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Abstract 

 

Congenital Heart Disease (CHD) affects approximately 7-9 children per 1000 live births. 

Numerous genetic studies have established a role for rare genomic variants at the copy 

number variation (CNV) and single nucleotide variant level. In particular, the role of de novo 

mutations (DNM) has been highlighted in syndromic and non-syndromic CHD. To identify 

novel haploinsufficient CHD disease genes we performed an integrative analysis of CNVs 

and DNMs identified in probands with CHD including cases with sporadic thoracic aortic 

aneurysm (TAA). We assembled CNV data from 7,958 cases and 14,082 controls and 

performed a gene-wise analysis of the burden of rare genomic deletions in cases versus 

controls. In addition, we performed mutation rate testing for DNMs identified in 2,489 parent-

offspring trios. Our combined analysis revealed 21 genes which were significantly affected 

by rare genomic deletions and/or constrained non-synonymous de novo mutations in 

probands. Fourteen of these genes have previously been associated with CHD while the 

remaining genes (FEZ1, MYO16, ARID1B, NALCN, WAC, KDM5B and WHSC1) have only 

been associated in singletons and small cases series, or show new associations with CHD. 

In addition, a systems level analysis revealed shared contribution of CNV deletions and 

DNMs in CHD probands, affecting protein-protein interaction networks involved in Notch 

signaling pathway, heart morphogenesis, DNA repair and cilia/centrosome function. 

Taken together, this approach highlights the importance of re-analyzing existing datasets to 

strengthen disease association and identify novel disease genes.  
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Introduction 

 

Congenital Heart Disease (CHD) accounts for a large fraction of foetal and infant deaths, 

with incidence rates ranging from 7-9 per 1000 live births1. Within the last 30 years, survival 

rates have substantially increased due to improvements in surgical, interventional and 

clinical intensive care resulting in a rapidly growing number of CHD survivors reaching 

adulthood2. Nevertheless, there is still increased morbidity and mortality in individuals with 

CHD, resource utilization is high especially among severely affected patients, and 

importantly, the underlying etiology remains unclear for the majority of cases. 

CHD is multifactorial, with both environmental and genetic risk factors3,4. Familial 

aggregation of CHD including Thoracic aortic aneurysm (TAA), as well as a large proportion 

of genomic copy number variants (CNVs) and de novo intragenic mutations (DNMs) in 

probands with CHD suggest a strong genetic component. An estimated 4-20% of CHD 

cases are due to rare CNVs, suggesting that a significant part of CHD is caused by gene-

dosage defects5. Recently, exome sequencing in large cohorts has been used to identify 

novel disease genes and strengthen known disease associations through the demonstration 

of an excess of de novo protein truncating variants (PTV) and rare inherited loss-of-function 

(LOF) variants in probands with CHD6,7. 

Overlaying both CNVs and PTVs has been used to define novel CHD relevant disease 

genes in contiguous gene disorders8,9. Following this principle, we have performed a 

genome-wide integrative meta-analysis of published and publicly available datasets of 

CNVs and DNMs identified in probands with CHD. This analysis, which is one of the larger 

meta-analyses of genomic variants in CHD so far, strengthens the disease association of 

known CHD genes and identifies novel haploinsufficient CHD candidate genes. 
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Results  

 

Cohort description and workflow. We assembled a cohort with 7,958 cases (comprising 

both non-syndromic CHD, syndromic CHD and TAA cases) and 14,082 controls 

(Supplemental Table 1). Of the total of cases, 777 (~10%) were diagnosed with Thoracic 

Aortic Aneurysm (TAA). An overview of the sources used to assemble the present cohort is 

listed in Supplemental Table 2 (for CHD cases) and Supplemental Table 3 (for controls).  

We applied a set of quality control filters to our assembled CNV data before performing 

case-control association tests (see Methods section). In addition, common CNVs (minor 

allele frequency (MAF) in controls > 0.01) were excluded from the analysis. After filtering, 

6,746 cases and 14,024 controls remained for further downstream analysis. Furthermore, 

we built a dataset of de novo mutations (DNMs) identified in 2,489 probands with CHD from 

parent-offspring trios6,7.  

 

CNV burden test of known CHD genes. Haploinsufficiency has been shown to cause a 

reasonable proportion of CHD5. Thus, genes known to be associated with CHD and genes 

which are intolerant for LOF mutations should be deleted more often in probands with CHD 

than in controls. To test this hypothesis, we performed a CNV burden test using sets of 

genes known to be involved in CHD. In addition, we included genes known to be associated 

with developmental disorders, a curated list of known haploinsufficient disease genes10, 

autosomal recessive disease genes11,12 and genes predicted to be intolerant to LOF 

mutations (based on the observed/expected LOF ratio from gnomAD13). The burden test 

was performed using a logistic regression framework14 (implemented in PLINK v1.7), where 

the phenotype is regressed on the number of genes deleted and covariates (see Methods). 

Figure 1A (extended Supplemental Table 4) summarizes the results from the burden test 

on the different gene sets: known CHD genes (grouped in syndromic, non-syndromic, 
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monoallelic and biallelic), developmental disorder genes, haploinsufficiency disease genes, 

autosomal recessive genes and all protein coding genes. We tested all protein coding genes 

to address the possibility that the analyses could be biased by differences in the CNV rate 

within the case and control groups, since we have assembled our cohort from different 

datasets. We did not observe genome-wide (all tested protein coding genes) enrichment (P 

= 0.39, OR = 0.99) nor enrichment in the autosomal recessive gene set (P = 0.52, OR = 

1.03) when comparing rare CNV deletions in cases vs controls. In contrast, the analysis 

revealed significant differences in the burden of CNV deletions between cases and controls 

for the set of haploinsufficiency genes (P = 8.29 x 10-13, OR = 2.27). As expected, our 

analysis revealed significant enrichment for the set of known CHD genes, which is mainly 

explained by the contribution of monoallelic CHD genes (P = 2.04 x 10-31, OR = 4.13) and 

syndromic CHD gene set (P = 1.66 x 10-33, OR = 4.06). Unlike the monoallelic and syndromic 

CHD gene sets, no significant enrichment was found for the nonsyndromic (P = 0.75, OR = 

1.16) and biallelic (P = 0.08, OR = 1.87) CHD gene sets. Our analysis revealed a moderate 

enrichment of rare CNVs in the developmental disorder gene set (P = 6.90 x 10-11, OR = 

1.75).  

When the regression-based analysis was performed at different levels of the 

observed/expected LOF ratio (oeLOF) constraint metric (Figure 1B, Supplemental Table 

5), we observed the higher enrichment toward the most LOF constrained genes (oeLOF < 

0.01, P = 9.55 x 10-18, OR = 1.40) and still a moderate enrichment for genes with oeLOF < 

0.1 (P = 0.002, OR = 1.09). No enrichment was observed in the set with oeLOF ratio >= 0.1 

(P = 0.03, OR = 0.99). Based on these results we conclude that haploinsufficiency causes 

a significant component of CHD.  

 

Genome-wide identification of haploinsufficiency candidate disease genes for CHD. 

To perform a systematic, genome-wide identification of potential haploinsufficient CHD 
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disease genes and loci, we analysed the CNV burden of 19,969 protein coding genes 

(GENCODE v19). To this end, we compared the number of rare CNV deletions (MAF < 0.01) 

among cases and controls for each gene and identified genes with significant CNV burden 

using a permutation test (significance level of adjusted P < 0.05, see Methods). The 

distributions of rare CNV deletions in CHD cases across all 22 human autosomes is shown 

in Figure 2. Significant candidate genes had a median number of 12 overlapping CNVs in 

cases, compared to a median of 0 overlapping CNVs in controls (Supplemental Figure 1a). 

Because CNVs can be large chromosomal aberrations, multiple genes were affected by 

some of the CNVs. In total, 528 genes (Supplemental Table 6) reached significance 

(Permutation test, P adjusted < 0.05). These 528 genes encompass a total of 63 loci 

(Supplemental Table 6, highlighted in magenta in Figure 2). The sizes of these loci range 

from 558 bp to 10.5 Mbp, with a median value of 243 Kbp (Supplemental Figure 1b). The 

number of genes per locus ranged from 1 to 48, with a median value of 3 (Supplemental 

Figure 1c). Only 16 loci contained a single gene (Supplemental Table 6). In addition, we 

tested previously described CNV deletion syndrome regions 

(https://decipher.sanger.ac.uk/disorders#syndromes/overview)  associated  with 

developmental disorders and/or CHD for enrichment in our analysis (Methods). We found 

eight of these regions enriched in the dataset (Supplemental Table 7), with the 16p11.2-

p12.2 locus being the region with the largest number of deletions in cases (n=230). 

 

Shared genetic architecture of CHD and TAA. We independently performed a genome-

wide test without the TAA cases to evaluate its impact on CHD. As expected, most of the 

genes (447 out of 528) remained significant after removing the contribution of TAA cases, 

since ~90% of the cases in the analyzed CNV cohort were CHD. Ten genes were 

significantly enriched independently when analyzing CHD and TAA cases, while 61 were 

significantly enriched only in TAA cases (Supplemental Table 8). 
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De novo mutation analysis. To identify an independent set of haploinsufficient CHD 

candidate genes, we combined de novo mutations identified in two large-scale CHD case-

control studies6,7 and performed a gene-based de novo mutation (DNM) burden test15. We 

analysed a total of 4,192 rare DNMs within 2,534 genes in the patient cohort. After 

classifying every variant into functional groups (see Methods section), 526 of these variants 

were predicted to be protein-truncating and, 2,647 were missense. We evaluated for 

potential differences of the DNM rates between cohorts (see Methods). Comparison of the 

rate of each variant type across the groups was non-significant (P > 0.05, Poisson test, 

Supplemental Table 9).   

We used two available statistical methods, Mupit15 and DeNovoWEST16, which test the 

significance of observed DNM at gene level, by comparing the number of observed 

mutations with the number of expected mutations (based on a sequence-dependent 

mutation recurrence rate, see Methods). While Mupit focuses on enrichment of LOF DNMs 

specifically, the DeNovoWEST test incorporates missense constraint information at variant 

level and applies a unified severity scale at variant level based on the empirically-estimated 

positive predictive value of being pathogenic. Based on the complementary results of both 

tests16, we reported the minimal observed DNM p-value (Pdnm) per gene. 

We identified 14 genes significantly enriched in the DNM analysis (P < 0.05 after Bonferroni 

correction for multiple testing, Supplemental Table 10). All of these genes were affected 

by at least two constrained non-synonymous DNM (nsDNM) and show significant overlap 

with 11/14 (78.6%) of the genes being known CHD disease genes. CHD7 (OMIM 214800) 

was the most significant haploinsufficient gene (P = 2.84 x 10-26) with 18 nsDNM identified 

in the patient cohort. Other highly enriched genes for nsDNM - KMT2D (OMIM 147920)17, 

KMT2A (OMIM 605130)18, NSD1 (OMIM 117550)19, TAB2 (OMIM 614980) 20, and ADNP 

(OMIM 615873) 21 - have been previously associated with different types of 
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neurodevelopmental disorders with co-occurrence of CHD. In the case of KDM5B (OMIM 

618109), it has only been described in the context of a recessive neurodevelopmental 

phenotype with cases presenting ASD (Atrial septal defects) 22,23.  

We next evaluated the distribution of o/e LOF ratio at different levels of DNM enrichment 

(genes were split based on Pdnm). Since the o/e ratio of LOF variation in each gene is strongly 

affected by its length, we instead used the 90% upper bound of its confidence interval 

(termed LOEUF), which keeps the direct estimate of the o/e ratio and allows to distinguish 

small genes from large genes, as suggested by Karczewski et al13. We observed that the 

genes with higher enrichment for nsDNM (lower Pdnm) show a significant decreased LOEUF 

compared to the mean of all protein coding genes (Figure 3). 

 

Integration of DNM and CNV results. To identify high confidence haploinsufficient CHD 

disease genes, we performed a joint analysis integrating the results from the CNV and the 

DNM analysis. We combined the results from both analyses (Pdnm and Pcnv) using the Fisher 

combine method. We demonstrated that both enriched genes for DNM and CNV deletions 

are significantly represented among LOF constraint genes (measured by the o/e LOF ratio). 

Therefore, we applied a Bonferroni multiple testing correction using independent hypothesis 

weighting24 (IHW) by incorporating the gene o/e LOF ratio, as a measure of 

haploinsufficiency (Supplemental Figure 2). Our analysis revealed 21 genes that were 

significantly enriched for CNV deletions and/or non-synonymous DNM (Table 1). A gene 

was included in the final set of haploinsufficient CHD disease genes if it reached a significant 

corrected metaP < 0.05 (after Bonferroni adjustment with IHW).  

 

Significant CHD genes are highly and/or differentially expressed in the heart. We next 

evaluated the expression pattern of the 21 significant genes (Bonferroni corrected metaP < 

0.05) in the heart using RNA-Seq data from human tissues at different developmental time 
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points25. We stratified the analysis based on stages of heart development (see Methods). 

Our analysis revealed that the most significant genes (metaP < 1x10e-5) show significantly 

increased mean expression in the heart (P < 0.0001, Wilcox test) at different developmental 

stages (development, maturation and infant/adult), compared to all protein coding genes 

(Figure 4). Moreover, 18 out of 21 genes fall in the in the top quartile of heart expression in 

both developmental and maturation stages, while 8/21 genes remain highly expressed in 

adulthood (Supplemental Figure 3). To complement our expression analysis, we compared 

gene expression during human heart development with expression in two other mesodermal 

organs: kidney and liver. This allowed identification of genes with significant changes in its 

expression levels during crucial heart developmental stages, which would have not been 

possible when focusing on expression levels alone (Methods). We found that 17 out of 21 

CHD candidate genes are differentially expressed in the heart (R2 > 0.50, Bonferroni 

corrected P < 0.01) when compared to its expression levels in kidney and/or liver. 

Interestingly, the three genes (FEZ1, NALCN and MYO16) which are not among the highly 

expressed genes, were found to be significantly differentially expressed during heart 

development compared to kidney and/or liver (Supplemental Table 11). 

 

CNV/DNMs hinder the function of specific protein complexes. CNVs and DNMs can 

affect heart development either through haploinsufficiency of a single gene, or through its 

combined impact on the function of several genes. Indeed, oligogenic models have been 

implicated in CHD, and proteins acting in the same complex or pathway are known to be 

encoded in genomic clusters26,27. We therefore conducted a systems-level analysis to 

identify global mechanisms by which haploinsufficiency might promote CHD. In particular, 

we assessed the combined effect of CNVs and DNMs with respect to human protein-protein 

interactions (PPIs). The InWeb28 and ConsesusPathDB29 databases provides ranked 

information about experimentally determined physical interactions and, therefore, serves as 
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a proxy to understand the functional effects of CNV/DNMs on human protein complexes. 

The genes with Benjamini–Hochberg adjusted metaP < 0.05 (n=492 genes) were used as 

seeds to build a PPI network from the data available in InWEb and ConsessusPathDB. No 

additional interections were considered. The final network consisted of 164 proteins and 290 

interactions (Supplemental Figure 4). A total of 10 overlapping sub-clusters within this 

network were identified using the in-built clustering algorithm implemented in GeNets30 

(Methods). Gene-ontology (GO) enrichment analysis suggested that four out of these ten 

sub-clusters are enriched for genes involved in Notch signaling pathway, cardiocyte 

differentiation, DNA repair and centrosome function (Figure 5). All the four clusters 

accommodate more CNV deletions in CHD cases compared to controls. Six out of the ten 

sub-clusters did not show significant enrichment for any particular biological process. 

 

Discussion  

 

We performed a meta-analysis of rare genomic variants in a cohort of 10,447 CHD 

probands, which provides a useful resource for interpreting CNVs and DNMs identified in 

patients with CHD. We implemented a statistical approach which allows the integration of 

different types of genomic variants to discover novel genes associated with CHD. Our data-

driven integrative analysis took into account three major criteria at the genomic level: a) 

gene enrichment for DNM, b) gene enrichment for CNV deletions and c) gene intolerance 

for LOF mutations. Our analysis identified 21 significant haploinsufficient CHD genes. 

Fourteen of these are known CHD genes, and the remaining seven genes have not 

previously been associated with CHD (Table 1). 

 

To further strengthen associations, we made use of a newly published human transcriptome 

atlas covering different developmental, maturation and adult stages in numerous organs25. 
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Similar to previous results7, our analysis highlights that the majority of the 21 significant 

genes are highly expressed during critical stages of heart development. Unlike earlier 

studies7,31 which did not address the importance of expression changes over time, we 

evaluated the differential expression patterns of genes by comparing levels of expression in 

the heart, kidney and liver at different time points in development. This analysis allowed us 

to strengthen disease association for genes not falling under the high expression group and 

highlight the critical importance of all 21 genes independently of the genomic approach. This 

aspect is complemented by the fact that the majority of genes (14/21) were already known 

to cause CHD. 

 

Among the 21 likely haploinsufficient disease genes for which the combined analyses 

showed enrichment (Bonferroni corrected metaP < 0.05), 14 genes (CHD7, KMT2D, 

KMT2A, NOTCH1, NSD1, TAB2, ANKRD11, ADNP, DYRK1A, RBFOX2, KANSL1, ELN, 

MED13L and GATA6) are well-established CHD genes, and our data confirms this 

association. To the best of our knowledge, association between CHD and seven genes 

(KDM5B, WHSC1, WAC, NALCN, ARID1B, FEZ1 and MYO16) had either not been 

established, or had been reported in small cases studies or a single individual only. 

 

KDM5B is not an established CHD gene thus far, although one patient with compound 

heterozygous frameshift variants had an ASD22. While some have argued against the 

haploinsufficiency of the gene32, our analysis suggests KDM5B as a plausible 

haploinsufficient CHD gene. Additional functional studies are warranted to confirm its role in 

CHD. 

 

A recent CNV meta-analysis33 based on non-syndromic CHD patients found that duplication 

of WHSC1 (also known as NSD2) is a possible cause of CHD. However, haploinsufficiency 
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of WHSC1 has not previously been associated with CHD. In support of its role in CHD, 

Whsc1 has been reported to cause heart malformations in mouse models34–36. In addition, 

WHSC1 is known to interact with NKX2.536. In spite of this, the low incidence of CHD in 

individuals with Wolf-Hirschhorn syndrome suggests that haploinsufficiency of WHSC1 

alone does not cause CHD. 

 

Heterozygous truncating mutations in WAC, as well as CNV deletions involving this gene, 

have been recently associated with the DeSanto-Shinawi syndrome, a rare 

neurodevelopmental disorder characterized by global developmental delay37,38. 

Furthermore, in two non-consanguineous unrelated individuals with heart malformations, 

among other disorders39, microdeletions at 10p11.23-p12.1 (overlapping ARMC4, MPP7, 

BAMBI and WAC) were identified. Despite these isolated reports, no definite association 

between WAC and CHD has been established. 

 

DNMs in NALCN have been reported to cause a dominant condition characterized by 

multiple features including developmental delay, congenital contractures of the limbs and 

face and hypotonia40,41. However, among the phenotypes observed, CHD have been not 

described thus far. 

 

Heterozygous mutation of ARID1B is a frequent cause of intellectual disability42,43. A recent 

analysis of 143 patients with ARID1B mutations showed that individuals display a spectrum 

of clinical characteristics. Congenital heart defects were observed in 19.5% of the patients44. 

 

FEZ1 is a neurodevelopmental gene, which has been associated with schizophrenia45. Fez1 

has been reported to be regulated by Nkx2-5 in heart progenitors in mice, suggesting a 

possible role in heart development46. 
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MYO16 (NYAP3) encodes an unconventional myosin protein, involved in regulation of 

neuronal morphogenesis47. We have not found an association between MYO16 and heart 

development in the literature.   

 

Although, several genes have been shown to be altered in syndromic and non-syndromic 

cases with CHD and TAA (e.g. HEY2 (manuscript under review), MYH1148,49, NOTCH150, 

among the 10 genes significant in our analysis for TAA, CHD and the combined scenario, 

none has been reported previously to be associated with either CHD or TAA. Given the 

limited data size and only accessing CNV calls from TAA cases, future studies looking at 

CNV and DNM in both phenotypes are required to establish stronger genotype-phenotype 

correlation to better understand a possibly shared genetic architecture for the two disease 

entities. 

 

In addition to the gene-centered analysis, we also applied a systems-level analysis in order 

to identify potential novel pathophysiological mechanisms affected by haploinsufficiency. In 

this approach, we took advantage of GeNets30, a computational framework for the analysis 

of protein-protein interactions, developed for the interpretation of genomic data. Our analysis 

allowed us to identify PPI clusters enriched for genes affected by CNVs and/or DNM in 

patients. Furthermore, GO enrichment analysis suggested distinct biological functions for 

four of these clusters.   

 

Cluster 1 (Figure 5a) contains proteins involved in the Notch signaling pathway. Our data 

corroborate previous studies that confirm the central role of Notch pathway in the 

pathophysiology of CHD51 and highlights the shared contribution of CNVs and DNMs within 

the cluster. Cluster 3 (Figure 5b) contains proteins driving essentials processes in the 

development of the heart such as atrial septum and cardiac right ventricle morphogenesis 
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as well as proteins playing significant role in the positive regulation of gene expression. 

These mechanisms has been well studied elsewhere52. Interestingly, three out of the seven 

candidate novel CHD genes (WAC, ARID1B and KDMB5) were found to be contributing to 

these two clusters. Cluster 8 (Figure 5c) showed enrichment for processes related with 

chromosome organization and DNA repair. Association between DNA repair and CHD is not 

well established thus far. Cluster 9 (Figure 5d) was found to be associated with microtubule 

organizing function. This biological process has been not described in the context of CHD, 

although an earlier report53 describes complex CHD among the phenotypes in individuals 

with 15q11.2 deletion syndrome, which involves the tubulin gamma complex protein 5. 

 

Given the heterogenous data sources and the complex inheritance patterns often observed 

in patients with CHD, our study has limitations. Firstly, the patient data was collected from 

almost 200 different sources, and in many cases it was only possible to obtain data from 

CNV calls which had been already suggested to be pathogenic. Thus, we are aware that 

our patient data are incomplete because genome-wide CNV data are missing from a large 

part of the patient cohort. This is not the case for controls, for which genome-wide data was 

used. As a direct consequence, even though the difference between the rates of CNV 

deletions in controls and cases decreased dramatically after applying a quality control 

filtering step, a slight difference remained between both cohorts. In addition, the distribution 

of CNVs that overlap known microdeletion syndromes such as DiGeorge syndrome and 

Williams syndrome is overrepresented in the dataset. Similarly, the degree of phenotyping 

varied across the different studies, and often only basic phenotypic terms relating to CHD 

were available. This made it impossible to refine the diagnosis to a precise phenotypic class 

of CHD in many individuals. Nevertheless, the integrative approach allowed us to look for 

CHD associations in a binary fashion and will facilitate future studies and improve genotype-

phenotype correlation for CHD subgroups.  
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In summary, we have performed an integrative analysis of CNVs, DNMs, o/e LOF ratio and 

expression during heart development amongst more than 10,000 CHD patients. Our 

analyses identify seven potential disease genes and mechanisms with novel association 

with CHD and strengthen previously reported associations.   

 

Materials and Methods 

 

Cohort description. Our cohort contains 7,958 CHD cases and 14,082 controls (see 

summary at Supplemental Table 1). Data from both affected and unaffected individuals 

were collected from 190 different CNV studies (Supplemental Table 2). Most of the CNV 

data included in the present study were assembled from public repositories, data available 

from literature as well as unpublished clinical data (see Supplemental Information (Tables 

1-3) for a more detailed description). CHD phenotype information and genotyping platforms 

have been described in earlier publications (Supplemental Table 2). In addition, we built a 

dataset from the two largest DNM studies in CHD published thus far, which include a total 

of 2,489 parent-offspring trios. 

 

DNM analysis. The assembled DNM dataset was re-annotated using the Variant Effect 

Predictor (VEP version 90) tool. Based on the VEP annotation, we classified every variation 

into three major functional groups as follows: a) LOF variant (stop_gained, splice_acceptor, 

splice_donor, frameshift, initiator_codon, start_lost, conserved_exon_terminus), b) 

missense variant (stop_lost, missense, inframe_deletion, inframe_insertion, 

coding_sequence, protein_altering) and c) silent variant (synonymous). Variants with MAF 

> 0.01 in gnomAD database were excluded from the analysis. The rates of rare DNMs (MAF 

< 0.01) in both DNM studies6,7 were compared (Poisson test) for different variant 
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consequence groups (PTV, missense and synonymous). No significant differences were 

found between the DNM rates for any of the evaluated groups (Supplemental Table 9). De 

novo mutation recurrence significance testing was performed to evaluate the impact of 

DNMs at gene level using the Mupit tool (https://github.com/jeremymcrae/mupit). By default, 

Mupit uses the sequence-specific mutation rate published by Samocha et al54 . A second 

test, DeNovoWEST16, was used to assess gene-wise de novo mutation enrichment. 

DeNovoWEST assigns a mutation severity score (based on the variant consequences and 

the CADD score) to all classes of variants as a proxy of its deleteriousness. For each tested 

gene, the minimal p-value obtained from Mupit and DeNovoWEST was reported (Pdnm). The 

corrected P value was computed using the Bonferroni method with n=18,272.  

 

CNV analysis. Only autosomal CNVs were included in the analysis. Also, smaller and 

longer CNVs were filtered out by applying a size cut-off of 5 Kb and 20 Mb as lower and 

upper limit, respectively. It has been demonstrated before that smaller and larger CNV calls 

tend to have a high rate of false positives55,56. We removed CNVs overlapping more than 

50% of telomeres, centromeres and segmental duplication regions. In addition, we 

computed the internal CNV frequencies by counting the number of relative overlaps (>50% 

reciprocal overlap) on the CNVs control subset divided by the total number of controls. The 

internal MAF was computed for deletions and duplications subsets separately. Only CNVs 

with a minor allele frequency (MAF) < 0.01 in controls and overlapping ten or more CNV 

platform calling probes (Affymetrix Array 6.0 and Illumina Human660W-Quad) were 

considered for downstream analysis. Our analysis was focused only on CNV deletions. The 

distributions of the number of CNV deletions per individual within the case and control 

groups were compared (two-sided Wilcoxon rank sum test) to evaluate the impact of the 

quality control filtering step (Supplemental Figure 5). After filtering, 6,746 cases (3, 929 

harbouring CNV deletions) and 14,024 controls (12,585 harbouring CNV deletions) 
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remained for further analysis. A region-based permutation test (using PLINK version 1.07, 

test ‘--cnv-test-region --mperm 10000’) was used on the filtered set to perform a case-control 

association analysis. For the gene-based permutation analysis, we reported both the ‘point-

wise’ empirical p-value (EMP1) and the empirical adjusted p-value (EMP2), which controls 

the family-wise error rate (FWER) (http://zzz.bwh.harvard.edu/plink/perm.shtml). In addition 

to the gene-centered permutation testing, a similar region-based permutation analysis was 

performed to access enrichment in known CNV deletion syndromes. The region genomic 

coordinates and syndrome descriptions were downloaded from the Database of genomic 

variation and phenotype in humans using Ensembl resources (Decipher, 

https://decipher.sanger.ac.uk/disorders#syndromes/overview).  

 

CNV burden test on gene sets. A logistic regression-based burden test (‘cnv-enrichment-

test’ in PLINK v1.7)14 was performed on different gene sets (known CHD genes (non-

syndromic/syndromic/biallelic/monoallelic), developmental disorder genes, low 

observed/expected LOF ratio genes, Supplemental Table 12) using the rare CNV deletions 

passing the quality control and filtering stage. For every gene set examined, the binary 

phenotype (CHD case or control) was regressed on the number of genes disrupted by one 

or more CNVs. The averaged CNV size and the number of segments per individual were 

used as covariates into the model to control for potential differences between cases and 

controls as suggested by Raychaudhuri et al14. In addition, the PLINK implementation of this 

test was slightly modified by including a third (categorical) covariate, the sample study ID, 

since we have assembled the CNV data from different sources. 

 

Inferring differentially and highly expressed genes. Differentially expressed genes 

(DEGs) were identified by comparing the gene expression profile in heart to kidney and liver 

at matched time points. We used maSigPro R-package57 for inferring genes with dynamic 
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temporal profiles from time-course transcriptomic data as previously described by Cardoso-

Moreira et al25. As the input for maSigPro, we used the count per million matrix (CPM, output 

from EdgeR package) hosted in ArrayExpress (E-MTAB-6814). Genes which did not reach 

a CPM > 0.5 in at least five samples were excluded from the analysis. We ran maSigPro on 

the time scale measured in days post-conception using defaults parameters and only 

included time points with at least two biological replicates. A gene was selected as DEG if 

the R2 (goodness-of-fit) parameter was higher than 0.50 and Bonferroni corrected P < 0.01. 

The R2 parameter distinguish genes with clear expression trends from genes with ‘flat’ 

expression profile. Supplemental Table 11 lists the final DEGs identified in the heart (R2 > 

0.50). To assess the gene expression levels in the heart, the RPKM matrix was used. Gene 

expression levels were averaged among samples in the different development stages of the 

heart as follow: early development (4wpc-8wpc), maturation (9wpc-20wpc), infant/adult 

(newborn-adulthood). Genes were ranked based on the computed mean expression. 

 

Identification of CNV/DNM enriched PPI sub-clusters. A protein-protein interaction 

network was constructed using the GeNets framework and the information from InWeb and 

ConsensusPathDB protein-protein interaction databases. Nodes in the network correspond 

to proteins whereas edges represent their physical interactions. The network was strictly 

seeded with 492 candidate genes, those with a significant adjusted metaP < 0.05 

(Benjamini-Hochberg’s false discovery rate, FDR). The PPI network was partitioned into 

overlapping sub-clusters using the in-built clustering method described in GeNets30. Only 

statistically significant sub-clusters (p-value < 0.05, permutation test) with at least 5 proteins 

were considered for further analysis. Finally, Gene Ontology enrichment analysis (Biological 

Process database 2018) of each identified sub-cluster was performed using the enrichr tool 

(http://amp.pharm.mssm.edu/Enrichr/). 
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Data availability: 

The data used in this study have been already published. The reference for each individual 

study is shown in Supplemental Table 1-3. Upon request, we can provide the BED files.  

 

Funding resources  

Funding for this study was provided by the DZHK and Kinderherzen consortia. BK is 

supported by a British Heart Foundation Personal Chair (CH/13/2/30154).   

 

Conflict of interest 

The Department of Molecular and Human Genetics at Baylor College of Medicine receives 

revenue from clinical genetic testing conducted at Baylor Genetics Laboratories. 

 

Acknowledgements  

We express our gratitude to the patients and their families for their participation in the 

analysed studies. We would like to thank the Genetic Association Information Network 

(GAIN) and dbGAP for making the data available. We would like to thank the Wellcome 

Trust Case Control Consortium (WTCCC) for making the data accessible 

https://www.wtccc.org.uk/info/access_to_data_samples.html. The Deciphering 

Developmental Disorders study presents independent research commissioned by the 

Health Innovation Challenge Fund (grant HICF-1009-003), a parallel funding partnership 

between the Wellcome Trust and the UK Department of Health, and the Wellcome Trust 

Sanger Institute (grant WT098051). The views expressed in this publication are those of the 

author(s) and not necessarily those of the Wellcome Trust or the UK Department of Health. 

We would like to thank the Pediatric Cardiac Genomics Consortium (PCGC) and dbGAP for 

making the data publicly available. This study was supported by the German Center for 

Cardiovascular Research (DZHK) partner sites Berlin, Kiel and Competence Network for 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 25, 2020. ; https://doi.org/10.1101/2020.06.25.169573doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.25.169573
http://creativecommons.org/licenses/by-nc-nd/4.0/


Congenital Heart Defects, National Register for Congenital Heart Defects. This study makes 

use of data generated by the DECIPHER community. A full list of centres who contributed 

to the generation of the data is available from http://decipher.sanger.ac.uk and via email 

from decipher@sanger.ac.uk. Funding for the project was provided by the Wellcome Trust. 

We would like to thank the Genome Aggregation Database (gnomAD) and the groups that 

provided exome and genome variant data to this resource. We thanks to Margarida C. 

Moreira and the Kaessmann Lab by making accessible the human RNA-Seq data and the 

support for the data analysis. We thanks Rasmus Wernersson and Federico de Masi for 

facilitating the use of the protein-protein interaction database, InWeb, in this work. We 

thanks the Lage Lab and Taibo Li for their support with GeNets. And finally, we would like 

to thank all data submitters and collaborators for their contributions. 

 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 25, 2020. ; https://doi.org/10.1101/2020.06.25.169573doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.25.169573
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

Table 1. Top 21 significant genes arising from both the permutation-based test and the DNM rate-

based test. Cases/Controls: Number of cases and controls carrying CNV deletions overlapping the 

gene in the CNV analysis. Pcnv: p-value from the CNV permutation test. nsDNM: Number of 

constrained non-synonymous mutations in the de novo analysis. Pdnm: p-value from the DNM 

analysis. Significant: The analysis where the gene was significant (dnm: DNM analysis, cnv: CNV 

analysis, both: Both analysis, none: Non-significant neither DNM nor CNV analysis). metaP: 

combined p-value (Pdnm and Pcnv) using the Fisher method. Pihw: Bonferroni corrected p-value using 

independent hypothesis weighting (IHW) and LOEUF metric as covariate. LOEUF: o/e LOF ratio 

upper bound fraction from gnomAD. *All the 21 genes were significant after combining their p-values 

and applying Bonferroni correction. 1Evidence is from mouse models35,36. 

 CNV DNM  Combined   

Gene case control Pcnv nsDNM Pdnm *Significant metaP Pihw LOEUF Known  
CHD 

CHD7 6 1 6.80E-03 18 2.84E-26 dnm 1.25E-26 8.05E-23 0.076 Yes 

KMT2D 0 0 1.00E+00 18 1.32E-25 dnm 7.67E-24 4.93E-20 0.103 Yes 

NSD1 1 1 5.63E-01 12 1.00E-14 dnm 1.90E-13 2.14E-09 0.095 Yes 

KMT2A 0 0 1.00E+00 7 1.00E-14 dnm 3.32E-13 1.86E-09 0.065 Yes 

NOTCH1 10 24 1.00E+00 7 1.00E-14 dnm 3.32E-13 2.14E-09 0.097 Yes 

TAB2 12 0 1.00E-04 5 3.46E-09 both 1.03E-11 5.75E-08 0.098 Yes 

ANKRD11 13 0 1.00E-04 3 2.32E-05 cnv 4.85E-08 2.72E-04 0.107 Yes 

WHSC1 11 0 1.00E-04 3 8.73E-05 cnv 1.71E-07 9.96E-04 0.119 No1 

ADNP 0 0 1.00E+00 4 9.94E-09 dnm 1.93E-07 1.13E-03 0.123 Yes 

DYRK1A 4 0 1.43E-02 4 9.46E-07 dnm 2.59E-07 1.64E-03 0.214 Yes 

NALCN 10 1 1.00E-04 3 1.76E-04 cnv 3.32E-07 6.83E-03 0.522 No 

ELN 30 0 1.00E-04 2 1.77E-04 cnv 3.34E-07 7.50E-03 0.871 Yes 

WAC 7 0 4.00E-04 3 1.31E-04 none 9.33E-07 5.44E-03 0.084 No 

RBFOX2 1 0 3.45E-01 4 1.59E-07 dnm 9.72E-07 6.25E-03 0.194 Yes 

KANSL1 94 110 2.00E-04 2 3.38E-04 none 1.19E-06 6.92E-03 0.238 Yes 

MYO16 13 2 1.00E-04 2 8.38E-04 cnv 1.45E-06 1.74E-02 0.272 No 

MED13L 2 1 2.70E-01 4 4.58E-07 dnm 2.09E-06 1.22E-02 0.064 Yes 

KDM5B 0 0 1.00E+00 4 1.45E-07 dnm 2.43E-06 4.97E-02 0.572 No 

GATA6 0 0 1.00E+00 5 1.80E-07 dnm 2.98E-06 1.92E-02 0.174 Yes 

ARID1B 4 0 1.31E-02 4 1.48E-05 none 3.20E-06 1.87E-02 0.102 No 

FEZ1 10 0 1.00E-04 2 2.22E-03 cnv 3.62E-06 4.30E-02 0.414 No 
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Figure 1. CNV burden test on known gene sets (a) and constraint LOF genes at 

different observed/expected LOF ratio thresholds (b). The forest plot shows the 

odds ratio (dots), the 95% confidence intervals indicating the certainty about the OR 

(interrupted line) and the P-value in the indicated gene sets. 
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Figure 2. CNV deletion distribution across the 22 autosomes. The plot shows the 

distribution of rare CNV deletions (green track) in CHD cases, the differences between 

the overlapping CNV deletions in cases and controls (black track) and highlight the 

location of the 63 significant loci discovered (in magenta). 
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Figure 3. Comparison of the distribution of LOEUF metric at different level of 

significance of nsDNM-enriched genes. X-axis denotes the P-values from the DNM 

analysis (binned). Y-axis denotes the o/e LOF ratio upper bound fraction (LOEUF). All 

groups were compared against the LOEUF distribution of all protein coding genes 

(purple). Differences between the distributions were tested using a two-sided Wilcoxon 

rank sum test. ****: P<0.0001, ns: non-significant. 
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Figure 4. Comparison of the mean expression (heart) distribution at different 

metaP cut-offs. Panels show three different heart development stages: early 

development, maturation and infant/adult. X-axis denotes the combined p-value from 

DNM and CNV analysis (metaP, at different cut-offs). Y-axis denotes the genes’ mean 

expression in the heart (log scale). The 21 significant candidate CHD genes (Table 1) 

are contained in the fraction with the higher expression (red box). Differences between 

the distributions were tested using a two-sided Wilcoxon rank sum test (reference 

group: all genes). ****: P<0.0001, ***: P<0.001, **: P<0.01, *: P<0.05, ns: non-

significant.  
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Figure 5. Identification of functional networks enriched for proteins encoded by 

genes affected by CNVs and/or DNMs associated with CHD. The protein-protein 

interaction networks (a-d, for clusters 1, 3, 8 and 9 respectively) were identified using 

GeNets (extended Supplemental Figure 4). Proteins are shown as nodes, 

interactions as edges. Enrichment for CNVs (blue) and DNMs (green) are highlighted. 

Proteins with no specific enrichment for CNV and/or DNMs but with B-H adjusted 

metaP < 0.05 are highlighted in red. The size of the circles denotes if the genes was 

found significantly highly and/or differentially expressed in the heart (large circles: 

significant expression; small circles: non-significant). The distribution of CHD case-

CNVs and control-CNVs are shown for each cluster. Significant difference in the CNV 

distribution was calculated using a Wilcox rank sum test. The horizontal bar plots show 

the top ten GO enriched terms for each cluster (output from enrichr tool). Bar color 

encoded the GO biological process significant level (dark blue: FDR < 5%, light blue: 

FDR 5-10%, grey: FDR > 10%). 
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