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1 Proofs

The central optimization problem to solve is given as

min  f(W) with f(W) = (-2
W€R71p><np 4

1.1 Solutions to the optimization problem

A
[WWT = P2+ ZIWTW = CIP + 2w (1)

Theorem 1. For given P € R™*" with P = PT and C' € R™*"e with C = CT, for any spectral
decomposition P = U,D,U} and C = V.D.VF, X € [0,1], A := plrel Dy,
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the minimization problem has solutions W* & S with singular value decomposition W* =
UPDU,VCT, where

duyii = \Jmax (1= Ndpii + Adeii —,0) ()

fori < ny,. For dy, ;; = 0, the corresponding columns of U, and V., are not restricted to eigenvectors
of P and C. The eigenvalues of C are ordered so that D, = D, r, where the permutation solves the
minimization problem

)\ 1-— )\ n )‘ n n
AN p, ol A+ (- g (D). @

T = argmin_cp et

Proof of Theorem|I] 1t is easy to verify that the gradient of the objective

1—A A
sy = - ww P Awtw - o+ 2w )

is given by
1 1
ViW)=WwTw — (1 - A (P + PTYW — FAW(C+ CTY + W,

which is zero at the extrema of the objective. Note that even for non-symmetric P and C, we could
solve the problem for the symmetric (P + PT)/2 and (C + CT)/2. Let us rewrite the gradient with
respect to a singular value decomposition of W = U, D,, V.l

0=Vf(W)=Uw [DwDID, — (1 = NULPU,Dy, — AD,,V,l OV, +vDy| Vi

w

. Hence, (1 = \)UL(P — yI)Uy D,y + AD, VI (C — vI)V,, = D needs to be a diagonal matrix so
that ¥/ can be an optimum. Clearly, for U,, = U, and V,, = V,,, we have

0= D,D.LD, — (1 —-\D,D, — AD,D,. + yD,,

and solving for D,, leads to d, ;; = 0 or dy, ;s = \/(1 — A)dp.i; + Adc,ii, where we follow the
convention that the singular values of a matrix are positive.

The question remains whether additional zeros of the gradient exist for which A = (1 — \)UZ(P —

yI)U, and B = \V,1 (C — yI)V,, are not diagonal matrices but AD,, + D, B is. As we prove next,
this is only possible if W does not have a simple spectrum so that d, ;; = d,, j; for some j # i.

W is a local minimum iff AD,, + D,,B = D,,DID,,. Hence, dw,ii = 001 dy i = Vai; + by
following the convention that singular values are positive. For off-diagonal elements we have

0 = aijdw,ii + bijdw jj (6)
Adding the elements corresponding to ij and ji and using the symmetry of A and B we receive
0= Q5 (dw,ii +dw,jj) +bij (dw,ii +dw,jj) and thus Qi = 7bij if at least one dw,ii }é 0or de‘j }é 0.
Plugging this relation back into Eq. @ leads to 0 = aij(dw,ii — dy,jj). For dy i; # dyj;, it follows
that a;; = a;; = 0 and likewise b;; = bj; = 0. Therefore, if W has a simple spectrum with non-zero
eigenvalues, UL U, and V,I'V,. must be permutation matrices and W of the claimed structure.

So far we have determined the extrema of the objective but which are the global minima? To
answer this question, we have to evaluate the objective function, which is f(W) = (1 — \)/4||P —
UwDwDIU,|? + A/4||C — Vi DED, VI |? + v/2||Uw D, VI ||? for any W = U, D,, V.. With
V(W) = 0so that dy, ;; = v/a;; + by; for i < n,, this becomes

A1 =X) 2
4

JA-Br4 S (101~ IDEI?) 4] (x(Dy) + (1= Ay (D)~ Loy,

(7
where we define A = A/(1 — \) = UL(P — 1)U, and B = B/\ = V.'(C' — ~I)V,, and use
properties of the [ norm and the trace, for instance, that both are invariant under multiplication with
orthogonal matrices. Furthermore, we make use of the property || M||? =< M, M > with respect
to the usual 12 scalar product < M, N >= Zi,j i', j'mi;n; j for matrices M and N of the same
dimensions. The next step is to simplify

fW) =

~ - 1
|4~ B2 = 55 (1P AT + | Dy DEJ? — 2 < Dg, DuDE >). ®)



which is the only part of the objective that distinguishes different minima with the same ordering of
C’s eigenvalues. We are particularly interested in comparing two cases: (i) W refers to a spectral
decomposition of P and C so that U,, = U, and V,, = V. (ii) dy s = tr (A + B["P]) /nyp for all
i < n,, which allows for non-zero off-diagonal elements of A and minimizes || D,, DL]|?. Note that
the following derivations and arguments would also apply to a combination of (i) and (4¢), where

A + Bl is comprised of different blocks that are of form (i) or (i) for a subset of the eigenvalues.

In case (i), we have

A Dn [np]
JA— B2 = [TV (Dy—ry UL U= (VEVA(De = ADVIV) ™ |12 = | D,— DIl |2 = A 2.

For case (ii), we utilize representation . With | D, DL|? = nydZ, ;) = tr (A+ B [%])2 /np =
2

(tr(P)(l —X) + Atr(DIy - ynp) /ny, and < Dz, D DI >= &2, < D;I >=

dz, gy tr ([1) = d2, 1, (tr(P) — yn,), we obtain

tr(P) + 1 tr(A)2.

. 1
1A= BI? = 5 ||1PII? +
A2 A2n, ny

In consequence, a global minimum is achieved by (i) in case that [|A[? < [|A — BI*l||]2 =
3z || P|I?+ 52— tr(P)+ = tr(A)?, which proves Condition . The optimal matching of eigenvalues
of P and C is then given by minimizing f (W), which is for (i):

min f(W)
A1 =X A 2

= min =D yp, —pp 4 2 (o D) + 2 (D) + (1 - N (D) - Loy
A(1=A A

= min Ny p, - plrie - 2ypl + (- Ay (D)

where we keep only the terms that are affected by a permutation of the eigenvalues 7. This derives
Eq. (@) and concludes the proof. O

1.2 Network recovery

Let ® denote the cumulative distribution function (cdf) of a standard normal and X ~ Ber(p) a
Bernoulli random variable with success probability p.

Proposition 2. Assume that we observe P = W TW*, C = W*W*T, and Wy = W* + FE for
a true underlying W* € R"*" and noise E € R *"» with independent identically normally
distributed components e;; ~ N (0, 02). Further assume that P and C have a simple spectrum
{di,...,dn,}. Then, for the spectral approach W = argminycs||W — Wol[? with v = 0, the

recovery loss is distributed as ||W — W*||? = 437, d?R;, where R; ~ Ber (® (—d;/0)) for
d; > 0and R; = 0 for d; = 0 are independent. For any € > 0, it thus holds with the usual Chernoff

bound:
P (||W —WHI? < e) >1—exp (e—,u— iélog <€)> ,
W

where 1 =", p; and § = mfor e<pandd = W otherwise.
Proof of Proposition 2] We assume that the root W is of the form UD,, D,VT, where we know
U=U,,V =V, and D,, and want to infer the signs D, with d; ;; € {—1,1} for ¢ < n,. With the
input Wy = W* + E, where the noise 2 € R"»*"» has independent identically normally distributed
components e;; ~ N (0, 02), the spectral approach leads to the estimate

ds i = sign E U wo kvl | = sign E Ui (W g +e)vli | = sign dw,iid;n-i-g Uk; ek v
k,1 k,1 k1



To estimate the risk of an error, we therefore need to derive the joint distribution of the random
deviations z; = > kol Upiepvli. Asthe ep; ~ N (0, 02) are iid, also their linear combinations x; are
jointly normally distributed with = 0 and covariance

E(ziz;) = E upiug jolivl jegepy | = E Ui Uk § E vy B (epierr)
kLK 1Y kK’ LU
= E Ui Uk j E V1V 020k g O = O E Ui Uk E vy = 02 8ij,
kk/ LU
since U and V" are orthogonal and thus also their columns. Thus, X = (z1,...,2,,) ~ N (0, 02.7).

This allows us to derive the distribution of the sign errors R;, which are defined as R; = 1 if cfs i
d; ; and R; = 0 otherwise. Thus, R; = (1 — sign (dw,iid ;; + xi) dZ ;;) /2. It follows that these

are independent Bernoulli random variables R; ~ Ber(p;) with probability p; = P (x; < —dyi) =
® (—dy, 4i/0). Consequently, we have a higher error probability for small singular values d, ;.

It is left to show how these sign errors affect the network recovery loss

||/W7_W*H2 Zdwu( ERZ) :m) _4Zdqu <4d2 11 ZRi’

2

where we assume that the singular values are ordered so that d?, i 2 oy i

e > 0 we get

P(HW—W*HQﬁe) = (ZRdw“_ ) >1—m1nexp (—e/4t+E<tZR dw“>>
— _ 1 _E — " . d%u,i'it) > — 1 _E . tdi;,n‘ —
=1 rtn>161exp< 4t+H(1 p;i + pie ) >1 rtn>1(r)1exp< 4t+2pl(e 1))

>1—exp <e—u—i§log <6>>
7

for t = dlog(e/p), where p = >, p; and 6 =

otherwise.

for ¢ < j. Hence, for all

1

fore < pand § = —F———
) H mlni(di“ii)

2
max; (dw i

1.3 Gradient dynamics

From a theoretical perspective, we can understand the gradient dynamics for specific choices W
as initialization. For this purpose, we take the continuous time (for infinitesimally small step size)
approximation and study the corresponding gradient flow:

aw

T = —Vf W)= -WWIW + (1 = N)PW + A\WC —~W, )

where we set the time unit 7 = 1 in the following for simplicity. If the initial Wy has a similar
singular value decomposition as a solution, the differential equation decouples and we can solve the
resulting one-dimensional ordinary differential equations for the diagonal elements explicitly.

Proposition 3. For initial Wy = UpDOVCT with UprUpT and V.D. V., the solution of the gradient
flow (@) is given by W (t) = U, DV, with

. 1 9 1 d(2),ii
dt,ii = sign(do,ii)dw,ii dg ut+h d2 -1)]+1

w,ii

where h(x) = tanh(x) if dg ;; < d,

wu

and h(x) = coth(x) otherwise.

Proof of Proposition 3] We start from the actual gradient descent, whose updates are discrete in time
and given by

W(t+1) =W(t) —nVFf(W)



with W(0) = U,DoV.! and learning rate > 0. We prove inductively that W (¢) has sin-
gular value decomposition W (t) = U,D(t)VI (where we also allow for negative singular
values). Hence, only the singular values change over time while U,, = U, and V,, = V,
stay constant. Initially, the induction hypothesis is fulfilled according to our assumption, as
W(0) = U,DoV,I'. The induction step assumes that W (t) = U, D(t)V,.I. Then, W (t+1) = W (t)—
WVIW) = U,D@VI — qU, [DO)D@)TD(t) — (1 - N)D,D(t) ~ AD(t)De +yD(1)] VL.
Thus, W(t + 1) = U,D(t + 1)VI with diagonal D(t + 1) = D(t) —
n [D@E)D@)TD(t) — (1 — A\)D,D(t) — AD(t)D. 4+ yD(t)].

The structure of the differential equation is preserved in the limit of infinitesimal stepsize 7 to obtain
the gradient flow:

dD

o= ~DDT'D + (1 = \)D,D(t) + AD(t)D,. — vD(t)
so that W (t) = U,D(t)VX. Thus, the differential equations are decoupled and the problem is
reduced to solving n, 1-dimensional differential equations of the form (Cil—'f = —2® + pa, where p

2

depends on the respective equation as ji; = (1 — A)dyp ;i + Adeii — v = d, ;;. We can solve this type

of equation by rewriting it as
dv  1da? 44
T— = -— = —x xc.
at ~ 2 dt H

With a change of variable s = z2, this becomes % = 25 (u — s) so that we can simply integrate

ZEQ(t) 1 t
20 - ((s—5%) 0

22(t) = g [1+h (Mt—i-h_l (2%0) - 1))} :

where h = tanh if 23 < p and h = coth otherwise. In both cases, 2(t) does not pass 0 during
its evolution. This is relevant, since we have an ambiguity in the sign of z(¢) when we know only
22(y). Passing through 0 would have been the only option for x(t) to switch signs. Therefore,
z(t) = sign(x(0))+/(x2(t)) inherits the sign of the initial value. Identifying x(t) with d(t); and
W= dfu“ concludes the proof. O

This results in

2 Correspondence of OTTER to PANDA

PANDA (Passing Attributes between Networks for Data Assimilation) [4] is based on the intuition
that a gene regulatory matrix W should be the joint root of the gene-gene interaction matrix C' and
the protein-protein interaction matrix P, i.e. WTW ~ P and WW? =~ P. This is realized within
a message passing framework that iteratively modifies the matrices C, P, and W in discrete time
steps t as:

B W(EWT(t)

Pt+1)=(1—-a)P(t) +ar(W(t),WT(t))’ (10)
B WT W (t)

Clt+1)= (1_a)C(t)+ar(WT(t),W(t))’ (11
B 1/ POW(t) W (t)C(t)

W(t+1) = (1-a)W()+ag (r(P(t),W(t)) r(W(t),C(t))) : (12)

where 7 denotes a centralization factor (M, N) := /|[M|[2 + |[N|2 — | < M, N > | that prevents
exploding matrix entries and « € [0, 1] is a tuning parameter that is set to & = 0.05 as a default.

In the following, we will discuss how OTTER relates to the main idea of PANDA and ignore the
factor r(+, -), as such a scaling is handled differently by the ADAM gradient descent algorithm. As a
reminder, the OTTER gradient descent updates are given by

W(t+1) =W(t) —npyW(t) — W EWT (W (t) +n(1 — N)PO)YW (t) + AW (£)C(0).
13)



We claim that these are similar to the PANDA update

Wit+1)=1—-a)W(t)+ a% (P()W(t) + W (t)C(1)). (14)
At first glance, we can identify already the first two terms W (t) — nyW (¢) and (1 — )W (t) for
a = ny. It would be tempting to match also the last two P(¢)W (t) + W (¢)C(¢). Yet, a noticeable
difference is that PANDA updates P(¢) and C'(t) while OTTER keeps them fixed to the input. While
we cannot resolve this difference completely, we can capture the dependence of P(t) and C(t) on
W (t) more adequately. From Eq. we can deduce P(t) = 1 (P(t+1) — aW ()W (t)) and

l—o

Ct) = = (C(t+1) — aWT(¢t)W(t)) and plug these into Eq. :

«

Wt +1) = (1~ )W () + o s (Pt + DIW(0) + WHC( + 1) — 20W (W (W (1))
which looks almost like our OTTER update (13). Only the time dependence of P(¢+ 1) and C(t+ 1)
cannot be resolved and remains a difference between the two approaches. Yet, considering that « is
usually quite small o ~ 0.05 — 0.1 and PANDA takes often only 40 time steps in total, the difference
between both approaches is small enough that theoretical insights concerning OTTER should also
reflect on PANDA.

3 Gene regulation

The central dogma of molecular biology describes the flow of information in a cell from DNA to
RNA and finally to proteins. DNA is the blueprint of the functional capacity of a cell, and has certain
regions - genes - that can be considered functional units. Each gene codes for a specific protein, which,
when produced, performs a specific function in the cell. Gene regions in double-stranded DNA are
transcribed to a single-stranded mRNA transcript molecule that serves as a template for the protein
construction. The mRNA transcript is then translated into the corresponding protein. The extent to
which a protein is expressed, as measured by protein abundance, thus depends (in part) on the extent
to which the gene is expressed (transcribed) and the abundance of the corresponding mRNA. The
regulation of genes, including under which conditions and to what degree they are expressed defines
a cell’s to respond to environmental stimulus, helps define and distinguish individual tissues, allows
for developmental processes to occur, and mediates the development and progression of diseases,
including their response to theapies. Transcription factors are proteins within the cell that bind to
the DNA in “promoter regions” of individual genes and regulate the expression of that gene by
recruiting the “transcriptional machinery” to allow mRNA to be synthesized (for a useful review
on gene regulation, see [11]). Different transcription factors (TFs) regulate different genes in a
many-to-many relationship, and sometimes require co-operativity with each other TFs (Figure [S1|A).
We can represent the regulatory relationships between TFs and genes as a bipartite network (Figure
[S1)B). Because the TFs are themselves encoded by genes in the genome, the entire regulatory network
represents a complex, adaptive system. Differences between biological states, such as between
health and disease, are determined by activation or repression of individual regulatory edges between
TFs and genes. Because every cell must carry out some basic functions, including respiration and
metabolic processes, much of the network active in any two cells will be identical. It is often the
small differences in GRN structure between states that define those states.

4 Datasets for gene regulatory network inference

We demonstrate the functionality of OTTER on three cancer datasets from The Cancer Genome Atlas
(https://www.cancer.gov/about-nci/organization/ccg/research/structural-genomics/tcga) representing
tumors of the liver, cervix, and breast.

4.1 Cancer gene expression data

Gene expression data in The Cancer Genome Atlas (TCGA) [12] was downloaded from recount2 2]
athttps://jhubiostatistics.shinyapps.io/recount/ on 01/10/2020.


https://jhubiostatistics.shinyapps.io/recount/

4.2 Defining the dimensions of C' and P

For each tissue, we need to define the dimensions of C' and P, namely the set of TFs [np] =
{1,...,np} and the set of genes [n.] = {1,...,n.}, respectively. A list of all known TF gene
names and ENSEMBL ids downloaded http://humantfs.ccbr.utoronto.ca/download/v_
1.01/TFs_Ensembl_v_1.01.txt andhttp://humantfs.ccbr.utoronto.ca/download/v_1|
01/TF_names_v_1.01.txt on 03/09/2020. The reshape R package [2] was used to normalize gene
expression measurements as Transcripts Per Million (TPM), which accounts for biases introduced
by sample read depth and gene length. For each tissue, we removed genes with consistently low
expression, having a TPM < 0.25 across at least 80% of the samples. This resulted in gene sets of
size n. = 31, 247 for breast tissue, n. = 30, 181 for cervix tissue and 27, 081 for liver tissue.

Transcription factors were found to have, on average, lower expression than other genes (Figures
S1-S3), thus, to include a transcription factor in our analysis, we only required that the transcription
factor was expressed with a standard deviation > 0. All 1,637 were expressed in all tissues, making
n, = 1,637 for breast, cervix and liver tissues.

4.3 Constructing C, P and W
4.3.1 Gene co-expression matrix, C'

For each tissue, the gene co-expression matrix, representing genes likely co-regulated, was constructed
by calculating the Pearson correlation coefficient between all pairs of genes. This resulted in the
square matrix C', with dimension n. = 31, 247 for breast tissue, n, = 30, 181 for cervix tissue and
27,081 for liver tissue.

4.3.2 Protein-protein interaction matrix, P

A list of protein-protein interactions used in [10] was downloaded from https://
sites.google.com/a/channing.harvard.edu/kimberlyglass/tools/gtex-networks|on
09/09/2019. These protein-protein interactions were filtered to those involving transcription factors,
and used to populate the n, x n, PPI matrices P. Pairs of TFs for which no interaction data was
available were set to 0.

4.3.3 Motif-based GRN prior, W

The initial estimate W}, of the gene regulatory network is constructed based on TF motif information.
The FIMO software [5] from MEME suite [1]] was used to scan the hg38 human genome assembly
for known TF motifs - sequences which are predicted to be bound by specific TFs. Motif matches
with a p-value < 10~ were considered significant. The positions and IDs of Ensembl genes in the
hg38 genome assembly were downloaded from the UCSC Table browser https://genome.ucsc,
edu/cgi-bin/hgTables/ on 11/13/2019, and from https://www.gencodegenes.org/human/
on 03/09/2020. Gene promoter regions were defined as the 1000bp (base pair) region [-750bp,
+250bp] around the gene’s annotated transcriptional start site, taking into account the strand on
which the gene resides. The GenomicRanges R package [7] was used to overlap motif hits with
gene promoters, resulting in a set of TF-gene associations, indicating that a motif of a TF was found
overlapping with the promoter region of a gene. These associations were then used to populate the
nprn. matrix Wy with Wy[ij] = 1 if the motif of TF ¢ was found in the promoter of gene j and
Wholij] = 0 otherwise.

4.4 ChIP-seq experimental data for validation

Chromatin immunoprecipitation (ChIP)-seq is a technique that allows for the experimental identifica-
tion of protein-DNA interactions, and can thus provide a validation data set for TF binding of gene
promoters. ChIP-seq experiments are performed individually per TF, and thus, one can only obtain
binding site information for TFs that have specifically been studied before with this technique. ChIP-
seq data consisting of the genome-wide binding regions of select TFs for the HeLa cervical cancer cell
line (48 TFs), HepG2 liver cancer cell line (77 TFs) and MCF7 breast cancer cell line (62 TFs) were
downloaded from the ReMap2018 database http://pedagogix-tagc.univ-mrs.fr/remap//on
01/15/2020. These cell lines represent the closest tissues to those of the expression data for which
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ChIP-seq data was available. We recognize that many cancers have distinct subtypes that often differ
substantially from one-another; we ignore those subtypes given the limitations of the available data
and recognizing that subtype differences will be smaller than differences between cervix, liver, and
breast tumors ChIP-seq-determined binding regions for each TF in each cell line were mapped to
the promoter regions of genes in the same manner as described for motif regions. This allowed us
to construct a validation regulatory subnetwork, allowing us to validate the our predicted regulatory
relationships from OTTER (and other GRN estimation methods) for the portion of TFs for which
ChIP-seq data was available. Precision-recall and ROC curves were calculated using the precrec R
package [9].

S5 Algorithms and model parameters

The best performing methods are based on ADAM gradient descent [6] as stated below.

Algorithm 1: ADAM gradient descent.
Inputs: W, P,C, Vf(-)
Parameters: 7 (learning rate), I (number of iterations)
B1 = 0.9; B2 = 0.999; ¢ = 0.00000001;
Bt = P1; B2t = Bo;
m=0;v=0;
fori=1,...,1do
m = fym + (1 — 1)V (W, P,C);
v = BQU + (1 - ﬁ?)(vf(Wa P7 C))2s
Bl,t = 51,:&51; 52,15 = 52,t51;

o A1-Ba,
a=1n 1-B1,¢ 2
€t = €4/ 1- 62,15;
— m .
W=W-a 7

We adapt the learning rate 7, exponent b, the number of iterations I and the parameters of the gradient
for each method that can also take different transformations of the original matrices Py, Cy, Wy
into account. Our specific choices are listed in Table[ST] The respective gradients are defined as
Vf=4WWTW —4(1—-X)PW —4\W C+2yW for OTTER, V f = P?W+WC? —2PW C+~yW
for QAP,and Vf = P?W + W(C? — 2PWC + W — §.J for GRAMPA. We added another version
of OTTER gradient descent (OTTER™ grad 2) to the table with a different scaling of the protein-
protein interaction matrix P. This version performs slightly worse than the reported alternative
OTTER™* grad, but has the advantage that the gene regulatory network inference improves constantly
with every gradient step. All other approaches, i.e. OTTER* grad, GRAMPA* grad, QAP* grad,
and the non-transformed counterparts, cycle through phases of excellent performance and very
reduced performance making them less robust to the wrong choice of I. The remaining methods are
parameterized as follows. OTTER (spectral) uses the parameters p = 0.0043208 and A = 0.99498,
while the one based on transformed inputs uses ¢ = 0.335 and A = 0.0035. GENIE3 and TIGRESS
have been computed only with respect to transcription factors that meet the gene expression filter
criterion. Accordingly, we have also restricted the validation to those transcription factors. This was
meant to make the task easier but the algorithms still showed inferior performance with respect to
binding prediction. We used the default parameters, i.e. random forests consisting of 1000 trees
and K = ,/p for GENIE3 and nstepsLARS = 5, a = 0.2, and nsplit = 100 for TIGRESS.
Furthermore, we had to restrict TIGRESS and PAR COR to the much smaller number of transcription
factors in our validation set to reduce the computational load.

6 Biological validation

In order to determine whether OTTER networks capture expected biological functional information,
we constructed an OTTER network representing healthy liver and cancerous liver, and investigated
the biological functions enriched in areas of the networks which differ between cancer vs. healthy
expression data.



A similar process as described above was used to construct process gene expression data and construct
OTTER networks. The healthy OTTER network was constructed making use of liver gene expression
data from The Genotype Tissue Expression Project (GTEX) [8], whereas the cancer network was
constructed using expression data from TCGA [12]]. Both gene expression datasets were downloaded
from recount?2 [12]].

From the resulting OTTER networks, a difference network was constructed by taking the absolute
value of the difference between corresponding edge weights of the two networks. Lastly, we calculated
TF degrees and gene degrees in the resulting difference network, allowing genes and TFs to be ranked
by these degrees. Genes/TFs with high “difference degree” are thus those whose neighboring edges
have large differences between healthy and cancer networks.

GOrilla [3]] was then used to determine which Gene Ontology (GO) biological process terms were
enriched in the top of the ranked lists vs the bottom, thus determining which biological functions are
enriched in those genes/TFs. Enrichment results (Figures[S7]and[S8] Tables[S2} [S3) highlighted sev-
eral expected cancer-related functions and pathways, including cell proliferation, cell differentiation,
cell death, cell-cell adhesion, cell motility, immune-related processes, cellular response to growth
factors. OTTER networks thus capture expected biological signal related to the context of the gene
expression data.

7 Supplementary Figures and Tables
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Figure S1: Gene regulation. A. Transcription factors (TFs) are represented by green, blue, and yellow
objects that bind to the genome (gray band) in vicinity of the start site of a gene (black error) to
regulate its expression. B. Representation of A as bipartite gene regulatory network.
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Figure S2: TPM distributions for breast tissue.
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Figure S3: TPM distributions for cervix tissue.
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Figure S4: TPM distributions for liver tissue.
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Figure S5: Performance curves for breast.

ROC curves (cervix) PR curves (cervix)
1.00 1.00
> 0.754 < 0.751
s S
2 0.501 2 0504
c [0
3 a
N .25 0.25
O.OO- I‘: T T T T O.OO- T T T T T
0.00 025 050 075 1.00 000 025 050 075 1.00
1 - Specificity Recall

Figure S6: Performance curves for cervix.

Figure S7: Gene Ontology (GO) term enrichment visualization for healthy (GTEx) vs cancerous
(TCGA) liver tissue gene differential degree. Enrichment performed and visualized using GOrilla [3].

See attached file FigureS7.png

Figure S8: Gene Ontology (GO) term enrichment results for healthy (GTEXx) vs cancerous (TCGA)
liver tissue TF differential degree. Enrichment performed using GOrilla [3]]. See attached file

FigureS7.png
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Table S2: Gene Ontology (GO) term enrichment results for healthy (GTEX) vs cancerous (TCGA)
liver tissue gene differential degree. Enrichment performed using GOrilla [3]]. See attached file
TableS2.zlsz

Table S3: Gene Ontology (GO) term enrichment results for healthy (GTEx) vs cancerous (TCGA)
liver tissue TF differential degree. Enrichment performed using GOrilla [3]]. See attached file
TableS3.zlsz
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8 Supplementary Data

Data S1: Breast The complete set of matrices used to run and validate regulatory networks in
breast tissue, including the PPI prior, motif prior, expression matrix, gene and TF names, as well as
true positive ChIP-seq edges for validation.

Data S2: Cervix The complete set of matrices used to run and validate regulatory networks in
cervix tissue, including the PPI prior, motif prior, expression matrix, gene and TF names, as well as
true positive ChIP-seq edges for validation.

Data S3: Liver The complete set of matrices used to run and validate regulatory networks in liver
tissue, including the PPI prior, motif prior, expression matrix, gene and TF names, as well as true
positive ChIP-seq edges for validation.

Data S4: Regulatory Network Outputs Regulatory networks constructed using the different
methods described in the main manuscript.

Data S5: Script Set 1  Set of scripts required to create the data matrices, as well as run PANDA
and ARACNe. This dataset also contains the inputs and outputs required/produced by these scripts.

Data S6: Data in Matlab The Matlab file data.mat contains the training and test data for all three
tissues for convenient use in Matlab.

9 Supplementary File Links

README:
https://ottersm.s3.amazonaws.com/README. txt

Supplementary Figures:
https://ottersm.s3.amazonaws.com/0TTER_Supplementary_Figures.tgz

Supplementary Tables:
https://ottersm.s3.amazonaws.com/0TTER_Supplementary_Tables.tgz

Supplementary Data:
https://ottersm.s3.amazonaws.com/0TTER_Supplementary_Data.tgz
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