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Abstract12

Genetic correlations between traits can strongly impact evolutionary responses to13

selection, and may thus impose constraints on adaptation. Theoretical and empirical14

work has made it clear that, without strong linkage, genetic correlations at evolutionary15

equilibrium result from an interplay of correlated pleiotropic effects of mutations, and16

correlational selection favoring combinations of trait values. However, it is not entirely17

clear how the strength of stabilizing selection influences this compromise between muta-18

tion and selection effects on genetic correlations. Here, we show that the answer to this19

question crucially depends on the intensity of genetic drift. In large, effectively infinite20

populations, genetic correlations are unaffected by the strength of selection, regardless21

of whether the genetic architecture involves common small-effect mutations (Gaussian22

regime), or rare large-effect mutations (House-of-Cards regime). In contrast in finite23

populations, the strength of selection does affect genetic correlations, by shifting the24

balance from drift-dominated to selection-dominated evolutionary dynamics. The tran-25

sition between these domains depends on mutation parameters to some extent, but with26

a similar dependence of genetic correlation on the strength of selection. Our results are27

particularly relevant for understanding how senescence shapes patterns of genetic cor-28

relations across ages, and genetic constraints on adaptation during colonization of novel29

habitats.30
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Introduction31

Adaptation is inherently a multidimensional problem. Organisms live in complex environ-32

ments composed of multiple niche axes (Hutchinson, 1957), which exert natural selection33

on phenotypes composed of multiple traits that get integrated during development (Fisher,34

1930). This complexity can limit the process of adaptive evolution. First, the mere fact that35

multiple traits are under selection can slow down adaptation, which has been described as36

the cost of complexity (Fisher, 1930; Orr, 2000). And second, genetic correlations between37

traits can constrain the response to selection for any of these traits, thereby limiting the en-38

suing increase in fitness by adaptive evolution (Hansen and Houle, 2008; Walsh and Blows,39

2009; Lande, 1979; Chevin, 2013; Agrawal and Stinchcombe, 2009; Connallon and Hall, 2018;40

Etterson and Shaw, 2001). The evolutionary quantitative genetics theory underlying these41

predictions (Lande, 1979) was soon followed by a related formalism for measuring selection42

on correlated characters (Lande and Arnold, 1983; Lande, 1979). This has fostered much43

interest in the last decades for measuring patterns of genetic correlations among traits, in44

order to quantify constraints on adaptation (reviewed in Agrawal and Stinchcombe, 2009).45

Such constraints can also be interpreted geometrically (Walsh and Blows, 2009), as genetic46

correlations can influence the major axis of genetic variation across multiple traits, orienting47

evolution along lines of least resistance (Schluter, 1996).48

Beyond quantifying the consequences of genetic correlations on rates on adaptation, un-49

derstanding what shapes constraints on adaptation ultimately requires investigating the50

factors that govern the evolution of the G matrix, which includes all the additive genetic51
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variances of traits and covariances among traits (Lande, 1979). This has been a topic of52

intense research, both theoretically and empirically. Theoretical work has made it clear that53

genetic correlations evolve in response to (i) correlated pleiotropic mutation effects on traits,54

and (ii) correlational selection favoring combinations of trait values between pairs of traits55

(Lande, 1980; Turelli, 1985). Random genetic drift may also play an important role (Jones56

et al., 2003), but this was mostly investigated through individual-based simulations, and few57

analytical results exist to guide intuition in that respect. In addition, patterns of environ-58

mental change (Jones et al., 2004, 2012) and epistatic interactions among loci (Jones et al.,59

2014) can also influence the shape of the G matrix and evolution of genetic correlation, but60

we will not address them here. On the empirical side, it was recently demonstrated that61

the genetic divergence of multiple traits across several Drosophila species is aligned with the62

major axis of both the G matrix of additive genetic variation within species, and the M63

matrix of mutation effects on these traits (Houle et al., 2017). Natural selection was not64

measured in that study, but another study on the same set of traits has demonstrated that65

their genetic correlations can evolve in response to experimental patterns of correlational66

selection (Bolstad et al., 2015).67

Since genetic correlations result from a compromise between mutational correlations and68

correlational selection, we may wonder: how do they change as the strength of selection69

varies? And more generally: how does the overall shape of the G matrix change as a fitness70

peak becomes broader (thus causing weaker selection), or narrower (stronger selection),71

while keeping the same overall shape (as illustrated in Fig. 1a)? This simple question has72
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received surprisingly little attention, despite its general importance in evolutionary biology.73

In particular, it bears on our understanding of the evolution of senescence by mutation74

accumulation, whereby relaxed selection on later age classes allow for accumulation of more75

genetic variance of traits (Charlesworth and Hughes, 1996). A multivariate extension of this76

argument might suggest that the G matrix becomes more similar to the mutation M matrix77

in older ages, because they undergo relaxed selection. However, the premises that underlie78

this argument have yet to be explored more thoroughly.79

Here, we investigate theoretically how the overall strength of selection influences evolution80

of genetic correlations, and the shape and orientation of the G matrix. Using analytical81

results and individual based simulations, we show that the relative importance of mutation82

vs selection in shaping the G matrix critically depends on random genetic drift.83

Methods84

Model85

As in standard quantitative genetic models, we assume that the multivariate phenotype z can86

be partitioned into a breeding value determined by the genotype, plus a residual component87

of variation (often described as the environmental component), which is normally distributed88

with mean 0 and covariance matrix E. In each generation, mutations occur with probability µ89

at each allele of n diploid loci, such that the total mutation rate is 2nµ. Mutation increments90

the phenotypic value at the mutated allele by an effect that is unbiased (does not change the91
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average breeding value), but can change the genetic (co)variances between traits. Specifically,92

we assume multivariate normally distributed mutation effects α, with mean 0 and the same93

covariance matrix M at each locus, which we parameterize (for two traits) as94

M = VαMρ

Mρ =

 1 ρm
√
φm

ρm
√
φm φm

 .

(1)

The parameter Vα is the variance of mutation effects on trait 1 (a scalar), φm is the ratio95

of mutational variances between traits 2 and 1, and ρm is the mutational correlation. When96

φm = 1 the two traits have the same mutational variance, and Mρ is a mutational correla-97

tion matrix. The multivariate phenotype is under stabilizing selection towards an optimum98

phenotype θ, which we assume constant for simplicity. This is modeled as classically by99

letting the fitness of individuals with multivariate phenotype z (relative to the fitness of the100

optimum phenotype) be101

W (z) = exp

(
−(z− θ)TΩ−1(z− θ)

2

)
(2)

where the matrix Ω determines the breadth and orientation of the fitness peak. Averaging102

over the distribution of residual phenotypic variation, the fitness function on breeding values103

x (relative to the fitness of the optimum breeding value), which determines evolution of the104

G matrix, is105

W̃ (z) = exp

(
−(x− θ)TV−1(x− θ)

2

)
(3)

where V = Ω + E is the stabilizing selection matrix. Note that because of residual non-106

heritable phenotypic variation, the absolute fitness of individuals with a given breeding107
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value x is actually reduced, by a factor
√
det(V−1Ω) (where det denotes the determinant108

of a matrix), relative to that of individuals with the same realized phenotype z = x. This109

amounts to reducing the effective number of parents in the population: even in a Wright-110

Fisher population of size N , the effective size that matters for random genetic drift (change111

in the distribution of breeding values) is in fact Ne =
√
det(V−1Ω)N (and in a non-Wright-112

Fisher population, N should be replaced by the effective size operating at the level of the113

expressed phenotypic trait). In other words, selection on non-heritable phenotypic variation114

increases the intensity of genetic drift on heritable phenotypic variation. This fact, which115

was largely overlooked in previous studies on this topic (e.g. Lande, 1976, 1979; Burger et al.,116

1989), becomes important under strong selection and low population size.117

The selection matrix V can be written similarly to M as118

V = VsVρ

Vρ =

 1 ρs
√
φs

ρs
√
φs φs

 .

(4)

The scalar Vs determines the width of the fitness peak on breeding values, and is inversely119

proportional to the strength of stabilizing selection, while φs controls the ratio of strengths120

of selection between the two traits. The selective correlation ρs determines what genetic cor-121

relation is favored by natural selection. Figure 1a illustrates how these parameters translate122

into the shapes of the mutation and selection matrix.123
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Individual-based simulations124

We tested the accuracy of expected G matrix and genetic correlation at mutation-selection(-125

drift) equilibrium using individual-based, genetically explicit simulations. The traits were126

determined by n = 50 unlinked diploid loci, with alleles assumed to be fully pleitropic127

(i.e. affecting all the phenotypic traits under selection). We simulated populations of128

hermaphroditic, sexually reproducing individuals with non-overlapping generations. The129

life cycle included three steps :130

1. Computing the phenotype and fitness for each individual. For each trait, the131

phenotype was estimated by summing breeding values across all loci and alleles. A132

residual component of variation was then added for each trait, with mean 0, variance133

1, and no covariance between traits. The expected fitness of each individual was then134

computed based on their phenotypic values and the stabilizing selection matrix Ω, as135

defined by equation (2). The fitness optimum was arbitrarily set to zero.136

2. Sequential reproduction based on reproductive fitness. Two adults were drawn137

randomly with a probability equal to their expected fitness and mated to produce138

exactly one offspring. Selfing was not allowed, and being involved in a reproductive139

event did not change the probability to mate again. The sequence was repeated N140

times.141

3. Offspring production. The genotypes of offspring were produced by drawing one142

random allele from each parent at each locus, thus modelling fully unlinked loci. The143

probability that a mutation occurred a each allele of each locus was µ. Mutation had144
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additive effect on the traits, modifying the phenotypic value of the mutated allele by145

an amount drawn from a multivariate normal distribution, with means zero (unbiased146

mutation) and mutation variance-covariance matrix M.147

This life cycle, developed by Revell (2007), ensures that the population size N is constant148

and equal to the effective population size Ne in the absence of selection. Here, to account for149

the reduction in effective population size caused by selection on the residual component of150

variation (see previous section), for each required value of Ne we used N = Ne/
√
det(V−1Ω)151

as the population size in the simulations. Since all our formulas depended on the matrix V of152

selection on breeding values (eq. (3)), rather than the matrix Ω for selection on the expressed153

phenotype (eq. (2)), we parameterized simulations in terms ofV, and then transformed them154

to Ω before starting the simulation using Ω = V − E (as per eq. (3)), where E = I under155

our assumption of uncorrelated environmental effects with variance 1.156

Individual-based simulations were all run over 50000 generations. To ensure that the157

expected genetic covariance matrix Ḡ was estimated after a pseudo-equilibrium is reached158

(i.e., at stationarity), only the 30000 last iterations from the chain were used to estimate the159

mean.160
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Results161

Without drift, genetic correlations are unchanged by selection strength162

Using similar assumptions as here, Zhang and Hill (2003) showed that in an infinite pop-163

ulation, and in the limit of rare mutations of large effect (so-called House-of-Cards regime,164

HoC below; Turelli, 1984, 1985; Bulmer, 1989; Bürger, 2000; Johnson and Barton, 2005), the165

genetic correlation ρG between two traits at mutation-selection balance with weakly linked166

loci is167

ρG =
ρs
√

1− ρ2m + ρm
√

1− ρ2s√
2− (ρ2m + ρ2s) +

√
(1− ρ2s)(1− ρ2m)(φ+ 1

φ
)

(5)

where φ =
√

φm
φs

. Remarkably, this shows that genetic correlations at mutation-selection168

balance depend neither on the absolute strength of stabilizing selection V −1
s nor on the mag-169

nitude of mutational variance Vα, but instead on the ratio of strengths of stabilizing selection170

between the two traits, times the ratio of their mutation variances (summarized by the com-171

pound parameter φ). This means that narrowing the fitness peak, thereby increasing the172

strength of stabilizing selection on all traits, does not tilt the balance of genetic correlations173

ρG towards selective correlations ρs and away from mutational correlations ρm, as long as174

the overall shape of the mutation and selection matrices do not change. The same is true of175

increasing the mutational variance and covariances of all traits by the same factor. In the176

special case where φ = 1, such that the the ratio of strengths of stabilizing selection on the177

two traits equals the ratio of their mutational variances, equation (5) further simplifies as178

ρG,φ=1 =
ρs
√

1− ρ2m + ρm
√

1− ρ2s√
1− ρ2m +

√
1− ρ2s

(6)

10

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 25, 2020. ; https://doi.org/10.1101/2020.06.24.169482doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.24.169482
http://creativecommons.org/licenses/by-nc-nd/4.0/


which only depends on mutational and selective correlations.179

This result was obtained under the HoC regime, which is known to have different prop-180

erties from a regime of common mutations of weak effect, known as the Gaussian regime181

(Kimura, 1965; Lande, 1976; Bulmer, 1989; Bürger, 2000; Johnson and Barton, 2005). But182

in fact, genetic correlations also do not depend on the strength of selection under the Gaus-183

sian regime. To see this, we rewrite the equilibrium for the G matrix derived by Lande184

(1980) under the Gaussian regime, replacing V and M with their expressions in equations185

(1) and (4), to get186

G = 2n
√
µVαVs V

1
2
ρ

[
V− 1

2
ρ MρV

− 1
2

ρ

] 1
2

V
1
2
ρ . (7)

The first scalar term is the same as for the genetic variance of a single trait at mutation-187

selection balance in this regime (Kimura, 1965; Lande, 1976). The second term is a matrix188

that captures all the features of G matrix shape, including genetic correlations. Equation (7)189

shows that changing the overall strength of selection V −1
s , or the scale of mutational variance190

Vm, only magnifies or shrinks the G matrix, but does not change genetic correlations in any191

way, nor any other aspect of G matrix shape.192

Figure 1 shows examples of G matrices under variable strength of stabilizing selection193

(where the fitness peak becomes broader, and selection becomes weaker, as Vs increases,194

Fig. 1a), in the Gaussian regime. Continuous ellipses in Figure 1b represent the analytical195

prediction forG from equation (7), while dashed ellipses show results from genetically explicit196

individual-based simulations (IBM) using the same parameters, but finite population size197

Ne = 5000. The prediction that the strength of stabilizing selection does not affect the198
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orientation of the G matrix in a infinite population is already close to holding in simulations199

with Ne = 5000. The volume of the G matrix increases, but its orientation and shape200

change little as the strength of selection decreases. The resulting genetic correlation is also201

little influenced by the strength of selection in simulations with Ne = 5000 (dark blue dots202

in Figure 2b), and remains close to the expected compromise between the mutational and203

selective correlations predicted by equation (5) (black line in Figure 2b), which does not204

depend on Vs.205

Even though the Gaussian and Hoc regime have very different properties in terms of the206

maintenance of genetic variance for each trait (Turelli, 1985; Bürger, 2000), they strikingly207

lead to the same genetic correlation among traits in an infinite population. This was already208

suggested in numerical explorations by Turelli (1985), but we confirmed this here more209

extensively. In particular, when φm = φs = 1, such that the mutation and selection matrices210

are both proportional to correlation matrices (with only 1 on the diagonal), then deriving the211

genetic correlation in the Gaussian case from the G matrix in equation (7) leads to equation212

(6). In the more general case, an analytical formula also exists for the genetic correlation213

based on equation (7), but it is unwieldy. Instead of comparing Gaussian and Hoc formulas214

for genetic correlation, we drew random matrices V and M from a Wishart distribution215

(with expectation I), a natural distribution for covariance matrices, which allows variance216

and covariance terms to vary randomly. We then computed the expected G matrix under217

the Gaussian regime (from eq. (7)), from which we extracted genetic correlations, which218

we then compared to equation (5). Figure 2a shows that the genetic correlation under the219
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Gaussian regime, which assumes frequent mutations of small effects, is perfectly predicted by220

that under the House-of-Card regime, which instead assumes rare mutations of large effects.221

The blue dots in Figure 2c show genetic correlations for different values of the selection222

parameter Vs, estimated from individual-based simulations with parameters that correspond223

to the HoC regime. These correlations are very similar to those in the Gaussian regime in224

Figure 2b, and close to their expectation in eq. (5).225

In short, genetic correlations at mutation-selection balance do not change with the overall226

strength of stabilizing selection, and this conclusion holds generally across a broad range of227

mutation and selection parameters, spanning different evolutionary regimes. So should we228

then conclude that correlational selection always has the same influence on genetic correla-229

tions, and never becomes dominated by the influence of mutational correlations, even as the230

strength of selection becomes vanishingly small?231

Drift controls the balance between mutation and selection’s effects232

on genetic correlations233

In fact, genetic correlations may indeed become more similar to mutational correlations234

as the strength of selection decreases, but only in the presence of random genetic drift.235

In a population with finite effective size Ne, random genetic drift causes a reduction in236

heterozygosity, and thus in additive genetic variance, by a proportion 2Ne per generation.237

Accounting for this effect, we found that the expected G matrix at mutation-selection-drift238

equilibrium in the Gaussian regime is (Appendix A1)239
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G = 2n
√
µVαVs V

1
2
ρ

[(
κI2 + V− 1

2
ρ MρV

− 1
2

ρ

) 1
2 −
√
κI
]
V

1
2
ρ

κ =
Vs

(4Ne)2µVα

(8)

whereG denotes an expectation over the stochastic evolutionary process (because of random240

genetic drift). As in equation (7), the first scalar term in equation (8) is the same as for the241

genetic variance of a single trait at mutation-selection balance in this regime (Kimura, 1965;242

Lande, 1976), while the matrix product determinesGmatrix shape. Equation (8) shows that243

a single compound scalar parameter, κ = Vs/[(4Ne)
2µVα], determines how the orientation and244

shape of the expected G matrix change under mutation, selection, and drift (since elements245

of Vρ and Mρ scale on the order 1 by construction). When Vs � (4Ne)
2µVα (κ very small),246

the mutation rate and mean selection coefficient of new mutations are both large relative to247

the intensity of drift (proportional to 1/Ne), so genetic correlations are mostly determined248

by mutation and selection, with little influence of genetic drift. In the limit κ→ 0, equation249

(8) tends to the mutation-selection balance in equation (7). In contrast, drift dominates250

when Vs � (4Ne)
2µVα (κ very large), and the expected G matrix then becomes increasingly251

similar to the mutation matrix M. This can be seen when comparing G matrices in panels252

b to e in Figure 1, as well as genetic correlations for different darknesses of blue in Figure253

2b. Furthermore for a given Ne, the genetic correlation and orientation of the G matrix254

become more similar to those of mutation as the strength of selection decreases (increasing255

Vs, lighter ellipses in Fig. 1b-e, and rightmost values in Fig. 2b).256

We have shown above that the type of mutation-selection regime (HoC vs Gaussian) does257

not influence genetic correlations in an infinite population (Fig. 2a), but is it also the case258
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in a finite population with substantial genetic drift? For the HoC regime, the expected G in259

an infinite population is proportional to the expectation of ααt

αtV−1
s α

over the distribution of260

mutation effects α (Zhang and Hill, 2003, eq. 2). In a finite population, accounting for the261

reduction in heterozygosity caused by both stabilizing selection and random genetic drift,262

this approximation becomes (adapted from Burger et al., 1989, "stochastic house of cards"263

regime)264

G = 4Nenµ E

[
ααt

1 +NeαtV−1
s α

]
= 4nµVsE

[
αρα

t
ρ

Vs/(NeVα) + αt
ρV

−1
ρ αρ

]
, (9)

where E[] denotes an expectation over the distribution of mutation effects, and αρ = α/
√
Vα265

are scaled mutation effects, with covariance matrix Mρ as per equation (1). Analogously to266

equations (7) and (8), the first scalar term in equation (9) equals the equilibrium genetic267

variance for a single trait in the HoC regime, while the expectation includes all the parameters268

that determine G matrix shape. Since elements of Vρ and Mρ scale on the order 1 (and269

hence so do αtV−1
s α and elements of ααt), the scalar parameter Vs/(NeVα) alone determines270

whether the G matrix is more influenced by mutation, selection, or drift. When Vs � NeVα,271

drift can be neglected and the G matrix has the same shape as in the HoC equilibrium; in272

particular, the genetic correlation between two traits is given by equation (5), and is thus273

the same as in the Gaussian regime. In contrast when Vs � NeVα, drift dominate and the274

G matrix is proportional to M, with correlation ρm.275

The stochastic house of cards approximation to the genetic correlation (eq. 9) is some-276

what less accurate at predicting results from individual-based simulations than our stochastic277

Gaussian approximation in the corresponding regime (eq. 9, Fig. 2c, Fig. S2). However, it278
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does capture a similar pattern, where the genetic correlation tends more rapidly towards the279

mutational correlational with decreasing strength of selection when the effective population280

size is smaller.281

In summary, accounting for genetic drift in finite populations, the genetic correlation282

spans the same range in all mutation regimes, ranging from the mutational correlation ρm283

when drift dominates, to the compromise between mutation and selection in equation (5)284

when selection dominates. The mutation regime (Gaussian vs HoC) only determines how285

the realized genetic correlation interpolates between these two limit cases. In particular, the286

selection strength V −1
s at which genetic correlations transition from being drift-dominated to287

selection-dominated is multiplied by (16Neµ)−1 in the Gaussian regime relative to the HoC288

regime (eqs.(7) and (9)). When 16Neµ < 1, this means that stronger selection is required to289

overcome the influence of drift when mutations are abundant but with small effects (Gaussian290

regime) as compared to rare but with larger effects (and vice versa when 16Neµ > 1). But291

beyond these changes in the quantitative dependence on the strength of selection (which292

relate to previous findings for a single trait, Hermisson and Wagner, 2004; Bürger, 2000),293

the qualitative relationship between genetic correlations and the strength of selection given294

the effective population size remains the same across mutation regimes (Fig. 2b-c).295

Shape, orientation, and correlation296

Changes in the relative importance of selection versus genetic drift can influence the shape297

of the G matrix (determined by its eigenvalues), its orientation (determined by its eigenvec-298
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tors), or both. Any of these effects can translate into changes in genetic correlations, since299

the latter are only a summary of G, which depend on both variances and covariances (and300

on both eigenvectors and eigenvalues). In particular, genetic correlations may change despite301

little change in orientation, and no rotation of the axes of the G matrix. This is illustrated302

in Fig. 3, which focuses on the special case where V and M have the same eigenvectors.303

When this holds, the eigenvectors of G are identical to those of V and M, as demonstrated304

in the Appendix A2. This means that the G matrix does not rotate when changing the305

relative importance of drift versus selection; all that changes are the amounts of variation306

(eigenvalues) along the different axes (eigenvectors). Nevertheless, the genetic correlation307

still changes according to eq. (9) in this example. For instance, when one eigenvalues be-308

comes dominant, the G matrix becomes increasingly elongated along one of the eigenvectors309

(Fig. 3a, Fig. S1), which translates into larger values of genetic correlations (Fig. 3b). In the310

more general case where V and M have different eigenvectors, then changing the relative311

importance of selection vs drift causes both elongation and rotation of G (changes in shape312

and orientation), but without necessarily causing larger changes in genetic correlations.313

Discussion and Conclusion314

To what extent are genetic correlations between traits shaped by natural selection, or im-315

posed by mutation? This question, which in essence traces back to the debate between316

mutationists and selectionists in the early days of genetics (recently revived in the light317

of molecular evidence, Nei, 2013), has received considerable attention from evolutionary318
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biologists. In particular, evolutionary quantitative genetic theory has made it clear that,319

when phenotypic (co)variances arise from an equilibrium between mutation and stabilizing320

selection, then genetic correlations are a compromise between the correlation of pleitropic321

mutation effects on traits, and correlational selection favoring combinations of traits (Lande,322

1980; Lande and Arnold, 1983; Jones et al., 2003; Turelli, 1985). The latter can be related323

to the orientation and elongation of the fitness landscape relating the traits to fitness (as324

illustrated in Fig. 1a). However beyond this shape of the fitness landscape, how does the325

overall strength of selection (size of the ellipses in Fig. 1a) influence genetic correlations be-326

tween traits? As selection becomes weaker, the fitness peak becomes flatter, with a broader327

range of phenotypes having equivalent fitness, so does that reduce the influence of selection328

on genetic correlations? Perhaps surprisingly, the answer is no in an effectively infinite pop-329

ulation, which in our simulations was already close to holding for a moderate population size330

of Ne = 5000 individuals. Strikingly, the same compromise between mutation and selection331

effects on genetic correlations holds regardless of the strength of selection, and regardless332

of whether genetic (co)variances are caused by common mutations of small effect (Gaus-333

sian regime, Kimura, 1965; Lande, 1980), or rare mutations of large effect (House-of-cards334

regime, Turelli, 1984, 1985).335

However, the strength of selection starts to matter as the effective populations size Ne336

becomes smaller, as random genetic drift plays a larger role. The reasons is that, for a337

given Ne the strength of selection shifts the balance between drift-dominated and selection-338

dominated evolutionary dynamics. Since genetic correlations equal mutational correlations339
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ρm in the former domain, but a compromise between mutation and selection (eq. (5)) in the340

latter, overall mutation has a stronger influence on genetic correlations than selection (Fig.341

2). Previous analyses of G matrix evolution under mutation and correlational selection in342

finite populations has mostly focused on the effect of drift on the stability of the G matrix343

over evolutionary time (Jones et al., 2003), and largely overlooked the influence of drift on344

the expected G. In fact, this influence can be substantial, as shown here; in particular, it345

determines how the strength of selection affects genetic correlations.346

Genetic correlations are often described as a constraint on adaptation (Etterson and347

Shaw, 2001; Agrawal and Stinchcombe, 2009; Connallon and Hall, 2018), but this need not348

be true, depending on how the orientation of the G matrix relates to that of directional349

or fluctuating selection in a changing environment (Gomulkiewicz and Houle, 2009; Chevin,350

2013; Duputié et al., 2012). In a constant environment as assumed here, the extent to which351

genetic correlations constrain adaptation depends on how the G matrix aligns with the352

matrix of correlational selection, represented in Figure 1a. Our analytical and simulations353

results show that genetic correlations, and the overallG matrix shape, differ more from those354

favored by correlational selection at lower effective population sizes. Since G becomes more355

similar to the mutation matrix M in this case, this could be interpreted as a mutational356

constraint on evolution (Nei, 2013). However, this alignment with mutation effects occurs357

because of a prevalence of genetic drift, which is in fact the main constraint on adaptation in358

this case, also causing temporal fluctuations in the mean phenotype (Lande, 1979) and the359

G matrix itself (Jones et al., 2003), and apparent fluctuating selection (Chevin and Haller,360
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2014).361

Our analytical results for genetic correlations and the G matrix at mutation-selection-362

drift balance in the Gaussian regime (eq. (8)) are valid under frequent mutation (Kimura,363

1965; Lande, 1980; Bürger, 2000), and we accordingly used high mutation rates in the corre-364

sponding simulations. However, note that the nature of loci is not explicit in this model, but365

in any case these do not represent single nucleotides or even genes. Rather, they represent366

large stretches of effectively non-recombining portions of the genome, which may influence367

the traits by mutation. Since free recombination is also assumed across these loci (consistent368

with most previous studies), the latter can even be thought of as small chromosomes, for369

which mutation rates of the order to 10−2 seem reasonable. In addition, we also present370

theoretical and simulation results at much lower mutation rates (House-of-Cards regime),371

which lead to similar findings. We assumed universal pleiotropy, whereby all loci have the372

same distribution of mutation effects on all traits. An interesting extension may be to allow373

for modular mutation effects, or restricted pleiotropy, whereby each locus can only modify374

a subset of traits by mutations (Chebib and Guillaume, 2017; Chevin et al., 2010), to inves-375

tigate whether the mutation regime has a stronger effect on mutation correlations in these376

scenarios. In terms of selection, we considered a fitness peak with an optimum, in line with377

most theory on the topic, but genetic correlations can also be favored by other forms of se-378

lection, notably disruptive selection (Bolstad et al., 2015), or negative frequency dependence379

caused by individual interactions (Mullon and Lehmann, 2019), which may lead to different380

dependencies of genetic correlations on the strength of selection and genetic drift.381
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Our results lead to some predictions about how genetic correlations should change along382

lifetime. For traits with ontogenic trajectories, or traits involved in senescence, the pheno-383

typic value at different ages can be considered as different character states, partly controlled384

by different loci. This underlies both the mutation accumulation theory of senescence ap-385

plied to quantitative traits (Charlesworth and Hughes, 1996), and the theory of evolution of386

growth trajectories (Kirkpatrick and Lofsvold, 1992). If the shape of correlational selection387

does not change with age, then we only expect a reduced strength of selection in older age,388

because these ages have a smaller reproductive value and hence contribute less to fitness389

(Lande, 1982; Charlesworth, 1993). We would then predict that genetic correlations should390

lean more towards mutational correlations in older ages, but only when the effective popula-391

tion size is small, while genetic correlations should remain largely unchanged along lifetime392

in large populations. This pattern can be investigated by measuring genetic correlations393

among primary traits (not direct components of fitness) across ages, for different species394

that differ in effective population size (as estimated by e.g. their molecular polymorphism395

level).396

More broadly speaking, we expect mutational correlations to impose more constraints on397

evolutionary trajectories in situations where the population size has been reduced, such as398

bottlenecks during colonization of novel habitats. Since these situations are also likely to399

be associated with strong directional selection, this should represent a double challenge for400

colonizing species. Nevertheless, the extent to which mutational correlations per se impede401

responses to directional selection is unclear. Even when genetic correlations are largely402
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shaped by correlational selection (rather than just by mutation), they may still constrain403

adaptation, if directional selection in a novel or changing environment does not align with404

the shape of the fitness peak (Chevin, 2013). In any case, our clear delineation of when, and405

how much, the strength of selection influences genetic correlations, should provide guidelines406

for analyzing and interpreting genetic constraints on adaptation in the wild.407

22

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 25, 2020. ; https://doi.org/10.1101/2020.06.24.169482doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.24.169482
http://creativecommons.org/licenses/by-nc-nd/4.0/


Acknowledgments408

SC wish to thank Thomas Hansen, David Houle and Christophe Pélabon for discussions on409

preliminary results. The authors declare no conflicts of interest. This work was supported410

by the European Research Council (Grant 678140-FluctEvol).411

Author Contributions412

SC and LMC conceived the study. SC developed analytical solutions for the Gaussian413

regime. LMC developed analytical solutions for the House-of-Cards regime. SC developed414

and performed individual-based simulations. SC and LMC wrote the manuscript.415

Data Accessibility416

The C++ software developed and used to perform genetically explicit individual-based sim-417

ulations will be available under GPL licence on Github after acceptance.418

23

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 25, 2020. ; https://doi.org/10.1101/2020.06.24.169482doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.24.169482
http://creativecommons.org/licenses/by-nc-nd/4.0/


References419

Agrawal, A. F. and Stinchcombe, J. R. (2009). How much do genetic covariances alter the rate420

of adaptation? Proceedings of the Royal Society B: Biological Sciences, 276(1659):1183–421

1191.422

Bolstad, G. H., Cassara, J. A., Márquez, E., Hansen, T. F., Van Der Linde, K., Houle, D.,423

and Pélabon, C. (2015). Complex constraints on allometry revealed by artificial selection424

on the wing of Drosophila melanogaster. Proceedings of the National Academy of Sciences425

of the United States of America, 112(43):13284–13289.426

Bulmer, M. G. (1989). Maintenance of genetic variability by mutation - selection balance:427

A child’s guide through the jungle. Genome, 31(2):761–767.428

Bürger, R. (2000). The mathematical theory of selection, recombination, and mutation.429

Wiley.430

Burger, R., Wagner, G. P., and Stettinger, F. (1989). How Much Heritable Variation Can be431

Maintained in Finite Populations by Mutation-Selection Balance? Evolution, 43(8):1748.432

Charlesworth, B. (1993). Natural selection on multivariate traits in age-structured popula-433

tions. Proceedings of the Royal Society B: Biological Sciences, 251(1330):47–52.434

Charlesworth, B. and Hughes, K. A. (1996). Age-specific inbreeding depression and com-435

ponents of genetic variance in relation to the evolution of senescence. Proceedings of the436

National Academy of Sciences of the United States of America, 93(12):6140–6145.437

24

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 25, 2020. ; https://doi.org/10.1101/2020.06.24.169482doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.24.169482
http://creativecommons.org/licenses/by-nc-nd/4.0/


Chebib, J. and Guillaume, F. (2017). What affects the predictability of evolutionary con-438

straints using a G-matrix? The relative effects of modular pleiotropy and mutational439

correlation. Evolution, 71(10):2298–2312.440

Chevin, L. M. (2013). Genetic constraints on adaptation to a changing environment. Evo-441

lution, 67(3):708–721.442

Chevin, L. M. and Haller, B. C. (2014). The temporal distribution of directional gradients443

under selection for an optimum. Evolution, 68(12):3381–3394.444

Chevin, L.-M., Martin, G., and Lenormand, T. (2010). Fisher’s Model and the Genomics445

of Adaptation: Restricted Pleiotropy, Heterogenous Mutation, and Parallel Evolution.446

Evolution, 64(11):3213–3231.447

Connallon, T. and Hall, M. D. (2018). Genetic constraints on adaptation: a theoretical448

primer for the genomics era. Annals of the New York Academy of Sciences, 1422(1):65–87.449

Duputié, A., Massol, F., Chuine, I., Kirkpatrick, M., and Ronce, O. (2012). How do ge-450

netic correlations affect species range shifts in a changing environment? Ecology Letters,451

15(3):251–259.452

Etterson, J. R. and Shaw, R. G. (2001). Constraint to adaptive evolution in response to453

global warming. Science, 294(5540):151–154.454

Fisher, R. A. (1930). The genetical theory of natural selection, volume 154 of Clarendon455

Press. Clarendon Press.456

25

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 25, 2020. ; https://doi.org/10.1101/2020.06.24.169482doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.24.169482
http://creativecommons.org/licenses/by-nc-nd/4.0/


Gomulkiewicz, R. and Houle, D. (2009). Demographic and genetic constraints on evolution.457

The American naturalist, 174(6):E218–29.458

Hansen, T. F. and Houle, D. (2008). Measuring and comparing evolvability and constraint459

in multivariate characters. Journal of evolutionary biology, 21(5):1201–19.460

Hermisson, J. and Wagner, G. P. (2004). The population genetic theory of hidden variation461

and genetic robustness. Genetics, 168(4):2271–2284.462

Houle, D., Bolstad, G. H., Van Der Linde, K., and Hansen, T. F. (2017). Mutation predicts463

40 million years of fly wing evolution. Nature, 548(7668):447–450.464

Hutchinson, G. E. (1957). Concluding Remarks. Cold Spring Harbor Symposia on Quanti-465

tative Biology, 22(0):415–427.466

Johnson, T. and Barton, N. (2005). Theoretical models of selection and mutation on quan-467

titative traits.468

Jones, A. G., Arnold, S. J., and Bürger, R. (2003). Stability of the G-matrix in a popula-469

tion experiencing pleiotropic mutation, stabilizing selection, and genetic drift. Evolution,470

57(8):1747–1760.471

Jones, A. G., Arnold, S. J., and Bürger, R. (2004). Evolution and stability of the G-matrix472

on a landscape with a moving optimum. Evolution, 58:1639–1654.473

Jones, A. G., Bürger, R., and Arnold, S. J. (2014). Epistasis and natural selection shape the474

mutational architecture of complex traits. Nature Communications, 5:ncomms4709.475

26

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 25, 2020. ; https://doi.org/10.1101/2020.06.24.169482doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.24.169482
http://creativecommons.org/licenses/by-nc-nd/4.0/


Jones, A. G., Bürger, R., Arnold, S. J., Hohenlohe, P. A., and Uyeda, J. C. (2012). The476

effects of stochastic and episodic movement of the optimum on the evolution of the G-477

matrix and the response of the trait mean to selection. Journal of Evolutionary Biology,478

25(11):2210–2231.479

Kimura, M. (1965). A stochastic model concerning the maintenance of genetic variability480

in quantitative characters. Proceedings of the National Academy of Sciences of the United481

States of America, 54(3):731–736.482

Kirkpatrick, M. and Lofsvold, D. (1992). Measuring Selection and Constraint in the Evolu-483

tion of Growth. Evolution, 46(4):954–971.484

Lande, R. (1976). Natural Selection and Random Genetic Drift in Phenotypic Evolution.485

Evolution, 30(2):314–334.486

Lande, R. (1979). Quantitative genetic analysis of multivariate evolution, applied to brain:487

body size allometry. Evolution, 33:402–416.488

Lande, R. (1980). The Genetic Covariance between Characters Maintained by Pleiotropic489

Mutations. Genetics, 94(1):203–15.490

Lande, R. (1982). A Quantitative Genetic Theory of Life History Evolution. Ecology,491

63(3):607–615.492

Lande, R. and Arnold, S. J. (1983). The Measurement of Selection on Correlated Characters.493

Evolution, 37(6):1210–1226.494

27

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 25, 2020. ; https://doi.org/10.1101/2020.06.24.169482doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.24.169482
http://creativecommons.org/licenses/by-nc-nd/4.0/


Mullon, C. and Lehmann, L. (2019). An evolutionary quantitative genetics model for phe-495

notypic (co)variances under limited dispersal, with an application to socially synergistic496

traits. Evolution, 73(9):1695–1728.497

Nei, M. (2013). Mutation-driven evolution. Oxford University Press.498

Orr, H. A. (2000). Adaptation and the cost of complexity. Evolution, 54(1):13–20.499

Revell, L. J. (2007). The G matrix under fluctuating correlational mutation and selection.500

Evolution, 61(8):1857–1872.501

Schluter, D. (1996). Adaptive Radiation Along Genetic Lines of Least Resistance. Evolution,502

50(5):1766–1774.503

Turelli, M. (1984). Heritable genetic variation via mutation-selection balance: Lerch’s zeta504

meets the abdominal bristle. Theoretical Population Biology, 25(2):138–193.505

Turelli, M. (1985). Effects of pleiotropy on predictions concerning mutation-selection balance506

for polygenic traits. Genetics, 111(1):165–195.507

Walsh, B. and Blows, M. W. (2009). Abundant Genetic Variation + Strong Selection =508

Multivariate Genetic Constraints: A Geometric View of Adaptation. Annual Review of509

Ecology, Evolution, and Systematics, 40(1):41–59.510

Zhang, X. S. and Hill, W. G. (2003). Multivariate stabilizing selection and pleiotropy in the511

maintenance of quantitative genetic variation. Evolution, 57(8):1761–1775.512

28

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 25, 2020. ; https://doi.org/10.1101/2020.06.24.169482doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.24.169482
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 1: Influence of selection strength and genetic drift on the G matrix (Gaussian

regime). (a) Orientation and shape of the mutation matrix M, and selection matrix V with

variable selection strengths. First eigenvectors are represented with colored lines. (b-e) Shape and

orientation of the G matrix as the width of the fitness peak Vs varies. Solid ellipses (along with

their first eigenvectors) represent the analytical predictions from equation (7) that neglects genetic

drift in (b), or equation (8) that accounts for genetic drift in (c-e). Dashed ellipses show the mean

estimates from IBM simulations with Ne = 5000 (b), 600 (c), 300 (d) and 150 (e). Parameters used:

n = 50, µ = 0.01, ρm = −0.7, φm = 1, Vα = 0.0025 and ρs = 0.8, φs = 2, and Vs = 5, 20, 50, 100.

29

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 25, 2020. ; https://doi.org/10.1101/2020.06.24.169482doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.24.169482
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 2: Influence of selection strength and genetic drift on genetic correlations under

different mutation regimes (a) The genetic correlation in an infinite population, at equilibrium

between selection and abundant mutations of weak effects (Gaussian approximation, from eq. (7)) is

plotted against its expectation under rare mutations of large effects (house-of-cards approximation,

eq. 5), for 500 random pairs of mutation M and selection V matrices. (b-c) The genetic correlation

is plotted against the width of the fitness peak Vs, for different effective sizes Ne. The parameters

values in (b) are the same as in Figure 1, corresponding to the Gaussian mutation regime. In (c), the

mutation parameters are instead Vα = 0.05 and µ = 0.0002, corresponding to the House-of-cards

regime. Blue points correspond to the genetic correlation simulated with individual-based models

(IBM). The black line represents the analytical expectation without drift (eq. (5)) in both cases.

The blue lines represent the analytical prediction with drift (eq. (8)) in (b), and expectations over

10000 randomly drawn mutation effects α (from eq. (9)) in (c).
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Figure 3: Influence of selection strength and genetic drift on genetic correlations in the

special case where V and M have the same eigenvectors. (a) Shape and orientation of the

G matrix as the width of the fitness peak Vs varies. In this illustrative example where Ne = 600,

the first eigenvector of the G matrix (plain lines, from gray to black) is orientated either fully along

the major axis for selection (eigenvector of V, orange line) or for mutation (eigenvector of M, green

line), depending on the selection parameter Vs. (b) The genetic correlation is plotted against the

width of the fitness peak Vs, for different effective sizes Ne as in Figure 2. Note that, although

axes of the G matrix do not rotate, the influence of selection strength and genetic drift on genetic

correlations is comparable to the general case in Figure 2. Parameters are identical to Figure 1,

except that φs = φm = 1 such that V and M have the same eigenvectors, ρm = −0.5, and the

strongest selection is for Vs = 6 instead of 5.
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A Appendix: How does the strength of selection influ-513

ence genetic correlations ?514

A.1 Steps for solving the mutation-selection-drift equilibrium515

By building on the Gaussian approximation of the continuum-of-allele model (Kimura, 1965)

and assuming infinite-sized population with non-overlapping generations, Lande (1980) de-

rived a simple expression for genetic covariance matrix equilibrium (G) selection-mutation

balance. We here extend this result to allow for random genetic drift. At equilibrium, the

production of genetic variance due to new polygenic mutations is balanced by the loss of

genetic variance to due both stabilizing selection and random drift (Lande, 1979). For a

single haploid locus we obtain :

µM = GV−1G +
1

2Ne
G

whereG denotes an expectation over the stochastic evolutionary process (because of random516

genetic drift).517

Introducing B = 1
2Ne

I and U = µM, this becomes

U = GV−1G + BG

V− 1
2UV− 1

2 = V− 1
2GV− 1

2V− 1
2GV− 1

2 + V− 1
2BGV− 1

2

By defining V− 1
2GV− 1

2 = X and V− 1
2UV− 1

2 = −C, we finally have to solve the quadratic

matrix equation :

0 = X2 + BX + C
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A quadratic matrix equation can be solved explicitly if the following requirements are met:

(i) X2 is preceded by an identity matrix, (ii) B commutes with C, and (iii) B2 − 4C has a

square root. The solution of the quadratic matrix equation is then :

X = −1

2
B +

1

2

(
B2 − 4C

) 1
2

In our case, an explicit solution for X exists. Indeed, X2 is preceded by an identity matrix,

B is a diagonal matrix and then always commute with C. Finally, as B2 and C are both

positive semi-definite then (B2 − 4C)1/2 will always have a solution. Recall that

V− 1
2GV− 1

2 = X

then

G = V
1
2XV

1
2

G = V
1
2

[
−1

2
B +

1

2

(
B2 − 4C

) 1
2

]
V

1
2

G = V
1
2

[
− 1

4Ne
I +

1

2

(
1

(2Ne)2
I2 + 4V− 1

2UV− 1
2

)
1
2

]
V

1
2

Finally by using notations (1) and (4), we obtain equation (8)518
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A.2 Constraints on the orientation and shape of the G matrix519

in the special cases where V and M matrices have the same520

eigenvectors521

A.2.1 Case without drift522

Starting from equation (7)523

G = 2n
√
µVαVs V

1
2
ρ

[
V− 1

2
ρ MρV

− 1
2

ρ

] 1
2

V
1
2
ρ

and assuming that both matrices Vρ and Mρ have the same eigenvectors Q but different524

eigenvalues, their spectral decompositions give Vρ = QΛsQ−1 and Mρ = QΛmQ−1 respec-525

tively, where Λw and Λm are diagonal matrices of eigenvalues. Then, equation (7) can be526

simplified to527

G = 2n
√
µVαVs Q [ΛwΛm]

1
2 Q−1

This shows that G matrix has the same eigenvectors Q as the V and M matrices, and that528

its eigenvalues are the geometric means of eigenvalues of V and M.529

A.2.2 Case with drift530

Starting from equation (8)531

G = 2n
√
µVαVs V

1
2
ρ

[(
Vs

(4Ne)2µVα
I2 + V− 1

2
ρ MρV

− 1
2

ρ

) 1
2

−

√
Vs

(4Ne)2µVα
I

]
V

1
2
ρ

and performing a spectral decomposition of Vρ and Mρ as in the case without drift (see532

above), after simplification we obtain :533
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G = 2n
√
µVαVs Q

[[
Vs

(4Ne)2µVα
Λ2
s + ΛsΛm

] 1
2

− Vs
(4Ne)2µVα

Λs

]
Q−1

While the eigenvalues of G are given by the equation located between the highest level of534

brackets, the eigenvectors of G still equal Q the same as V and M matrices.535

35

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 25, 2020. ; https://doi.org/10.1101/2020.06.24.169482doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.24.169482
http://creativecommons.org/licenses/by-nc-nd/4.0/


A.2.3 Graphical representation of G matrix in the special case where V and M536

matrices have the same eigenvectors537

Figure S1: Influence of selection strength and genetic drift on the G matrix when V and

M matrices have the same eigenvectors. (a) Orientation and shape of M and V matrices for

respectively ρm = −0.5, φm = 1, Vα = 0.05, ρs = 0.7,φs = 1, Vα = 6, 20, 50, 100. (b-f) see Figure 1

for a detailed legend.
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A.3 G matrix in the House of cards regime538

Figure S2: Influence of selection strength and genetic drift on the G matrix (House-

of-Cards regime). (a) Orientation and shape of M and V matrices for respectively ρm = −0.7,

φm = 1, Vα = 0.05 and ρs = 0.8, φs = 2, Vs = 5, 10, 50, 100. First eigenvectors are represented

colored lines. We set n=50 and the µ = 0.0002. (b-f) see Figure 1 for a detailed legend.
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