time robust regression estimates

<table>
<thead>
<tr>
<th>Worry Slopes</th>
<th>Stimulus Type</th>
<th>Ear</th>
<th>PSWQ Score</th>
<th>Posterior Mean</th>
<th>Posterior SD</th>
<th>HPD 5%</th>
<th>HPD 95%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Semantic</td>
<td>Left</td>
<td>26</td>
<td>274.43</td>
<td>18.02</td>
<td>244.75</td>
<td>304.10</td>
<td></td>
</tr>
<tr>
<td>Prosody</td>
<td>Left</td>
<td>26</td>
<td>310.51</td>
<td>18.47</td>
<td>280.63</td>
<td>340.87</td>
<td></td>
</tr>
<tr>
<td>Semantic</td>
<td>Right</td>
<td>26</td>
<td>273.28</td>
<td>17.36</td>
<td>269.83</td>
<td>302.20</td>
<td></td>
</tr>
<tr>
<td>Prosody</td>
<td>Right</td>
<td>26</td>
<td>296.75</td>
<td>17.82</td>
<td>267.89</td>
<td>326.86</td>
<td></td>
</tr>
<tr>
<td>Semantic</td>
<td>Left</td>
<td>61</td>
<td>643.86</td>
<td>42.27</td>
<td>574.21</td>
<td>713.46</td>
<td></td>
</tr>
<tr>
<td>Prosody</td>
<td>Left</td>
<td>61</td>
<td>728.49</td>
<td>43.34</td>
<td>658.39</td>
<td>799.74</td>
<td></td>
</tr>
<tr>
<td>Semantic</td>
<td>Right</td>
<td>61</td>
<td>641.16</td>
<td>40.73</td>
<td>575.34</td>
<td>709.01</td>
<td></td>
</tr>
<tr>
<td>Prosody</td>
<td>Right</td>
<td>61</td>
<td>696.23</td>
<td>41.81</td>
<td>628.52</td>
<td>766.87</td>
<td></td>
</tr>
</tbody>
</table>

Table 9
Experiment 2 (Fast responses). Direct-threat task, reaction time robust regression estimates

<table>
<thead>
<tr>
<th>Worry Slopes</th>
<th>Stimulus Type</th>
<th>Ear</th>
<th>PSWQ Score</th>
<th>Posterior Mean</th>
<th>Posterior SD</th>
<th>HPD 5%</th>
<th>HPD 95%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Semantic</td>
<td>Left</td>
<td>26</td>
<td>299.96</td>
<td>16.99</td>
<td>269.96</td>
<td>325.15</td>
<td></td>
</tr>
<tr>
<td>Prosody</td>
<td>Left</td>
<td>26</td>
<td>308.13</td>
<td>17.27</td>
<td>281.61</td>
<td>337.45</td>
<td></td>
</tr>
<tr>
<td>Semantic</td>
<td>Right</td>
<td>26</td>
<td>280.37</td>
<td>16.00</td>
<td>256.25</td>
<td>308.77</td>
<td></td>
</tr>
<tr>
<td>Prosody</td>
<td>Right</td>
<td>26</td>
<td>307.72</td>
<td>16.07</td>
<td>280.61</td>
<td>332.93</td>
<td></td>
</tr>
<tr>
<td>Semantic</td>
<td>Left</td>
<td>61</td>
<td>703.75</td>
<td>39.87</td>
<td>633.37</td>
<td>762.85</td>
<td></td>
</tr>
<tr>
<td>Prosody</td>
<td>Left</td>
<td>61</td>
<td>722.91</td>
<td>40.52</td>
<td>660.71</td>
<td>791.71</td>
<td></td>
</tr>
<tr>
<td>Semantic</td>
<td>Right</td>
<td>61</td>
<td>657.79</td>
<td>37.54</td>
<td>601.21</td>
<td>724.42</td>
<td></td>
</tr>
<tr>
<td>Prosody</td>
<td>Right</td>
<td>61</td>
<td>721.96</td>
<td>37.71</td>
<td>658.36</td>
<td>781.10</td>
<td></td>
</tr>
</tbody>
</table>
Discussion

Results from the delayed response experiment (Experiment 1) indicate small effects of worry on accuracy and strong effects of worry on RT. A noticeable feature is an increase in accuracy for Semantic in the indirect-threat task, where participants prefer the right ear for semantic independent of worry level (anxious people are slightly more accurate). These effects, however, are very weak and associated with greater uncertainty. The same happens for effects of worry on type. Therefore, the most sound and grounded inference from present results is that worry mainly affects RT in a directly proportional relationship, and does so for any type of threatening stimuli (Prosody, Semantic or Congruent) and independent of ear presentation. These results are generally echoed by the fast response experiment (Experiment 2). To note,
higher worry accuracy in the direct-threat task seems to decrease when they answer to Prosody at their right ear, but in the indirect-threat task this happens at the left ear. This reversal is to be expected due to threat-direction, but again these effects are small and somewhat uncertain. A clearer effect of greater reaction times for Prosody as a function of worry level was observed for the direct-threat task of the fast experiment. Although this effect was more reliable than previous Type effects, it was small.

Some effects become more evident when their slopes are taken into account separately, such as a general accuracy increase at left ear for Prosody in the direct-threat task of Experiment 1 (reversed for indirect-threat to a decrease as a function of worry), and an accuracy increase for Prosody at left ear as a function of worry in the direct-threat task of Experiment 2 (also reversed to a decrease for indirect-threat as a function of worry); which can be expected in a dichotic listening task and are partially consistent with our predictions (see our OSF repository for more details: link in the Data Statement section below). Nevertheless, for present purposes we will take the most conservative approach. That is, we uphold the most straightforward interpretation, which takes all effects into account simultaneously due to their involvement into an interaction. This simply indicates that in both experiments higher worriers tend to answer slower to any type of threatening stimuli. Namely, for each point increase of worry score, reaction times increase around ten milliseconds. This implies that our hypotheses indicating ear preferences as distinct by type cannot be supported, nor can our hypothesis on differing effects of fast responses. However, our hypothesis indicating a strong effect of worry level (trait anxiety) receives strong support from present results.

In order put the present results in context, it is important to recapitulate important aspects that differentiate the current experiments from previous relevant studies: 1) The use of worry-level as a continuous variable. Worry is associated with anxious apprehension (Heller et al., 1997), which implies more chances of participants over-engaging with threat. 2) Stimuli were
semi-naturalistic sentences, providing stronger contextual effects. In addition, their longer durations can facilitate engagement with their content. 3) Information channels were manipulated to disentangle effects of semantics and prosody from effects of emotional expression (Kotz and Paulmann, 2007). 4) The use of two tasks measuring responses directed to threatening or neutral stimuli (direct vs. indirect threat, e.g. Sanders et al, 2005) helps to check whether attention effects could be inducing different response patterns. 5) Two experiments were implemented to verify whether answering after sentences’ end or during sentence presentations (delayed vs. fast) can influence laterality patterns by tapping into different moments of a multistep emotional language processing mechanism (Kotz and Paulmann, 2011).

With this in mind, it is important to carefully interpret the lack of laterality (ear) effects in Experiments 1 and 2. Weak ear effects might be explained by the great variability between items and the high duration (also very variable) of sentences. However, the lack of sensitivity of DL when more naturalistic stimuli/context are provided cannot be discarded as a possible explanation. If DL effects are task dependent (Godfrey and Grimshaw, 2015), increased naturalness on stimuli and context can bring out a myriad of bilateral processing patterns that might make ear advantages disappear on the long run when prolonged auditory stimuli are listened to. Although there is previous evidence suggesting a right lateralized pattern for prosody vs. semantic evaluation in an EEG experiment (not considering anxiety), using a congruency (not DL) task with sentences as stimuli (Kotz and Paulmann, 2007), further experimentation using a similar paradigm has not observed this pattern (Paulmann and Kotz, 2012). Although this pattern is explained by the strong association between pitch recognition and RH engagement (Kotz and Paulmann, 2007; Zatorre et al., 2002), there are other frequency and spectral features that might be important for recognizing both threatening and neutral sentences (Banse and Scherer, 1996; Hammerschmidt and Jürgens, 2007; Liu et al., 2013; Xu
et al., 2013; Zatorre et al., 2002). This could imply that distinguishing prosody and semantics might be a continuous process that can have diversified effects even during sentence presentation.

Indeed, by manipulating angry prosody changes at the beginning and end of sentences, an EEG study has observed that when prosody changes from angry to neutral within sentences, processing is more effortful (Chen et al, 2011). This might indicate that the rich acoustic nature of prosody might be detected quickly but resourcefully. Recent EEG research has observed that anxious people present ERP differences at both early and late processing stages when answering to threatening prosody and non-language vocalizations (Pell et al, 2015). This is consistent with the notion of early over-attention and later over-engagement, and indicates that behavioural responses might change given early or late variations in threat.

Another possible explanation is callosal relay (Atchely et al., 2011; Grimshaw et al, 2003), where increased anxiety would disrupt RH to LH callosal information transferring of threatening prosody. It has been proposed that callosal relay is highly relevant for language informational and emotional processing (Friederici et al, 2007; Kotz and Paulmann, 2011; Steinmann et al., 2017). Hence, interference at one hemisphere (e.g. rumination or worry impacting LH) can have an effect on information transferring to the other. Thus, callosal relay effects could have a relevant impact on how DL tasks are processed, subject to both top-down and bottom-up effects (Westernhausen and Hugdahl, 2008), which is particularly relevant when laterality effects induced by acoustic or lexical properties need to be disentangled from those induced solely by emotional processing (Grimshaw et al, 2003; Leshem, 2018).

These patterns indicate that our extension of dichotic listening models (Grimshaw et al., 2003) does not guarantee laterality effects induced by sentences’ information type. However, our prediction of a strong effect of worry level (trait anxiety), affecting emotional language processing due to possible over-engagement with threat (Bar-Haim et al., 2007; Spielberg et
al., 2013), was strongly supported. It was proposed that delayed responses facilitate over-
engagement with threat due to the long latency between sentence presentation and response.
This, together with the high variability in sentences’ durations and content might have nullified
ear and/or type effects. Furthermore, we failed to observe any clear Type or ear effect when
responses were forced to be fast (during sentence), besides a small effect of worry level on
Prosody stimuli (slower RTs). Contrary to our prediction, the patter of Experiment 2 (fast
response) is basically the same as in Experiment 1 (delayed response), which gives evidence
against our prediction of early and early-mid emotional language processing effects having a
direct behavioural output.

Similarly, previous research using single words, dichotically presented as direct- and
indirect-threat (or anger), and measuring anxiety, did not find differences in RT for left or right
ears (Sander et al., 2005; Leshem, 2018; Peshard, 2016), but did find differences in attention
focus per ear. Present results indicate that RTs differ in neither of these conditions, which is
supported by the remarkably similar posterior distributions for direct- and indirect-threat and
the high certainty of these estimates. Recent research (Leshem, 2018) did not find effects of
trait anxiety on ear either; present results, going even further, evidence a precise pattern of
weak or negligible interactions between ear and worry (trait anxiety). Although the absence of
other effects might be induced by stimuli’s high variability in length and content, it is also
important to emphasize that present analyses are fairly robust.

In addition to observing very weak or negligible effects of ear, results indicated weak
effects of Type (i.e. Semantic or Prosody). Variations on Type parameter magnitudes might
not necessarily indicate an effect of worry on particular stimulus types, but a trade-off between
accuracy and RT for stimuli that are harder to recognize (Robinson et al., 2013). In the delayed
response experiment (Experiment 1), Semantic stimuli are easily recognizable by finding the
threatening lexical item within a sentence, but this might take longer to achieve, which impact
the already slow reactions by participants with higher levels of worry. In the fast response experiment (Experiment 2), as responses are required to be executed as fast as possible before the sentence ends, higher worriers have no time to brood. Thus, possible earlier pre-attentive or attention effects (Bar-Haim et al., 2007) can be still observed as speeding-up the quick categorisation of lexical items as soon as they are identified within a sentence; there is no need to ponder on them while waiting for a sentence’s end.

Given this, our results suggest that any type of threatening language, attended either directly or indirectly, strongly affects higher worriers when stimuli are sufficiently long. Therefore, our proposal of adding a fourth stage to a multistep model of emotional language (Kotz and Paulmann, 2011) is partially supported: trait anxiety indeed affects threatening language processing in a way that response times strongly and consistently increase. In other words, the more participants approach a state of trait anxiety, the slower their responses will be. A very plausible explanation for this phenomenon is verbal repetitive thinking, which can be also associated with higher levels of rumination and/or worry as a feature of anxious apprehension (Nitschke et al., 1999; Spielberg et al., 2013), or as a marker of an over-reactive behavioural inhibition system (Corr and McNaughton, 2012). The long duration of present stimuli might have been a decisive factor for inducing a strong effect of worry.

Over-engagement with threat does not need to be in the form of verbal repetitive thinking, but the strong slow-down in responses induced by present threatening speech stimuli suggest that language processing might be specially affected by higher worry, widely associated with verbal repetitive thinking (McEvoy, 2010). Previous research has found that non-language simple threatening stimuli (e.g. noise) can indeed induce similar over-engagement effects (slower RTs) in association with BIS but not with trait anxiety (Massar et al., 2011), while other studies indicate that induced anxiety slows down RTs irrespective of stimulus emotional content (Aylward et al., 2017). However, these studies focus on short duration stimuli and
compare very short RT differences, in the order of tens of milliseconds. Our findings arise from prolonged exposure to language stimuli and indicate RT increases in the order of hundreds of milliseconds as a function of anxiety. In addition, our results indicate that when the task requires to identify the Neutral (not threatening) sentences from the dichotic pair, RT increases are almost equivalent to the task requiring to directly identify the Threatening one of a pair. This indicates that attention effects are not playing a direct role in current responses, neither induce relevant nor sufficiently big indirect effects. It might be that the extended nature of sentences implies that participants have enough time for advancing from early attention to late deliberation phases.

Considering this, our initial assumption that a fast response experiment (Experiment 2) would be enough to identify difference at early processing stages was incorrect, at least given the present stimuli and task. The varied position of threatening lexical items and/or threatening intonation emphasis might cause a general slow-down of responses, as very specific features of sentences need to be identified and participants have time to do so (the whole extent of a sentence). Therefore, without time pressure, attention mechanisms cannot be posited as a plausible explanation for RT increases as a function of anxiety. While evaluation mechanisms could serve as an explanation, the fact that there are not strong effects associated with difficulties categorising of identifying stimuli makes them weak candidates. Differently, long naturalistic speech stimuli might be especially effective in triggering late phase components, such as goal-orientation processing or deliberation. In such case, verbal repetitive thinking, as induced by worry, would be particularly effective for impairing responses to longer and more varied naturalistic speech/language stimuli. Hence the strong association of worry with slower reaction times. Given this, verbal repetitive thinking is a parsimonious explanation, which could account for patterns such as those of present experiments, and also develops as a promising hypothesis for future experimentation.
With all that being said, a general caveat of our approach lies on the nature of the experiment itself. Behavioural measures such as DL, though able to portray a very general picture of underlying brain processes, might not be enough. Better spatial and temporal resolution is required to disentangle laterality and early stage effects of threatening language. The latter is particularly relevant, as the time-course of emotional language processing might have crucial differences at much shorter time-scales, as evidenced by previous EEG research (Chen et al, 2011; Kotz and Paulmann, 2007; Paulmann and Kotz, 2012; Pell et al, 2015; Wabnitz et al., 2015; Wambacq and Jerger, 2004). In consequence, present tasks could be replicated by using EEG measures, in particular Experiment-1, where EEG measures such as event-related potentials could provide richer information about processing occurring during sentence listening, before response preparation and response execution. This could also provide lab results as point of comparison with present web-based results. But more importantly, this is crucial for identifying differences in the neural signature of worry and language processing, indispensable for properly understanding time-related models of language and anxiety processing.

In conclusion, present results indicate that extending multistep models of language processing (Schirmer and Kotz, 2006; Kotz and Paulmann, 2011) by including aspects of multistage models of anxiety (Bar-Haim et al, 2007; Corr and McNaughton, 2012) could be a relevant theoretical move. The current multistep model proposes three stages that can be understood as early (perception), mid (recognition), late (evaluation); or as pre-attentive, attentive and evaluative stages. A fourth orientative stage, associated with deliberation, can help to understand aspects of goal-directed processes before response. Late stages which could be particularly impaired by worry components of anxiety, as suggested but not ascertained by present evidence. Complementing this model, however, might be insufficient. Further theoretical development, including quantitative modelling, the inclusion of physiological...
correlates, and more precise anatomical mappings, might be necessary. Further experimental testing is thus required, in particular by implementing physiological measures such as EEG, and tasks that do not involve DL, using more controlled stimuli and investigating the effects of stimuli below or above the sentence level, such as phrases or narratives.

Declaration of interests

None.

Data statement

All data, analyses’ scripts, and additional info can be found at the Open Science Framework (OSF) repository: https://osf.io/z8pgf/?view_only=b5da5ce6c8644bc182231cd9b96be173. Identifier: DOI 10.17605/OSF.IO/Z8PGF.

Acknowledgements

This research is supported by CONICYT Becas Chile 72170145 (https://www.conicyt.cl/). Contributions to the study were as follows. Busch-Moreno: Conceptualization, Methodology, Software, Analysis, Investigation, Resources, Curation, Writing, Visualization, Administration. Vinson: Conceptualization, Methodology, Resources, Revision, Supervision, Administration. Tuomainen: Conceptualization, Resources, Revision, Supervision, Administration. Preliminary results of this experiment, using a frequentist framework, were presented at the International Congress of Phonetic Sciences (ICPhS), Melbourne, 2019.
References

https://doi.org/10.1016/j.biopsycho.2015.08.008

https://doi.org/10.3389/fnhum.2013.00069

Experimental Psychology, 67(6), 1176–1190.

https://doi.org/10.1080/17470218.2013.850521

https://doi.org/http://discovery.ucl.ac.uk/1406070/1/Xu_TRASP2013.pdf

https://doi.org/https://benjamins.com/catalog/ill.13.02xu

https://doi.org/10.1016/s1364-6613(00)01816-7