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Abstract—The multi-echo gradient echo (ME-GRE)
magnetic resonance signal evolution in white matter
has a strong dependence on the orientation of myeli-
nated axons in respect to the main static field. Although
analytical solutions, based on the Hollow Cylinder
Model have been able to predict some of the behaviour
the hollow cylinder model, it has been shown that real-
istic models of white matter offer a better description
of the signal behaviout observed.

In this work, we present a pipeline to (i) generate
realistic 2D white matter models with its microstruc-
ture based on real axon but with arbitrary fiber volume
fraction (FVF) and g-ratio. We (ii) simulate their in-
teraction with the static magnetic field to be able to
simulate their MR signal. For the first time, we (iii)
demonstrate that realistic 2D models can be used to
simulate an MR signal that provides a good approx-
imation of the signal obtained from a real 3D white
matter model obtained using electron microscopy. We
then (iv) demonstrate in silico that 2D WM models
can be used to predict microstructural parameters
in a robust way if multi-echo multi-orientation data
is available and the main fiber orientation in each
pixel is known using DTI. A Deep Learning Network
was trained and characterized in its ability to recover
the desired microstructural parameters such as FVF,
g-ratio, free and bound water transverse relaxation
and magnetic susceptibility. Finally, the network was
trained to recover these micro-structural parameters
from an ex-vivo dataset acquired in 9-orientations in
respect to the magnetic field and 12 echo times. We
demonstrate that this is an overdetermined problem
and that as few as 3 orientations can already provide
comparable results for some of the decoded metrics.

[Highlights] - A pipeline to generate realistic white
matter models of arbitrary fiber volume fraction and
g-ratio is presented; - We present a methodology to
simulated the gradient echo signal from segmented
2D and 3D models of white matter, which takes into
account the interaction of the static magnetic field
with the anisotropic susceptibility of the myelin phos-
pholipids; - Deep Learning Networks can be used to
decode microstructural white matter parameters from
the signal of multi-echo multi-orientation data;

I. Introduction

White matter (WM) consist mainly of myelinated axons
and plays an important role for the transmission of infor-
mation across the brain. The myelin sheath surrounding
the axons acts as an electric insulator, thus increasing
the transmission speed of the pulses. The development of
myelin played a key role in evolution and the apparition
of large vertebrate [1] and it is still central in brain mat-
uration. The degradation of myelin, commonly referred to
as demyelination, is present in various neurodegenerative
diseases, and leads to severe motor and mental disabil-
ities [2]. Such neurodegenerative disorders (e.g multiple
sclerosis) show high variability among individuals, and it
is difficult to predict and understand the course of the
disease by only counting the number of lesions or com-
paring the values obtained in magnetic resonance (MR)
relaxometry [3]. Therefore, non-invasive imaging methods
that can investigate the WM microstructure and measure
myelin properties may offer important means of studying
neurodegenerative diseases, providing crucial information
for diagnosis, monitoring progression and assessment of
potential treatment effectiveness.

Direct MR imaging of the myelin is challenging due to
the ultra-short transverse relaxation time of the phospho-
lipid proton (T ∗

2 = 0.3 ms). Nevertheless, several attempts
have been performed using zero or ultra short echo time
techniques [4], [5]. Alternatively, myelin can be probed
indirectly using magnetization transfer techniques [6], [7],
multi-echo spin- or gradient- echo sequences [8]. However,
the detection of myelin water remains challenging due to
its short T2 and T ∗

2 values (∼10 ms). In this paper, we will
focus on myelin water imaging using a multi-echo gradient
echo (ME-GRE) sequence.

WM is a complex environment composed not only of
axons but also different types of glial cells, vessels and
more. However, the biophysical models typically used in
magnetic resonance imaging (MRI) is simplified to 3 com-
partments: intra-axonal, myelin and extra-axonal water
protons. Axons in WM have various shapes and sizes, with
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a diameter ranging from 0.1 µm to 2 µm for unmyelinated
axons and from 1 µm up to 10 µm for myelinated axons
[9], but are typically modeled as cylinders. The myelin
sheath, formed in the central nervous system (CNS) by
oligodendrocytes represents approximately 80% of the
brain’s dry weight, consists of tightly packed phospholipid
bi-layers united by the hydrophobic tails, separated by
water layers [10]. These phospholipids because of their
elongated form and their radial organisation around the
axon have an anisotropic magnetic susceptibility [11],
[12] which is diamagnetic when compared to surrounding
water. These microstructural features are believed to be
well approximated by a tensor with cylindrical symmetry.
Thus, the susceptibility of myelin can be written as the
sum of an isotropic (Xi) and anisotropic (Xa) component:

X = Xi +Xa = χi

1 0 0
0 1 0
0 0 1

+ χa

1 0 0
0 −1/2 0
0 0 −1/2


(1)

where χi and χa are scalar isotropic and anisotropic sus-
ceptibility multiplicative constants, respectively. Various
values have been reported in the literature of myelin for
χi ranging from −0.13 to −0.06 ppm and χa ranging from
−0.15 to −0.09 ppm [13]–[15] (with ppm considered with
respect to the magnetic susceptibility of pure water).

In the presence of a strong magnetic field, a secondary
microscopic magnetic field perturbation is created by these
phospholipids [16]. This secondary field can be observed
in both magnitude and phase of a multi-echo GRE signal
[17]. One manifestation of the anisotropic magnetic suscep-
tibility of myelin is that the MR signal of a GRE sequence
shows a dependence on the orientation of the fibers relative
to the main magnetic field. For example, it has been
shown that simple T ∗

2 maps are orientation dependent
[18], and hence unsuitable for the estimation of myelin
properties. Part of this orientation dependence can be
accounted for using a priori knowledge of fiber orientations
[19]. More advanced biophysical modeling of the signal
decay allows for the estimation of orientation dependent
and independent components [20]. One alternative way to
explore this complex interaction between magnetic field
and the magnetic susceptibility of myelin, is myelin water
imaging (MWI). In MWI the MR signal is fitted using
a 3-pool model [21], [22], with each compartment having
a specific relaxation time and frequency offset, yet this
approach suffers from over-fitting issues [23], [24]. Using
the hollow cylinder model (HCM) [25] and fiber orientation
information derived from DWI, our group has shown that
it is possible to overcome some of the ill-posedness nature
of MWI using what was named Diffusion Informed Myelin
Water imaging (DIMWI) [26]. Yet it has been previously
shown that more complex and realistic WM models based
on electron microscopy data [11] are better able to charac-
terize the signal ME-GRE signal than the more simplistic
HCM.

In this work, we present a novel approach to map some

of the properties of WM microstructure by modeling the
behavior of the MR signal of a ME-GRE imaging sequence
measured for multiple orientation of the tissue sample
and hence of the WM fiber bundles. For this, we first
develop a method to generate a hypothetical 2D WM
models based on realistic axon shapes. These models are
then used to simulate the ME-GRE signal for different
axon and myelin properties (notably, their relative size and
volume fractions) and validated by comparing them to real
3D WM models based on electron microscopy data. These
simulations are used to construct a dictionary of the ME-
GRE, covering a wide range of WM properties. Finally the
dictionary was used to train a deep neural network to map
ME-GRE acquired signal using multiple orientations of a
sample in respect to the magnetic field into white matter
properties. We tested this deep learning method in various
scenarios both in silico and in vitro.

II. Methods

A. 2D WM model

The magnetic susceptibility of myelin relative to its
surrounding creates a magnetic field, that although small,
affects the MRI signal both in phase and magnitude. This
phenomenon have been used in the past to study WM ori-
entation [19], [25] and can be studied both analytically and
numerically considering various simplified WM models.

1) Hollow cylinder model: The HCM, proposed by
Wharton and Bowtell, is commonly used to approximate
WM microstructure [14]. The myelin sheath is represented
by an infinite hollow cylinder with an inner radius ri and
an outer radius ro. The inner part of the hollow cylinder
is the intra-axonal compartment and the external part is
referred as the extra-axonal compartment.

This cylindrical representation of WM into 3 compart-
ments allows an analytical derivation of the field pertur-
bation in each of those regions and characterization WM
using:

• Fiber volume fraction (FVF) - the proportion of
myelinated axon within the model

• g-ratio - the ratio between the intra-axonal radius (ri)
and the myelinated axon radius (r0):

g-ratio =
ri
ro

(2)

This solution, very convenient to model, offers for example
an analytical estimation of the fiber-orientation depen-
dence of R2∗(1/T2∗) map [25].

However, it has been recently demonstrated that the
HCM has intrinsic biases compared to a more realistic
WM model created from electron microscopy data [11].
The circular axon shapes create artificially large frequency
peaks, in particular within the intra-axonal compartment,
which are not present in a realistic model. In the following
section we will present the creation of a realistic 2D
WM model based on real axon shapes and realistic size
distributions.
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2) Electron microscopy based models: In this study, we
used an 2D electron microscopy image of an entire slice
of a canine spinal cord from an histology open database
1 as our database of axon shapes. The sample is 5mm
width and 7.5mm long with a 0.25µm resolution which
corresponds to a 20.000× 30.000 image. An open-source
segmentation software was used to segment the image that
lead to a collection of ∼ 600.000 myelinated axon shapes
[27]. The resolution is sufficient because we do not want to
segment unmyelinated axons that have been shown to have
no significant impact in the obtained ME-GRE signal [11].
The unmyelinated axons are therefore included within the
extra-axonal space. In case of a realistic axon shape, the
g-ratio is redefined as the square root of the ratio between
the intra-axonal surface and the outer surface (measured
as the number of myelinated pixels with at least one side
in direct contact with intra or extra-axonal space).

3) Axon packing algorithm: A set 400 of axon shapes
were randomly picked from the collection above to create
a realistic 2D WM model with predefined FVF and g-ratio.
To do so, we developed an axon packing algorithm based
on an existing software [28] that had been initially devel-
oped for cylindrical axon models. The packing process is
performed as follow (see Fig 1):

Algorithm 1: Axon packing

Data: Set of N myelinated axon shapes
Initialization: N axons equally spaced on a grid
current FVF = initial FVF
while current FVF < maximum FVF do

Axons are attracted to the grid center
Axons which overlap repulse each other
current FVF = FVF within a mask

end

In the current implementation, as the axon shapes are
picked randomly, they do not necessarily fit optimally
together (during the attraction and repulsion process,
the axon is not allowed to rotate) which creates small
gaps within the model. The maximum FVF parameter,
corresponding to a model where the axons are highly
packed while avoiding overlap was empirically found to be
0.85. According to literature, such an FVF value already
represents a WM model with a very high axon density [29].

4) Obtaining an expected FVF: Once the maximum
FVF for a given collection of axons is achieved, this
packed WM model was used to obtain a new model with
an a different FVF. Two different methods, illustrated
Fig 1, were proposed: (i) randomly remove axons or (ii)
spread the axons from the figure center. The first method
creates important gaps within the extra-axonal space that
could correspond to glial cells or bundles of unmyelinated
axons, while the second method creates a more uniformly
distributed WM model. Based on the EM data visually
explored up to now, both could be valid representations.

1https://osf.io/sgbm8/

Their corresponding field perturbation histograms were
close enough and both models were used to enforce the
diversity of our WM model dictionaries.

Fig. 1. Top row: 400 axons are placed on a grid (a) and packed
following an attraction/repulsion method (b) until to reach high FVF
(c). Bottom row: Zoom on the mask delineated by the red square. A
desired FVF is reached spreading the axons from the center (d) or
randomly removing some axons (e). Keeping the same axons and
thus the same FVF, the myelin thickness can be modified to obtain
an expected g-ratio (f)

5) Change the g-ratio: Finally, the mean g-ratio of the
model was modified, while keeping the FVF constant. This
operation was performed on an axon-by-axon basis by
dilating or eroding the inner myelin sheath by one pixel
depending on whether the g-ratio was to be decreased
or increased. Each axon has a given probability to be
randomly picked, this probability is linked to its diameter.
As the dilatation/erosion is fixed to one pixel, larger
axons need to be picked more frequently to respect the
original proportion of FVF. The modification of the g-
ratio is illustrated in Fig 1. Eventually, different models
with similar FVF and g-ratio can be created using our
large axon shapes database and the code made available
in the toolbox.

B. Signal creation

To be able to use these 2D models to simulate the ME-
GRE signal, we need to define the susceptibility of pixel
element, compute the induced magnetic field perturbation
and eventually simulate the signal evolution in this inho-
mogeneous environment.

1) Magnetic susceptibilities: The susceptibility tensor
XR within the myelin sheath in a 2D model is determined
by the phospholipid orientations φ on that plane:

XR = Rz(φ) ·X ·Rz(φ) = Xi +Rz(φ) ·Xa ·Rz(φ) (3)

with Rz(φ) the 3D rotation matrix around the z axis.
In simple cases, as for the HCM, the computation of φ
is trivial. However, for more complex axon shapes, there
is no proper definition of a radial orientation between
two boundaries. The orientation of the phospholipids is
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estimated on an axon-by-axon basis. First, the selected
axon is placed in a small matrix (including 10 pixels
of each side of the axon edges for computational time
considerations), then the extra-axonal, myelin and intra-
axonal compartments are given the values of 0,1 and 2
respectively. The resulting map is smoothed with a 2D
Gaussian filter with a width of 5× 5 to create a smoothed
pyramidal structure, if the myelin sheath is too large and
still contains piecewise constant part after smoothing, the
process is repeated, and finally a gradient direction map
is computed. As the map is smoothly varying from 0 to
2 within the myelin compartment, the gradient at each
point will define the steepest direction from the extra- to
the intra-axonal space and should follow the phospholipid
orientation (see Fig 2).

2) Field perturbation: From the phospholipid orienta-
tion map, the susceptibility tensor map can be calculated
using Eq. 3. The susceptibility tensor map is used to
compute the field perturbation in the frequency domain as
described in [30]. An illustration of the field perturbation
generated by a single axon with several B0 orientations is
shown in Fig 2. The induced field perturbation strongly
depends on the B0 orientation. A magnetic field parallel
to the axon orientation only creates a small negative
field shift within the myelin sheath while a perpendicular
magnetic field creates much stronger perturbations within
the 3 compartments. The overlapping frequency spectra of
the 3 compartments make them hard to disentangle.

Fig. 2. First row: Phospholipid orientation estimation. (a): Original
axon, the extra-axonal part is filled with 0, the myelin with 1 and
the intra-axonal with 2. (b): Model smoothed with a Gaussian filter.
Right : (c) Gradient orientation computed on the smoothed map.
Second row: Field perturbation for one axon with 3 different magnetic
field orientations. Third row: Corresponding histograms computed
within the red square to keep a reasonable FVF.

3) ME-GRE signal: ME-GRE signals are computed as:

TABLE I
Middle column: Parameter range used in our dictionary.
Third column: Usual parameter values found in WM. *The

relative water weight depend on the acquisition
parameters, flip angle and TR, subsequently there is no
usual value and the one presented is used within the

typical WM deep learning experiment.

Model
parameters

Dictionary
Typical WM

values
FVF 0.1:0.1:0.8 0.7 a

g-ratio 0.5:0.05:0.85 0.65 b

χi -0.2:0.1:0.2 -0.1 c

χa -0.1 (fixed) -0.1 a

T2,Intra−Extra 20:20:100 60 d

T2,Myelin 4:4:20 16 d

wMyelin/wIntraExtra 0.5:0.5:3 2*
Fiber orientations 20 /

a (Choy et al., 2020) [31]
b (Mohammadi et al., 2015) [32]
c (Wharton et al., 2012) [14]
d (Xu et al., 2018) [11]

S(t) =
3∑

n=1

(
wn exp

(
−t
T2,n

)∑
r

exp (−itγ∆Bn(r))

)
(4)

where each compartment has a specific transverse re-
laxation T2,n, a water weight wn reflecting the water
signal, which includes proton density and T1 saturation
effects, and a corresponding field perturbation ∆Bn(r). An
illustration of the ME-GRE signals simulated using Eq 4
is shown with two examples of WM geometry in Fig 3.

MRI data amplitude depends, not only on the magneti-
zation amplitude, but also on the RF coil sensitivity and
receiver gain. The phase depends on the RF transceiver
and on the quality of the B0 shimming and presence of
fields due to the susceptibility of neighbouring pixels. To
be able to compare our signal simulations to real data, this
signal (and the real data) is normalized as follow:

|Ŝ(t)| = |S(t)|/|S(1)| (5)

arg(Ŝ(t)) = arg(S(t))− p1 − p2 × t (6)

where arg(Ŝ(t)) is the phase of the signal and p1 and
p2 are the coefficients of p(t) = p1 + p2 × t, the line that
best fits the original phase arg(S(t)). This normalization
is done to keep the second order evolution while removing
the linear part that corresponds to the phase and fre-
quency offset of the MRI acquisition which are hardware-
dependent.

4) Model validation: While the realistic 2D WM models
have been shown to better represent the ME-GRE signal
of WM than the simple HCM, they assume the replication
of the same structure along the third dimension resulting
in bundles that are unrealistically aligned and cannot rep-
resent the natural dispersion present in a real axon bundle.
Dispersion can occur not only in regions of fiber crossing,
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Fig. 3. WM models with different FVF and g-ratio and their corresponding field perturbations. The ME-GRE signal magnitude and phase
are presented for 4 difference χi values. The other parameters are fixed according to literature values (see table I.

fiber kissing, but also in regions traditionally expected to
be unidirectional such as the corpus callosum [33]. How-
ever, 3D models are hard to construct, not only because
of the lack of 3D EM data (that could represent a ground
truth), but also because of the complexity of 3D axon
packing [34]. Also, it could be the case that the 2D axon
shapes, used in our realistic WM modeling, are elongated
due to being obtained from cutting through axons that
were not perpendicular to the surface. Furthermore, in the
case of our application, the estimation of the susceptibility
tensor map and the field perturbation in 3D models would
make the process even more time consuming. We have
designed a small study, presented in the Appendix , to
evaluate the ability of our 2D models to represent a real
3D model with comparable microstructural properties.

C. Dictionary creation

A dictionary of signal evolution can be created using
the simulated ME-GRE signals in the presence of different
WM model. Such dictionary can be used to derive the
microstructural tissue properties from the ME-GRE signal
by root mean square minimization, as done for example in
fingerprinting [35]. Alternatively, a deep learning network
can be trained to learn the tissue properties from the
dictionary as will be demonstrated later.

The WM model and the magnetic field distributions
present on each of its compartments depends on 5 mi-
crostructure related parameters: FVF, g-ratio, χi and
χa, as well as the fiber orientation. For the purpose of
training a deep learning network, we considered repeating
simulations with various axon packing using the same
properties as aforementioned. The ME-GRE signal from
each WM model depends on the specific NMR proper-
ties of each compartment (wn, T2,n). This would result
in 6 supplementary parameters. To minimize dictionary

size, the T2s and water weights of the intra-axonal and
extra-axonal compartments were defined equals and the
signal amplitudes was always normalized (so that

∑
wn =

1), reducing the number of parameters from 6 to 3:
w = S0,IntraExtra/S0,Myelin referred as the relative water
weight, T2,Myelin, T2,Intra−Extra. The parameter ranges,
used to construct the dictionary, are presented in Table
I along with typical WM values. The dictionary has 8
dimensions, with 5 to 20 entries per dimension leading
to 7.680.000 vectors. In the following in silico and ex
vivo experiments, all the dictionaries have those same
parameter ranges.

Each entry of the dictionary is composed by the normal-
ized signal magnitude and phase (or real and imaginary
components, 2 x nTE with nTE the number of echo times
in the simulation) and an additional entry encoding the
fiber orientation information characterized by the angle
between the fiber and the static magnetic field. When de-
riving the microstructural properties from measurements
with multiple orientations with respect to the magnetic
field, the signal is concatenated along the n orientations
which leads to a vector size of n ·(2TE+1). An illustration
of such simulated normalized signals magnitude and phase
with different orientations is presented Fig 4. Conversely
to a single orientation dictionary, this multi-orientation
dictionary is only valid for a specific set of rotations used
in a specific acquisition.

D. Deep Learning

The ME-GRE signal dictionary was used to train a deep
learning network using Keras [36]. For all the following
experiments, the dictionaries were trained on 7 entire
sets of WM models and evaluated by the loss function
on another set of WM models, which correspond to a
validation split of 0.125. This network is composed with 3
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Fig. 4. The ME-GRE signal is simulated with 6 magnetic field
orientations, θ = 0−π/2 equally space (see arrows), for WM models
with different FVF from 0.1 to 0.8 (4 models for each FVF). The top
and bottom row represents respectively the signal real and imaginary
part for each 6 orientations separated by a vertical black line.

hidden layers of size 2∗ li ∗ lo, 1.5∗ li ∗ lo, 1.25∗ li ∗ lo, li and
lo being the concatenate signal length and the number of
parameters, with a respective drop out of 0.4, 0.2, 0.1 using
an tanh activation function and an additional linear layer.
Both inputs and outputs were normalized, a stochastic
gradient descent optimizer was used and the loss function
is a mean absolute error.

To gain experience on the ability and limitations of our
network to derive microstructure properties, its perfor-
mance was first tested on simulated data. Particularly we
wanted to evaluate what was the optimum echo time range
and the number of echoes, as well as study the gains asso-
ciated with different numbers of sample rotations needed
to successfully recover WM properties (which will affect
our data acquisition protocol). The design and training of
the network was also subject of careful attention. The deep
learning hyperparameters were tuned following an empir-
ical approach, with the chosen ones giving both accurate
results and robust to the change of signal parameters.

The validation loss function (mean absolute error of the
parameters estimated on a validation data set - one set of
WM models which is not used for training) was used as a
metric to evaluate the convergence of the network. All the
parameters, within their range, were re-scaled between 0
and 1, to make validation loss a less arbitrary number.
This metric is an average of the mean absolute error
for each parameter, thus, it does not allow to make fine
comparisons. Despite this remark, the validation loss is
a classic and robust way to evaluate the training process
with an unique number.

1) Deep Learning performance evaluation on simulated
data: The robustness of the parameter recovery was tested
by adding a complex white noise (0 %, 0.5 %, 1 %, 2 %
and 4 %) to a ME-GRE signal on a dictionary used in the
training and validation processes. The first 3 columns of
Table II summarize the parameters used in the creation of
the dictionary and training of the network. The rotations
used were chosen to mimic the experimental protocol used
on an ex vivo acquisition described later in this section.
The noise levels mentioned above are relative to the signal

amplitude at the first echo, TE=2.15 ms

The ME-GRE signal of a given white matter model
depends on the magnetic field orientation in respect to
its structure (see Fig 4), this lead us to adopt a multi-
orientations approach when trying to decode WM mi-
crostructure properties. However, as an increased num-
ber of orientations means a longer acquisition time, we
performed a theoretical comparison study to estimate the
benefit of using a large number of orientations vs a reduced
number of orientations with higher SNR. A dictionary with
16 optimal orientations was created for 3 different noise
levels (0,1 and 2%). In order to maximize information,
each fiber should have the largest possible range of θ from
0 to π/2. To do so, the 16 3D rotations had evenly spread
axis on the sphere with a common π/2 angle. Then, for a
range of number of orientations from 1 to 16, a subset of
this dictionary was used to train a deep learning network.

The influence of the number of echoes on the deep
learning parameter recovery performance was tested. To
do so, several networks were trained with a fixed echo
spacing (3.05 ms - mimicking our experimental protocol),
a various number of TE (5, 10, 15, 20, 25 and 30) and
noise levels. At this stage no considerations of the impact
on T1 weighting were included on the analysis.

Finally, we tested the deep learning for one set of real-
istic parameter values of WM (see Table II), that allows
to detail the behavior of each parameter individually. The
signal was simulated 125 times for 8 independent white
matter models leading to 1000 signal simulations with each
different noise level. We tested two methods to recover
the parameters: (i) using a deep learning network trained
with a noise matching to the simulated noise; using a deep
learning trained with a maximum noise level regardless of
the simulated signal noise.

E. Ex vivo data acquisition

A formalin fixed post-mortem brain (female, 88 years
old, 26 hours of post-mortem interval and 7-month fixation
period) was scanned in a 3T scanner (Siemens, Prismafit).
The brain was scanned in 9 orientations relative to the
static magnetic field. To avoid brain deformation between
different rotations, a customised 3D brain holder was built
and used throughout the scanning session, see Fig. 5. Prior
to scanning, formalin was washed out in distilled water
and prepared in low pressure environment, using a vacuum
pump at 20mBar during 12h to remove all air bubbles
trapped in the various cortical sulci. During this period
the brain was occasionally rotated to ensure removal of
air trapped inside the ventricles.

Fig. 5. Brain holder: (a) in its sphere, (b) alone, (c) open
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TABLE II
This table describes the dictionary parameters, (TEs, rotations, noise level, number of models) and a deep learning

parameter (number of epochs) associated with each experiment. Four first columns: in silico experiment, Last column:ex vivo
experiment.

Parameter
Experiment Epochs

dependence
TEs dependence

Rotation
dependence

Typical WM Ex vivo data

TEs 2.15-3.05-35.7 1.8-3.2-14.6/94.6 2.4-4.4-50.7 2.15-3.05-35.7 2.15-3.05-35.7
Rotations 9 6 1 to 16 9 9
Noise level 0, 0.5, 1, 2, 4% 0, 1, 2% 0, 1, 2% 0, 0.5, 1, 2, 4% 4%

Number of models 8 8 8 8 8
Epochs 40 20 40 40 40

For each head positions the following protocol was
repeated: - (a) 3D monopolar ME-GRE with 12 echos
(TE = 1.7 : 3.05 : 35.25ms, TR = 38 ms), with a
1.8mm isotropic resolution and Matrix size (128x128x128),
acquisition time 8.21 mins. This protocol was repeated 6
times with flip angles α = 5°/10°/15°/20°/35°/65°); - (b)
an MP2RAGE with 1mm isotropic resolution was acquired
for co-registration purposes. The MP2RAGE parameters
were adapted to be able to map the short T1 values present
in fixed tissue (TR/TI1/TI2=3s/0.311s/1.6s α1/α2); Fi-
nally, for the last sample position, DWI protocol was ac-
quired to provide fiber orientation information (TR/TE =
3.78s/71.2ms, 256 diffusion-encoding gradient directions,
b = 2500s/mm2). Because the formalin fixation process
and the reduced temperature of the sample compared to
in vivo (Room Temperature ' 23°) significantly reduce
water diffusivity, the protocol was repeated 20 times to
achieve robust fiber orientation information.

F. Ex vivo data processing

Each of the 9 MP2RAGE images from the 9 brain
rotations were co-registered to a reference position us-
ing FLIRT from fsl [37]. Corresponding transformations
were then applied to the ME-GRE data (magnitude and
unwrapped phase separately), finally the registered data
were normalized following Eq 6. A DTI was estimated for
each DWI and the 20 DTIs were averaged using a log-
Euclidean framework [38]. Eventually, the fiber orientation
was defined as the main orientation of the average tensor.

A ME-GRE dictionary was simulated for this particular
acquisition, and the corresponding deep learning network
was trained using the parameter ranges described in Table
I and II. Finally, the microstructure parameter maps
(FVF, g-ratio, χi, T2,Myelin . T2, Intra − Extra, and
the relative water weight) were estimated individually for
each set of flip angles. This resulted in 6 independent
sets parameter maps, where only the relative water weight
term is expected to vary across acquisitions. It was thus
possible to compute the mean and standard deviation of
the microstructure parameter maps that were expected to
remain constant across flip angles to estimate the precision
of those measurements.

Finally, the last experiment was performed by using a re-
stricted number of rotations that can be achived during an
in vivo experiment. Among the 84 possible combinations

of 3 rotations chosen within the original 9 rotations, the 10
ones that insured the largest fiber orientations ranges were
picked. The subsets of ex vivo data for the 10 combinations
of 3 rotations with a flip angle of 20°, the corresponding
dictionaries, and deep learning networks were created,
leading to 10 entire sets of brain parameter maps. This was
used to compute the mean and standard deviation across
different combinations of 3 rotations. Finally, the absolute
difference maps between the mean parameter maps with 3
rotations and the original ones with 9 rotations, both with
a flip angle of 20°, were estimated.

III. Results

A. Deep learning performance on simulated data

1) Noise level: Figure 6(a) shows the dependence of the
loss function of the deep learning network for 5 different
noise levels as a function of the number of epochs used.
After a fast drop during the first 3-5 epochs, the loss
function continues a slow decay, reaching a plateau for the
noisier signals. Interestingly, the loss functions on the test
data (solid lines) are slightly lower than on validation data
(dashed line). This difference is attributed to the fact that
the validation loss function is averaged along the entire
epoch, whilst the test loss function is computed at the
end of each epoch. From this analysis we concluded that
20 epochs should be a good compromised between training
efficiency and parameter recovery.

2) Echo times: Fig 6(b) presents the dependence of the
loss function on the number of echo times used. It shows
that the wider the range of echo times the lower the loss
function is. The loss function clearly improves between
5 to 15 TE (49ms), but its improvement is smaller after
that, even if a plateau has never been totally reached for
signal with noise even after 30 echos. Our simulations did
not include any echo time dependent noise, arising from
physiological noise or scanner drifts, which are common
in gradient echo acquisitions, and would make later echo
times less useful for decoding. We postulated that 20 echos
would be sufficient for an experimental protocol.

3) Number of magnetic field orientations: Fig 6(c)
shows that, as expected, the loss functions decreases when
increasing the number of rotations for all noise levels.
Note that in interest of computation time, the subset of
rotations might not be optimal for all number of rotations
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(a) (b) (c)

Fig. 6. Deep learning training evolution for different noise levels relative to several acquisition parameters. The solid line is the loss function
whilst the dashed line is the validation loss function, that represents the same mean absolute error respectively computed on the train and
on the test data set. (a) Training along the number of epochs. (b) Training along the number of echoes. (c): Training along the number of
rotations.

tested (as a subset of the initial 16 orientations was
used). Furthermore the specific number/set of rotations
depends on the orientation of the fiber of interest. The
deep learning benefits from the first 3-6 distinct rotations,
similar to what has been demonstrated for Susceptibility
tensor imaging [39] and for fiber orientation mapping [14],
and plateaus after this. In a given acquisition time we can
either decide to have an improved SNR per orientation
or increased number of rotations. When moving from 1
to 2%SNR levels this corresponds to an decrease of the
acquisition time by a factor 4 or number of rotations. Thus
16 orientations at 2% noise could be acquired in the same
time as 4 orientations at 1% noise level. It can therefore
be concluded that there is a benefit in maximizing the
number of orientations beyond 5 as the loss function
for 16 rotations at 2% noise was the same as that of 6
orientations and 1% noise. In our acquisitions, we used 9
to 10 orientations, to avoid excessive acceleration of each
orientation, as this could bring parallel imaging artifacts
into play when trying to further reduce the acquisition per
orientation.

4) Selective set of parameters: Fig 7 shows the perfor-
mance of the deep learning networks to recover the various
microstructural parameters of what could be considered a
typical white matter model. Although the average recov-
ered parameters are closed to the original ones regardless
the signal noise level many of the differences would be
statistically significant. Particularly, the relative water
weight suffers a constant positive bias for all networks and
simulated signal. Surprisingly, the standard deviation for
all parameters (excluding χ and T2,Myelin ) is considerably
lower when the deep learning was trained with a 4%
noise level rather then the matched noise level. Thus, a
dictionary with a high noise level was used in our ex vivo
experiment presented in the following. When comparing
the width of the various distributions, compared to the
range used in the training the network (see Table I), the
valued of χ, g-ratio and relative water weight are likely to
have the largest biases and noise.

B. Ex vivo experiment

The 6 microstructure parameter maps obtained from the
ex vivo brain with a flip angle of 35 are presented in Fig 8,
along reference images for coronal and sagittal views from

the ME-GRE and MP2RAGE for visual comparison with
more standard contrasts. The microstructure parameters
were computed with a network with a 4% noise level.
White matter is clearly discernible from grey matter and
deep gray matter on the FVF and relative water weight
maps. It should also be noted that FVF and the intra and
extra axonal T2 have a very strong contrast between white
matter and deep gray matter (although the latter has
reduced contrast between grey and white matter). That
observation is particularly interesting because it suggests
that with our modeling we were able to remove myelin
contributions to the T2 contrast. On the other hand,
the g-ratio map and T2 of myelin seem to have large
contrast within white matter which are expected to vary
within the brain. The sagittal maps show that an higher
FVF, lower T2 of myelin and lower g-ratio in the corpus
callosum compared to the rest of the brain. Interestingly,
CSF presents an almost null FVF along with a high T2
intra/extra axonal, which is to be expected as there are
no structures generating an anisotropic signal evolution
in this region. The χi values of myelin within WM are
slightly positive where a negative value is expected, this
effect could be due to the fixation process.

In addition to considering one particular flip angle, as
in Fig. 8 , Figure 9 shows the mean and standard devi-
ation across the 6 flip angles used. Most microstructure
parameters should not depend on the flip angle, except
the relative water weight that is related to the proton
density as well as the TR and the flip angle. The mean
parameter maps have globally the same characteristics
than the ones presented previously with a flip angle 35, see
Fig 9. The corresponding standard deviation maps reveal
low values, showing a good robustness of the parameter
recovery for several acquisitions. Finally, the relative water
weight maps are shown in the same figure. As expected,
an increase along the 6 flip angles is visible, in particular
for the 2 higher flip angles, 35 and 60. Reflecting the fact
that the T1 of myelin water is significantly shorter than
that of free water.

Fig 10 shows the brain parameter maps computed from
several data subsets each using a different combinations
of 3 rotations. The mean parameter maps highlight the
expected brain structures, such as CSF, deep gray matter,
WM, GM. Yet, the contrast seems lower compare to the

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted June 24, 2020. ; https://doi.org/10.1101/2020.06.23.127258doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.23.127258


9

Fig. 7. Each box represents the estimation of one parameter recovery for 5 different signal noise levels (0%, 0.5%, 1%, 2%, 4%). Within a
box, the left side use a single deep learning trained with 4% noise regardless of the noise level while the right side use 5 deep learning, each
one trained with a noise equal to the signal level.

parameter maps obtained with 9 rotations, in particular
within deep gray matter, as illustrated by the absolute
difference maps. The standard deviation maps, estimated
across 10 combinations of 3 rotations, reveal very low
values. Thus, the process seems very robust when the same
number of rotations is considered.

IV. Discussion

A. White matter models: promise and limitations

We introduced a pipeline to create a simple but realistic
biophysical model to simulate the MRI ME-GRE signal.
These WM models contain real axonal shapes and a
g-ratio variability similar to what is reported in tissue
samples (data not shown), and have varying levels of fiber
volume fraction within themselves as a result from the
axon packing approach. Yet, some effects are explicitly
overlooked: (1) diffusion within the compartments, (2)
chemical exchange and (3) other sources of susceptibility
perturbations beyond the myelin sheath. Diffusion has
been demonstrated to have a minor effect for white matter
models based on EM data [11] when compared to the
HCM or simple cylindrical perturbers [40]. Chemical ex-
change between myelin water and myelin protons results
in frequency shift, and thus, can be accounted for by
adding an exchange term in the HCM [25]. A recent work
based on Generalized Lorentzian Tensor Approach directly
considers the water layer within the myelin to probe this
exchange [41]. The size of this frequency offset term has

been reported to be of 0.02 ppm in the corpus callosum
[14], but models have been proposed that would make
this offset depend on the number of myelin layers and
therefore vary throughout the brain and fibre bundles [42].
Yet, chemical exchange has been demonstrated to have a
larger impact when measuring the longitudinal relaxation
in white matter, which is an aspect that, for the sake of
complexity, we have not included in our dictionaries. The
extra-axonal compartment currently includes everything
that is found outside of the axon. More classes with
specific properties could be used, particularly: free water
(CSF and interstitial spaces); blood vessels; bound-water
compartment (that represents the water bound to macro-
molecules present in cell walls and organelles [43]), and
iron accumulated in ferritin, amongst other. Blood vessels
occupy a very small fraction of tissue volume (1-4% in WM
and GM, but deoxygenated (venous) blood has a much
larger susceptibility difference to free water than myelin)
and tend to follow the orientation of white matter axon
bundles [18]. This is expected to introduce some degree
of T ∗

2 anisotropy that would act as a confound in our ex
vivo experiment. Ferritin, which is known to be strongly
paramagnetic, can be found everywhere in the brain (with
increasing quantities found from WM, GM to deep gray
matter where it can be found in large quantities [44]). On
our current implementation, iron is expected to be equally
distributed in the intra and extra-axonal space. As a result
ferritin will be mapped as a reduction of the intra and
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Fig. 8. Brain parameter maps estimated from ex vivo acquisition with flip angle 35 in a sagittal slice cutting the corpus callosum and
transverse to coronal slice cutting through the globus pallius. Additional T1 maps, estimated from MP2RAGE, and ME-GRE magnitude
first echo provide structural information for comparison.
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Fig. 9. Top line: Mean parameter maps averaged across the 6 flip angles. Middle line: Corresponding standard deviation maps. Bottom line:
Relative water weight for the 6 flip angles.

Fig. 10. Top line: Mean parameter maps averaged across 10 combinations of a subset of 3 orientations selected among the 9 original
orientations. Bottom line: Corresponding standard deviation maps.
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extra axonal T ∗
2 and the isotropic magnetic susceptibility

attributed to the myelin compartment is effectively the
difference between the susceptibility of myelin and the
free water compartments where there might be ferritin
inclusions.

B. Dictionary and deep learning

Many of the simplifications used in our white matter
models arise from the need to restrict the number of
parameters associated with our network. The size of a
dictionary, which in this study had 7 dimensions (see
Table I), is around 10 GB, moreover, an increase in the
number of variables mapped by the network will result in
an increased noise of the parameters estimated. We believe
we have restricted the modeling to the most relevant
parameters. In particular, we have considered FVF and
g-ratio inherent to the model, as described previously the
extra-axonal space can have various types of constituents,
thus the extra-axonal T2 cannot be fixed. We choose to free
χi (allowing this to incorporate magnetic susceptibility
in the intra-extra axonal compartment) and to fix χa as
the major contribution to the magnetic field perturbation
comes from the isotropic susceptibility [45]. The compart-
ment water weights were represented by a single variable,
the relative water weight that includes the water proton
density as well as the degree of T1-weighting (and chemical
exchange) of each compartment. If the myelin sheath is
considered having the same properties all other the brain
that allows to fix the myelin T2 and release the anisotropic
susceptibility χa which was reported ranging from −0.15
to −0.09 ppm [15]. A potential direction for future work is
to investigate different sets of parameters. For example,
one could link the myelin water concentration to the
susceptibility of the myelin sheaths by taking into account
that the magnetic susceptibility of the phospholipids and
water are both known.

Our deep learning network seems robust and system-
atically converges for each dictionary associated to an
experiment with multiple orientations as illustrated in Fig
6. However, extensive manual fine-tuning of the network
hyper-parameters was required to achieve this level of
agreement. A more systematic approach, while potentially
desirable, would need an excessively long computation
time. In the future, it may be possible to do this, when
access to improved computational resources becomes more
common. The in silico analysis (see Fig. 7) shows that a
dictionary trained with a higher noise level is more robust
to noise amplification than a dictionary with matched
noise levels. This was attributed to the noise allowing to
smear our differences associated with the fact that our
”realistic model” produce different signals (see Fig 4) and
none of them actually corresponds to the actual white
matter mapped. An interesting experiment would be to
evaluate the performance of a dictionary including all
different noise levels, closer mimicking the signal found in
the brain where regions further away from the receiver
coils are bound to have a lower SNR. It was observed that

the level of noise is within the range that differentiates
our 2D models from a real 3D white matter for a relative
large range of dispersion values, which effectively makes
our network more generalisable.

C. Ex vivo experiment

The human brain scanned on our ex vivo experiment
was fixed in formalin for 7 months prior to the experiment.
It is well known that the microstructural tissue properties
change throughout the fixation process, and the final prop-
erties of the tissue depend on: the post mortem fixation
delay, the fixation time, the concentration of formalin and
the temperature history [46]–[48]. The T1 map presented in
Fig 8 shows particularly small values revealing a strongly
fixed tissues where water has a reduced mobility. This
was also clearly visible on the DWI imaging, the mean
ADC in white matter being 0.3 mm2.s−1 when a normal
in vivo values is above 0.8 mm2.s−1 [49]. Fresh tissues
do not present such parameter changes and could be an
alternative option. However, our current protocol takes
8h without the DWI, in such time window using fresh
tissues, would not be sufficiently stable to assume constant
microstructural properties over time [50]. Thus, it seems
necessary to use fixed human brain, however, the fixation
time could be reduced to 6-10 weeks.

The approach presented in this work may find applica-
tion in the imaging of myelin water with gradient-echo-
based acquisitions [8], [51]. Traditionally, myelin water
imaging using gradient-echo-based experiments tries to
fit 9 independent parameters: three independent signals
(separate amplitude, decay rate and frequency shift) for
each of the three compartments (intra- and extra- axonal
water and myelin) to a ME-GRE signal. The main short-
comings of this approach are that: the model is known
to be insufficient (even the simple HCM predicts more
complex signal evolution than 3 overlapping exponential
signal decays) [25] and the fitting procedure is poorly
conditioned. In this work we have shown with simulations
that we may obtain acceptable results with as few as 3
orientations (rather than the 9 explored in the ex vivo
experiment). This may be further improved by including
additional diffusion information specific to the intra- and
extra-axonal water fractions, given the improved fitting
performances obtained recently [52]. Another avenue re-
cently explored is, multi-compartment relaxometry [26],
which uses variable flip angle measurements of the ME-
GRE signal leveraging the different T1s of the free water
and myelin water compartments to further improve fitting
performance. Such frameworks could benefit from realis-
tic WM models, by concatenating along flip angles used
instead of being concatenated along rotations. Such an
approach would allow to separate water concentration in
each compartment from their T1 weighting giving a more
physical meaning to the parameter here dubbed as relative
water weight.
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D. Ground truth validation

The recovery of microstructural information from the ex
vivo scans using realistic WM models follows the general
expectations for FVF, free water T2, g-ratio and relative
water weight. In future experiments, these measurements
should be validated by an independent method. One pos-
sible avenue is to perform histology on selected excised
samples after the scan which could provide a ground-truth,
several methods exist to perform such histology analysis.
CLARITY is a method using optical 3D imaging combined
with a tissue clearing method which can provides neuron
density, fiber orientation distribution and cell type classi-
fication [53]. X-ray microscopy is an instrument that can
generate an entire 3D view of the interior of otherwise
optically opaque samples in a non-destructive way [54].
3D transmission electron microscope (TEM) uses electron
as a source of illumination that provides an excellent
resolution, better than a classic light microscope [55].
In preliminary work, not shown here, we replicated the
fixation process as well as the scanning protocol in a pig
brain, from which small sections were extracted to perform
3D TEM analysis. Significant degradation of the myelin
sheath for a number of axons was observed, where the
myelin sheath appeared unpacked. Such a tissue change
would result in a decrease of g-ratio, increase of myelin T2
and proton density, as well as a decrease of χi in respect
to the in vivo case. However, the entire procedure between
the brain extraction and the histology was long and could
be itself responsible by such alterations.

V. Conclusion

In this paper, we developed an open toolbox 2 to gen-
erate 2D white matter models with controlled microstruc-
tural properties such as fiber density and variability in
the g-ratio using publicly available electron microscopy
data. Such models are used to estimate the corresponding
field perturbation and derive the multi-echo gradient-echo
signals. Although our WM models are limited to 2D, we
have demonstrated that they can be satisfactorily used
to simulate 3D structures with a relatively high range
of dispersion. Finally, dictionaries of GRE signals for
7 different parameters (compartment relaxation values,
magnetic susceptibility of myelin, fiber volume fraction
and g-ration) associated with white matter properties at a
subvoxel level were created were created. This single acqui-
sition dictionaries can then be combined depending on the
multiple rotation strategy to create a better conditioned
decoding problem and train a deep learning network. We
performed several tests to estimate the quality of the sub-
voxel parameter recovery using our network, depending on
the number of sample rotations, echo times used and noise
added to the library. Unsurprisingly we found that the
network performs better the more data is given as input,
thus more rotations and more echoes, but that because of
the variations between different white matter modelsit is

2https://github.com/rhedouin/Whist

important to train the network with a level of noise bigger
than that of the available data.

The network was demonstrated on an ex vivo exper-
iment was performed using a multi-rotation acquisition
and provided FVF, g-ratio, T2 maps clearly revealing brain
structures such as the CSF, GM, WM, corpus callosum or
globus pallidus. The parameter values (exception for χi )
follow the expected patterns and were robust for different
acquisition protocols.
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Appendix

A. 3d WM model

To validate the ability of the developed 2D realistic
models to describe the 3D structures that exist in a
white matter voxel, we compared the signal associated
to the 2D models to those of a real 3D WM sample.
A segmented [56] 3D EM of the corpus callosum of a
mouse was used for this comparison. The resolution of
the initial 3D EM dataset was of 7.3x7.3x50 nm, which
was subsequently down sampled by a factor of 7 resulting
in a quasi isotropic resolution 51x51x50 nm. The FOV of
the segmented piece was 20 × 20 × 20 µm (represented
on a matrix of 400 × 400 × 400). Using the segmentation
3D EM data, the FVF and g-ratio were computed to be
0, 51 and 0, 67 respectively. Additionally, because the 3D
model does not consist of infinitely long structures that are
parallel, the fiber dispersion was computed with respect
to the average fiber orientation [57], and found to be low
σ = 0.04. In addition to this original model, to study the
impact of higher dispersion, 60 axons within the 3D model
were selected to create a fiber orientation dispersion of
σ = 0.4. A mask surrounding the selected axons was used
to ensure remaining microstructural parameters remained
equivalent to those of the the whole sample (FVF = 0, 51
and g-ratio = 0, 67). The 3D signal was computed only
within the mask and selected axons.

The magnetic susceptibility tensor, XR, was calculated
with respect to the orientation of the phospholipids inside
the myelin sheath, using a 3D variant of the process
described in the methods section. The obtained tensor map
was then used to calculate the magnetic field perturbations
in 3D, ∆B0(X(r)), as described in [30]. Both this processes
are straightforward extensions of the 2D case and their
implementation is available in our toolbox.
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Fig. 11. Raw 3D EM data and myelin segmentation of size
400x400x400. Frequency histogram of the computed axon orienta-
tions present in the EM model and the average orientation, ~µ

B. Comparison between 2D and 3D field perturbations

To simulate the fiber dispersion within the 3D samples,
an artificial dispersion was introduced into the 2D models
by computing the field perturbation for 100 different main
magnetic field orientations according to the von-Mises-
Fisher distribution [58], the final signal is the sum of signal
from 2D models with the 100 different orientations in
respect to the main magnetic field.

The 3D models were compared to 10 realistic 2D mod-
els, created as described in the methods section, using
similar microstructural parameters to those of the 3D
samples. Four different different dispersion values (σ =
0, 0.2, 0.4, 0.6) were simulated. The ME-GRE signals were
computed for both 2D and 3D models, with the parameter
used in Fig I for TE = 1:1:80 ms. Finally, the 2D and
3D signals were normalized and compared using the root-
mean-square-error (RMSE) computed according to:

RMSE(Ŝ3D, Ŝ2D) =

√
< (Ŝ3D − Ŝ2D), (Ŝ3D − Ŝ2D) >

#TE
(7)

where <.,.> is the complex dot product and #TE is the
number of echos.

Figure 12 shows the signal RMSE between the 2D and
3D models as a function of the orientation of the main
magnetic field. In each plot various 2D simulated signals
with different dispersion levels are compared to (a) the
original 3D model (b) the 3D model with high dispersion.
The 2D models with lower dispersion (0 0.2) consistently
match that 3D signal with RMSEs below the 2.5%, which
is small when taking into account the 4% noise added to
the training of our deep learning network. For the high
dispersion 3D model (Fig. 12b), the 2D models with high
dispersion (0.4 and 0.6) have the lowest RMSE for all
magnetic field orientations. When no dispersion is used
in the 2D models, the RMSE stays below 5%. The two 3D
models considered are best represented with 2D models
with similar or slightly higher dispersion values. This
finding could be attributed to the additional dispersion
associated with each axon that changes direction through-
out the 3D model and that is not taken into account in
the current dispersion computation.

To conclude, the developed 2D models based on separate
library of axons accurately represent a real 3D white
matter model. In the future, it could be considered to add

Fig. 12. Plots of the RMSE between the Signal of the 2D models
using 4 different dispersion levels and Signal of the 3D models as
a function of the orientation of the main magnetic field. In a) the
original 3D model with low dispersion (0.04) and in b) the 3D model
with high dispersion (0.4)is used as ground truth. The error bars
represent the standard deviation across 1o different realistic 2D WM
models created

dispersion to the 2D models to better represent a white
matter regions with higher dispersion value that could be
measured independently with DWI. In ex vivo acquisitions
the quality of DTI data is severely hampered (reduced
diffusion constant and reduced T2) and from our data it
was not possible to apply more advanced diffusion models
that can decode this quantity. However, even without
dispersion, the RMSE consistently satayed under 5% while
4% noise is added to our dictionary when traing the deep
learning network, which suggests that this might not have
a large impact.

A situation not considered here and that should have
a larger impact are crossing fibers. Fiber dispersion, dis-
cussed above, accounts for the spread of the fiber orien-
tations within a bundle of axons while the fiber crossing
represents two or more bundles of axons. Significant work
on the diffusion community has been devoted to this topic
[59]. This could be studied as a future work assuming that
such a 3D EM dataset exists.
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