1 Robust, flexible, and scalable tests for

2 Hardy-Weinberg Equilibrium across

diverse ancestries

4

Alan M. Kwong¹, Thomas W. Blackwell¹, Jonathon LeFaive¹, Mariza de Andrade², John Barnard³, 5 Kathleen C. Barnes⁴, John Blangero⁵, Eric Boerwinkle^{6,7}, Esteban G. Burchard^{8,9}, Brian E. Cade^{10,11}, 6 Daniel I. Chasman¹², Han Chen^{6,13}, Matthew P. Conomos¹⁴, L. Adrienne Cupples^{15,16}, Patrick T. 7 Ellinor^{17,18}, Celeste Eng⁹, Yan Gao¹⁹, Xiuqing Guo²⁰, Marguerite Ryan Irvin²¹, Tanika N. Kelly²², 8 Wonji Kim²³, Charles Kooperberg²⁴, Steven A. Lubitz^{17,18}, Angel C. Y. Mak⁹, Ani W. Manichaikul²⁵, 9 Rasika A. Mathias²⁶, May E. Montasser²⁷, Courtney G. Montgomery²⁸, Solomon Musani²⁹, 10 Nicholette D. Palmer³⁰, Gina M. Peloso¹⁵, Dandi Qiao²³, Alexander P. Reiner²⁴, Dan M. Roden³¹, 11 M. Benjamin Shoemaker³², Jennifer A. Smith³³, Nicholas L. Smith^{34,35,36}, Jessica Lasky Su²³, 12 Hemant K. Tiwari³⁷, Daniel E. Weeks³⁸, Scott T. Weiss²³, NHLBI Trans-Omics for Precision Medicine 13 (TOPMed) Consortium, TOPMed Analysis Working Group, Laura J. Scott¹, Albert V. Smith¹, 14

15 Gonçalo R. Abecasis¹, Michael Boehnke¹, Hyun Min Kang^{1,*}

16

1 - Department of Biostatistics and Center for Statistical Genetics, University of Michigan, Ann 17 Arbor, MI 48109; 2 - Mayo Clinic, Rochester, MN 55905; 3 - Department of Quantitative Health 18 Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44106; 4 - Department of 19 20 Medicine, Anschultz Medical Campus, University of Colorado, Aurora, CO 80045; 5 -21 Department of Human Genetics and South Texas Diabetes and Obesity Institute, University of Texas Rio Grande Valley School of Medicine, Brownsville, TX 78520; 6 - Human Genetics Center, 22 23 Department of Epidemiology, Human Genetics and Environmental Sciences, School of Public 24 Health, The University of Texas Health Science Center at Houston, Houston, TX 77030; 7 -Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030; 8 -25 26 Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA 94143; 9 - Department of Medicine, University of California San Francisco, 27 San Francisco, CA 94143; 10 - Division of Sleep and Circadian Disorders, Brigham and Women's 28 29 Hospital, Boston, MA 02115; 11 - Division of Sleep Medicine, Harvard Medical School, Boston, MA 02115; 12 - Division of Preventive Medicine, Brigham and Women's Hospital, Boston, MA 30

02115; 13 - Center for Precision Health, School of Public Health and School of Biomedical

Informatics, The University of Texas Health Science Center at Houston, Houston, TX 77030; 14 -32 Department of Biostatistics, University of Washington, Seattle, WA 98195; 15 - Department of 33 Biostatistics, Boston University School of Public Health, Boston, MA 02118; 16 - Framingham 34 Heart Study, Framingham, MA 01702; 17 - Cardiovascular Research Center, Massachusetts 35 General Hospital, Boston, MA 02114; 18 - Cardiovascular Disease Initiative, The Broad Institute 36 of MIT and Harvard, Cambridge, MA 02124; 19 - Department of Physiology and Biophysics, 37 38 University of Mississippi Medical Center, Jackson, MS 39216; 20 - The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute at 39 Harbor-UCLA Medical Center, Torrance, CA, 90502; 21 - Department of Epidemiology, School of 40 Public Health, University of Alabama at Birmingham, Birmingham, AL 35294; 22 - Department of 41 Epidemiology, Tulane University, New Orleans, LA 70112; 23 - Channing Division of Network 42 Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical 43 44 School, Boston, MA 02115; 24 - Fred Hutchinson Cancer Research Center, Seattle, WA 98109; 25 - Center for Public Health Genomics, Department of Public Health Sciences, University of 45 Virginia, Charlottesville, VA 22908; 26 - GeneSTAR Research Program and Division of Allergy and 46 Clinical Immunology, Department of Medicine, Johns Hopkins University, Baltimore, MD 21205; 47 27 - Division of Endocrinology, Diabetes and Nutrition, Department of Medicine, University of 48 49 Maryland School of Medicine, Baltimore, MD 21201; 28 - Sarcoidosis Research Unit, Genes and 50 Human Disease Research Program, and Quantitative Analysis Core, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104; 29 - Jackson Heart Study, University of Mississippi 51 Medical Center, Jackson, MS 39216; 30 - Department of Biochemistry, Wake Forest School of 52 Medicine, Winston-Salem, NC 27157; 31 - Departments of Medicine, Pharmacology, and 53 54 Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN 37232; 32 -55 Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232; 33 -Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI 56 48109; 34 - Department of Epidemiology, University of Washington, Seattle WA 98195; 35 -57 Kaiser Permanente Washington Health Research Institute, Kaiser Permanente Washington, 58 59 Seattle WA 98101; 36 - Seattle Epidemiologic Research and Information Center, Office of 60 Research and Development, Department of Veterans Affairs, Seattle WA 98108; 37 -61 Department of Biostatistics, School of Public Health, University of Alabama at Birmingham, Birmingham, AL 35294; 38 - Departments of Human Genetics and Biostatistics, Graduate School 62 63 of Public Health, University of Pittsburgh, PA 15261 64 *Corresponding author: Center for Statistical Genetics and the Department of Biostatistics, University of

- 65 Michigan, Ann Arbor, MI 48109. E-mail: hmkang@umich.edu
- 66
- 67

⁶⁸ HWE tests for diverse ancestries

69 KEYWORDS

- 70 population structure; principal components analysis; next-generation sequencing; genotype
- 71 likelihoods
- 72

73 CORRESPONDING AUTHOR

- 74 Hyun Min Kang
- 75 Department of Biostatistics
- 76 University of Michigan School of Public Health
- 77 1415 Washington Heights
- 78 Ann Arbor, MI 48109
- 79 Phone: 734-647-1980
- 80 E-mail: hmkang@umich.edu
- 81

82 ABSTRACT

83	Traditional Hardy-Weinberg equilibrium (HWE) tests (the χ^2 test and the exact test) have long
84	been used as a metric for evaluating genotype quality, as technical artifacts leading to incorrect
85	genotype calls often can be identified as deviations from HWE. However, in datasets comprised
86	of individuals from diverse ancestries, HWE can be violated even without genotyping error,
87	complicating the use of HWE testing to assess genotype data quality. In this manuscript, we
88	present the Robust Unified Test for HWE (RUTH) to test for HWE while accounting for
89	population structure and genotype uncertainty, and evaluate the impact of population
90	heterogeneity and genotype uncertainty on the standard HWE tests and alternative methods
91	using simulated and real sequence datasets. Our results demonstrate that ignoring population
92	structure or genotype uncertainty in HWE tests can inflate false positive rates by many orders
93	of magnitude. Our evaluations demonstrate different tradeoffs between false positives and
94	statistical power across the methods, with RUTH consistently amongst the best across all
95	evaluations. RUTH is implemented as a practical and scalable software tool to rapidly perform
96	HWE tests across millions of markers and hundreds of thousands of individuals while supporting
97	standard VCF/BCF formats. RUTH is publicly available at <u>https://www.github.com/statgen/ruth</u> .

98

100 INTRODUCTION

101	Hardy-Weinberg equilibrium (HWE) is a fundamental theorem of population genetics and has
102	been one of the key mathematical principles to understand the characteristics of genetic
103	variation in a population for more than a century (HARDY 1908; WEINBERG 1908). HWE describes
104	a remarkably simple relationship between allele frequencies and genotype frequencies which is
105	constant across generations in homogeneous, random-mating populations. Genetic variants in
106	a homogeneous population typically follow HWE except for unusual deviations due to very
107	strong case-control association and enrichment (NIELSEN et al. 1998), sex linkage, or non-
108	random sampling (WAPLES 2015).
109	HWE tests are often used to assess the quality of microsatellite (VAN OOSTERHOUT et al.
110	2004), SNP-array (WIGGINTON et al. 2005), and sequence-based (DANECEK et al. 2011) genotypes.
111	Testing for HWE may reveal technical artifacts in sequence or genotype data, such as high rates
112	of genotyping error and/or missingness, or sequencing/alignment errors (NIELSEN et al. 2011). It
113	can also identify hemizygotes in structural variants which are incorrectly called as homozygotes
114	(McCARROLL et al. 2006). Quality control for array-based or sequence-based genotypes typically
115	includes a HWE test to detect and filter out artifactual or poorly genotyped variants (LAURIE <i>et</i>
116	al. 2010; Nielsen et al. 2011).
117	While HWE tests are commonly and reliably used for variant quality control in samples

from homogeneous populations, applying them to more diverse samples remains challenging.
When analyzing individuals from a heterogeneous population, the standard HWE tests may
falsely flag real, well-genotyped variants, unnecessarily filtering them out for downstream
analyses (HAO AND STOREY 2019). This problem is important since genetic studies increasingly

122	collect genetic data from heterogeneous populations. In principle, HWE tests in these
123	structured populations can be performed on smaller cohorts with homogenous backgrounds
124	(BYCROFT et al. 2018), and the test statistics combined using Fisher's or Stouffer's method
125	(Mosteller and Fisher 1948; Stouffer 1949). However, such a procedure requires much more
126	effort than using a single HWE test across all samples and information that may be imperfect or
127	unavailable.
128	Here, we describe RUTH (Robust Unified Test for Hardy-Weinberg Equilibrium) which
129	tests for HWE under heterogeneous population structure. Our primary motivation for
130	developing RUTH is to robustly filter out artifactual or poorly genotyped variants using HWE
131	test statistics. RUTH is (1) computationally efficient, (2) robust against various degrees of
132	population structure, and (3) flexible in accepting key representations of sequence-based
133	genotypes including best-guess genotypes and genotype likelihoods. We perform systematic
134	evaluations of RUTH and alternative methods for HWE testing using simulated and real data to

135 explore the advantages and disadvantages of these methods for samples of diverse ancestries.

136 MATERIALS AND METHODS

137 Unadjusted HWE tests

Consider a study of *n* participants with true (unobserved) genotypes g_1, g_2, \dots, g_n at a bi-allelic variant coded as 0 (reference homozygote), 1 (heterozygote), or 2 (alternate homozygote). Represent the best-guess/hard-call (observed) genotypes as $\hat{g}_1, \hat{g}_2, \dots, \hat{g}_n$. A simple HWE test uses the chi-squared statistic to compare the expected and observed genotype counts assuming no population structure and no genotype uncertainty. The chi-squared HWE test

143 statistic is defined as
$$T_{\chi^2} = \sum_{k=0}^{2} \frac{(c_k - \hat{c}_k)^2}{\hat{c}_k}$$
 where $c_j = \sum_{i=0}^{n} I(\hat{g}_i = j)$ (ignoring missing

144 genotypes), $\hat{p} = \frac{c_1+2c_2}{2n}$, $\hat{q} = 1 - \hat{p}$, $\hat{c}_0 = n\hat{q}^2$, $\hat{c}_1 = 2n\hat{p}\hat{q}$, and $\hat{c}_2 = n\hat{p}^2$. Under HWE, the 145 asymptotic distribution of T_{χ^2} is usually assumed to follow χ_1^2 (ROHLFS AND WEIR 2008). An exact 146 test is known to be more accurate for finite samples, particularly for rare variants (WIGGINTON *et* 147 *al.* 2005). HWE tests stratified by case-control status are known to prevent an inflation of Type I 148 errors for disease-associated variants (LI AND LI 2008). Widely used software tools such as PLINK 149 (PURCELL *et al.* 2007) and VCFTools (DANECEK *et al.* 2011) implement an exact HWE test based on 150 best-guess genotypes. We will refer to the exact test as the unadjusted test.

151 Existing HWE tests accounting for structured populations

The unadjusted HWE test assumes that the population is homogeneous. If a study is comprised 152 of a set of discrete structured subpopulations, a straightforward extension of the unadjusted 153 test is to (1) stratify each study participant into exactly one of the subpopulations, (2) perform 154 155 the unadjusted HWE test for each subpopulation separately, and (3) meta-analyze test statistics 156 across subpopulations to obtain a combined p-value using Stouffer's method (STOUFFER et al. 1949). More specifically, let z_1, z_2, \dots, z_s be the z-scores from HWE test statistics for s distinct 157 subpopulations with sample sizes n_1, n_2, \dots, n_s . A combined meta-analysis HWE test statistic 158 across the subpopulations is then $T_{meta} = \frac{\sum_{i=1}^{s} z_i \sqrt{n_i}}{\sqrt{\sum_{i=1}^{s} n_i}}$, which asymptotically follows a standard 159 normal distribution when each subpopulation follows HWE. 160

161 When the population cannot be easily stratified into distinct subpopulations (e.g. intra-162 continental diversity or an admixed population), a quantitative representation of genetic

163	ancestry, such as principal component (PC) coordinates or fractional mixture over
164	subpopulations, can be more useful for representing each study participant's genetic diversity
165	(ROSENBERG et al. 2002; PRICE et al. 2006). HWES takes PCs as additional input to perform HWE
166	tests under population structure with logistic regression (SHA AND ZHANG 2011), and a similar
167	idea was suggested by Hao and colleagues (2016). However, existing implementations do not
168	support sequence-based genotypes (where genotype uncertainty may remain at low or
169	moderate sequencing depth) or other commonly used formats for genetic array data. A recent
170	method, PCAngsd estimates PCs from uncertain genotypes represented as genotype likelihoods
171	(MEISNER AND ALBRECHTSEN 2019) and uses these estimates to perform a likelihood ratio test (LRT)
172	for HWE, which is similar to the LRT version of RUTH with differences in computational
173	performance (see below).

174 Robust HWE testing with RUTH

Here we describe RUTH (Robust and Unified Test for Hardy-Weinberg equilibrium) to enable
HWE testing under structured populations, which is especially useful for large sequencing
studies. We developed RUTH to produce HWE test statistics to allow quality control of
sequence-based variant callsets from increasingly diverse samples. RUTH models the
uncertainty encoded in sequence-based genotypes to robustly distinguish true and artifactual
variants in the presence of population structure, and seamlessly scales to millions of individuals
and genetic variants.

We assume the observed genotype for individual *i* can be represented as a genotype likelihood (GL) $L_i^{(G)} = \Pr(Data_i | g_i = G)$, where $Data_i$ represents observed data (e.g. sequence or array), and $g_i \in \{0,1,2\}$ the true (unobserved) genotype. For example, GLs for

185 sequence-based genotypes can be represented as $L_i^{(G)} = \prod_{j=1}^{d_i} \Pr(r_{ij}|g_i = G; q_{ij})$ where d_i is 186 the sequencing depth, r_{ij} is the observed read, and q_{ij} is the corresponding quality score 187 (EWING AND GREEN 1998; JUN *et al.* 2012). We model GLs for best-guess genotypes \hat{g}_i from SNP 188 arrays as $L_i^{(G)} = (1 - e_i)^2$, $2e_i(1 - e_i)$, e_i^2 for $\hat{g}_i = 2$, 1, 0 where e_i is assumed per-allele error 189 rate. Imputed genotypes may also be approximately modeled using this framework, but the 190 current implementation requires creating a pseudo-genotype likelihood to describe this 191 uncertainty (see Discussion).

192 Accounting for Population Structure with Individual-Specific Allele Frequencies

We account for population structure by modeling individual-specific allele frequencies from 193 quantitative coordinates of genetic ancestry such as PCs, similar to the model (HAO et al. 2016). 194 For any given variant, instead of assuming that genotypes follow HWE with a single universal 195 allele frequency across all individuals, we assume that genotypes follow HWE with 196 heterogeneous allele frequencies specific to each individual, modeled as a function of genetic 197 ancestry. Let $x_i \in \mathbb{R}^k$ represent the genetic ancestry of individual *i*, where *k* is the number of 198 PCs used. We estimate individual-specific allele frequency p as a bounded linear function of 199 genetic ancestry 200

201
$$p(\boldsymbol{x}_i; \boldsymbol{\beta}) = \begin{cases} \boldsymbol{\beta}^T \boldsymbol{x}_i & \varepsilon \leq \boldsymbol{\beta}^T \boldsymbol{x}_i \leq 1 - \varepsilon \\ \varepsilon & \boldsymbol{\beta}^T \boldsymbol{x}_i < \varepsilon \\ 1 - \varepsilon & \boldsymbol{\beta}^T \boldsymbol{x}_i > 1 - \varepsilon \end{cases}$$

where ε is the minimum frequency threshold. We used $\varepsilon = \frac{1}{4n}$ in our evaluation. Even though we used a linear model for $p(x_i; \beta)$ for computational efficiency, it is straightforward to apply a logistic model, which is arguably better (YANG *et al.* 2012; HAO *et al.* 2016).

Let $p_i = p(\mathbf{x}_i; \boldsymbol{\beta})$ and $q_i = 1 - p_i$ be the individual specific allele frequencies of the non-reference and reference alleles for individual *i*. Under the null hypothesis of HWE, the frequencies of genotypes (0, 1, 2) are $[q_i^2, 2p_iq_i, p_i^2]$. Under the alternative hypothesis, we assume these frequencies are $[q_i^2 + \theta p_iq_i, 2p_iq_i(1 - \theta), p_i^2 + \theta p_iq_i]$ where θ is the inbreeding coefficient. This model is a straightforward extension of a fully general model where p_i, q_i is identical across all samples. Then the log-likelihood across all study participants is

211
$$l(\boldsymbol{\beta}, \theta) = \sum_{i=1}^{n} \log \left[L_i^{(0)}(q_i^2 + \theta p_i q_i) + L_i^{(1)} 2p_i q_i (1 - \theta) + L_i^{(2)}(p_i^2 + \theta p_i q_i) \right]$$

212 Under both the null ($\theta = 0$) and alternative ($\theta \neq 0$) hypotheses, we maximize the log-

214 empirically observed quick convergence within several iterations in most cases, we used a fixed

215 (n=20) number of iterations in our implementation.

216 **RUTH Score Test**

217 The score function of the log-likelihood is

218
$$U(\theta) = \sum_{i=1}^{n} \frac{p_i q_i \left[L_i^{(0)} - 2L_i^{(1)} + L_i^{(2)} \right]}{L_i^{(0)}(q_i^2 + \theta p_i q_i) + L_i^{(1)} 2p_i q_i (1 - \theta) + L_i^{(2)}(p_i^2 + \theta p_i q_i)} = \sum_{i=1}^{n} u_i(\theta)$$

219 Since $u'_i(\theta) = -u_i^2(\theta)$, we construct a score test statistic of $H_0: \theta = 0$ vs $H_1: \theta \neq 0$ as:

220
$$T_{score} = \frac{[U(0)]^2}{I(0)} = \frac{[\sum_{i=1}^n u_i(0)]^2}{\sum_{i=1}^n u_i^2(0)}$$

where *I*(0) is the Fisher information under the null hypothesis. Under the null, T_{score} has an asymptotic chi-squared distribution with one degree of freedom, i.e. $T_{score} \sim \chi_1^2$. We estimate $\hat{\beta}$ with an E-M algorithm.

224 RUTH Likelihood Ratio Test

The log-likelihood function $l(\boldsymbol{\beta}, \theta)$ can also be used to calculate a likelihood ratio test statistic:

226
$$T_{LRT} = 2 \left[\max_{\boldsymbol{\beta}, \theta} l(\boldsymbol{\beta}, \theta) - \max_{\boldsymbol{\beta}} l(\boldsymbol{\beta}, 0) \right].$$

Like the score test, we estimate MLE parameters β , θ iteratively using an E-M algorithm to test $H_0: \theta = 0 \text{ vs } H_1: \theta \neq 0$. Under the null hypothesis, the asymptotic distribution of T_{LRT} is expected to follow χ_1^2 . This test is very similar to the likelihood-ratio test proposed by PCAngsd (MEISNER AND ALBRECHTSEN 2019), except PCAngsd does not re-estimate β under the alternative hypothesis. In principle, the RUTH LRT should be slightly more powerful due to this difference; we expect the practical difference in power to be small, as deviations from HWE usually do not change the estimates of β substantially.

234 Simulation of genotypes and sequence reads under population structure

We simulated sequence-based genotypes under population structure using the following procedure. First, for each variant, we simulated an ancestral allele frequency and populationspecific allele frequencies. Second, we sampled unobserved (true) genotypes based on these allele frequencies. Third, we sampled sequence reads based on the unobserved genotypes. Fourth, we generated genotype likelihoods and best-guess genotypes based on sequence reads.

240	To simulate ancestral and population-specific allele frequencies, we followed the
241	BALDING AND NICHOLS (1995) procedure, except we sampled ancestral allele frequencies from
242	$p \sim Uniform(0,1)$ instead of $p \sim Uniform(0.1, 0.9)$ to include rare variants. For each of $K \in$
243	$\{1, 2, 5, 10\}$ populations, we sampled population-specific allele frequencies from
244	$p_k \sim Beta\left(\frac{p(1-F_{st})}{F_{st}}, \frac{(1-p)(1-F_{st})}{F_{st}}\right)$, where $k \in \{1, \dots, K\}$, and $F_{st} \in \{.01, .02, .03, .05, .10\}$ was
245	the fixation index to quantify the differentiation between the populations, as suggested by
246	Holsinger (Holsinger 1999) and implemented in previous studies (Holsinger et al. 2002; Balding
247	2003). Because p_k no longer follows the uniform distribution, we used rejection sampling to
248	ensure that $\bar{p} = \frac{1}{K} \sum_{k=1}^{K} p_k$ is uniformly distributed across 100 bins across simulations to avoid
249	artifacts caused by systematic differences in allele frequencies.
250	The unobserved genotype $G_i \in \{0,1,2\}$ for individual $i \in \{1, \cdots, n_k\}$, belonging to
251	population k with sample size n_k , was simulated from genotype frequencies $(q_k^2 +$
252	$\theta p_k q_k, 2p_k q_k(1-\theta), p_k^2 + \theta p_k q_k)$, where $q_k = 1 - p_k$ and $\theta \in \left[-\min\left(\frac{q_k}{p_k}, \frac{p_k}{q_k}\right), 1\right]$ quantifies
253	deviation from HWE; $ heta=0$ represents HWE, while $ heta<0$ and $ heta>0$ represent excess
254	heterozygosity and homozygosity compared to HWE expectation, respectively. In our
255	experiments, we evaluated $\theta \in \{0, \pm .01, \pm .05, \pm .1, \pm .5\}$. When θ was smaller than the
256	minimum possible value for a specific population, we replaced it with the minimum value.
257	We simulated sequence reads based on unobserved genotypes, sequence depths, and
258	base call error rates. To reflect the variation of sequence depths between individuals, we
259	simulated the mean depth of each sequenced sample to be distributed as
260	$\mu_i \sim Uniform(1, 2D - 1)$, where D is the expected depth and $D = 5$ and $D = 30$ representing
261	low-coverage and deep sequencing, respectively. For each sequenced sample and variant site,

we sampled the sequence depth from $d_i \sim Poisson(\mu_i)$. Each sequence read carried either of the possible unobserved (true) alleles $r_{ij} \in \{0,1\}$, where $j \in \{1, \dots, d_i\}$. Given unobserved genotype G_i , we generated $r_{ij} \sim Bernoulli\left(\frac{G_i}{2}\right)$, with observed allele $o_{ij} = (1 - e_{ij})r_{ij} + e_{ij}(1 - r_{ij})$ flipping to the other allele when a sequencing error occurs with probability $e_{ij} \sim Bernoulli(\epsilon)$. We used $\epsilon = 0.01$ throughout our simulations (which corresponds to phredscale base quality of 20) and assumed that all base calling errors switched between reference and alternate alleles.

We then generated genotype likelihoods and best-guess genotypes from the simulated 269 alleles. Let $t_i = \sum_{j=1}^{d_i} o_{ij}$ be the observed alternate allele count. The GLs for the three possible 270 genotypes are $L_i^{(0)} = (1 - \epsilon)^{d_i - t_i} (\epsilon)^{t_i}$, $L_v^{(1)} = 0.5^{d_i}$, $L_i^{(2)} = (\epsilon)^{d_i - t_i} (1 - \epsilon)^{t_i}$. We called best-271 guess genotypes by using the overall ancestral allele frequency \bar{p} for a given variant as the 272 prior, then calling the genotype corresponding to the highest posterior probability among 273 $\left(L_i^{(0)}(1-\bar{p})^2, 2L_i^{(1)}\bar{p}(1-\bar{p})^2, L_i^{(2)}\bar{p}^2\right)$ for each sample. For each possible combination of F_{st} , 274 K, and θ , we generated 50,000 independent variants across a set of n = 5,000 samples with 275 per-ancestry samples sizes $n_k = \frac{n}{\kappa}$. 276

277 Evaluation of Type I Error and Statistical Power

We used different p-value thresholds, F_{st} values, number of ancestry groups K, and average sequencing depth D to determine the number of variants significantly deviating from HWE. To evaluate Type I error, we simulated sequence reads under HWE ($\theta = 0$) and calculated the proportion of significant variants at each p-value threshold. In RUTH tests, we assumed PCs were accurately estimated using true genotypes unless indicated otherwise. For real data, we

283	summarized ancestral information by projecting PCs estimated from their full genomes onto
284	the reference PC space of the Human Genome Diversity Panel (HGDP) (L et al. 2008) using
285	verifyBamID2 (ZHANG et al. 2020), similar to the procedure for variant calling in the TOPMed
286	Project, which has already integrated RUTH as part of its quality control pipeline
287	(https://github.com/statgen/topmed_variant_calling).
288	In all datasets, we evaluated the tradeoff between Type I Error and power for each
289	method using precision-recall curves (PRCs) and receiver-operator characteristic curves (ROCs)
290	In simulated data, we considered variants with θ = 0 to be true negatives and variants with
291	θ = -0.05 to be true positives. In both our 1000G and TOPMed data, we labeled HQ variants as
292	negative and LQ variants as positive.

293 Data source

- To evaluate our method, we used sequence-based genotype data from the 1000 Genomes
- 295 Project (1000G) (THE 1000 GENOMES PROJECT CONSORTIUM et al. 2015) and the Trans-Omics
- 296 Precision Medicine (TOPMed) Project (TALIUN et al. 2019). In both cases, we used a subset of
- variants from chromosome 20. For 1000G, we started with 1,812,841 variants in 2,504
- individuals, with an average depth of $7.0 \times$. For TOPMed, we started with 12,983,576 variants
- in 53,831 individuals, with an average depth of $37.2 \times$.

300 Application to 1000 Genomes data

- 301 To test our method on 1000G data, we first needed to define two sets of variants: one set
- 302 which is expected to follow HWE, and another set which is expected to deviate from HWE.
- 303 Unlike simulated data, variants in 1000G are not clearly classified into "true" or "artifactual", so

304	evaluation of false positives and power is less straightforward. We focused on two subsets of
305	variants in chromosome 20 which serve as proxies for these two variant types. We selected
306	non-monomorphic sites found in both the Illumina Infinium Omni2.5 genotyping array and in
307	HapMap3 (The International HapMap Consortium et al. 2010) as "high-quality" (HQ) variants that
308	mostly follow HWE after controlling for ancestry, ending up with 17,740 variants. Similarly, we
309	selected variants that displayed high discordance between duplicates or Mendelian
310	inconsistencies within family members in TOPMed sequencing study as "low quality" (LQ)
311	variants that should be enriched for deviations from HWE even after accounting for ancestry,
312	ending up with 10,966 variants. Among 329,699 LQ variants from TOPMed in chromosome 20,
313	we found that only 10,966 overlap with 1000 Genome samples because likely artifactual
314	variants were stringently filtered prior to haplotype phasing. We suspect that a substantial
315	fraction of these 10,966 LQ variants are true variants since they passed all of the 1000G
316	Project's quality filters. Nevertheless, we still expect a much larger fraction of these LQ variants
317	to deviate from HWE compared to HQ variants.
318	We evaluated multiple representations of sequence-based genotypes from 1000G. As
319	1000G samples were sequenced at relatively low-coverage of 7.0 $ imes$ on average, best-guess
320	genotypes inferred only from sequence reads (raw GT) tend to have poor accuracy. Therefore,
321	the officially released best-guess genotypes in 1000G were estimated by combining genotype
322	likelihoods (GL), calculated based on sequence reads, with haplotype information from nearby
323	variants through linkage-disequilibrium (LD)-aware genotype refinement using SHAPEIT2
324	(DELANEAU et al. 2013). This procedure resulted in more accurate genotypes (LD-aware GT), but
325	it implicitly assumed HWE during refinement. As different representations of sequence
326	genotypes may result in different performance in HWE tests, we evaluated all three different
	15

327	representations - raw GT, LD-aware GT, and GL. In all tests of RUTH using hard genotype calls,
328	we assumed the error rate for GT-based genotypes to be 0.5%, which is representative of a
329	typical non-reference genotype error rate for SNP arrays. We restricted our analyses to biallelic
330	variants. The positions and alleles of 1000G and TOPMed variants were matched using the
331	liftOver software tool (Кинм <i>et al.</i> 2013).
332	We evaluated all tests as described above. For meta-analysis with Stouffer's method, we
333	divided the samples into 5 strata, using the five 1000G super population code labels – African
334	(AFR), Admixed American (AMR), East Asian (EAS), European (EUR), and South Asian (SAS). To
335	obtain PC coordinates for 1000G samples, we estimated 4 PCs from the aligned sequence reads
336	(BAM) with verifyBamID2 (ZHANG et al. 2020), using PCs from 936 samples from the Human
337	Genome Diversity Project (HGDP) panel as reference coordinates. The RUTH score test and LRT
338	used these PCs as inputs, along with genotypes in raw GT, LD-aware GT, and GL formats. For
339	PCAngsd, we used GLs from all variants tested as the input. We limited the analysis to a single
340	chromosome due to the heavy computational requirements of PCAngsd.

341 Application to TOPMed Data

342 We analyzed variants from 53,831 individuals from the TOPMed sequencing study (TALIUN *et al.*

- 2019). These samples came from multiple studies from a diverse spectrum of ancestries,
- leading to substantial population structure. Using the same criteria as our 1000G analysis, we
- identified 17,524 high-quality variants and 329,699 low-quality variants across chromosome 20.
- Since TOPMed genomes were deeply sequenced at $37.2 \times (\pm 4.5 \times)$, LD-aware genotype
- 347 refinement was not necessary to obtain accurate genotypes. Therefore, we used two genotype
- 348 representations raw GT and GL in our evaluations.

349	Similar to 1000G, for best-guess genotypes (raw GT), we used PLINK for the unadjusted
350	test. For meta-analysis, we assigned each sample to one of the five 1000G super populations as
351	follows. First, we summarized the genetic ancestries of aligned sequenced genomes with
352	verifyBamID2 by estimating 4 PCs using HGDP as reference. Second, we used Procrustes
353	analysis (Dryden and Mardia 1998; Wang et al. 2010) to align the PC coordinates of HGDP panels
354	(to account for different genome builds) so that the PC coordinates were compatible between
355	TOPMed and 1000G samples. Third, for each TOPMed sample, we identified the 10 closest
356	corresponding individuals from 1000G using the first 4 PC coordinates with a weighted voting
357	system (assigning the closest individual a score of 10, next closest a score of 9, and so on until
358	the 10th closest individual is assigned a score of 1, then adding up the scores for each super
359	population) to determine the super population code that had the highest sum of scores, and
360	therefore best described that sample. In this way, we classified 15,580 samples as AFR, 4,836 as
361	AMR, 29,943 as EUR, 2,960 as EAS, and 716 as SAS. Among these samples, 94.5% had the same
362	super population code for all 10 nearest 1000G neighbors. To evaluate the RUTH score test and
363	LRT for both raw GT and GL, we used 4 PCs estimated by verifyBamID2 (ZHANG et al. 2020),
364	consistent with the method applied for the 1000G data.

365 Impact of Ancestry Estimates on Adjusted HWE Tests

We examined the effect of changing the number of PCs used as input for RUTH tests by using 2 PCs as opposed to 4 PCs. We also evaluated the impact of using different approaches to classify ancestry when adjusting for population structure with meta-analysis. By default, our analysis classified the 1000 Genomes subjects into 5 continental super populations based on published information (THE 1000 GENOMES PROJECT CONSORTIUM *et al.* 2015). For TOPMed, the best-matching

- 371 1000 Genomes continental ancestry was carefully determined using the PCA-based matching
- 372 strategy described above. However, in practice, ancestry classification may be performed with a
- coarser resolution (JIN et al. 2019). To mimic such a setting, we used k-means clustering on the
- 374 first 2 PCs of our samples to divide individuals into 3 distinct groups, and performed meta-
- analyses based on this coarse classification for both 1000G and TOPMed data.

376 Software and data availability

- RUTH is available at <u>https://github.com/statgen/ruth</u>. Genotype data from 1000G is available
- 378 from the International Genome Sample Resource at <u>https://www.internationalgenome.org</u>.
- 379 TOPMed data is available via a dbGaP application for controlled-access data (see
- 380 <u>https://www.nhlbiwgs.org</u> for details).

381 **RESULTS**

382 Simulation: Effect of Genotype Uncertainty

To evaluate the impact of genotype uncertainty, we first compared tests in the absence of population structure (i.e. single ancestry). For the unadjusted test, we used only best-guess genotypes (GTs). For PCAngsd, we used only genotype likelihoods (GLs). For RUTH score and likelihood ratio tests, we used both.

Using GLs over GTs substantially reduced Type I errors in HWE tests, especially in lowcoverage data (Figure 1A-C). For example, the standard HWE test based on GTs resulted in a 229-fold inflation (22.9%) at p < .001 (Figure 1B, Table S1), a threshold which allows the

390 evaluation of Type I error with reasonable precision with 50,000 variants (50 expected false

391	positives under the null). GT-based RUTH-Score and RUTH-LRT tests showed similar inflation.
392	When GLs were used instead of best-guess genotypes, RUTH-Score and RUTH-LRT had Type I
393	errors close to the null expectation (.001 for RUTH-Score and .0012 for RUTH-LRT). PCAngsd,
394	which also accounts for genotype uncertainty (MEISNER AND ALBRECHTSEN 2019), had similar
395	performance. The severely inflated Type I errors with best-guess genotypes can largely be
396	attributed to high uncertainty and bias towards homozygote reference genotypes in single site
397	calls from low-coverage sequence data, resulting in apparent deviations from HWE. For high-
398	coverage sequence data, inflation of Type I error with GTs was substantially attenuated;
399	inflation nearly disappeared when using GLs (.004 for RUTH-Score and .002 for RUTH-LRT;
400	Figure 1D-F).
401	Next, we evaluated the power to identify variants truly deviating from HWE at various
402	levels of inbreeding coefficient (θ). For low-coverage sequence data, we skip interpretation of
403	power of GT-based tests owing to their extremely inflated false positive rates. All GL-based
404	tests behaved similarly, achieving ~19-21% power at p < .001 with moderate excess
405	
	heterozygosity (θ = -0.05) (Figure 2B, Table S1). For high-coverage sequence data, the power of
406	heterozygosity (θ = -0.05) (Figure 2B, Table S1). For high-coverage sequence data, the power of GL-based tests at the same p-value threshold increased to ~56-60%, comparable to
406 407	
	GL-based tests at the same p-value threshold increased to ~56-60%, comparable to
407	GL-based tests at the same p-value threshold increased to ~56-60%, comparable to corresponding GT-based tests. Interestingly, the unadjusted GT-based test showed much lower
407 408	GL-based tests at the same p-value threshold increased to ~56-60%, comparable to corresponding GT-based tests. Interestingly, the unadjusted GT-based test showed much lower power than RUTH and PCAngsd tests under excess heterozygosity ($\theta < 0$) while demonstrating

412	We also generated precision-recall curves (PRC) and receiver-operator characteristic
413	(ROC) curves to better understand the tradeoff between the Type I errors and power under
414	moderate excess heterozygosity (θ =05) (Figure S1C-D). Again, accounting for genotype
415	uncertainty resulted in better empirical power and Type I error, especially for low-coverage
416	data, for which, at an empirical false positive rate of 1%, GL-based tests had 41-45% power, as
417	opposed to 4-10% for GT-based tests. For high-coverage data, GL-based tests had 1-2% greater
418	power than GT-based tests at the same false positive rate. These results suggest that ignoring
419	genotype uncertainty in HWE tests is reasonable for high-coverage sequence data.

420 Simulation: Impact of Population Structure on HWE Test Statistics

421 As expected, the unadjusted HWE test had substantially inflated Type I errors under population 422 structure based on the Balding-Nichols (1995) model (Figure 1, Table S1). Even for an intracontinental level of population differentiation ($F_{ST} = .01$), the Type I errors at p < .001 were 423 inflated 13.5-fold even for high-coverage data. With an inter-continental level of differentiation 424 $(F_{ST} = .1)$, we observed orders of magnitude more Type I errors across different simulation 425 426 conditions. This inflation is expected to increase with larger sample sizes, suggesting that 427 adjustment for population structure is important even if a study focuses on a single continental 428 population.

One simple approach to account for population structure is to stratify individuals into distinct subpopulations to apply HWE tests separately (BYCROFT *et al.* 2018), and meta-analyze the results (Figure 3B). Type I errors were appropriately controlled with this approach in highcoverage but not low-coverage data, likely due to unmodeled genotype uncertainty (Figure 1, Table S1). Instead of classifying individuals into distinct subpopulations, RUTH incorporates PCs 434 to jointly perform HWE tests (Figure 3C). For both low- or high-coverage data, GL-based RUTH

- 435 tests and PCAngsd showed well-controlled Type I errors, while GT-based tests showed slight
- 436 (high-coverage) or severe (low-coverage) inflation.
- 437 Although meta-analysis resulted in well-controlled Type I errors for high-coverage data,
- 438 it was considerably less powerful than RUTH. For example, with moderate excess
- heterozygosity (θ = -.05) across five ancestries (F_{ST} = .1), RUTH tests identified 20-27% more
- variants as significant at p < .001 (Figure 2, Table S1) compared to meta-analysis. PRCs also
- 441 clearly showed better operating characteristics for RUTH and PCAngsd compared to meta-
- 442 analysis (Figure S2). For example, at an empirical false positive rate of 1%, RUTH showed much
- 443 greater power (66-68%) than meta-analysis (43%), even though the simulation scenario favors
- 444 meta-analysis because samples were perfectly classified into distinct subpopulations.

445 Application to 1000 Genomes WGS data

446	Next, we evaluated the performance of various HWE tests in low-coverage (~6x) sequence data
447	from the 1000 Genomes Project. We evaluated three representations of genotypes - (1) raw GT,
448	(2) LD-aware GT, and (3) GL, as described in Materials and Methods. Among chromosome 20
449	variants, we selected 17,740 high-quality (HQ) variants that are polymorphic in GWAS arrays,
450	and 10,966 low-quality (LQ) variants enriched for genotype discordance in duplicates and trios.
451	Unlike simulation studies, not all LQ variants are necessarily expected to violate HWE, so we
452	consider the proportion of significant LQ variants as a lower bound on the sensitivity to identify
453	significant variants. Similarly, not all HQ variants are necessarily expected to follow HWE,
454	although we expect most to do so, so that the proportion of significant HQ variants serves as an
455	upper bound for the false positive rate.

456	Consistent with our simulation results, all tests based on raw GTs generated from low-
457	coverage sequence data had severe inflation of false positives (Figure 4A, Table 1). This was
458	true even for HQ variants, presumably due to genotyping errors and bias in raw GTs. Standard
459	HWE tests, which model neither genotype uncertainty nor population structure, showed the
460	highest inflation of false positives at 44% for p < 10^{-6} , a threshold commonly used for HWE
461	testing in large genetic studies (LOCKE et al. 2015; FRITSCHE et al. 2016). Modeling population
462	structure substantially reduced inflation, with RUTH tests showing fewer false positives (0.7-
463	1.0% at p < 10 ⁻⁶) than meta-analysis (2.0% at p < 10 ⁻⁶). False positives were inflated across all
464	methods when using raw GTs.
465	Consistent with our simulation studies, GL-based RUTH tests reduced false positives
466	even further (0.034% at p < 10^{-6}). In contrast to our simulations, PCAngsd demonstrated
467	considerably higher false positives than RUTH (2.1% at p < 10 ⁻⁶), likely because PCAngsd
468	estimates PCs from the input data without the ability to use externally provided PCs (see
469	Discussion). The sensitivity for detecting significant LQ variants was also consistent with our
470	simulations (Figure 4B, Table 1). GL-based tests, which showed better control of false positives,
471	identified 22-25% of LQ variants as significant at $p < 10^{-6}$.
470	

472 Strikingly, while using LD-aware GTs reduced false positives with adjusted tests, it was at 473 the expense of substantially reduced sensitivity to detect LQ variants. The false positive rates of 474 any adjusted test with LD-aware GTs were uniformly lower than those of any GL- and raw GT-475 based tests across all p-value thresholds (Figure 4A). However, sensitivity was also substantially 476 reduced with LD-aware genotypes (Figure 4B). For example, at p < 10⁻⁶, GL-based RUTH tests 477 identified 22-23% of LQ variants significant, while using LD-aware GTs halved the proportions.

478	Running meta-analysis with LD-aware GTs reduced sensitivity even further, likely because the
479	implicit HWE assumption in the LD-aware genotype refinement algorithms may have further
480	reduced false positives and sensitivity by altering the LD-aware genotypes to conform to HWE.
481	We evaluated PRCs between HQ and LQ variants to further evaluate this tradeoff. The
482	results clearly demonstrated that HWE tests using LD-aware GTs are substantially less robust
483	than tests on other genotype representations (Table S2, Figure S3A). For example, for the RUTH
484	score test, when LD-aware GTs identified 0.1% of HQ variants as significant, 17% of LQ variants
485	were identified as significant. However, with raw GT and GL, 24~27% were identified as
486	significant at the same threshold. Even fewer were significant in meta-analysis with LD-aware
487	GTs (13%). Similar trends were observed across all thresholds, suggesting that using LD-aware
488	GTs results in substantially poorer operating characteristics than other genotype
489	representations. As more accurate genotyping in LD-aware genotype refinement is expected to
490	improve the performance of QC metrics compared to raw GTs, these results are quite striking,
491	and highlight a potential oversight in using LD-aware genotypes in various QC metrics for
492	sequence-based genotypes.

493 Application to TOPMed Deep WGS data

494 We evaluated the various HWE tests on a subset of the Freeze 5 variant calls from the high-

495 coverage (~37×) whole genome sequence (WGS) data in the TOPMed Project (TALIUN et al.

496 2019). We identified 17,524 HQ variants and 329,699 LQ variants using the same criteria used

497 for 1000G variants and evaluated raw GTs and GLs. We did not evaluate PCAngsd due to

498 excessive computational time (see "Computational cost" below).

499	We first evaluated the false positive rates of different HWE tests indirectly by using HQ
500	variants. With a >20-fold larger sample size than 1000G, we identified more significant HQ
501	variants, while the false positive rates were still reasonable with adjusted tests. At p < 10 ⁻⁶ , 74%
502	of HQ variants were significant with unadjusted tests, while the adjusted GL-based tests
503	identified ~0.3% at p < 10^{-6} (Figure 4C-D, Table 2). Adjusted GT-based tests had only slightly
504	higher levels of false positives at $p < 10^{-6}$. However, inflation was more noticeable at less
505	stringent p-value thresholds suggesting that GL-based tests may be needed for larger sample
506	sizes.

Next, we evaluated the proportions of LQ variants found to be significant by different 507 tests to indirectly evaluate their statistical power. GT- and GL-based RUTH tests showed similar 508 power, while meta-analysis showed considerably lower power. For example, at p < 10⁻⁶, meta-509 510 analysis identified 47% of LQ variants as significant, while RUTH tests identified 54-58%. This 511 pattern was similar across different p-value thresholds (Figure 4C-D) or choices of LQ variants (Table S3, Figure S4). Our results suggest that GL-based RUTH tests are suitable for testing HWE 512 for tens of thousands of deeply sequenced genomes with diverse ancestries, but that using raw 513 GTs will also result in a comparable performance at typically used HWE p-value thresholds (e.g. 514 $p < 10^{-6}$) when performing QC without access to GLs. 515

516 We used PRCs to evaluate the tradeoff between empirical false positive rates and 517 power. Consistent with previous results, the GL-based RUTH test showed the best tradeoff 518 between false positives and power, while the GT-based RUTH test and meta-analysis were 519 slightly less robust but largely comparable (Figure S3). Notably, when we evaluated the

520 different methods at an empirical false positive rate of 0.1%, RUTH score tests had ~4% higher

521 power than RUTH LRT for both raw GTs and GLs (Figure S5-6).

522 Impact of ancestry estimation accuracy on HWE tests

523	So far, our evaluations relied on genetic ancestry estimates carefully determined with
524	sophisticated methods (see Materials and Methods). However, simpler approaches may be
525	used instead during the variant QC step, which may affect the performance of adjusted HWE
526	tests. We evaluated whether the number of PC coordinates affected the performance of RUTH
527	tests by comparing the performance of RUTH tests when using 2 PCs to using 4 PCs (default).
528	The results from both simulated and real datasets consistently demonstrated that using 4 PCs
529	led to substantially reduced Type I errors compared to using 2 PCs at a similar level of power
530	(Table S2, Table S4, Figure S7). PRCs also clearly showed that using 4 PCs was more robust
531	against population structure across both simulated and real datasets (Figure S8).
532	We also evaluated whether the classification accuracy of subpopulations affected the
533	performance of meta-analysis. Instead of assigning 1000 Genomes individuals into five
534	continental populations, we used the k-means algorithm on those samples' top 2 PCs to classify
535	them into 3 crude subpopulations (Figure S9). This led to a much higher false positive rate with
536	virtually no increase in true positives (Figure S10, Table S2). We saw the same pattern in
537	simulated data (Figure S8, Table S5).

538 **Computational cost**

We compared the computational costs of RUTH and PCAngsd for simulated and real data. RUTH
has linear time complexity to sample size, while PCAngsd appears to have quadratic time

541	complexity (Tables 3, S6). RUTH also has low memory requirement compared to PCAngsd (for
542	example, 14 MB vs 2 GB for 1000 Genomes data). Extrapolating our results to the whole
543	genome scale, analyzing 1000 Genomes (i.e. 80 million variants) is expected to take 120 CPU-
544	hours for RUTH, and 3,200 CPU-hours for PCAngsd (with >1 TB memory consumption).
545	Additionally, RUTH can be parallelized into smaller regions in a straightforward manner.

546 **DISCUSSION**

547 RUTH is a unified, flexible, and robust approach to incorporate genetic ancestry and genotype uncertainty for testing Hardy-Weinberg Equilibrium capable of handling large amounts of 548 genotype data with structured populations. Sha and Zhang (2011) proposed HWES, an HWE test 549 for structured populations, to address some of these challenges, but it has not been widely 550 used due to the lack of an implementation that supports widely used genotype data formats 551 552 (e.g. PED, BED, VCF, or BCF) and inability to handle imputed or uncertain genotypes. Hao and colleagues (2016) proposed sHWE which can only handle best-guess (hard call) genotypes (i.e. 553 0, 1, or 2 for biallelic variants) and does not account for genotype uncertainty. MEISNER AND 554 ALBRECHTSEN (2019) proposed PCAngsd to address some of these issues, but it does not support 555 556 the standard VCF/BCF formats for sequence-based genotypes, and its current implementation scales poorly with genome-wide analyses of large samples. 557 Similar to previous studies (SHA AND ZHANG 2011; HAO et al. 2016), our proposed 558 559 framework uses individual-specific allele frequencies rather than allele frequencies pooled across all samples to systematically account for population structure in HWE tests. Unlike 560 previous studies, we model genotype uncertainty in sequence-based genotypes in a likelihood-561 based framework. We implemented two RUTH tests – a score test and a likelihood ratio test 562

563	(LRT) – to test for HWE under population structure for genotypes with uncertainty. While RUTH
564	LRT is similar to the independently developed PCAngsd, the software implementation of RUTH
565	is more flexible, scales much better to large studies, and supports the standard VCF format.
566	We provide a comprehensive evaluation of various approaches for testing HWE using
567	simulated and real data. Our results demonstrated that modeling population stratification is
568	necessary for HWE tests on heterogenous populations. We showed that accounting for
569	genotype uncertainty via genotype likelihoods performs substantially better than testing HWE
570	with best-guess genotypes, especially for low-coverage sequenced genomes. Importantly, we
571	included the evaluations for an unpublished but commonly used approach – meta-analysis
572	across stratified subpopulations, cohorts, or batches. Our results demonstrate that meta-
573	analysis may be effective in reducing false positives, but at the expense of substantially reduced
574	power compared to RUTH.
575	We observed that the current implementation of PCAngsd does not scale well to large-
576	scale sequencing data, though in principle it can be implemented more efficiently, because the
577	underlying HWE test itself is similar to RUTH LRT. PCAngsd requires loading all genotypes into
578	memory, which is often infeasible for large sequencing studies. For example, loading all of 1000
579	Genomes will require ~4.8 TB of memory. In our evaluation of 1000G chromosome 20 variants,
580	the inability of PCAngsd to estimate PCs from the whole genome may have contributed to the
581	observed difference in results from RUTH compared to our simulation studies.
582	Although our 1000G experiments demonstrated the unexpected result that using raw
583	GTs had better sensitivity than using LD-aware GTs at the same empirical false positive rates for
584	low-coverage data, we do not advocate using raw GTs for low-coverage sequence data. First,
585	the results for raw GTs were still consistently less robust than GL-based RUTH tests. Moreover,

586	it would be tricky to determine an appropriate p-value threshold when the false positives are
587	severely inflated. Therefore, we strongly advocate using GL-based RUTH tests for robust HWE
588	tests with low-coverage sequence data. For the now more typical high-coverage sequence data,
589	GL-based tests are still preferred, but GT-based RUTH tests should be acceptable for cases in
590	which genotype likelihoods are unavailable.
591	Our experiment compared using 2 vs 4 PCs only because verifyBamID2 software tool
592	estimated up to 4 PCs projected onto HGDP panel by default (ZHANG et al. 2020). Because our
593	method focuses on testing HWE during the QC steps in sequence-based variant calls, a curated
594	version of PCs, estimated from sequenced cohort themselves, may not be readily available at
595	the time of HWE test. However, it is possible to use a larger number of PCs (e.g. >10 PCs) if
596	available at the time of HWE test. We expect that a larger number of PCs will account for finer-
597	grained population structure and may benefit the performance of HWE test, but additional
598	experiments are needed to quantify the impact of using larger number of PCs.
599	Our results demonstrate that RUTH score and LRT tests perform similarly in simulated
600	and experimental datasets. Overall, the RUTH-LRT was slightly more powerful than the RUTH-
601	score test at the expense of slightly greater false positive rates, although this tendency was not
602	consistent. We observed that the RUTH tests tended to be slightly more powerful in identifying
603	deviation from HWE in the direction of excess heterozygosity than excess homozygosity when
604	compared to adjusted meta-analysis. These results might be caused by the difference between
605	our model-based asymptotic tests compared to the exact test used in meta-analysis.
606	We did not evaluate our methods on imputed genotypes in this manuscript. Because
607	imputed genotypes implicitly assume HWE, we suspect that HWE tests based on imputed
608	genotypes may have reduced power compared to directly genotyped variants. It is possible to

609	use approximate genotype likelihoods instead of best-guess genotypes for imputed genotypes,
610	but this requires genotype probabilities, not just the genotype dosages. If genotype
611	probabilities $Pr(g_i = G Data_i)$ are available, they can be converted to genotype likelihoods
612	$L_i^{(G)} = \Pr(Data_i g_i = G)$ using Bayes' rule by modeling $\Pr(g_i = G)$ as a binomial distribution
613	based on allele frequencies (which implicitly assumes HWE). However, similar to LD-aware
614	genotypes in low-coverage sequencing, the power of HWE tests with imputed genotypes may
615	be poor. Further evaluation is needed to understand how useful this approximation will be
616	compared to alternative methods including the use of best-guess imputed genotypes.
617	Our methods have room for further improvement. First, we used a truncated linear
618	model for individual-specific allele frequencies for computational efficiency. Although such an
619	approximation was demonstrated to be effective in practice (ZHANG et al. 2020), applying a
620	logistic model or some other more sophisticated model may be more effective in improving the
621	precision and recall of RUTH tests. Second, we did not attempt to model or evaluate the effect
622	of admixture in our method. Because HWE is reached in two generations with random mating,
623	accounting for admixed individuals may only have marginal impact. On the other hand,
624	admixture can lead to higher observed heterozygosity. It may be possible to improve RUTH by
625	explicitly modeling and adjusting for the effect of admixture on individual-specific allele
626	frequencies. Systematic evaluations focusing on admixed populations are needed to evaluate
627	RUTH's performance on such samples, and whether an admixture adjustment is necessary.
628	Third, RUTH tests do not account for family structure. We suspect that the apparent inflation of
629	Type I error for the TOPMed data was partially due to sample relatedness. Accounting for
630	family structure in other ways, for example using variance components models, will require
631	much longer computational times and may not be feasible for large-scale datasets. Fourth,

632	RUTH currently does not directly support imputed genotypes or genotype dosages. In principle,
633	it is possible to convert posterior probabilities for imputed genotypes into genotype likelihoods
634	to account for genotype uncertainty (by using individual-specific allele frequencies). However,
635	because most genotype imputation methods implicitly assume HWE, we suspect that HWE tests
636	on imputed genotypes will be underpowered, similar to our observations with LD-aware
637	genotypes in the 1000 Genomes dataset, even though explicitly modeling posterior
638	probabilities may slightly mitigate this reduction in power.
639	In summary, we have developed and implemented robust and rapid methods and
639 640	In summary, we have developed and implemented robust and rapid methods and software tools to enable HWE tests that account for population structure and genotype
640	software tools to enable HWE tests that account for population structure and genotype
640 641	software tools to enable HWE tests that account for population structure and genotype uncertainty. We performed comprehensive evaluations of both our methods and alternative
640 641 642	software tools to enable HWE tests that account for population structure and genotype uncertainty. We performed comprehensive evaluations of both our methods and alternative approaches. Our tools can be used to evaluate variant quality in very large-scale genetic data

646 Acknowledgements

This work was supported by NIH grants HL137182 (from NHLBI), HG009976 (from NHGRI), HG007022
(from NHGRI), DA037904 (from NIDA), HL117626-05-S2 (from NHLBI), and MH105653 (from NIMH).
Molecular data for the Trans-Omics in Precision Medicine (TOPMed) program was supported by the
National Heart, Lung and Blood Institute (NHLBI). Core support including centralized genomic read
mapping and genotype calling, along with variant quality metrics and filtering were provided by the
TOPMed Informatics Research Center (3R01HL-117626-02S1; contract HHSN268201800002I). Core
support including phenotype harmonization, data management, sample-identity QC, and general

- 654 program coordination were provided by the TOPMed Data Coordinating Center (R01HL-120393; U01HL-
- 120393; contract HHSN268201800001I). We gratefully acknowledge the studies and participants who
- 656 provided biological samples and data for TOPMed.
- TOPMed source studies and sample counts are described in Table S7. Acknowledgements for TOPMed
- omics support are detailed in Table S8. Full TOPMed study acknowledgements are listed in
- 659 Supplementary File S1.
- 660
- 661

662 **REFERENCES**

- Balding, D. J., 2003 Likelihood-based inference for genetic correlation coefficients. Theor Popul Biol 63:
 221-230.
- Balding, D. J., and R. A. Nichols, 1995 A Method for Quantifying Differentiation between Populations at
 Multi-Allelic Loci and Its Implications for Investigating Identity and Paternity. Genetica 96: 3-12.
- 667 Bycroft, C., C. Freeman, D. Petkova, G. Band, L. T. Elliott *et al.*, 2018 The UK Biobank resource with deep 668 phenotyping and genomic data. Nature 562: 203-209.
- Danecek, P., A. Auton, G. Abecasis, C. A. Albers, E. Banks *et al.*, 2011 The variant call format and
 VCFtools. Bioinformatics 27: 2156-2158.
- Delaneau, O., J. F. Zagury and J. Marchini, 2013 Improved whole-chromosome phasing for disease and
 population genetic studies. Nat Methods 10: 5-6.
- Dempster, A. P., N. M. Laird and D. B. Rubin, 1977 Maximum Likelihood from Incomplete Data Via the
 EM Algorithm. Journal of the Royal Statistical Society: Series B (Methodological) 39: 1-22.
- 675 Dryden, I. L., and K. V. Mardia, 1998 *Statistical shape analysis*. John Wiley & Sons, Chichester ; New York.
- Ewing, B., and P. Green, 1998 Base-calling of automated sequencer traces using phred. II. Error
 probabilities. Genome Res 8: 186-194.
- Fritsche, L. G., W. Igl, J. N. Bailey, F. Grassmann, S. Sengupta *et al.*, 2016 A large genome-wide
 association study of age-related macular degeneration highlights contributions of rare and
 common variants. Nat Genet 48: 134-143.
- Hao, W., M. Song and J. D. Storey, 2016 Probabilistic models of genetic variation in structured
 populations applied to global human studies. Bioinformatics 32: 713-721.
- Hao, W., and J. D. Storey, 2019 Extending Tests of Hardy-Weinberg Equilibrium to Structured
 Populations. Genetics 213: 759-770.
- Hardy, G. H., 1908 Mendelian Proportions in a Mixed Population. Science 28: 49-50.
- Holsinger, K. E., 1999 Analysis of Genetic Diversity in Geographically Structured Populations: A Bayesian
 Perspective. Hereditas 130: 245-255.
- Holsinger, K. E., P. O. Lewis and D. K. Dey, 2002 A Bayesian approach to inferring population structure
 from dominant markers. Mol Ecol 11: 1157-1164.
- Jin, Y., A. A. Schaffer, M. Feolo, J. B. Holmes and B. L. Kattman, 2019 GRAF-pop: A Fast Distance-Based
 Method To Infer Subject Ancestry from Multiple Genotype Datasets Without Principal
 Components Analysis. G3 (Bethesda) 9: 2447-2461.
- Jun, G., M. Flickinger, K. N. Hetrick, J. M. Romm, K. F. Doheny *et al.*, 2012 Detecting and estimating
 contamination of human DNA samples in sequencing and array-based genotype data. Am J Hum
 Genet 91: 839-848.
- Kuhn, R. M., D. Haussler and W. J. Kent, 2013 The UCSC genome browser and associated tools. Brief
 Bioinform 14: 144-161.

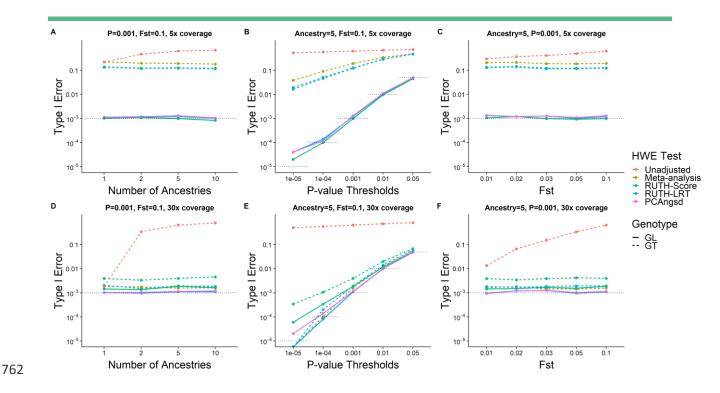
698 699	Laurie, C. C., K. F. Doheny, D. B. Mirel, E. W. Pugh, L. J. Bierut <i>et al.</i> , 2010 Quality control and quality assurance in genotypic data for genome-wide association studies. Genet Epidemiol 34: 591-602.
700 701	Li, J. Z., D. M. Absher, H. Tang, A. M. Southwick, A. M. Casto <i>et al.</i> , 2008 Worldwide human relationships inferred from genome-wide patterns of variation. Science 319: 1100-1104.
702 703	Li, M., and C. Li, 2008 Assessing departure from Hardy-Weinberg equilibrium in the presence of disease association. Genet Epidemiol 32: 589-599.
704 705	Locke, A. E., B. Kahali, S. I. Berndt, A. E. Justice, T. H. Pers <i>et al.</i> , 2015 Genetic studies of body mass index yield new insights for obesity biology. Nature 518: 197-206.
706 707	McCarroll, S. A., T. N. Hadnott, G. H. Perry, P. C. Sabeti, M. C. Zody <i>et al.</i> , 2006 Common deletion polymorphisms in the human genome. Nat Genet 38: 86-92.
708 709	Meisner, J., and A. Albrechtsen, 2019 Testing for Hardy-Weinberg Equilibrium in Structured Populations using Genotype or Low-Depth NGS Data. Mol Ecol Resour.
710	Mosteller, F., and R. A. Fisher, 1948 Questions and Answers. The American Statistician 2: 30-31.
711 712	Nielsen, D. M., M. G. Ehm and B. S. Weir, 1998 Detecting marker-disease association by testing for Hardy-Weinberg disequilibrium at a marker locus. Am J Hum Genet 63: 1531-1540.
713 714	Nielsen, R., J. S. Paul, A. Albrechtsen and Y. S. Song, 2011 Genotype and SNP calling from next- generation sequencing data. Nat Rev Genet 12: 443-451.
715 716	Price, A. L., N. J. Patterson, R. M. Plenge, M. E. Weinblatt, N. A. Shadick <i>et al.</i> , 2006 Principal components analysis corrects for stratification in genome-wide association studies. Nat Genet 38: 904-909.
717 718	Purcell, S., B. Neale, K. Todd-Brown, L. Thomas, M. A. Ferreira <i>et al.</i> , 2007 PLINK: a tool set for whole- genome association and population-based linkage analyses. Am J Hum Genet 81: 559-575.
719 720	Rohlfs, R. V., and B. S. Weir, 2008 Distributions of Hardy-Weinberg equilibrium test statistics. Genetics 180: 1609-1616.
721 722	Rosenberg, N. A., J. K. Pritchard, J. L. Weber, H. M. Cann, K. K. Kidd <i>et al.</i> , 2002 Genetic structure of human populations. Science 298: 2381-2385.
723 724	Sha, Q., and S. Zhang, 2011 A test of Hardy-Weinberg equilibrium in structured populations. Genet Epidemiol 35: 671-678.
725	Stouffer, S. A., 1949 The American soldier. Princeton University Press, Princeton,.
726 727	Stouffer, S. A., E. A. Suchman, L. C. DeVinney, S. A. Star and R. M. Williams Jr, 1949 The American soldier: Adjustment during army life.(Studies in social psychology in World War II), Vol. 1.
728 729	Taliun, D., D. N. Harris, M. D. Kessler, J. Carlson, Z. A. Szpiech <i>et al.</i> , 2019 Sequencing of 53,831 diverse genomes from the NHLBI TOPMed Program. bioRxiv.
730 731	The 1000 Genomes Project Consortium, A. Auton, L. D. Brooks, R. M. Durbin, E. P. Garrison <i>et al.</i> , 2015 A global reference for human genetic variation. Nature 526: 68-74.

732 733 734	The International HapMap Consortium, D. M. Altshuler, R. A. Gibbs, L. Peltonen, D. M. Altshuler <i>et al.</i> , 2010 Integrating common and rare genetic variation in diverse human populations. Nature 467: 52-58.
735 736 737	Van Oosterhout, C., W. F. Hutchinson, D. P. M. Wills and P. Shipley, 2004 MICRO-CHECKER: software for identifying and correcting genotyping errors in microsatellite data. Molecular Ecology Notes 4: 535-538.
738 739 740	Wang, C., Z. A. Szpiech, J. H. Degnan, M. Jakobsson, T. J. Pemberton <i>et al.</i> , 2010 Comparing spatial maps of human population-genetic variation using Procrustes analysis. Stat Appl Genet Mol Biol 9: Article 13.
741	Waples, R. S., 2015 Testing for Hardy-Weinberg proportions: have we lost the plot? J Hered 106: 1-19.
742 743	Weinberg, W., 1908 Uber den nachweis der vererbung beim menschen. Jh. Ver. vaterl. Naturk. Wurttemb. 64: 369-382.
744 745	Wigginton, J. E., D. J. Cutler and G. R. Abecasis, 2005 A note on exact tests of Hardy-Weinberg equilibrium. Am J Hum Genet 76: 887-893.
746 747	Yang, W. Y., J. Novembre, E. Eskin and E. Halperin, 2012 A model-based approach for analysis of spatial structure in genetic data. Nat Genet 44: 725-731.
748 749	Zhang, F., M. Flickinger, S. A. G. Taliun, P. P. G. C. In, G. R. Abecasis <i>et al.</i> , 2020 Ancestry-agnostic estimation of DNA sample contamination from sequence reads. Genome Res 30: 185-194.
750 751	

752 List of Figures and Tables

- 753 Figure 1: Evaluation of Type I Errors between various HWE tests on simulated genotypes.
- 754 Figure 2. Power Evaluation of power between different HWE tests on simulated genotypes.
- 755 Figure 3: Schematic diagrams of different methods to test HWE under population structure.
- 756 Figure 4. Evaluation of different HWE tests on 1000 Genomes and TOPMed variants.
- Table 1. Performance of the unadjusted test, meta-analysis, RUTH, and PCAngsd on 1000 Genomeschromosome 20 variants.
- Table 2. Performance of the unadjusted test, meta-analysis, and RUTH on TOPMed freeze 5chromosome 20 variants.
- 761 Table 3. Runtimes for RUTH and PCAngsd on simulated data.

bioRxiv preprint doi: https://doi.org/10.1101/2020.06.23.167759; this version posted June 25, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-ND 4.0 International license.



763 Figure 1

764Evaluation of Type I Errors between various HWE tests on simulated genotypes. Under each combination of765simulation conditions (number of ancestries, sequencing coverage, and fixation index), we simulated 5,000

samples with 50,000 variants that follow HWE within each of the subpopulations and determined the Type I error

767 performances of different HWE tests based on the proportion of variants labeled as having significant p-values.

Five HWE tests – (1) Unadjusted HWE test (WIGGINTON *et al.* 2005) implemented in PLINK-1.9 (PURCELL *et al.* 2007) using hard genotypes, (2) meta-analysis using Stouffer's method across ancestries using hard genotypes (GT), (3)

RUTH test using hard genotypes, (4) RUTH test using phred-scale likelihood (GL) computed from simulated

room test using hard genotypes, (4) Room test using pined-scale internood (GE) computed nom similated
 sequence reads, and (5) PCAngsd (MEISNER AND ALBRECHTSEN 2019) – were tested under HWE with various parameter

772 settings. Gray dotted lines indicate targeted Type I Error rates. Top panels (A-C) represent results from shallow

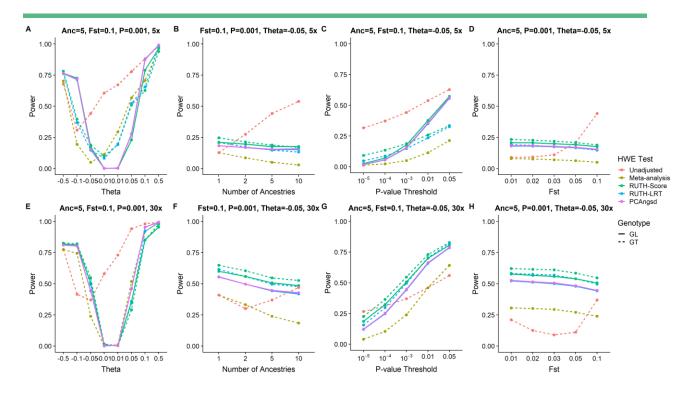
sequencing (5x), and the bottom panels (D-F) represent results from deep sequencing (30x). Using GL-based

genotypes resulted in Type I Error rates closer to the targeted rate than using GT-based genotypes across different

numbers of ancestries (A, D), P-value thresholds (B, E), and fixation indices (C, F). The difference is especially large

776 for low-coverage genotypes.

bioRxiv preprint doi: https://doi.org/10.1101/2020.06.23.167759; this version posted June 25, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-ND 4.0 International license.

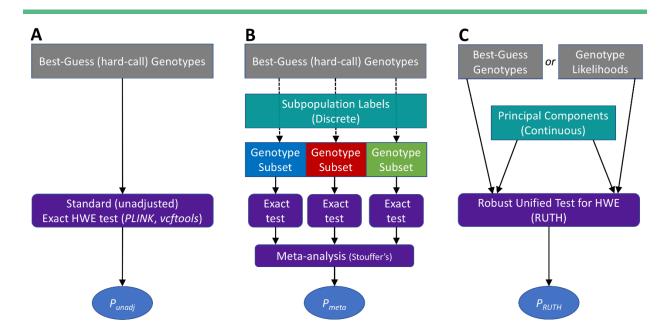


778 Figure 2

777

779 Evaluation of power between different HWE tests on simulated genotypes. Under each combination of simulation 780 conditions (number of ancestries, sequencing coverage, fixation index, and deviation from HWE), we simulated 781 50,000 variants for 5,000 samples and evaluated the ability of different HWE tests to find the variants significant. 782 Unless otherwise specified, the default simulation parameters are 5 ancestries, with F_{ST}=.1, P-value threshold=.001, 783 and Theta=-0.05. Tests that can find a larger proportion of significant variants are considered more powerful. Five 784 HWE tests – (1) Unadjusted HWE test (WIGGINTON et al. 2005) implemented in PLINK-1.9 using hard genotypes (2) 785 RUTH test using hard genotypes, (3) RUTH test using phred-scale likelihood (PL) computed from simulated 786 sequence reads, (4) meta-analysis using Stouffer's method across ancestries using hard genotypes, and (5) 787 PCAngsd (MEISNER AND ALBRECHTSEN 2019) - were tested for variants deviating from HWE with various parameter 788 settings, for low coverage (A-D) and high coverage (E-H) data. (A, E) Theta controls the degree of deviation from 789 HWE, with negative values indicating excess heterozygosity and positive values indicating heterozygote depletion. 790 The high Type I Error rates in GT-based tests (Figure 2) lead to those methods appearing to have higher power in some scenarios. The unadjusted test suffers from this problem the most. GL-based methods have slightly lower 791 792 powers than GT-based methods in exchange for a much better controlled Type I error rate. This pattern mostly 793 holds across different numbers of ancestries (B, F), p-value thresholds (C, G), and fixation indices (D, H). Meta-

analysis had the lowest power in the presence of excess heterozygosity.



796

797 Figure 3

798 Schematic diagrams of different methods to test HWE under population structure. Three different methods to test

799 HWE under population structure are described. (A) In the standard (unadjusted) HWE test, all samples are tested

together using best-guess genotypes. This test does not adjust for sample ancestry. (B) In a meta-analysis of

801 stratified HWE tests, the samples must first be categorized into discrete subpopulations, determined a priori based

802 on their genotypes or self-reported ancestries. Next, standard HWE tests (based on best-guess genotypes) are

803 performed on each of these subpopulations. Then, the resulting HWE statistics are converted into Z-scores and

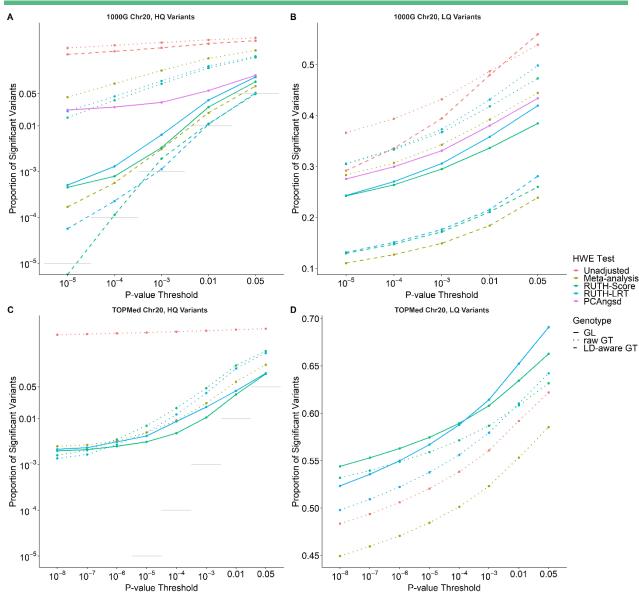
804 combined in a meta-analysis using Stouffer's method, with the sample sizes of the subpopulations as weights. (C)

805 In our proposed method (RUTH), either best-guess genotypes or genotype likelihoods can be used as input for

HWE test. We assume that the genetic ancestries of each sample are estimated a priori, typically as principal
 components (PCs). We combine the genotypes and PCs to perform either a score test or a likelihood ratio test to

components (PCs). We combine the genotypes and PCs to perform either a score test of
 obtain a joint ancestry-adjusted HWE statistic for each variant across all samples.

bioRxiv preprint doi: https://doi.org/10.1101/2020.06.23.167759; this version posted June 25, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-ND 4.0 International license.



810

811 Figure 4

812 Evaluation of different HWE tests on 1000 Genomes and TOPMed variants. In 1000 Genomes data (A, B), we 813 identified 17,740 "high quality" (HQ) variants and 10,966 "low quality" (LQ) variants in chromosome 20. In 814 TOPMed data (C, D), we identified 17,524 HQ variants and 329,699 LQ variants in chromosome 20. A well-behaved 815 HWE test should maximize the proportion of significant LQ variants while controlling the false positive rate for HQ 816 variants. Dotted gray lines represent targeted Type I error levels if we assume all HQ variants follow HWE. (A) Both 817 the unadjusted test and PCAngsd found substantially more significant variants than expected in the 1000G HQ 818 variant set, while both RUTH and meta-analysis were more conservative. Methods that used raw GTs showed 819 substantial false positive rates, while methods that used GLs and LD-aware GTs had much better control of false 820 positives. (B) In 1000G LQ variants, meta-analysis lagged behind RUTH and the unadjusted test in discovering 821 significant deviation from HWE. RUTH behaved well for HQ variants while having more power to find low-quality 822 variants significantly deviating from HWE. (C) In TOPMed data, the unadjusted test resulted in an excess of false 823 positives. Tests using GL-based genotypes outperformed tests using GT-based genotypes. (D) Methods using GL-824 based genotypes were able to discover more LQ variants than methods using GT-based genotypes, demonstrating 825 the advantage of accounting for genotype uncertainty in HWE tests.

827 Table 1

828 Performance of the unadjusted test, meta-analysis, RUTH, and PCAngsd on 1000 Genomes chromosome	828	Performance of the unadj	usted test, meta-analy	sis, RUTH, and PCAngsd	on 1000 Genomes chromosome 2
---	-----	--------------------------	------------------------	------------------------	------------------------------

829 variants.

Variant	Genotype			Proportion	of Significa	nt Variants		Total	
Category	Format	HWE Test	P < 10 ⁻²	P < 10 ⁻³	P < 10 ⁻⁴	P < 10⁻⁵	P < 10⁻6	Variant Count	
		Unadjusted	0.487	0.432	0.394	0.366	0.339	10,966	
	raw GT	Meta-analysis	0.392	0.343	0.307	0.283	0.262	10,966	
	raw Gr	RUTH-Score	0.418	0.367	0.333	0.305	0.284	10,966	
		RUTH-LRT	0.431	0.373	0.335	0.305	0.280	10,966	
		Unadjusted	0.479	0.395	0.336	0.292	0.259	10,966	
LQ Variants	LD-aware GT	Meta-analysis	0.184	0.149	0.127	0.111	0.098	10,966	
variants		RUTH-Score	0.211	0.172	0.147	0.130	0.112	10,966	
		RUTH-LRT	0.215	0.177	0.151	0.131	0.115	10,966	
		RUTH-Score	0.336	0.295	0.264	0.242	0.223	10,966	
	GL	RUTH-LRT	0.358	0.306	0.270	0.243	0.225	10,966	
		PCAngsd	0.380	0.331	0.300	0.275	0.255	10,920	
		Unadjusted	0.755	0.657	0.573	0.501	0.443	17,740	
		Meta-analysis	0.298	0.161	0.084	0.042	0.020	17,740	
	raw GT	RUTH-Score	0.183	0.083	0.036	0.015	7.4x10 ⁻³	17,740	
		RUTH-LRT	0.200	0.095	0.044	0.021	0.010	17,740	
		Unadjusted	0.623	0.507	0.422	0.361	0.311	17,740	
HQ Variants	LD-aware	Meta-analysis	0.019	3.1x10 ⁻³	5.6x10 ⁻⁴	1.7x10 ⁻⁴	1.1x10 ⁻⁴	17,740	
varialits	GT	RUTH-Score	0.011	1.9x10 ⁻³	1.1x10 ⁻⁴	0	0	17,740	
		RUTH-LRT	0.011	1.1x10 ⁻³	2.3x10 ⁻⁴	5.6x10 ⁻⁵	0	17,740	
		RUTH-Score	0.026	3.3x10 ⁻³	7.9x10 ⁻⁴	4.5x10 ⁻⁴	3.4x10 ⁻⁴	17,740	
	GL	RUTH-LRT	0.036	6.4x10 ⁻³	1.3x10 ⁻³	5.1x10 ⁻⁴	3.4x10 ⁻⁴	17,740	
		PCAngsd	0.059	0.032	0.026	0.022	0.021	17,740	

830 The numbers within cells represent the proportions of significant variants under the corresponding testing

831 conditions at the given P-value threshold. We expect our LQ variants to violate HWE at a higher rate than our HQ

variants. A well-behaved test is expected to find a high proportion of LQ variants to be significant while

833 maintaining the targeted Type I Error rate in HQ variants. The unadjusted test consistently shows the highest false

positive rate among all the tests. HWE tests that rely on raw GTs also show much higher false positive rates than

tests that use other genotype representations. RUTH tests were the best at controlling false positives while still

836 maintaining comparable power to the other methods. PCAngsd had a much higher false positive rate than RUTH-

based methods, especially at more stringent p-value thresholds.

839 Table 2

840 Performance of the unadjusted test, meta-analysis, and RUTH on TOPMed freeze 5 chromosome 20 variants.

841

Variant	Genotype	LINA/E To at		Proportion	of Significa	nt Variants	;	Total Variant	
set	Format	HWE Test	P < 10 ⁻²	P < 10 ⁻³	P < 10 ⁻⁴	P < 10 ⁻⁵	P < 10 ⁻⁶	Count	
	raw GT	Unadjusted	0.592	0.561	0.539	0.521	0.506	329,699	
	raw GT	Meta-analysis	0.554	0.524	0.502	0.485	0.471	329,699	
LQ Variants	raw GT	RUTH-Score	0.608	0.587	0.572	0.559	0.549	329,699	
	GL	RUTH-Score	0.635	0.608	0.590	0.575	0.563	329,699	
	raw GT	RUTH-LRT	0.610	0.580	0.556	0.538	0.522	329,699	
	GL	RUTH-LRT	0.653	0.615	0.588	0.567	0.550	329,699	
	raw GT	Unadjusted	0.890	0.842	0.800	0.766	0.736	17,524	
	raw GT	Meta-analysis	0.065	0.022	9.0x10 ⁻³	4.8x10 ⁻³	3.3x10 ⁻³	17,524	
HQ	raw GT	RUTH-Score	0.145	0.047	0.172	7.1x10 ⁻³	3.5x10 ⁻³	17,524	
Variants	GL	RUTH-Score	0.034	0.011	4.9x10 ⁻³	3.1 x10 ⁻³	2.5x10 ⁻³	17,524	
	raw GT	RUTH-LRT	0.125	0.036	0.012	5.0x10 ⁻³	2.7x10 ⁻³	17,524	
	GL	RUTH-LRT	0.041	0.018	8.5x10 ⁻³	4.3x10 ⁻³	3.1x10 ⁻³	17,524	

842

843 The numbers within cells represent the proportions of significant variants under the corresponding testing

conditions at the given P-value threshold. These results are based on tests that used likelihood-based genotype

845 representations as input. A well-behaved test should reduce the number of significant high-quality (HQ) variants

846 while increasing the number of significant low-quality (LQ) variants. The unadjusted test had a greatly inflated false

positive rate for HQ variants while showing a lower true positive rate for LQ variants. While meta-analysis

848 performed better for HQ variants, it had reduced power to find LQ variants to be significant. RUTH performed the

best, with fewer false positives (significant HQ variants) compared to both the unadjusted test and meta-analysis,
while at the same time finding more true positives (significant LQ variants).

852 Table 3

Comple Size		Wall Time (s)			User Time (s)	
Sample Size	RUTH-LRT	RUTH-Score	PCAngsd	RUTH-LRT	RUTH-Score	PCAngsd
1,000	16.21	27.24	173.11	16.16	27.09	172.37
2,000	32.19	54.63	347.10	31.94	54.51	345.58
5,000	82.80	136.44	1,124.83	81.81	136.20	1,102.85
10,000	165.48	273.67	7,396.00	163.88	273.27	7,235.91
20,000	336.75	553.92	38,807.67	332.06	553.05	37,338.69
50,000	902.81	1,438.32	461,971.33	886.67	1,435.87	403,296.5

853 Runtimes for RUTH and PCAngsd on simulated data.

854

855 We simulated 10,000 genotype likelihood-based variants for varying numbers of samples. Wall time indicates total

runtime, while user time is the amount of time the CPUs spent running each program. All programs were run in

857 single-threaded mode. System processes make up the difference between the two values, with a majority

consisting of file I/O. We used VCF files with GL fields in RUTH and converted them to Beagle3 format for PCAngsd.

859 The RUTH likelihood ratio test (LRT) was the fastest method, with the score test about 60% slower. PCAngsd was

about 10 times slower than RUTH-LRT with the smallest sample sizes and over 400 times slower with our largest

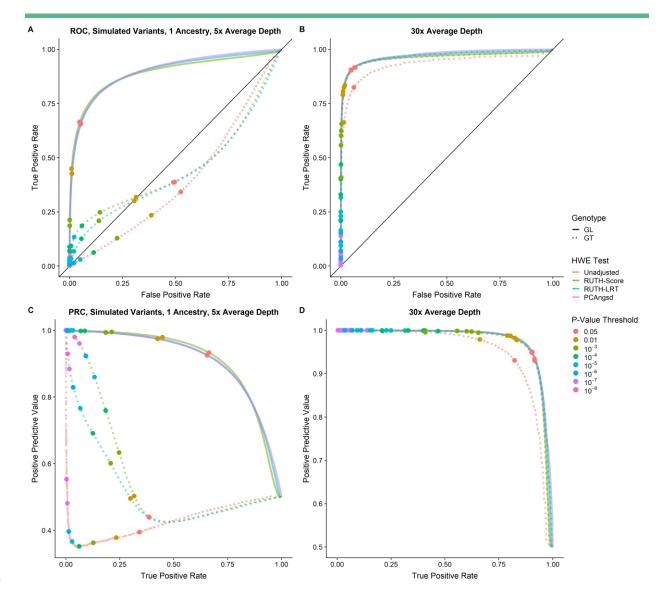
tested size of 50,000 samples.

List of Supplementary Figures, Tables, and File

- 864 Figure S1. ROC and PRC for simulated single-ancestry data.
- Figure S2. Precision-recall curves for simulated data with multiple ancestries.
- 866 Figure S3. Precision-recall curves for 1000G and TOPMed variants.
- Figure S4. Results of testing TOPMed variants found in 1000G variant list.
- 868 Figure S5. ROC curves for TOPMed variants found in 1000G variant list.
- 869 Figure S6. PRC curves for TOPMed variants found in 1000G variant list.
- 870 Figure S7. Results of testing 1000G and TOPMed variants with RUTH using two vs. four PCs.
- 871 Figure S8. Effect of ancestry estimation accuracy on Precision-Recall Curves
- Figure S9. Principal component plots and group assignments for 1000 Genomes and TOPMed samples.
- Figure S10. Results of testing 1000G and TOPMed variants with meta-analysis using K-means to generateancestry groups.

875

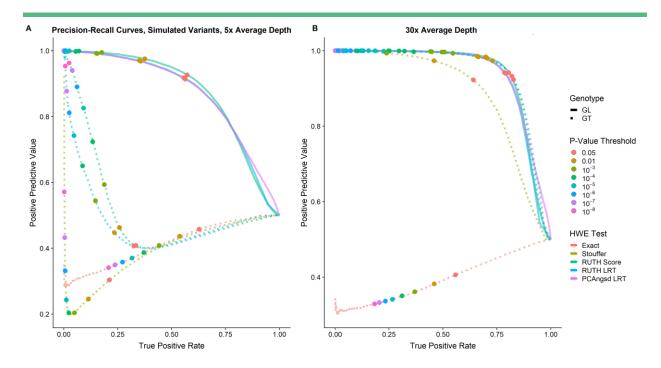
- Table S1. Simulation results for the unadjusted test, meta-analysis, RUTH, and PCAngsd for HWE.
- Table S2. Results from using lower quality ancestry estimations on meta-analysis and RUTH.
- Table S3. Performance of the unadjusted test, meta-analysis, and RUTH on the subset of TOPMed freeze5 chromosome 20 variants that are also found in 1000G.
- Table S4. Simulation results for RUTH tests using 2 vs 4 principal components.
- Table S5. The effect of high vs. low quality subpopulation classification on meta-analysis in simulatedsamples.
- Table S6. Comparison of runtimes and memory requirements for RUTH and PCAngsd in simulated and1000G data.
- Table S7. Sample contributions from each of the participating TOPMed studies.
- Table S8. TOPMed acknowledgements for omics support.
- 887 File S1. TOPMed Study Acknowledgments



889

890 Figure S1

891 ROC and PRC for simulated single-ancestry data. For both low coverage (A, C) and high coverage (B, D) settings, 892 500,000 variants were generated from 5,000 samples arising from a single ancestry, with half of the variants as 893 true positives ($\theta = -0.05$) and half of the variants as true negatives ($\theta = 0$). The colors of the lines correspond to the 894 different HWE tests, while the colors of the points correspond to different P-value thresholds. In all cases, the 895 unadjusted test performed the worst. For low-coverage data, tests using GT-based genotypes performed poorly 896 due to their inability to capture the effects of genotype uncertainty, whereas tests using GL-based genotypes 897 performed much better. The difference was negligible in high-coverage genotype data.

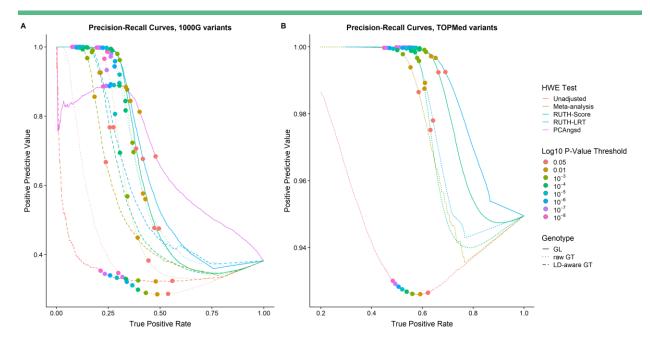


899

900 Figure S2

901 Precision-recall curves for simulated data with multiple ancestries. We generated Precision-recall curves to 902 evaluate the tradeoff between the different HWE tests' ability to identify true positive variants while minimizing 903 the misidentification of true negative variants as significantly departing from HWE. We analyzed 50,000 true 904 positive and 50,000 true negative variants in 5,000 samples arising from 5 different ancestries with an average 905 simulated depth of (A) 5x and (B) 30x. True negative variants are defined as variants with the HWE deviation 906 parameter θ = 0. True positives are defined as variants with θ = -0.05. The True Positive Rate (TPR) is defined to be 907 the proportion of variants with θ = -0.05 that are significant at a given P-value threshold, while the Positive 908 Predictive Value (PPV) is defined as the proportion of significant variants with θ = -0.05 at the same P-value 909 threshold. Selected p-value thresholds are indicated with colored circles. For low-depth genotypes, in the presence 910 of high genotype uncertainty, GL-based HWE tests performed relatively well, while GT-based tests performed 911 poorly. For high-depth genotypes, with low genotype uncertainty, all methods adjusting for population structure

912 performed relatively well.



914

915 Figure S3

916 Precision-recall curves for 1000G and TOPMed variants. We defined positive variants as those with a high level of

917 Mendelian inconsistency in family-based TOPMed data, and negative variants as those found in the intersection of

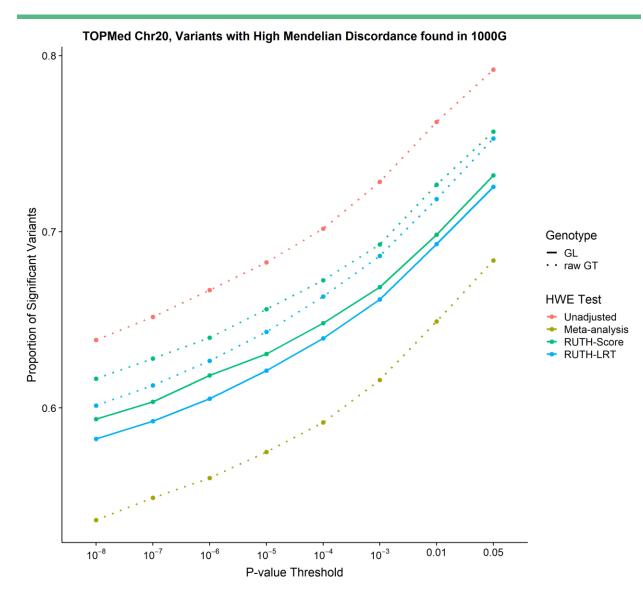
918 the Illumina Omni2.5 and HapMap3 variant site lists. (A) For low-coverage sequence data found in 1000G, tests

919 using GL-based genotypes (solid lines) generally performed better than tests using any GT-based genotypes

920 (dotted and dashed lines). Both the unadjusted test and meta-analysis performed much worse than all other

921 methods. (B) For high-coverage sequence data found in TOPMed, tests using GL-based genotypes retained their

922 improved performance over tests using GT-based genotypes.



924

925 Figure S4

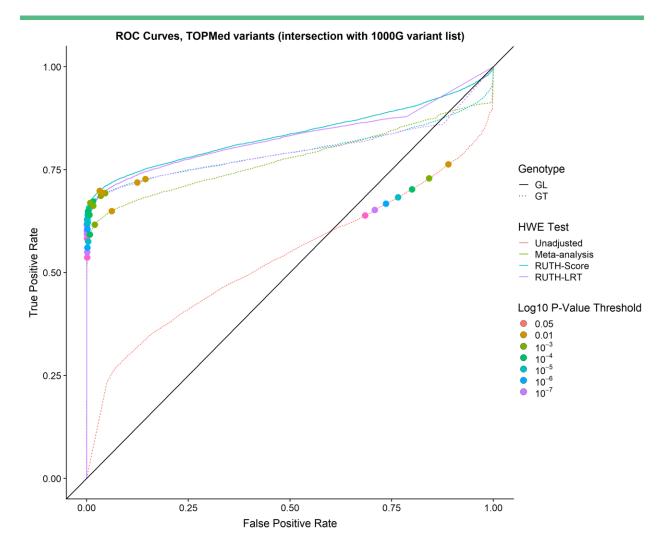
926 Results of testing TOPMed variants found in 1000G variant list. This analysis contains 10,966 TOPMed variants

927 found to be discordant in TOPMed family data and overlapping with 1000G discordant variants, as opposed to all

928 329,699 discordant TOPMed variants (as seen in Figure 4D). Our results are similar to those for 1000G discordant

variants (Figure 4B), suggesting that the differences between the patterns observed in 1000G and TOPMed results

930 may have been caused by the difference in allele frequency distributions in the two data sets (Table S1).

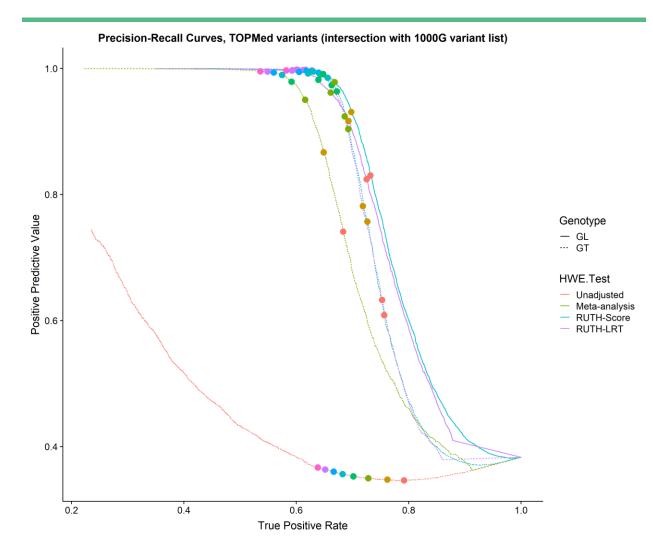


932

933 Figure S5

934 ROC curves for TOPMed variants found in 1000G variant list. GL-based tests have the best overall performance

among the different methods.



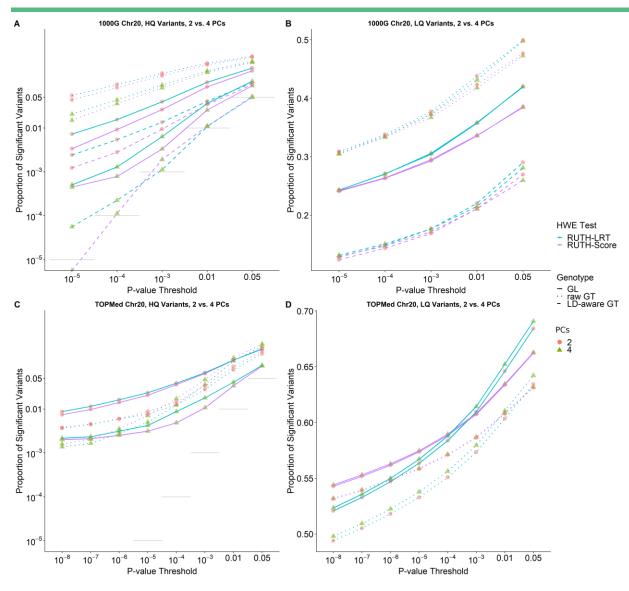
937

938 Figure S6

939 PRC curves for TOPMed variants found in 1000G variant list. RUTH tests using GLs offer the best balance between

940 finding true positives and maximizing positive predictive value.

bioRxiv preprint doi: https://doi.org/10.1101/2020.06.23.167759; this version posted June 25, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-ND 4.0 International license.



943 Figure S7

942

944 Results of testing 1000G and TOPMed variants with RUTH using two vs. four PCs. Using only 2 PCs lead to

noticeably worse performance, especially for GL-based tests. (A) In 1000 Genomes data, using only 2 PCs leads to

946 much higher false positives in HQ variants for both RUTH-Score and RUTH-LRT compared to using 4 PCs. (B) Tests

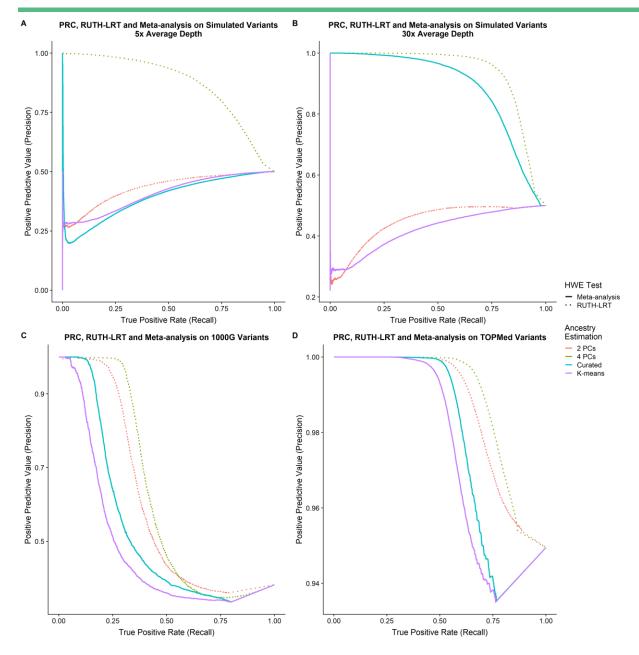
on LQ variants with 2 PCs appear to have modestly higher power than tests using 4 PCs, but this is mainly due to

the much higher false positive rate. (C) For HQ variants in TOPMed, tests using only 2 PCs have substantially higher

false positive rate than tests using 4 PCs for GL-based tests, while GT-based tests are comparable. (D) Surprisingly,

950 GL-based tests using 4 PCs discovered more significant LQ variants compared to GL-based tests using 2 PCs, even

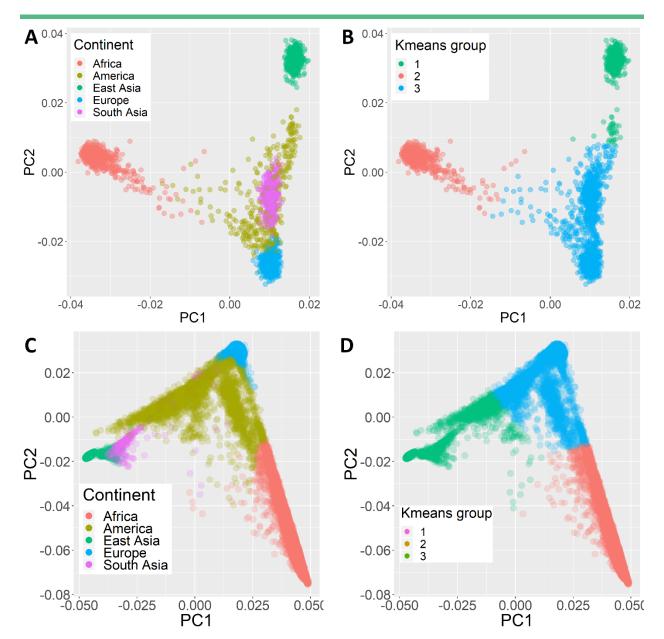
though GL-based tests using 2 PCs had a higher false positive rate in HQ variants.



954 Figure S8

953

Effect of ancestry estimation accuracy on Precision-Recall Curves. We evaluated the effect of using 2 vs. 4 principal components on the performance of RUTH-LRT, and the effect of using our nearest-neighbor algorithm ("curated") vs. k-means for subpopulation classification of samples on the performance of meta-analysis on (A) low-depth simulated data, (B) high-depth simulated data, (C) 1000G variants, and (D) TOPMed variants. We simulated null variants with θ = 0 and alternative variants with θ = -0.05, with a fixation index of 0.1 for 5,000 samples from 5 ancestries (1,000 samples each). RUTH-LRT used GL-based genotypes, and meta-analysis used raw GT-based genotypes. K-means classification for simulated data was performed assuming 3 subpopulation clusters.



963

964 Figure S9

965 Principal component plots and group assignments for 1000 Genomes and TOPMed samples. Ancestry group

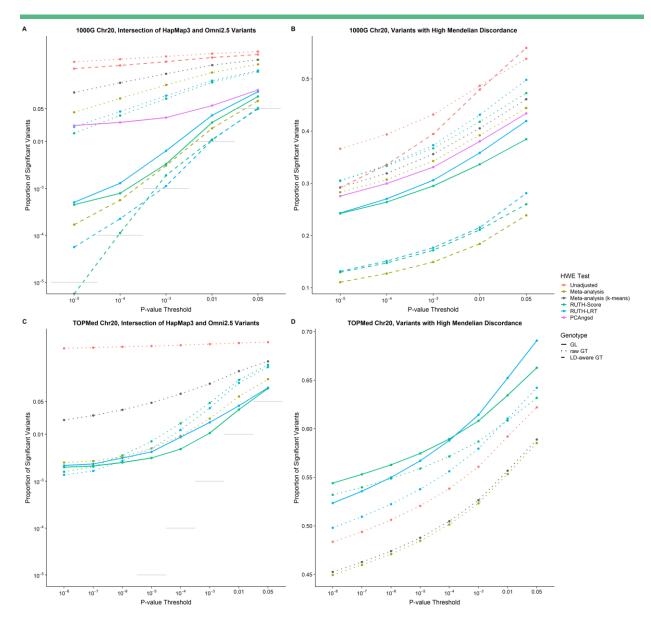
assignments for samples in 1000G (A, B) and TOPMed (C, D) samples used either a high-quality ancestry estimation

967 method (A, C) or a crude k-means based method (B, D). In meta-analysis, samples within a group were first

analyzed together using the unadjusted test. Then, the group-level results were combined using Stouffer's method.

- 969 Meta-analyses using the cruder k-means groupings performed much worse than those using the high-quality
- ancestry estimates due to population stratification within the cruder groups.

bioRxiv preprint doi: https://doi.org/10.1101/2020.06.23.167759; this version posted June 25, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-ND 4.0 International license.



972

973 Figure S10

974 Results of testing 1000G and TOPMed variants with meta-analysis using K-means to generate ancestry groups. We 975 generated three subpopulations for 1000G and TOPMed separately by applying k-means to the first two principal 976 components of each group. Next, we calculated subpopulation-specific HWE statistics, which were converted to Z-977 scores and combined using Stouffer's method, using each subpopulation's size as the weights. (A) K-means-based 978 meta-analysis had much higher false positive rates in 1000G compared to meta-analysis that used more accurate 979 population labels, which (B) confounds its seemingly higher power to discover true positives. (C) We see the same 980 increased false positive rate in K-means-based meta-analysis in TOPMed, but surprisingly (D) it also reduced the 981 power to discover true positives in TOPMed. High-quality ancestry groups can substantially improve the 982 performance of ancestry-based meta-analysis.

984 Table S1

985 Simulation results for the unadjusted test, meta-analysis, RUTH, and PCAngsd for HWE.

986 This table can be found at the following link:

987 <u>https://docs.google.com/spreadsheets/d/1zdn7jOWgOMG_wwqwgDD4b1i0a2clGlyNFKmI5xR_DoE/edit?usp=shari</u> 988 <u>ng</u>

989 Results from various HWE tests for simulations with 50,000 variants for 5,000 samples. Samples were generated

990 using a population fixation index (Fst) between .01 and .1. "GL" indicates a method using genotype likelihoods,

991 while "GT" indicates a method using best-guess genotypes. Theta denotes deviation from HWE: Theta = 0 indicates

992 no deviation from HWE, Theta < 0 indicates excess heterozygosity, and Theta > 0 indicates heterozygote depletion.

993 When the samples were generated from a single ancestry, meta-analysis and the unadjusted test were identical.

*Combined F_{sT} indicates the combined results for F_{sT}=.01, .02, .03, .05, and .1. This is available only when the

995 number of ancestries is 1, because F_{ST} should not affect the results with single ancestry, so the results may be 996 combined.

998 Table S2

999	Results from using lower quality a	incestry estimations on	meta-analysis and RLITH
333	Results from using lower quality a	incestry estimations on	IIIeld-dildiysis dilu KUTI.

Data	Variant	Genotype		DC-		Proportion	n of Significa	nt Variants		Total	
Data set	set	Format	HWE Test	PCs	P < 0.01	P < 10 ⁻³	P < 10 ⁻⁴	P < 10 ⁻⁵	P < 10 ⁻⁶	Varian Count	
		THE CT	Meta-analysis	n/a	0.392	0.343	0.307	0.283	0.262	10,9	
	10	raw GT	Meta-analysis (k-means)	n/a	0.405	0.356	0.319	0.292	0.269	10,9	
	LQ	LD-aware	Meta-analysis	n/a	0.184	0.149	0.127	0.111	0.098	10,9	
10000		GT	Meta-analysis (k-means)	n/a	0.221	0.169	0.136	0.116	0.102	10,9	
1000G		THE OT	Meta-analysis	n/a	0.298	0.161	0.084	0.042	0.020	17,7	
	110	raw GT	Meta-analysis (k-means)	n/a	0.427	0.279	0.180	0.112	0.067	17,7	
	HQ	LD-aware	Meta-analysis	n/a	0.019	3.1x10 ⁻³	5.6x10 ⁻⁴	1.7x10 ⁻⁴	1.1x10 ⁻⁴	17,7	
		GT	Meta-analysis (k-means)	n/a	0.107	0.043	0.020	9.5x10 ⁻³	5.0x10 ⁻³	17,7	
	10		Meta-analysis	n/a	0.553	0.523	0.501	0.485	0.471	329,6	
TODMAN	LQ	CT	Meta-analysis (k-means)	n/a	0.557	0.526	0.505	0.488	0.474	329,6	
TOPMed		GT	Meta-analysis	n/a	0.064	0.022	9.2x10 ⁻³	5.0x10 ⁻³	3.3x10 ⁻³	17,5	
	HQ		Meta-analysis (k-means)	n/a	0.224	0.121	0.074	0.047	0.033	17,5	
				2	0.357	0.304	0.271	0.243	0.224	10,9	
			RUTH-LRT	4	0.358	0.306	0.270	0.243	0.225	10,9	
		GL		2	0.336	0.293	0.263	0.241	0.221	10,9	
			RUTH-Score	4	0.336	0.295	0.264	0.242	0.223	10,9	
				2	0.220	0.177	0.149	0.128	0.113	10,9	
		LD-aware	RUTH-LRT	4	0.215	0.177	0.151	0.131	0.115	10,9	
	LQ	GT		2	0.211	0.169	0.143	0.124	0.109	10,9	
1000G			RUTH-Score	4	0.211	0.172	0.147	0.130	0.112	10,9	
				2	0.438	0.377	0.338	0.308	0.284	10,9	
			RUTH-LRT	4	0.431	0.373	0.335	0.305	0.28	10,9	
		raw GT		2	0.424	0.372	0.335	0.309	0.286	10,9	
			RUTH-Score	4	0.418	0.367	0.333	0.305	0.284	10,9	
				2	0.110	0.040	0.016	7.3x10 ⁻³	3.3x10 ⁻³	17,7	
			RUTH-LRT	4	0.036	6.4x10 ⁻³	1.3x10 ⁻³	5.1x10 ⁻⁴	3.4x10 ⁻⁴	17,7	
		GL		2	0.087	0.026	9.2x10 ⁻³	3.4x10 ⁻³	1.6x10 ⁻³	17,7	
			RUTH-Score	4	0.026	3.3x10 ⁻³	7.9x10 ⁻⁴	4.5x10 ⁻⁴	3.4x10 ⁻⁴	17,7	
			LD-aware GT			2	0.041	0.014	5.4x10 ⁻³	2.4x10 ⁻³	1.4x10 ⁻³
				RUTH-LRT	4	0.011	1.1x10 ⁻³	2.3x10 ⁻⁴	5.6x10 ⁻⁵	0	17,7
	HQ				2	0.034	9.5x10 ⁻³	2.8x10 ⁻³	1.2x10 ⁻³	5.1x10 ⁻⁴	17,7
			RUTH-Score	4	0.011	1.9x10 ⁻³	1.1x10 ⁻⁴	0	0	17,7	
				2	0.299	0.176	0.098	0.055	0.03	17,7	
			RUTH-LRT	4	0.200	0.095	0.044	0.021	9.7x10 ⁻³	17,7	
		raw GT		2	0.276	0.155	0.083	0.044	0.023	17,7	
			RUTH-Score	4	0.183	0.083	0.036	0.015	7.4x10 ⁻³	17,7	
				2	0.646	0.610	0.584	0.563	0.547	329,6	
			RUTH-LRT	4	0.652	0.614	0.588	0.567	0.55	329,6	
		GL		2	0.634	0.607	0.589	0.574	0.562	329,6	
			RUTH-Score	4	0.635	0.608	0.590	0.575	0.562	329,6	
	LQ			2	0.603	0.573	0.550	0.573	0.518	329,6	
			RUTH-LRT	4	0.610	0.580	0.556	0.535	0.510	329,6	
		GT		2	0.608	0.586	0.571	0.558	0.532	329,6	
			RUTH-Score	4	0.608	0.587	0.571	0.550	0.549	329,6	
TOPMed				2	0.130	0.067	0.039	0.024	0.016	17,5	
			RUTH-LRT	4	0.130	0.018	8.7x10 ⁻³	4.2x10 ⁻³	3.1x10 ⁻³	17,5	
		GL		2	0.130	0.018	0.036	0.021	0.014	17,5	
			RUTH-Score	4	0.034	0.003	4.9x10 ⁻³	3.1x10 ⁻³	2.5x10 ⁻³	17,5	
	HQ			2	0.034	0.011	0.012	7.6x10 ⁻³	5.9x10 ⁻³	17,5	
			RUTH-LRT	4	0.125	0.028	0.012	5.0x10 ⁻³	2.7x10 ⁻³	17,5	
		GT		2	0.093	0.038	0.012	8.8x10 ⁻³	6.0x10 ⁻³	17,5	
			RUTH-Score								

In both 1000G and TOPMed, the false positive rate was much higher when k-means-based groupings were used for
 meta-analysis, compared to when high quality ancestry groupings were used. Similarly, the false positive rate was
 much higher when only 2 PCs were used, compared to when 4 PCs were used. Surprisingly, in TOPMed, using 4 PCs

1003 led to both a lower false positive rate and higher true positive rate when compared to using 2 PCs.

1004 **Table S3**

Performance of the unadjusted test, meta-analysis, and RUTH on the subset of TOPMed freeze 5 chromosome 20
 variants that are also found in 1000G.

1007

Variant	Genotype			Proportion	of Significa	ant Variants	5	Total Variant Count
set	Format	HWE Test	P < 10 ⁻²	P < 10 ⁻³	P < 10 ⁻⁴	P < 10⁻⁵	P < 10 ⁻⁶	
	raw GT	Unadjusted	0.890	0.842	0.800	0.766	0.736	16,924
	raw GT	Meta-analysis	0.062	0.020	8.0x10 ⁻³	3.8x10 ⁻³	2.3x10 ⁻³	16,924
HQ	raw GT	RUTH-Score	0.145	0.046	0.016	6.3x10 ⁻³	2.8x10 ⁻³	16,924
Variants	GL	RUTH-Score	0.032	9.3x10 ⁻³	3.7x10 ⁻³	2.0x10 ⁻³	1.5x10⁻³	16,924
	raw GT	RUTH-LRT	0.125	0.035	0.011	4.2x10 ⁻³	1.9x10 ⁻³	16,924
	GL	RUTH-LRT	0.039	0.016	7.4x10 ⁻³	3.1x10 ⁻³	2.2x10 ⁻³	16,924
	raw GT	Unadjusted	0.762	0.728	0.702	0.683	0.667	10,513
	raw GT	Meta-analysis	0.649	0.616	0.592	0.575	0.560	10,513
LQ	raw GT	RUTH-Score	0.727	0.693	0.673	0.656	0.640	10,513
Variants	GL	RUTH-Score	0.698	0.669	0.648	0.631	0.618	10,513
	raw GT	RUTH-LRT	0.719	0.686	0.663	0.643	0.627	10,513
	GL	RUTH-LRT	0.693	0.662	0.639	0.621	0.605	10,513

1008 For HQ variants, GL-based HWE tests had much better control of false positives than GT-based tests.

1009 Conversely, for LQ variants, GT-based HWE tests had a slightly better true positive rate than GL-based

tests. Overall, GL-based tests had the best performance when considering the tradeoff between falsepositives and true positives (Figure S5-6).

1013 Table S4

- 1014 Simulation results for RUTH tests using 2 vs 4 principal components.
- 1015 This table can be found at the following link:
- 1016 https://docs.google.com/spreadsheets/d/1Ac9rveZax5Y8NIKQ47wBaJNELqeJkFuNUpa1sNgnsno/edit?usp=sharing
- 1017 We tested the effect of using different numbers of PCs in RUTH on Type I Error ($\theta = 0$) and power ($\theta \neq 0$) for
- 1018 simulated samples with different numbers of ancestries, fixation indices, sequencing depths, and genotype
- 1019 representations. We simulated 50,000 variants for each combination of simulation parameters.
- 1020

1021 Table S5

1022 The effect of high vs. low quality subpopulation classification on meta-analysis in simulated samples.

1023

	Death	T I		Proportion	n of significar	nt variants	
Grouping	Depth	Theta -	P < 10 ⁻⁶	P < 10 ⁻⁵	P < 10 ⁻⁴	P < 10 ⁻³	P < 0.01
T	5	-0.05	0.0073	0.0125	0.0235	0.05	0.1145
True	5	0	0.0147	0.0388	0.0919	0.1955	0.3519
ancestry labels	30	-0.05	0.0139	0.04	0.1048	0.2389	0.4594
100013		0	0	0	0.0001	0.0016	0.0127
	5	-0.05	0.1201	0.149	0.19	0.2509	0.3513
k-means	5	0	0.2907	0.3496	0.4195	0.4977	0.5826
(3 groups)	30	-0.05	0.0919	0.1122	0.1447	0.2017	0.3097
		0	0.2183	0.2553	0.3054	0.3734	0.4747

1024We simulated 50,000 variants in 5,000 samples arising from 5 distinct subpopulations (1,000 samples each), at low1025(5x) and high (30x) depth, with no deviation from HWE ($\theta = 0$) and moderate excess heterozygosity ($\theta = -0.05$). We1026used one of two different groupings for our samples: for high-quality labels, we used the original true ancestry

labels from which we simulated our data; for low-quality labels, we ran k-means classification on the first 2
 principal components of genetic variation for all our samples to generate 3 groups. We meta-analyzed all data sets

1029 using Stouffer's method. Type I error rates for low-depth samples were greatly inflated. For high-depth samples,

1030 when we used the true ancestry labels, Type I errors were well-controlled, with reasonable power to discover

1031 deviations from HWE, while when we used the crude k-means labels, Type I errors were greatly inflated, with

surprisingly less power to discover deviations from HWE at less stringent P-value thresholds. These results
 highlight the importance of high-quality subpopulation classification for meta-analysis.

1035 Table S6

1036 Comparison of runtimes and memory requirements for RUTH and PCAngsd in simulated and 1000G data.

1037

Data set	Genotype Format	Software	Test	Ν	Total Variant Count	Runtime (s)	Memory requirement (MB)
	GT	PLINK	Unadjusted	5,000	50,000	22	10
	GT	RUTH	RUTH LRT	5,000	50,000	348	15
Simulated	GL	RUTH	RUTH LRT	5,000	50,000	341	15
	GT	RUTH	RUTH Score	5,000	50,000	460	15
	GL	RUTH	RUTH Score	5,000	50,000	469	15
Simulated (5x)	GL	PCAngsd	PCAngsd	5,000	50,000	6,068	6,946
Simulated (30x)	GL	PCAngsd	PCAngsd	5,000	50,000	5,337	6,872
	GT	PLINK	Unadjusted	2,504	28,706	2	8
	GL	RUTH	RUTH LRT	2,504	28,706	147	14
1000G	GT	RUTH	RUTH LRT	2,504	28,706	96	13
1000G	GL	RUTH	RUTH Score	2,504	28,706	216	14
	GT	RUTH	RUTH Score	2,504	28,706	177	13
	GL	PCAngsd	PCAngsd	2,504	28,660	4,105	2,073
TODMad	GT	RUTH	RUTH LRT	53,831	347,223	158,731	57
TOPMed	GL	RUTH	RUTH LRT	53,831	347,223	196,169	57

1038 Simulation runtimes for PLINK and RUTH are averaged over 360 runs, across combinations of different simulation

parameters. Simulation results for PCAngsd are averaged over 66 runs each for 5x and 30x coverage data. The

1040 higher uncertainty in low depth simulated data appears to have led to slower convergence in PCAngsd. All results

1041 for 1000G were from single runs. The listed TOPMed runtimes and memory requirements are for single-threaded

analyses of all variants.

1044 Table S7

TOPMed Study Name	TOPMed Accession	Sample Size
Genetics of Cardiometabolic Health in the Amish	phs000956	1,025
Trans-Omics for Precision Medicine Whole Genome		
Sequencing Project: ARIC	phs001211	3,585
The Genetics and Epidemiology of Asthma in Barbados	phs001143	944
Cleveland Clinic Atrial Fibrillation Study	phs001189	328
The Cleveland Family Study (WGS)	phs000954	919
Cardiovascular Health Study	phs001368	69
Genetic Epidemiology of COPD (COPDGene) in the TOPMed		
Program	phs000951	8,733
The Genetic Epidemiology of Asthma in Costa Rica	phs000988	1,040
Diabetes Heart Study African American Coronary Artery		
Calcification (AA CAC)	phs001412	322
Whole Genome Sequencing and Related Phenotypes in the		
Framingham Heart Study	phs000974	3,725
Genes-environments and Admixture in Latino Asthmatics		
(GALA II) Study	phs000920	912
GeneSTAR (Genetic Study of Atherosclerosis Risk)	phs001218	1,633
Genetic Epidemiology Network of Arteriopathy (GENOA)	phs001345	1,069
Genetic Epidemiology Network of Salt Sensitivity (GenSalt)	phs001217	1,680
Genetics of Lipid Lowering Drugs and Diet Network (GOLDN)	phs001359	892
Heart and Vascular Health Study (HVH)	phs000993	64
HyperGEN - Genetics of Left Ventricular (LV) Hypertrophy	phs001293	1,752
Jackson Heart Study	phs000964	3,074
Whole Genome Sequencing of Venous Thromboembolism		
(WGS of VTE)	phs001402	1,250
MESA and MESA Family AA-CAC	phs001416	4,804
MGH Atrial Fibrillation Study	phs001062	916
Partners HealthCare Biobank	phs001024	109
San Antonio Family Heart Study (WGS)	phs001215	1,478
Study of African Americans, Asthma, Genes and	·	
Environment (SAGE) Study	phs000921	450
African American Sarcoidosis Genetics Resource	phs001207	606
Genome-wide Association Study of Adiposity in Samoans	phs000972	1,198
The Vanderbilt AF Ablation Registry	phs000997	154
The Vanderbilt Atrial Fibrillation Registry	phs001032	1010
Novel Risk Factors for the Development of Atrial Fibrillation		
in Women	phs001040	97
Women's Health Initiative (WHI)	phs001237	9,984
Total	r	53,83

1045 Sample contributions from each of the participating TOPMed studies.

1047 Table S8

TOPMed			TOPMed		
Accession #	TOPMed Project	Parent Study	Phase	Omics Center	Omics Support
phs000956	Amish	Amish	1	Broad Genomics	3R01HL121007-01S1
phs001211	AFGen	ARIC AFGen	1	Broad Genomics	3R01HL092577-06S1
					3U54HG003273-12S2
phs001211	VTE	ARIC	2	Baylor	HHSN2682015000150
phs001143	BAGS	BAGS	1	Illumina	3R01HL104608-04S1
phs001189	AFGen	CCAF	1	Broad Genomics	3R01HL092577-06S1
phs000954	CFS	CFS	1	NWGC	3R01HL098433-05S1
phs000954	CFS	CFS	3.5	NWGC	HHSN268201600032
phs001368	CHS	CHS	3	Baylor	HHSN268201600033
				·	3U54HG003273-12S2
phs001368	VTE	CHS VTE	2	Baylor	HHSN2682015000150
phs000951	COPD	COPDGene	1	NWGC	3R01HL089856-08S1
, phs000951	COPD	COPDGene	2	Broad Genomics	HHSN2682015000140
phs000951	COPD	COPDGene	2.5	Broad Genomics	HHSN2682015000140
phs000988	CRA_CAMP	CRA	1	NWGC	3R37HL066289-13S1
phs000988	CRA CAMP	CRA	3	NWGC	HHSN268201600032
phs001412	AA_CAC	DHS	2	Broad Genomics	HHSN2682015000140
phs0001112	AFGen	FHS AFGen	1	Broad Genomics	3R01HL092577-06S1
phs000974	FHS	FHS	1	Broad Genomics	3U54HG003067-12S2
phs000974	ATGC	GALAII ATGC	3	NWGC	HHSN268201600032
phs000920	PGX Asthma	GALAII ATGC	5 1	NYGC	3R01HL117004-02S3
•			2	Broad Genomics	
phs001218	AA_CAC GeneSTAR	GeneSTAR AA_CAC GeneSTAR		Illumina	HHSN2682015000140
phs001218			legacy		R01HL112064
phs001218	GeneSTAR	GeneSTAR	2	Psomagen	3R01HL112064-04S1
phs001345	HyperGEN_GENOA	GENOA	2	NWGC	3R01HL055673-18S1
phs001345	AA_CAC	GENOA AA_CAC	2	Broad Genomics	HHSN2682015000140
phs001217	GenSalt	GenSalt	2	Baylor	HHSN2682015000150
phs001359	GOLDN	GOLDN	2	NWGC	3R01HL104135-04S1
phs000993	AFGen	HVH	1	Broad Genomics	3R01HL092577-06S1
					3U54HG003273-12S2
phs000993	VTE	HVH VTE	2	Baylor	HHSN2682015000150
phs001293	HyperGEN_GENOA	HyperGEN	2	NWGC	3R01HL055673-18S1
phs000964	JHS	JHS	1	NWGC	HHSN268201100037
					3U54HG003273-12S2
phs001402	VTE	Mayo_VTE	2	Baylor	HHSN2682015000150
phs001416	AA_CAC	MESA AA_CAC	2	Broad Genomics	HHSN2682015000140
phs001416	MESA	MESA	2	Broad Genomics	3U54HG003067-13S1
					3U54HG003067-12S2
					3U54HG003067-13S1
					3U54HG003067-12S2
					3U54HG003067-13S1
phs001062	AFGen	MGH_AF	1.4; 1.5; 2.4	Broad Genomics	3UM1HG008895-01S
phs001062	AFGen	MGH_AF	1	Broad Genomics	3R01HL092577-06S1
phs001024	AFGen	Partners	1	Broad Genomics	3R01HL092577-06S1
phs001215	SAFS	SAFS	1	Illumina	3R01HL113323-03S1
phs001215	SAFS	SAFS	legacy	Illumina	R01HL113322
, phs000921	ATGC	SAGE ATGC	3	NWGC	HHSN268201600032
, phs000921	PGX_Asthma	SAGE	1	NYGC	3R01HL117004-02S3
phs000972	Samoan	Samoan	1	NWGC	HHSN2682011000370
phs000972	Samoan	Samoan	2	NYGC	HHSN2682015000160
phs001207	Sarcoidosis	Sarcoidosis	2	Baylor	3R01HL113326-04S1
phs001207	Sarcoidosis	Sarcoidosis	3.5	NWGC	HHSN268201600032
	00.0010000		2.2		3U54HG003067-12S2
					3U54HG003067-13S1
					3UM1HG008895-01S2
phs000997	AFGen	VAFAR	1.5; 2.4; 5.3	Broad Genomics	3UM1HG008895-0152
	Argen	VALAN	1.1.7.4.7.5		

phs000997	AFGen	VAFAR	1	Broad Genomics	3R01HL092577-06S1
phs001032	AFGen	VU_AF	1	Broad Genomics	3R01HL092577-06S1
phs001040	AFGen	WGHS	1	Broad Genomics	3R01HL092577-06S1
phs001237	WHI	WHI	2	Broad Genomics	HHSN268201500014C

1048 TOPMed acknowledgements for omics support.

File S1 1050

TOPMed Study Acknowledgements 1051

NHLBI TOPMed: Genetics of Cardiometabolic Health in the Amish 1052

1053 The Amish studies upon which these data are based were supported by NIH grants R01

AG18728, U01 HL072515, R01 HL088119, R01 HL121007, and P30 DK072488. See publication: 1054 1055 PMID: 18440328

NHLBI TOPMed: Trans-Omics for Precision Medicine Whole Genome Sequencing Project: ARIC 1056

- 1057 Genome Sequencing for "NHLBI TOPMed: Atherosclerosis Risk in Communities (ARIC)"
- (phs001211) was performed at the Baylor College of Medicine Human Genome Sequencing 1058

1059 Center (HHSN268201500015C and 3U54HG003273-12S2) and the Broad Institute of MIT and

- Harvard (3R01HL092577-06S1). 1060
- The Atherosclerosis Risk in Communities study has been funded in whole or in part with Federal 1061
- funds from the National Heart, Lung, and Blood Institute, National Institutes of Health, 1062
- 1063 Department of Health and Human Services (contract numbers HHSN268201700001I,
- HHSN268201700002I, HHSN268201700003I, HHSN268201700004I and HHSN268201700005I). 1064
- 1065 The authors thank the staff and participants of the ARIC study for their important contributions.

NHLBI TOPMed: The Genetics and Epidemiology of Asthma in Barbados 1066

- The Genetics and Epidemiology of Asthma in Barbados is supported by National Institutes of 1067
- Health (NIH) National Heart, Lung, Blood Institute TOPMed (R01 HL104608-S1) and: R01 1068
- AI20059, K23 HL076322, and RC2 HL101651. For the specific cohort descriptions and 1069
- descriptions regarding the collection of phenotype data can be found at: 1070
- 1071 https://www.nhlbiwgs.org/group/bags-asthma. The authors wish to give special recognition to
- the individual study participants who provided biological samples and or data, without their 1072
- support in research none of this would be possible. 1073

1074 NHLBI TOPMed: Cleveland Clinic Atrial Fibrillation Study

- 1075 The research reported in this article was supported by grants from the National Institutes of
- 1076 Health (NIH) National Heart, Lung, and Blood Institute grants R01 HL090620 and R01 HL111314,
- 1077 the NIH National Center for Research Resources for Case Western Reserve University and the
- Cleveland Clinic Clinical and Translational Science Award (CTSA) UL1-RR024989, the 1078
- 1079 Department of Cardiovascular Medicine philanthropic research fund, Heart and Vascular
- 1080 Institute, Cleveland Clinic, the Fondation Leducg grant 07-CVD 03, and The Atrial Fibrillation
- Innovation Center, State of Ohio. 1081

NHLBI TOPMed: The Cleveland Family Study (WGS) 1082

Support for the Cleveland Family Study was provided by NHLBI grant numbers R01 HL46380,R01 HL113338 and R35 HL135818.

1085 NHLBI TOPMed: Cardiovascular Health Study

1086 This research was supported by contracts HHSN268201200036C, HHSN268200800007C, HHSN268201800001C, N01-HC85079, N01-HC-85080, N01-HC-85081, N01-HC-85082, N01-HC-1087 1088 85083, N01-HC-85084, N01-HC-85085, N01-HC-85086, N01-HC-35129, N01-HC-15103, N01-HC-55222, N01-HC-75150, N01-HC-45133, and N01-HC-85239; grant numbers U01 HL080295, U01 1089 HL130114 and R01 HL059367 from the National Heart, Lung, and Blood Institute, and R01 1090 AG023629 from the National Institute on Aging, with additional contributions from the National 1091 Institute of Neurological Disorders and Stroke. A full list of principal CHS investigators and 1092 institutions can be found at https://chs-nhlbi.org/pi. Its content is solely the responsibility of 1093 1094 the authors and does not necessarily represent the official views of the National Institutes of 1095 Health.

1096 NHLBI TOPMed: Genetic Epidemiology of COPD (COPDGene) in the TOPMed Program

1097 This research used data generated by the COPDGene study, which was supported by NIH Award

1098 Number U01 HL089897 and Award Number U01 HL089856 from the National Heart, Lung, and

1099 Blood Institute. The content is solely the responsibility of the authors and does not necessarily

1100 represent the official views of the National Heart, Lung, and Blood Institute or the National

- 1101 Institutes of Health.
- 1102 The COPDGene project is also supported by the COPD Foundation through contributions made
- to an Industry Advisory Board comprised of AstraZeneca, Boehringer Ingelheim,
- 1104 GlaxoSmithKline, Novartis, Pfizer, Siemens and Sunovion.

1105 NHLBI TOPMed: The Genetic Epidemiology of Asthma in Costa Rica

- 1106 This study was supported by NHLBI grants R37 HL066289 and P01 HL132825. We wish to
- 1107 acknowledge the investigators at the Channing Division of Network Medicine at Brigham and
- 1108 Women's Hospital, the investigators at the Hospital Nacional de Niños in San José, Costa Rica
- and the study subjects and their extended family members who contributed samples and
- 1110 genotypes to the study, and the NIH/NHLBI for its support in making this project possible.

1111 NHLBI TOPMed: Diabetes Heart Study African American Coronary Artery Calcification (AA 1112 CAC)

- 1113 This work was supported by R01 HL92301, R01 HL67348, R01 NS058700, R01 AR48797, R01
- 1114 DK071891, R01 AG058921, the General Clinical Research Center of the Wake Forest University
- 1115 School of Medicine (M01 RR07122, F32 HL085989), the American Diabetes Association, and a
- 1116 pilot grant from the Claude Pepper Older Americans Independence Center of Wake Forest
- 1117 University Health Sciences (P60 AG10484).

1118 NHLBI TOPMed: Whole Genome Sequencing and Related Phenotypes in the Framingham 1119 Heart Study

The Framingham Heart Study (FHS) is a prospective cohort study of 3 generations of subjects 1120 1121 who have been followed up to 65 years to evaluate risk factors for cardiovascular disease.13-16 Its large sample of ~15,000 men and women who have been extensively phenotyped with 1122 1123 repeated examinations make it ideal for the study of genetic associations with cardiovascular disease risk factors and outcomes. DNA samples have been collected and immortalized since 1124 the mid-1990s and are available on ~8000 study participants in 1037 families. These samples 1125 have been used for collection of GWAS array data and exome chip data in nearly all with DNA 1126 samples, and for targeted sequencing, deep exome sequencing and light coverage whole 1127 genome sequencing in limited numbers. Additionally, mRNA and miRNA expression data, DNA 1128 methylation data, metabolomics and other 'omics data are available on a sizable portion of 1129 1130 study participants. This project will focus on deep whole genome sequencing (mean 30X coverage) in ~4100 subjects and imputed to all with GWAS array data to more fully understand 1131

- 1132 the genetic contributions to cardiovascular, lung, blood and sleep disorders.
- 1133 The FHS acknowledges the support of contracts NO1-HC-25195 and HHSN268201500001I from
- the National Heart, Lung, and Blood Institute and grant supplement R01 HL092577-06S1 for this
- research. We also acknowledge the dedication of the FHS study participants without whom this
- 1136 research would not be possible.

1137 NHLBI TOPMed: Genes-environments and Admixture in Latino Asthmatics (GALA II) Study

1138 The Genes-environments and Admixture in Latino Americans (GALA II) Study was supported by

- 1139 the National Heart, Lung, and Blood Institute of the National Institute of Health (NIH) grants
- 1140 R01HL117004 and X01HL134589; study enrollment supported by the Sandler Family
- 1141 Foundation, the American Asthma Foundation, the RWJF Amos Medical Faculty Development
- 1142 Program, Harry Wm. and Diana V. Hind Distinguished Professor in Pharmaceutical Sciences II
- and the National Institute of Environmental Health Sciences grant R01ES015794.
- 1144

The GALA II study collaborators include Shannon Thyne, UCSF; Harold J. Farber, Texas Children's 1145 1146 Hospital; Denise Serebrisky, Jacobi Medical Center; Rajesh Kumar, Lurie Children's Hospital of 1147 Chicago; Emerita Brigino-Buenaventura, Kaiser Permanente; Michael A. LeNoir, Bay Area Pediatrics; Kelley Meade, UCSF Benioff Children's Hospital, Oakland; William Rodriguez-Cintron, 1148 VA Hospital, Puerto Rico; Pedro C. Avila, Northwestern University; Jose R. Rodriguez-Santana, 1149 1150 Centro de Neumologia Pediatrica; Luisa N. Borrell, City University of New York; Adam Davis, UCSF Benioff Children's Hospital, Oakland; Saunak Sen, University of Tennessee and Fred 1151 1152 Lurmann, Sonoma Technologies, Inc. 1153

1154 The authors acknowledge the families and patients for their participation and thank the

- numerous health care providers and community clinics for their support and participation in
- 1156 GALA II. In particular, the authors thank study coordinator Sandra Salazar; the recruiters who
- obtained the data: Duanny Alva, MD, Gaby Ayala-Rodriguez, Lisa Caine, Elizabeth Castellanos,
- 1158 Jaime Colon, Denise DeJesus, Blanca Lopez, Brenda Lopez, MD, Louis Martos, Vivian Medina,
- 1159 Juana Olivo, Mario Peralta, Esther Pomares, MD, Jihan Quraishi, Johanna Rodriguez, Shahdad

- 1160 Saeedi, Dean Soto, Ana Taveras; and the lab researcher Celeste Eng who processed the
- 1161 biospecimens.
- 1162

1163 NHLBI TOPMed: Genetic Epidemiology Network of Arteriopathy (GENOA)

- Support for GENOA was provided by the National Heart, Lung and Blood Institute (HL054457,
- 1165 HL054464, HL054481, HL119443, and HL087660) of the National Institutes of Health. WGS for
- 1166 "NHLBI TOPMed: Genetic Epidemiology Network of Arteriopathy" (phs001345) was performed
- at the Mayo Clinic Genotyping Core, the DNA Sequencing and Gene Analysis Center at the
- 1168 University of Washington (3R01HL055673-18S1), and the Broad Institute
- 1169 (HHSN268201500014C) for their genotyping and sequencing services. We would like to thank
- 1170 the GENOA participants.

1171 NHLBI TOPMed: Genetic Epidemiology Network of Salt Sensitivity (GenSalt)

- 1172 The Genetic Epidemiology Network of Salt-Sensitivity (GenSalt) was supported by research
- 1173 grants (U01HL072507, R01HL087263, and R01HL090682) from the National Heart, Lung, and
- 1174 Blood Institute, National Institutes of Health, Bethesda, MD.

1175 NHLBI TOPMed: Genetics of Lipid Lowering Drugs and Diet Network (GOLDN)

- 1176 GOLDN biospecimens, baseline phenotype data, and intervention phenotype data were
- 1177 collected with funding from the National Heart, Lung and Blood Institute (NHLBI) grant U01
- 1178 HL072524. Whole-genome sequencing in GOLDN was funded by NHLBI grant R01 HL104135 and
- 1179 supplement R01 HL104135-04S1.

1180 NHLBI TOPMed: Heart and Vascular Health Study (HVH)

- 1181 The research reported in this article was supported by grants HL068986, HL085251, HL095080,
- and HL073410 from the National Heart, Lung, and Blood Institute.

1183 NHLBI TOPMed: Hypertension Genetic Epidemiology Network (HyperGEN)

- 1184 The HyperGEN Study is part of the National Heart, Lung, and Blood Institute (NHLBI) Family
- Blood Pressure Program; collection of the data represented here was supported by grants U01
- 1186 HL054472 (MN Lab), U01 HL054473 (DCC), U01 HL054495 (AL FC), and U01 HL054509 (NC FC).
- 1187 The HyperGEN: Genetics of Left Ventricular Hypertrophy Study was supported by NHLBI grant
- 1188 R01 HL055673 with whole-genome sequencing made possible by supplement -18S1.

1189 NHLBI TOPMed: The Jackson Heart Study

- 1190 The Jackson Heart Study (JHS) is supported and conducted in collaboration with Jackson State
- 1191 University (HHSN268201800013I), Tougaloo College (HHSN268201800014I), the Mississippi
- 1192 State Department of Health (HHSN268201800015I/HHSN26800001) and the University of
- 1193 Mississippi Medical Center (HHSN268201800010I, HHSN268201800011I and

- 1194 HHSN268201800012I) contracts from the National Heart, Lung, and Blood Institute (NHLBI) and
- the National Institute for Minority Health and Health Disparities (NIMHD). The authors also
- 1196 wish to thank the staffs and participants of the JHS.

1197 NHLBI TOPMed: Multi-Ethnic Study of Atherosclerosis

- 1198 MESA and the MESA SHARe projects are conducted and supported by the National Heart, Lung,
- and Blood Institute (NHLBI) in collaboration with MESA investigators. Support for MESA is
- 1200 provided by contracts 75N92020D00001, HHSN268201500003I, N01-HC-95159,
- 1201 75N92020D00005, N01-HC-95160, 75N92020D00002, N01-HC-95161, 75N92020D00003, N01-
- 1202 HC-95162, 75N92020D00006, N01-HC-95163, 75N92020D00004, N01-HC-95164,
- 1203 75N92020D00007, N01-HC-95165, N01-HC-95166, N01-HC-95167, N01-HC-95168, N01-HC-
- 1204 95169, UL1-TR-000040, UL1-TR-001079, and UL1-TR-001420. Also supported by the National
- 1205 Center for Advancing Translational Sciences, CTSI grant UL1TR001881, and the National
- 1206 Institute of Diabetes and Digestive and Kidney Disease Diabetes Research Center (DRC) grant
- 1207 DK063491 to the Southern California Diabetes Endocrinology Research Center.

1208 NHLBI TOPMed: Whole Genome Sequencing of Venous Thromboembolism (WGS of VTE)

1209 Funded in part by grants from the National Institutes of Health, National Heart, Lung, and Blood

1210 Institute (HL66216 and HL83141) and the National Human Genome Research Institute

1211 (HG04735).

1212 NHLBI TOPMed: MGH Atrial Fibrillation Study

- 1213 This work was supported by the Fondation Leducq (14CVD01), and by grants from the National
- 1214 Institutes of Health to Dr. Ellinor (1RO1HL092577, R01HL128914, K24HL105780). This work was
- also supported by a grant from the American Heart Association to Dr. Ellinor
- 1216 (18SFRN34110082). Dr. Lubitz is supported by NIH grant 1R01HL139731 and AHA
- 1217 **18SFRN34250007**.

1218 NHLBI TOPMed: Partners HealthCare Biobank

- 1219 We thank the Broad Institute for generating high-quality sequence data supported by the NHLBI
- 1220 grant 3R01HL092577-06S1 to Dr. Patrick Ellinor. The datasets used in this manuscript were
- 1221 obtained from dbGaP at http://www.ncbi.nlm.nih.gov/gap through dbGaP accession number
- 1222 phs001024.

1223 NHLBI TOPMed: Study of African Americans, Asthma, Genes and Environment (SAGE)

- 1224 The Study of African Americans, Asthma, Genes and Environments (SAGE) was supported by the
- 1225 National Heart, Lung, and Blood Institute of the National Institute of Health (NIH) grants
- 1226 R01HL117004 and X01HL134589; study enrollment supported by the Sandler Family
- 1227 Foundation, the American Asthma Foundation, the RWJF Amos Medical Faculty Development
- 1228 Program, Harry Wm. and Diana V. Hind Distinguished Professor in Pharmaceutical Sciences II.

- 1229 The SAGE study collaborators include Harold J. Farber, Texas Children's Hospital; Emerita
- 1230 Brigino-Buenaventura, Kaiser Permanente; Michael A. LeNoir, Bay Area Pediatrics; Kelley
- 1231 Meade, UCSF Benioff Children's Hospital, Oakland; Luisa N. Borrell, City University of New York;
- 1232 Adam Davis, UCSF Benioff Children's Hospital, Oakland and Fred Lurmann, Sonoma
- 1233 Technologies, Inc.
- 1234 The authors acknowledge the families and patients for their participation and thank the
- numerous health care providers and community clinics for their support and participation in
- 1236 SAGE. In particular, the authors thank study coordinator Sandra Salazar; the recruiters who
- 1237 obtained the data: Lisa Caine, Elizabeth Castellanos, Brenda Lopez, MD, Shahdad Saeedi; and
- 1238 the lab researcher Celeste Eng who processed the biospecimens.
- 1239 E.G.B was supported by National Heart, Lung, and Blood Institute (NHLBI): U01HL138626,
- 1240 R01HL117004, R01HL128439, R01HL135156, X01HL134589, R01HL141992, R01HL141845; the
- 1241 National Human Genome Research Institute (NHGRI): U01HG009080; the National Institute of
- 1242 Environmental Health Sciences (NIEHS): R01ES015794, R21ES24844; the National Institute on
- 1243 Minority Health and Health Disparities (NIMHD): P60MD006902, R01MD010443,
- 1244 RL5GM118984,R56MD013312; the Eunice Kennedy Shriver National Institute of Child Health
- 1245 and Human Development (NICHD): R01HD085993; and the Tobacco-Related Disease Research
- 1246 Program (TRDRP): 24RT-0025 and 27IR-0030.

1247 NHLBI TOPMed: San Antonio Family Heart Study (WGS)

- 1248 Collection of the San Antonio Family Study data was supported in part by National Institutes of
- 1249 Health (NIH) grants R01 HL045522, MH078143, MH078111 and MH083824; and whole genome
- sequencing of SAFS subjects was supported by U01 DK085524 and R01 HL113323. We are very
- 1251 grateful to the participants of the San Antonio Family Study for their continued involvement in
- 1252 our research programs.

1253 NHLBI TOPMed: The Samoan Obesity, Lifestyle and Genetic Adaptations Study (OLaGA) Group

- 1254 Financial support for the Samoan Obesity, Lifestyle and Genetic Adaptations Study (OLaGA)
- 1255 Group comes from the U.S. National Institutes of Health Grant R01-HL093093 and R01-
- 1256 HL133040. We acknowledge the assistance of the Samoa Ministry of Health and the Samoa
- 1257 Bureau of Statistics for their guidance and support in the conduct of this study. We thank the
- local village officials for their help and the participants for their generosity. The following
- 1259 publication describes the origin of the dataset: Hawley NL, Minster RL, Weeks DE, Viali S,
- 1260 Reupena MS, Sun G, Cheng H, Deka R, McGarvey ST. Prevalence of Adiposity and Associated
- 1261 Cardiometabolic Risk Factors in the Samoan Genome-Wide Association Study. Am J Human Biol
- 1262 2014. 26: 491-501. DOI: 10.1002/jhb.22553. PMID: 24799123.
- Our study name: 'The Samoan Obesity, Lifestyle and Genetic Adaptations Study (OLaGA)Group'.

Ranjan Deka, Department of Environmental and Public Health Sciences, College of Medicine, University of Cincinnati, Cincinnati, OH 45267-0056. email: dekar@uc.edu.

- 1267 Nicola L Hawley, Department of Epidemiology (Chronic Disease), School of Public Health, Yale
- 1268 University, New Haven, CT 06520-0834. email: <u>nicola.hawley@yale.edu</u>.
- 1269 Stephen T McGarvey, International Health Institute, Department of Epidemiology, School of
- 1270 Public Health, and Department of Anthropology, Brown University. 02912. email:
- 1271 <u>stephen mcgarvey@brown.edu</u>.
- 1272 Ryan L Minster, Department of Human Genetics and Department of Biostatistics, University of
- 1273 Pittsburgh, Pittsburgh, PA 15261. email: <u>rminster@pitt.edu</u>.
- 1274 Take Naseri, Ministry of Health, Government of Samoa, Apia, Samoa. Email:
- 1275 <u>taken@health.gov.ws</u>.
- Muagututi'a Sefuiva Reupena, Lutia I Puava Ae Mapu I Fagalele, Apia, Samoa. Email:
 <u>smuagututia51@gmail.com</u>.
- 1278 Daniel E Weeks, Department of Human Genetics and Department of Biostatistics, University of
- 1279 Pittsburgh, Pittsburgh, PA 15261. email: <u>weeks@pitt.edu</u>.
- 1280 NHLBI TOPMed: The Vanderbilt AF Ablation Registry
- 1281 The research reported in this article was supported by grants from the American Heart
- Association to Dr. Shoemaker (11CRP742009), Dr. Darbar (EIA 0940116N), and grants from the
- 1283 National Institutes of Health (NIH) to Dr. Darbar (R01 HL092217), and Dr. Roden (U19 HL65962,
- and UL1 RR024975). The project was also supported by a CTSA award (UL1 TR00045) from the
- 1285 National Center for Advancing Translational Sciences. Its contents are solely the responsibility
- 1286 of the authors and do not necessarily represent the official views of the National Center for
- 1287 Advancing Translational Sciences or the NIH.

1288 NHLBI TOPMed: The Vanderbilt Atrial Fibrillation Registry

- 1289 The research reported in this article was supported by grants from the American Heart
- Association to Dr. Darbar (EIA 0940116N), and grants from the National Institutes of Health
- 1291 (NIH) to Dr. Darbar (HL092217), and Dr. Roden (U19 HL65962, and UL1 RR024975). This project
- 1292 was also supported by CTSA award (UL1TR000445) from the National Center for Advancing
- 1293 Translational Sciences. Its contents are solely the responsibility of the authors and do not
- 1294 necessarily represent the official views of the National Center for Advancing Translational
- 1295 Sciences of the NIH.

1296 NHLBI TOPMed: Novel Risk Factors for the Development of Atrial Fibrillation in Women

- 1297 The Women's Genome Health Study (WGHS) is supported by HL 043851 and HL099355 from
- 1298 the National Heart, Lung, and Blood Institute and CA 047988 from the National Cancer Institute,
- 1299 the Donald W. Reynolds Foundation with collaborative scientific support and funding for
- 1300 genotyping provided by Amgen. AF endpoint confirmation was supported by HL-093613 and a
- 1301 grant from the Harris Family Foundation and Watkin's Foundation.

1302 NHLBI TOPMed: Women's Health Initiative (WHI)

1303 The WHI program is funded by the National Heart, Lung, and Blood Institute, National Institutes

1304 of Health, U.S. Department of Health and Human Services through contracts

1305 HHSN268201600018C, HHSN268201600001C, HHSN268201600002C, HHSN268201600003C,

1306 and HHSN268201600004C.

1307 NHLBI TOPMed: GeneSTAR (Genetic Study of Atherosclerosis Risk)

1308 The Johns Hopkins Genetic Study of Atherosclerosis Risk (GeneSTAR) was supported by grants

1309 from the National Institutes of Health through the National Heart, Lung, and Blood Institute

1310 (U01HL72518, HL087698, HL112064) and by a grant from the National Center for Research

1311 Resources (M01-RR000052) to the Johns Hopkins General Clinical Research Center. We would

1312 like to thank the participants and families of GeneSTAR and our dedicated staff for all their

1313 sacrifices.

1314 NHLBI TOPMed: Genetics of Sarcoidosis in African Americans (Sarcoidosis)

1315 National Institutes of Health (R01HL113326, P30 GM110766-01)