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12 Abstract

13 Genetic correlations between traits can strongly impact evolutionary responses to
14 selection, and may thus impose constraints on adaptation. Theoretical and empirical
15 work has made it clear that, without strong linkage, genetic correlations at evolutionary
16 equilibrium result from an interplay of correlated pleiotropic effects of mutations, and
17 correlational selection favoring combinations of trait values. However, it is not entirely
18 clear how the strength of stabilizing selection influences this compromise between muta-
19 tion and selection effects on genetic correlations. Here, we show that the answer to this
20 question crucially depends on the intensity of genetic drift. In large, effectively infinite
21 populations, genetic correlations are unaffected by the strength of selection, regardless
22 of whether the genetic architecture involves common small-effect mutations (Gaussian
23 regime), or rare large-effect mutations (House-of-Cards regime). In contrast in finite
24 populations, the strength of selection does affect genetic correlations, by shifting the
25 balance from drift-dominated to selection-dominated evolutionary dynamics. The tran-
26 sition between these domains depends on mutation parameters to some extent, but with
27 a similar dependence of genetic correlation on the strength of selection. Our results are
28 particularly relevant for understanding how senescence shapes patterns of genetic cor-
29 relations across ages, and genetic constraints on adaptation during colonization of novel
30 habitats.
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+ Introduction

32 Adaptation is inherently a multidimensional problem. Organisms live in complex environ-
;3 ments composed of multiple niche axes (Hutchinson, 1957), which exert natural selection
s« on phenotypes composed of multiple traits that get integrated during development (Fisher,
35 1930). This complexity can limit the process of adaptive evolution. First, the mere fact that
36 multiple traits are under selection can slow down adaptation, which has been described as
a7 the cost of complexity (Fisher, 1930; Orr, 2000). And second, genetic correlations between
33 traits can constrain the response to selection for any of these traits, thereby limiting the en-
30 suing increase in fitness by adaptive evolution (Hansen and Houle, 2008; Walsh and Blows,
a0 2009; Lande, 1979; Chevin, 2013; Agrawal and Stinchcombe, 2009; Connallon and Hall, 2018;
a1 Etterson and Shaw, 2001). The evolutionary quantitative genetics theory underlying these
2 predictions (Lande, 1979) was soon followed by a related formalism for measuring selection
ss on correlated characters (Lande and Arnold, 1983; Lande, 1979). This has fostered much
s interest in the last decades for measuring patterns of genetic correlations among traits, in
s order to quantify constraints on adaptation (reviewed in Agrawal and Stinchcombe, 2009).
ss Such constraints can also be interpreted geometrically (Walsh and Blows, 2009), as genetic
a7 correlations can influence the major axis of genetic variation across multiple traits, orienting
s evolution along lines of least resistance (Schluter, 1996).

a9 Beyond quantifying the consequences of genetic correlations on rates on adaptation, un-
so derstanding what shapes constraints on adaptation ultimately requires investigating the

s1 factors that govern the evolution of the G matrix, which includes all the additive genetic
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s2 variances of traits and covariances among traits (Lande, 1979). This has been a topic of
s3 intense research, both theoretically and empirically. Theoretical work has made it clear that
s« genetic correlations evolve in response to (i) correlated pleiotropic mutation effects on traits,
ss and (ii) correlational selection favoring combinations of trait values between pairs of traits
ss (Lande, 1980; Turelli, 1985). Random genetic drift may also play an important role (Jones
s7 et al., 2003), but this was mostly investigated through individual-based simulations, and few
ss analytical results exist to guide intuition in that respect. In addition, patterns of environ-
so mental change (Jones et al., 2004, 2012) and epistatic interactions among loci (Jones et al.,
so 2014) can also influence the shape of the G matrix and evolution of genetic correlation, but
61 we will not address them here. On the empirical side, it was recently demonstrated that
62 the genetic divergence of multiple traits across several Drosophila species is aligned with the
63 major axis of both the G matrix of additive genetic variation within species, and the M
s« matrix of mutation effects on these traits (Houle et al., 2017). Natural selection was not
es measured in that study, but another study on the same set of traits has demonstrated that
es their genetic correlations can evolve in response to experimental patterns of correlational
o7 selection (Bolstad et al., 2015).

68 Since genetic correlations result from a compromise between mutational correlations and
6o correlational selection, we may wonder: how do they change as the strength of selection
70 varies? And more generally: how does the overall shape of the G matrix change as a fitness
7 peak becomes broader (thus causing weaker selection), or narrower (stronger selection),

72 while keeping the same overall shape (as illustrated in Fig. 1a)? This simple question has
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73 received surprisingly little attention, despite its general importance in evolutionary biology.
7 In particular, it bears on our understanding of the evolution of senescence by mutation
75 accumulation, whereby relaxed selection on later age classes allow for accumulation of more
76 genetic variance of traits (Charlesworth and Hughes, 1996). A multivariate extension of this
77 argument might suggest that the G matrix becomes more similar to the mutation M matrix
78 in older ages, because they undergo relaxed selection. However, the premises that underlie
79 this argument have yet to be explored more thoroughly.

80 Here, we investigate theoretically how the overall strength of selection influences evolution
a1 of genetic correlations, and the shape and orientation of the G matrix. Using analytical
s2 results and individual based simulations, we show that the relative importance of mutation

83 Vs selection in shaping the G matrix critically depends on random genetic drift.

« Methods

s Model

ss Asin standard quantitative genetic models, we assume that the multivariate phenotype z can
g7 be partitioned into a breeding value determined by the genotype, plus a residual component
ss of variation (often described as the environmental component), which is normally distributed
8o with mean 0 and covariance matrix E. In each generation, mutations occur with probability u
o0 at each allele of n diploid loci, such that the total mutation rate is 2nu. Mutation increments

o1 the phenotypic value at the mutated allele by an effect that is unbiased (does not change the
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o2 average breeding value), but can change the genetic (co)variances between traits. Specifically,
03 we assume multivariate normally distributed mutation effects a, with mean 0 and the same

oa covariance matrix M at each locus, which we parameterize (for two traits) as
M=V,M,

L puVom (1)
pm\/¢_m ®Om

s The parameter V, is the variance of mutation effects on trait 1 (a scalar), ¢,, is the ratio
o6 of mutational variances between traits 2 and 1, and p,, is the mutational correlation. When
o7 ¢n = 1 the two traits have the same mutational variance, and M, is a mutational correla-
o¢ tion matrix. The multivariate phenotype is under stabilizing selection towards an optimum
99 phenotype 6@, which we assume constant for simplicity. This is modeled as classically by
w0 letting the fitness of individuals with multivariate phenotype z (relative to the fitness of the

101 optimum phenotype) be

(2)

W(z) = exp (_ (z — G)Tg;—l(z - 0))

102 where the matrix €2 determines the breadth and orientation of the fitness peak. Averaging
103 over the distribution of residual phenotypic variation, the fitness function on breeding values
w4 X (relative to the fitness of the optimum breeding value), which determines evolution of the

s G matrix, is

(a) = exp (- 22290 )

106 where V. =  + E is the stabilizing selection matrix. Note that because of residual non-

107 heritable phenotypic variation, the absolute fitness of individuals with a given breeding
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e value X is actually reduced, by a factor v/det(V~'Q) (where det denotes the determinant
o of a matrix), relative to that of individuals with the same realized phenotype z = x. This
1o amounts to reducing the effective number of parents in the population: even in a Wright-
w1 Fisher population of size N, the effective size that matters for random genetic drift (change
12 in the distribution of breeding values) is in fact N, = \/det(V'Q)N (and in a non-Wright-
us  Fisher population, N should be replaced by the effective size operating at the level of the
ua expressed phenotypic trait). In other words, selection on non-heritable phenotypic variation
us increases the intensity of genetic drift on heritable phenotypic variation. This fact, which
ue was largely overlooked in previous studies on this topic (e.g. Lande, 1976, 1979; Burger et al.,
17 1989), becomes important under strong selection and low population size.

118 The selection matrix V can be written similarly to M as
V=VV,

L ps/os (4)
PsVbs O

V,=

1o The scalar V; determines the width of the fitness peak on breeding values, and is inversely
120 proportional to the strength of stabilizing selection, while ¢, controls the ratio of strengths
121 of selection between the two traits. The selective correlation pgs determines what genetic cor-
122 relation is favored by natural selection. Figure la illustrates how these parameters translate

123 into the shapes of the mutation and selection matrix.
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2 Individual-based simulations

125 We tested the accuracy of expected G matrix and genetic correlation at mutation-selection(-
126 drift) equilibrium using individual-based, genetically explicit simulations. The traits were
127 determined by n = 50 unlinked diploid loci, with alleles assumed to be fully pleitropic
e (i.e. affecting all the phenotypic traits under selection). We simulated populations of
120 hermaphroditic, sexually reproducing individuals with non-overlapping generations. The

130 life cycle included three steps :

131 1. Computing the phenotype and fitness for each individual. For each trait, the

132 phenotype was estimated by summing breeding values across all loci and alleles. A
133 residual component of variation was then added for each trait, with mean 0, variance
134 1, and no covariance between traits. The expected fitness of each individual was then
135 computed based on their phenotypic values and the stabilizing selection matrix €2, as
136 defined by equation (2). The fitness optimum was arbitrarily set to zero.

137 2. Sequential reproduction based on reproductive fitness. Two adults were drawn
138 randomly with a probability equal to their expected fitness and mated to produce
130 exactly one offspring. Selfing was not allowed, and being involved in a reproductive
140 event did not change the probability to mate again. The sequence was repeated N
141 times.

142 3. Offspring production. The genotypes of offspring were produced by drawing one
143 random allele from each parent at each locus, thus modelling fully unlinked loci. The

144 probability that a mutation occurred a each allele of each locus was . Mutation had
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145 additive effect on the traits, modifying the phenotypic value of the mutated allele by
146 an amount drawn from a multivariate normal distribution, with means zero (unbiased
147 mutation) and mutation variance-covariance matrix M.

us This life cycle, developed by Revell (2007), ensures that the population size N is constant
120 and equal to the effective population size N, in the absence of selection. Here, to account for
150 the reduction in effective population size caused by selection on the residual component of
s variation (see previous section), for each required value of N, we used N = N, /+/det(V~1Q)
152 as the population size in the simulations. Since all our formulas depended on the matrix V of
153 selection on breeding values (eq. (3)), rather than the matrix € for selection on the expressed
15« phenotype (eq. (2)), we parameterized simulations in terms of V, and then transformed them
155 to € before starting the simulation using 2 = V — E (as per eq. (3)), where E = I under
156 our assumption of uncorrelated environmental effects with variance 1.

157 Individual-based simulations were all run over 50000 generations. To ensure that the
155 expected genetic covariance matrix G was estimated after a pseudo-equilibrium is reached
19 (i.e., at stationarity), only the 30000 last iterations from the chain were used to estimate the

160 INean.
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« Results

12 Without drift, genetic correlations are unchanged by selection strength

13 Using similar assumptions as here, Zhang and Hill (2003) showed that in an infinite pop-
164 ulation, and in the limit of rare mutations of large effect (so-called House-of-Cards regime,
15 HoC below; Turelli, 1984, 1985; Bulmer, 1989; Biirger, 2000; Johnson and Barton, 2005), the
166 genetic correlation pg between two traits at mutation-selection balance with weakly linked

167 loci is

ps\V'1 = pp + pm/1 — p} (5)

pPc =
\/2 — (02 4+ p2) + /(A= p2) (1= p2) (0 + 5)

Om

. Remarkably, this shows that genetic correlations at mutation-selection

168 Where ¢ =
160 balance depend neither on the absolute strength of stabilizing selection V7! nor on the mag-
170 nitude of mutational variance V,,, but instead on the ratio of strengths of stabilizing selection
1 between the two traits, times the ratio of their mutation variances (summarized by the com-
12 pound parameter ¢). This means that narrowing the fitness peak, thereby increasing the
173 strength of stabilizing selection on all traits, does not tilt the balance of genetic correlations
e pe towards selective correlations p, and away from mutational correlations p,,, as long as
175 the overall shape of the mutation and selection matrices do not change. The same is true of
176 increasing the mutational variance and covariances of all traits by the same factor. In the

177 special case where ¢ = 1, such that the the ratio of strengths of stabilizing selection on the

s two traits equals the ratio of their mutational variances, equation (5) further simplifies as

ps\V'1 = pp + pm/1 — p} (©)

e T T s -

10
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170 which only depends on mutational and selective correlations.

180 This result was obtained under the HoC regime, which is known to have different prop-
11 erties from a regime of common mutations of weak effect, known as the Gaussian regime
12 (Kimura, 1965; Lande, 1976; Bulmer, 1989; Biirger, 2000; Johnson and Barton, 2005). But
183 in fact, genetic correlations also do not depend on the strength of selection under the Gaus-
18 sian regime. To see this, we rewrite the equilibrium for the G matrix derived by Lande
15 (1980) under the Gaussian regime, replacing V and M with their expressions in equations
186 (1) and (4), to get

G = 20\/uVoV, V2 [V,ﬂMpV,)§ \'%4 (7)

187 The first scalar term is the same as for the genetic variance of a single trait at mutation-
188 selection balance in this regime (Kimura, 1965; Lande, 1976). The second term is a matrix
19 that captures all the features of G matrix shape, including genetic correlations. Equation (7)
100 shows that changing the overall strength of selection V!, or the scale of mutational variance
w1 V), only magnifies or shrinks the G matrix, but does not change genetic correlations in any
102 way, nor any other aspect of G matrix shape.

103 Figure 1 shows examples of G matrices under variable strength of stabilizing selection
s (where the fitness peak becomes broader, and selection becomes weaker, as Vi increases,
w05 Fig. la), in the Gaussian regime. Continuous ellipses in Figure 1b represent the analytical
s prediction for G from equation (7), while dashed ellipses show results from genetically explicit
17 individual-based simulations (IBM) using the same parameters, but finite population size

18 N, = 5000. The prediction that the strength of stabilizing selection does not affect the

11


https://doi.org/10.1101/2020.06.24.169482
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.06.24.169482; this version posted June 25, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

190 orientation of the G matrix in a infinite population is already close to holding in simulations
200 with N, = 5000. The volume of the G matrix increases, but its orientation and shape
21 change little as the strength of selection decreases. The resulting genetic correlation is also
202 little influenced by the strength of selection in simulations with N, = 5000 (dark blue dots
203 in Figure 2b), and remains close to the expected compromise between the mutational and
20 selective correlations predicted by equation (5) (black line in Figure 2b), which does not
20 depend on V.

206 Even though the Gaussian and Hoc regime have very different properties in terms of the
207 maintenance of genetic variance for each trait (Turelli, 1985; Biirger, 2000), they strikingly
208 lead to the same genetic correlation among traits in an infinite population. This was already
200 suggested in numerical explorations by Turelli (1985), but we confirmed this here more
210 extensively. In particular, when ¢, = ¢, = 1, such that the mutation and selection matrices
211 are both proportional to correlation matrices (with only 1 on the diagonal), then deriving the
212 genetic correlation in the Gaussian case from the G matrix in equation (7) leads to equation
213 (6). In the more general case, an analytical formula also exists for the genetic correlation
214 based on equation (7), but it is unwieldy. Instead of comparing Gaussian and Hoc formulas
215 for genetic correlation, we drew random matrices V and M from a Wishart distribution
216 (with expectation I), a natural distribution for covariance matrices, which allows variance
217 and covariance terms to vary randomly. We then computed the expected G matrix under
218 the Gaussian regime (from eq. (7)), from which we extracted genetic correlations, which

210 we then compared to equation (5). Figure 2a shows that the genetic correlation under the

12
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220 Gaussian regime, which assumes frequent mutations of small effects, is perfectly predicted by
21 that under the House-of-Card regime, which instead assumes rare mutations of large effects.
22 The blue dots in Figure 2c show genetic correlations for different values of the selection
223 parameter Vj, estimated from individual-based simulations with parameters that correspond
224 to the HoC regime. These correlations are very similar to those in the Gaussian regime in
225 Figure 2b, and close to their expectation in eq. (5).

226 In short, genetic correlations at mutation-selection balance do not change with the overall
27 strength of stabilizing selection, and this conclusion holds generally across a broad range of
28 mutation and selection parameters, spanning different evolutionary regimes. So should we
29 then conclude that correlational selection always has the same influence on genetic correla-
230 tions, and never becomes dominated by the influence of mutational correlations, even as the

2 strength of selection becomes vanishingly small?

. Drift controls the balance between mutation and selection’s effects
23 on genetic correlations

23 In fact, genetic correlations may indeed become more similar to mutational correlations
235 as the strength of selection decreases, but only in the presence of random genetic drift.
236 In a population with finite effective size N,, random genetic drift causes a reduction in
237 heterozygosity, and thus in additive genetic variance, by a proportion 2N, per generation.
233 Accounting for this effect, we found that the expected G matrix at mutation-selection-drift

230 equilibrium in the Gaussian regime is (Appendix A1)

13
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1\ L
G=2/uV,V, Vi [(512 + V;%MpVﬁ) ' \/EI} \'s

Vs
(4Ne)?uVa

(8)

20 where G denotes an expectation over the stochastic evolutionary process (because of random
201 genetic drift). As in equation (7), the first scalar term in equation (8) is the same as for the
212 genetic variance of a single trait at mutation-selection balance in this regime (Kimura, 1965;
23 Lande, 1976), while the matrix product determines G matrix shape. Equation (8) shows that
241 asingle compound scalar parameter, k = V, /[(4N,)?11V,], determines how the orientation and
25 shape of the expected G matrix change under mutation, selection, and drift (since elements
26 of V, and M, scale on the order 1 by construction). When Vi < (4N.)?uV, (k very small),
247 the mutation rate and mean selection coefficient of new mutations are both large relative to
2as the intensity of drift (proportional to 1/N,), so genetic correlations are mostly determined
220 by mutation and selection, with little influence of genetic drift. In the limit x — 0, equation
250 (8) tends to the mutation-selection balance in equation (7). In contrast, drift dominates
251 when Vi > (4N,)?*uV,, (k very large), and the expected G matrix then becomes increasingly
252 similar to the mutation matrix M. This can be seen when comparing G matrices in panels
253 b to e in Figure 1, as well as genetic correlations for different darknesses of blue in Figure
254 2b. Furthermore for a given N., the genetic correlation and orientation of the G matrix
255 become more similar to those of mutation as the strength of selection decreases (increasing
256 Vi, lighter ellipses in Fig. 1b-e, and rightmost values in Fig. 2b).

257 We have shown above that the type of mutation-selection regime (HoC vs Gaussian) does
s 1ot influence genetic correlations in an infinite population (Fig. 2a), but is it also the case

14
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250 in a finite population with substantial genetic drift? For the HoC regime, the expected G in

o

- over the distribution of
atV

t
10L

s

260 an infinite population is proportional to the expectation of
21 mutation effects a (Zhang and Hill, 2003, eq. 2). In a finite population, accounting for the
262 reduction in heterozygosity caused by both stabilizing selection and random genetic drift,
263 this approximation becomes (adapted from Burger et al., 1989, "stochastic house of cards"

264 regime)

(87187

. (9)

— { aao!
Vo/(NVo) + bV e, |

G =4Nnu E = 4dnuViE
i 1+ NeatVsla] e

26s where E[] denotes an expectation over the distribution of mutation effects, and o, = a//V,,
266 are scaled mutation effects, with covariance matrix M, as per equation (1). Analogously to
27 equations (7) and (8), the first scalar term in equation (9) equals the equilibrium genetic
268 variance for a single trait in the HoC regime, while the expectation includes all the parameters
260 that determine G matrix shape. Since elements of V, and M, scale on the order 1 (and
20 hence so do a'V; 'ax and elements of ccart), the scalar parameter V; /(N,V,,) alone determines
on - whether the G matrix is more influenced by mutation, selection, or drift. When V, < NV,
o2 drift can be neglected and the G matrix has the same shape as in the HoC equilibrium; in
2713 particular, the genetic correlation between two traits is given by equation (5), and is thus
274 the same as in the Gaussian regime. In contrast when V, > N_.V,, drift dominate and the
275 G matrix is proportional to M, with correlation p,,.

276 The stochastic house of cards approximation to the genetic correlation (eq. 9) is some-
o7 what less accurate at predicting results from individual-based simulations than our stochastic

2rs Gaussian approximation in the corresponding regime (eq. 9, Fig. 2c, Fig. S2). However, it

15
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279 does capture a similar pattern, where the genetic correlation tends more rapidly towards the
280 mutational correlational with decreasing strength of selection when the effective population
231 size is smaller.

282 In summary, accounting for genetic drift in finite populations, the genetic correlation
2g3 spans the same range in all mutation regimes, ranging from the mutational correlation p,,
2sa when drift dominates, to the compromise between mutation and selection in equation (5)
255 when selection dominates. The mutation regime (Gaussian vs HoC) only determines how
286 the realized genetic correlation interpolates between these two limit cases. In particular, the
2s7  selection strength V7! at which genetic correlations transition from being drift-dominated to
28 selection-dominated is multiplied by (16 N.u)™! in the Gaussian regime relative to the HoC
20 regime (eqgs.(7) and (9)). When 16/ N.u < 1, this means that stronger selection is required to
200 overcome the influence of drift when mutations are abundant but with small effects (Gaussian
201 Tegime) as compared to rare but with larger effects (and vice versa when 16N, > 1). But
202 beyond these changes in the quantitative dependence on the strength of selection (which
203 relate to previous findings for a single trait, Hermisson and Wagner, 2004; Biirger, 2000),
204 the qualitative relationship between genetic correlations and the strength of selection given

205 the effective population size remains the same across mutation regimes (Fig. 2b-c).

26 Shape, orientation, and correlation

207 Changes in the relative importance of selection versus genetic drift can influence the shape

208 Of the G matrix (determined by its eigenvalues), its orientation (determined by its eigenvec-
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200 tors), or both. Any of these effects can translate into changes in genetic correlations, since
s00 the latter are only a summary of G, which depend on both variances and covariances (and
501 on both eigenvectors and eigenvalues). In particular, genetic correlations may change despite
302 little change in orientation, and no rotation of the axes of the G matrix. This is illustrated
303 in Fig. 3, which focuses on the special case where V and M have the same eigenvectors.
300 When this holds, the eigenvectors of G are identical to those of V and M, as demonstrated
s in the Appendix A2. This means that the G matrix does not rotate when changing the
a6 relative importance of drift versus selection; all that changes are the amounts of variation
s07  (eigenvalues) along the different axes (eigenvectors). Nevertheless, the genetic correlation
s still changes according to eq. (9) in this example. For instance, when one eigenvalues be-
300 comes dominant, the G matrix becomes increasingly elongated along one of the eigenvectors
a0 (Fig. 3a, Fig. S1), which translates into larger values of genetic correlations (Fig. 3b). In the
s more general case where V and M have different eigenvectors, then changing the relative
;12 importance of selection vs drift causes both elongation and rotation of G (changes in shape

a3 and orientation), but without necessarily causing larger changes in genetic correlations.

2 Di1scussion and Conclusion

s1is ' Jo what extent are genetic correlations between traits shaped by natural selection, or im-
s16 posed by mutation? This question, which in essence traces back to the debate between
;17 mutationists and selectionists in the early days of genetics (recently revived in the light

s1is - of molecular evidence, Nei, 2013), has received considerable attention from evolutionary

17
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310 biologists. In particular, evolutionary quantitative genetic theory has made it clear that,
:20 when phenotypic (co)variances arise from an equilibrium between mutation and stabilizing
a1 selection, then genetic correlations are a compromise between the correlation of pleitropic
322 mutation effects on traits, and correlational selection favoring combinations of traits (Lande,
223 1980; Lande and Arnold, 1983; Jones et al., 2003; Turelli, 1985). The latter can be related
:2a to the orientation and elongation of the fitness landscape relating the traits to fitness (as
s illustrated in Fig. la). However beyond this shape of the fitness landscape, how does the
26 overall strength of selection (size of the ellipses in Fig. 1a) influence genetic correlations be-
327 tween traits? As selection becomes weaker, the fitness peak becomes flatter, with a broader
1 range of phenotypes having equivalent fitness, so does that reduce the influence of selection
320 on genetic correlations? Perhaps surprisingly, the answer is no in an effectively infinite pop-
330 ulation, which in our simulations was already close to holding for a moderate population size
sn of N, = 5000 individuals. Strikingly, the same compromise between mutation and selection
32 effects on genetic correlations holds regardless of the strength of selection, and regardless
;3 of whether genetic (co)variances are caused by common mutations of small effect (Gaus-
;4 sian regime, Kimura, 1965; Lande, 1980), or rare mutations of large effect (House-of-cards
335 regime, Turelli, 1984, 1985).

336 However, the strength of selection starts to matter as the effective populations size N,
337 becomes smaller, as random genetic drift plays a larger role. The reasons is that, for a
s given IV, the strength of selection shifts the balance between drift-dominated and selection-

330 dominated evolutionary dynamics. Since genetic correlations equal mutational correlations

18
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30 pp, in the former domain, but a compromise between mutation and selection (eq. (5)) in the
san latter, overall mutation has a stronger influence on genetic correlations than selection (Fig.
a2 2). Previous analyses of G matrix evolution under mutation and correlational selection in
;a3 finite populations has mostly focused on the effect of drift on the stability of the G matrix
saa  over evolutionary time (Jones et al., 2003), and largely overlooked the influence of drift on
a5 the expected G. In fact, this influence can be substantial, as shown here; in particular, it
a6 determines how the strength of selection affects genetic correlations.

347 Genetic correlations are often described as a constraint on adaptation (Etterson and
sas Shaw, 2001; Agrawal and Stinchcombe, 2009; Connallon and Hall, 2018), but this need not
sa0  be true, depending on how the orientation of the G matrix relates to that of directional
0 or fluctuating selection in a changing environment (Gomulkiewicz and Houle, 2009; Chevin,
51 2013; Duputié et al., 2012). In a constant environment as assumed here, the extent to which
32 genetic correlations constrain adaptation depends on how the G matrix aligns with the
353 matrix of correlational selection, represented in Figure la. Our analytical and simulations
354 results show that genetic correlations, and the overall G matrix shape, differ more from those
355 favored by correlational selection at lower effective population sizes. Since G becomes more
356 similar to the mutation matrix M in this case, this could be interpreted as a mutational
37 constraint on evolution (Nei, 2013). However, this alignment with mutation effects occurs
38 because of a prevalence of genetic drift, which is in fact the main constraint on adaptation in
30 this case, also causing temporal fluctuations in the mean phenotype (Lande, 1979) and the

0 G matrix itself (Jones et al., 2003), and apparent fluctuating selection (Chevin and Haller,
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1 2014).

362 Our analytical results for genetic correlations and the G matrix at mutation-selection-
363 drift balance in the Gaussian regime (eq. (8)) are valid under frequent mutation (Kimura,
s 1965; Lande, 1980; Biirger, 2000), and we accordingly used high mutation rates in the corre-
35 sponding simulations. However, note that the nature of loci is not explicit in this model, but
66 in any case these do not represent single nucleotides or even genes. Rather, they represent
367 large stretches of effectively non-recombining portions of the genome, which may influence
s the traits by mutation. Since free recombination is also assumed across these loci (consistent
30 with most previous studies), the latter can even be thought of as small chromosomes, for
s70 - which mutation rates of the order to 1072 seem reasonable. In addition, we also present
s theoretical and simulation results at much lower mutation rates (House-of-Cards regime),
sz which lead to similar findings. We assumed universal pleiotropy, whereby all loci have the
sz same distribution of mutation effects on all traits. An interesting extension may be to allow
sza for modular mutation effects, or restricted pleiotropy, whereby each locus can only modify
a5 a subset of traits by mutations (Chebib and Guillaume, 2017; Chevin et al., 2010), to inves-
sz  tigate whether the mutation regime has a stronger effect on mutation correlations in these
377 scenarios. In terms of selection, we considered a fitness peak with an optimum, in line with
srs most theory on the topic, but genetic correlations can also be favored by other forms of se-
s7e  lection, notably disruptive selection (Bolstad et al., 2015), or negative frequency dependence
;0 caused by individual interactions (Mullon and Lehmann, 2019), which may lead to different

s dependencies of genetic correlations on the strength of selection and genetic drift.
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382 Our results lead to some predictions about how genetic correlations should change along
sg3  lifetime. For traits with ontogenic trajectories, or traits involved in senescence, the pheno-
ssa  typic value at different ages can be considered as different character states, partly controlled
sss by different loci. This underlies both the mutation accumulation theory of senescence ap-
s plied to quantitative traits (Charlesworth and Hughes, 1996), and the theory of evolution of
;7 growth trajectories (Kirkpatrick and Lofsvold, 1992). If the shape of correlational selection
s does not change with age, then we only expect a reduced strength of selection in older age,
a0 because these ages have a smaller reproductive value and hence contribute less to fitness
s00 (Lande, 1982; Charlesworth, 1993). We would then predict that genetic correlations should
301 lean more towards mutational correlations in older ages, but only when the effective popula-
302 tion size is small, while genetic correlations should remain largely unchanged along lifetime
303 in large populations. This pattern can be investigated by measuring genetic correlations
34 among primary traits (not direct components of fitness) across ages, for different species
s that differ in effective population size (as estimated by e.g. their molecular polymorphism
06 level).

307 More broadly speaking, we expect mutational correlations to impose more constraints on
308 evolutionary trajectories in situations where the population size has been reduced, such as
300 bottlenecks during colonization of novel habitats. Since these situations are also likely to
a0 be associated with strong directional selection, this should represent a double challenge for
a1 colonizing species. Nevertheless, the extent to which mutational correlations per se impede

a2 responses to directional selection is unclear. Even when genetic correlations are largely
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w03 shaped by correlational selection (rather than just by mutation), they may still constrain
a4 adaptation, if directional selection in a novel or changing environment does not align with
a5 the shape of the fitness peak (Chevin, 2013). In any case, our clear delineation of when, and
a6 how much, the strength of selection influences genetic correlations, should provide guidelines

a7 for analyzing and interpreting genetic constraints on adaptation in the wild.
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Figure 1: Influence of selection strength and genetic drift on the G matrix (Gaussian

regime).

(a) Orientation and shape of the mutation matrix M, and selection matrix V with

variable selection strengths. First eigenvectors are represented with colored lines. (b-e) Shape and

orientation of the G matrix as the width of the fitness peak V; varies. Solid ellipses (along with

their first eigenvectors) represent the analytical predictions from equation (7) that neglects genetic

drift in (b), or equation (8) that accounts for genetic drift in (c-e). Dashed ellipses show the mean

estimates from IBM simulations with N, = 5000 (b), 600 (c), 300 (d) and 150 (e). Parameters used:

n =50, u = 0.01, p,, =

29

—0.7, ¢ = 1, Vi, = 0.0025 and ps = 0.8, ¢s = 2, and V, = 5, 20, 50, 100.
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Figure 2: Influence of selection strength and genetic drift on genetic correlations under
different mutation regimes (a) The genetic correlation in an infinite population, at equilibrium
between selection and abundant mutations of weak effects (Gaussian approximation, from eq. (7)) is
plotted against its expectation under rare mutations of large effects (house-of-cards approximation,
eq. b), for 500 random pairs of mutation M and selection V matrices. (b-c) The genetic correlation
is plotted against the width of the fitness peak Vj, for different effective sizes N.. The parameters
values in (b) are the same as in Figure 1, corresponding to the Gaussian mutation regime. In (c), the
mutation parameters are instead V, = 0.05 and p = 0.0002, corresponding to the House-of-cards
regime. Blue points correspond to the genetic correlation simulated with individual-based models
(IBM). The black line represents the analytical expectation without drift (eq. (5)) in both cases.
The blue lines represent the analytical prediction with drift (eq. (8)) in (b), and expectations over

10000 randomly drawn mutation effects o (from eq. (9)) in (c).

30


https://doi.org/10.1101/2020.06.24.169482
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.06.24.169482; this version posted June 25, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

(a) (b)
G matrix for Ne=600

1.5
Gaussian regime
1.0 A c
o
0.51 % 0.51
N s
2 004 5 T
£ o 007
-0.51 k9]
o
-1.01 o -0.51, : :
0 50 100
-1.54 : : : Vs
-1 0 1
trait 1

Figure 3: Influence of selection strength and genetic drift on genetic correlations in the
special case where V and M have the same eigenvectors. (a) Shape and orientation of the
G matrix as the width of the fitness peak Vi varies. In this illustrative example where N, = 600,
the first eigenvector of the G matrix (plain lines, from gray to black) is orientated either fully along
the major axis for selection (eigenvector of V| orange line) or for mutation (eigenvector of M, green
line), depending on the selection parameter Vi. (b) The genetic correlation is plotted against the
width of the fitness peak Vj, for different effective sizes N. as in Figure 2. Note that, although
axes of the G matrix do not rotate, the influence of selection strength and genetic drift on genetic
correlations is comparable to the general case in Figure 2. Parameters are identical to Figure 1,
except that ¢s = ¢, = 1 such that V and M have the same eigenvectors, p,, = —0.5, and the

strongest selection is for V; = 6 instead of 5.
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A Appendix: How does the strength of selection influ-

ence genetic correlations ?

A.1 Steps for solving the mutation-selection-drift equilibrium

By building on the Gaussian approximation of the continuum-of-allele model (Kimura, 1965)
and assuming infinite-sized population with non-overlapping generations, Lande (1980) de-
rived a simple expression for genetic covariance matrix equilibrium (G) selection-mutation
balance. We here extend this result to allow for random genetic drift. At equilibrium, the
production of genetic variance due to new polygenic mutations is balanced by the loss of
genetic variance to due both stabilizing selection and random drift (Lande, 1979). For a

single haploid locus we obtain :

__ _ 1 —
M=GV'G+-——
pM =GV G+ =G

where G denotes an expectation over the stochastic evolutionary process (because of random
genetic drift).

Introducing B = ﬁeI and U = M, this becomes
U=GV'G+BG
ViUV 2 =V :GV :V iGV : + V:BGV =
By defining V"2GV "2 = X and V"2UV ™2 = —C, we finally have to solve the quadratic
matrix equation :

0=X*+BX+C
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A quadratic matrix equation can be solved explicitly if the following requirements are met:
(i) X? is preceded by an identity matrix, (ii) B commutes with C, and (iii) B* — 4C has a
square root. The solution of the quadratic matrix equation is then :

_ g lp2oy0)t
X = 2B+2(B 4C)

In our case, an explicit solution for X exists. Indeed, X? is preceded by an identity matrix,

B is a diagonal matrix and then always commute with C. Finally, as B? and C are both

positive semi-definite then (B* — 4C)"/? will always have a solution. Recall that

GV =X

N

V-

then

a1 11 v\ 1]
—VE | T+= I+ 4V 72UV 2 | 2| V2
G Vz[ oIt <(2N6)2 +4V iUV )}V

sis Finally by using notations (1) and (4), we obtain equation (8)

33


https://doi.org/10.1101/2020.06.24.169482
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.06.24.169482; this version posted June 25, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

s0 A.2  Constraints on the orientation and shape of the G matrix
520 in the special cases where V and M matrices have the same
521 eigenvectors

22 A.2.1 Case without drift

523 Starting from equation (7)

1

11 _1 1
G = 2n\/uV,V, V3 [Vp "M, V, ] V2
s2 and assuming that both matrices V, and M, have the same eigenvectors Q but different
s2s  eigenvalues, their spectral decompositions give V, = QA,Q ! and M, = QA,, Q! respec-

s26  tively, where A, and A,, are diagonal matrices of eigenvalues. Then, equation (7) can be

527 simplified to
G=20/uVaVe QA Q

s2s ' T'his shows that G matrix has the same eigenvectors Q as the V and M matrices, and that

s20 its eigenvalues are the geometric means of eigenvalues of V and M.

s30 A.2.2 Case with drift

s Starting from equation (8)

D=

1
2
V;

_ 1 V. _1 _1\2 V.

G=2n/uVoVs Vi ||—2—T"+V,*M,V — a1
e [<(4Ne)2uVa V)

sz and performing a spectral decomposition of V,, and M, as in the case without drift (see

s33 above), after simplification we obtain :
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’ Vs

- %
= I/ uV. V. % AZLAA -5
G’ n /-L aVs Q ( g s siim (4Ne>2/,LVa

A —1
AN, )21V, | Q

53 While the eigenvalues of G are given by the equation located between the highest level of

535 brackets, the eigenvectors of G still equal QQ the same as V and M matrices.
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s3s. A.2.3 Graphical representation of G matrix in the special case where V and M

537 matrices have the same eigenvectors
(a) V and M matrices (b) G matrix whithout drift (c) G matrix for Ne=600
10 2 A
1 -
5 1 -
o~ o
E 0 E 0 0 A
- Vvs=6| *
=57 Vs=20 -1
_1 -
—-10 >
T T T T T T
-10 0 10 -1.5 0.0 1.5
trait 1
(e) G matrix for Ne=150
G matrix 1.0
Analytical IBM
solution simulation 0.5 4
— -
VS—6 o - 0.0 ;.
Vs=20 o >
Vs=50 —0.5 -
Vs=100
T T T _10 T
-1 0 1 -1 0 1
trait 1 trait 1

Figure S1: Influence of selection strength and genetic drift on the G matrix when V and
M matrices have the same eigenvectors. (a) Orientation and shape of M and V matrices for
respectively p,, = —0.5, ¢, = 1, Vo = 0.05, ps = 0.7,0s = 1, V,, = 6,20,50,100. (b-f) see Figure 1

for a detailed legend.
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s A.3 G matrix in the House of cards regime

(a) V and M matrices (b) G matrix whithout drift (c) G matrix for Ne=600
1.0
10 1 0.5 1
0.5 A
o~ o
E 0 1 -,‘i, 0.0 + 0.0 A
V\s/i;g =031
—10 - B —-0.5 1
—-1.0 1
-10 0 10 -1 0 1 -0.5 0.0 0.5
trait 1
(d) G matrix for Ne=300 (e) G matrix for Ne=150
G matrix
0.50 1 0.4 4
Analytical IBM
solution simulation 0.25 1 0.2 A
o
Vs=5 o > % 0.00 1 0.0 ~
=}
Vs=20 O > —0.25 A —-0.2 1
Vs=50 —0.50 A —-0.4 4
VS=100 T T T T T T
-0.5 0.0 0.5 -0.5 0.0 0.5
trait 1 trait 1

Figure S2: Influence of selection strength and genetic drift on the G matrix (House-
of-Cards regime). (a) Orientation and shape of M and V matrices for respectively p,, = —0.7,
om = 1, Vo, = 0.05 and ps = 0.8, ¢ps = 2, V5 = 5,10,50,100. First eigenvectors are represented

colored lines. We set n=50 and the p = 0.0002. (b-f) see Figure 1 for a detailed legend.
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