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Abstract17

Resolving the molecular processes that mediate genetic risk remains a challenge as most disease-18

associated variants are non-coding and functional and bioinformatic characterization of these signals19

requires knowledge of the specific tissues and cell-types in which they operate. To address this challenge,20

we developed a framework for integrating tissue-specific gene expression and epigenomic maps (primarily21

from tissues involved in insulin secretion and action) to obtain tissue-of-action (TOA) scores for each22

association signal by systematically partitioning posterior probabilities from Bayesian fine-mapping. We23

applied this scheme to credible set variants for 380 association signals from a recent GWAS meta-analysis24

of type 2 diabetes (T2D) in Europeans. The resulting tissue profiles underscored a predominant role25

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 25, 2020. ; https://doi.org/10.1101/2020.06.25.169706doi: bioRxiv preprint 

mailto:jason.torres@ndph.ox.ac.uk
mailto:mahajan.anubha@gene.com
mailto:mccarthy.mark@gene.com
https://doi.org/10.1101/2020.06.25.169706
http://creativecommons.org/licenses/by-nd/4.0/


for pancreatic islets and, to a lesser extent, subcutaneous adipose and liver, that was largely attributable26

to enhancer elements and transcribed regions, particularly among signals with greater fine-mapping27

resolution. We incorporated resulting TOA scores into a rule-based classifier, and validated the tissue28

assignments through comparison with data from cis-eQTL enrichment, functional fine-mapping, RNA29

co-expression, and patterns of physiological association. In addition to implicating signals with a single30

tissue-of-action, we also found evidence for signals with shared effects in multiple tissues as well as31

distinct tissue profiles between independent signals within heterogeneous loci. Lastly, we demonstrated32

that TOA scores can be directly coupled with eQTL colocalization to further resolve effector transcripts33

at T2D signals. This framework guides mechanistic inference by directing functional validation studies34

to the most relevant tissues and can gain power as fine-mapping resolution and cell-specific annotations35

become richer. This method is generalizable to all complex traits with relevant annotation data and is36

made available as an R package.37
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Introduction38

The scale of genetic studies of type 2 diabetes (T2D) has dramatically expanded in recent years to39

encompass hundreds of thousands of individuals and tens of millions of variants, culminating in the40

discovery of over 400 independent genetic associations that influence disease susceptibility1–3. However,41

as with other complex traits, the majority of T2D-associated variants are non-coding and are presumed to42

mediate risk by affecting genetic regulatory mechanisms4. Characterization of the processes mediating43

genetic risk requires definition of the regulatory elements perturbed by these variants, along with the44

downstream consequences on gene expression and molecular pathways. Such regulatory insights have45

been typically gleaned through genome-wide approaches that integrate genetic data with information from46

expression quantitative trait loci (eQTL) analyses, chromatin accessibility and interaction mapping, and47

functional screening5–10.48

A major challenge to these approaches is that the molecular processes that underpin disease risk are49

often tissue specific. Although the methods mentioned above can inform a genome-wide view of the50

tissues most prominently involved in disease (e.g. through patterns of genome-wide enrichment), they do51

not necessarily identify the most relevant tissue at any given association signal. For example, although52

several studies have shown strong enrichment of T2D-associated SNPs among regulatory elements in53

pancreatic islet tissue, there are clearly some signals that exert their impact on disease risk in peripheral54

tissues such as adipose, skeletal muscle, and liver11–14. Basing functional interpretation on the wrong55

tissue for a given variant (e.g. relying on islet data for a signal that operates in the liver) is likely to give rise56

to misleading inference and misdirected efforts at subsequent experimental characterization. Furthermore,57

as more detailed maps of regulatory elements and functional data in tissues and cell-types relevant to58

disease become available, the need to formulate principled strategies for integrating these features across59

datasets becomes more important, as the ever expanding scope of epigenomic and transcriptomic reference60

data can otherwise complicate variant interpretation.61

To address the challenge of determining most likely tissues-of-action at loci associated with complex62

traits such as T2D, we developed a framework for jointly integrating genetic fine-mapping, gene expression,63

and epigenome maps across multiple disease-relevant tissues. As an illustration, we show how this scheme64
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enabled a scalable approach for comparing the relative contributions of the key tissues involved in T2D65

pathogenesis (i.e. those controlling insulin secretion and action) by allowing us to delineate probabilistic66

tissue scores at individual genetic signals (deemed tissue-of-action or TOA scores). We explored the67

utility of this approach by applying it to a set of fine-mapped genetic associations from a recent large-scale68

meta-analysis of T2D and assessed the extent to which assigned tissues from a score-based classifier were69

corroborated by orthogonal datasets. We present results from these analyses along with new insights70

gleaned from specific loci that show, collectively, that this systematic approach to integrating disparate71

sources of information effectively resolves relevant tissues at GWAS loci.72

Methods73

Genetic data74

Genome-wide association summary statistics from a meta-analysis of T2D GWAS corresponding to 3275

studies of European ancestry (74,124 cases and 824,006 controls)3, conducted by DIAMANTE consortium,76

are available on the DIAbetes Genetics Replication And Meta-analysis (DIAGRAM) Consortium website77

(https://www.diagram-consortium.org). We used the summary statistics from the inverse-variance78

weighted fixed-effects meta-analysis of T2D-unadjusted for BMI that was corrected for residual inflation79

(accounting for structure between studies) with genomic control3. Of the 403 conditionally independent80

GWAS signals reported in Mahajan et al. 2018b, 380 signals were amenable to fine-mapping after81

excluding rare variants (e.g. minor allele frequency (MAF)<0.25%) and a signal mapping to the MHC82

locus3. The 99% genetic credible sets that corresponded to each signal and comprised SNPs that were83

each assigned a posterior probability of association (PPA) - summarizing the causal evidence for each84

SNP15, 16 - were also downloaded from the DIAGRAM website.85

Gene expression data86

Gene expression data for 53 tissues - including liver, skeletal muscle, and subcutaneous adipose tissue87

- were downloaded from the Genotype-Tissue Expression Project (GTEx) Portal website (https://88

gtexportal.org). Data correspond to GTEx version 7 (dbGaP Accession phs000424.v7.p2) and represent89

RNA sequencing reads mapped to GENCODE (v19) genes17.90
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Gene expression data for pancreatic islets (n=114) was accessed from a previous study5 that involved91

sequencing stranded and unstranded RNA library preparations at the Oxford Genomics Centre. This set of92

islet samples was used to calculate expression specificity scores and perform coexpression analysis (see93

below and in the section titled “Gene co-expression”). An additional set of 60 islet samples available to us94

in-house were also used for eQTL mapping and enrichment analysis. All 174 islet samples were included95

in a subsequent analysis18 performed by the Integrated Network for Systemic analysis of Pancreatic Islet96

RNA Expression (InsPIRE) consortium. RNA-sequencing reads of all islet samples were also mapped97

to gene annotations in GENCODE (v19), in line with GTEx accessed data, using Spliced Transcripts98

Alignment to a Reference (STAR; v 020201) and quantified with featureCounts (v 1.50.0-p2).99

Gene read counts for each tissue were transcript per million (TPM) normalised to correct for differences100

in gene length and library depth across samples. The tissue specificity of TPM-normalized gene expression101

was measured with expression specificity scores (ESS) obtained using the formula:102

εg,t =
med(expressiong,t)

∑x∈T med(expressiong,x)

where εg,t is the ESS score for gene g in tissue t, and T is the set of evaluated tissues.103

Partitioning chromatin states104

Chromatin state maps from a previous study19 based on a 13-state ChromHMM20 model trained from105

ChIP-seq input for histone modifications (H3K27ac, H3K27me3, H3K36me3, H3K4me1, and H3K4me3)106

were downloaded from the Parker lab website (https://theparkerlab.med.umich.edu). Chromatin107

state maps for liver, pancreatic islet, skeletal muscle, and subcutaneous adipose were used for the present108

study. Partitioned chromatin state maps used for generating tissue-of-action scores (see below in section109

titled “Deriving tissue-of-action (TOA) scores”), were obtained in the R statistical environment (v 3.6.0)110

using the Genomic Ranges (v 1.36.1) library. For each chromatin state annotation, the disjoin function111

(Genomic Ranges) was used to delineate non-overlapping segments across each of the four tissues. These112

segments were then compared with the annotation sets corresponding to each tissue to determine segments113

that were: (i) tissue-specific; (ii) shared across all tissues; or (iii) shared in a combination of two or more114

(but not all) tissues.115
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Annotation enrichment analysis116

To obtain fold enrichment values to use as annotation weights, genome-wide enrichment analysis was117

performed using the program fgwas21 (v 0.3.6), taking as input summary statistics from the DIAMANTE118

European BMI-unadjusted meta-analysis of T2D GWAS3. Enrichment of T2D-associated SNPs was119

assessed for coding sequence (CDS) and 13 chromatin state annotations mapped in human islet, liver,120

skeletal muscle, and subcutaneous adipose tissue from the Varshney et al. study19. To estimate log2-fold121

enrichment values, the –cc flag was used (specifying GWAS input from a case-control study) and default122

distance parameters were applied (i.e. genome partitioned ‘blocks’ of 5,000 SNPs). Weights were obtained123

by exponentiating the mean log2-fold enrichment values for each tissue-level annotation.124

Deriving tissue-of-action (TOA) scores125

In order to obtain TOA scores for each of the 380 conditionally independent genetic association signals,126

we partitioned the corresponding PPA values of the 99% genetic credible set SNPs. For each SNP j in127

the 99% credible set, we obtain a vector s j,a for each annotation a among the set of coding sequence and128

chromatin state annotations in set A. Each element in s j,a corresponds to a tissue t in the set T comprising129

all evaluated tissues and is given by the equation:130

s j,a,t =
Pjwa,t

∑i∈T 1( j,a, i)
1( j,a, t)

where Pj is the PPA of SNP j, wa,t is the weight of annotation a in tissue t, and 1 is an indicator131

function defined as:132

1( j,a, t) :=


1 if SNP j overlaps chromatin state annotation a in tissue t
εg,t if SNP j overlaps coding sequence annotation a for gene g
0 otherwise

where εg,t is the ESS value for gene g in tissue t. Note that ESS values were used for coding SNPs133

as the relative expression levels of the corresponding gene can be used to inform tissue-level relevance134

for each coding SNP. If the SNP j does not map to annotation a in any tissue t ∈ T , the value of s j,a,t is135

equated to 0. The vector s j is thus given by:136

s j = ∑
a∈A

s j,a

6/41

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 25, 2020. ; https://doi.org/10.1101/2020.06.25.169706doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.25.169706
http://creativecommons.org/licenses/by-nd/4.0/


where the elements in s j correspond to each tissue t ∈ T obtained from the linear combination of137

the partitioned PPA values across all annotations and weighted by the genome-wide fold enrichment of138

trait-associated variants for each tissue-level annotation. The vector τc that comprises TOA scores for each139

tissue t ∈ T and corresponds to 99% genetic credible set c is given by:140

τc = ∑
j∈J

Pjs j

∑t∈T s j,t

where J is the set of SNPs in the 99% genetic credible set c. Lastly, an unclassified score Uc is defined141

for each 99% genetic credible set c:142

Uc = 1−
n

∑
i=1

τc,i

and indicates the cumulative PPA in c that is attributable to credible SNPs that do not map to any of143

the evaluated tissue-level annotations.144

To evaluate the robustness of TOA score-based estimates of overall tissue contributions to T2D risk145

against the effect of GWAS association strength, we constructed weighted TOA scores:146

ωc = τc
|β |
SE

where β and SE are the effect size and standard error for the conditionally-independent SNP upon147

which the 99% credible set c was mapped.148

Profiling tissue specificity149

The sum of squared distances (SSD) between TOA scores in τc for each c ∈ C (where C is the set of150

99% genetic credible sets) was used as a measure of tissue specificity. To gauge the relationship between151

fine-mapping resolution and tissue-specificity, univariate linear models were used to estimate β coefficients152

corresponding to the regression of SSD on either the maximum 99% genetic credible set PPA, or the log10153

number of SNPs in the 99% genetic credible sets. Signals were designated as “shared” if the difference154

between the top two TOA scores was ≤ 0.10. “Shared” signals were then tiered based on fine-mapping155

resolution: (i) Signals corresponded to 99% genetic credible sets comprised of a single credible SNP; (ii)156

Signals corresponded to 99% genetic credible sets where the maximum PPA ≥ 0.50 (i.e. where a single157

SNP explained most of the cumulative PPA); (iii) Signals corresponded to 99% genetic credible sets where158

the maximum PPA < 0.50. The relationship between SSD and fine-mapping resolution (i.e. maximum159

credible set PPA and number of credible SNPs) was visualized using the scatterpie library (v 0.1.4) in160
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the R statistical environment (v 3.6.0).161

Rule-based classifier162

A rule-based classifier for assigning each genetic signal (i.e. 99% genetic credible set) to a tissue was163

derived by assigning each genetic signal c to a tissue t if the corresponding TOA score in τc had the164

maximum value and exceeded a specified threshold. Sets of tissue-assigned signals were constructed165

for each stringency threshold within the set 0.0, 0.2, 0.5, 0.8. The classifier also allowed for a “shared”166

designation using the criteria described in the previous section (i.e. difference between the top two TOA167

scores was ≤ 0.10).168

eQTL mapping and tissue-specific eQTL enrichment169

eQTLs for human liver, skeletal muscle, and subcutaneous adipose tissue were accessed from the GTEx170

Portal website (https://gtexportal.org) and corresponded to GTEx version 7 (dbGaP Accession171

phs000424.v7.p2). For human islet tissue, we used 174 samples (described above in section “Gene172

expression data”), and performed eQTL mapping using FastQTL (v 2.0) using a nominal pass with the173

–normal flag (to fit TPM-normalised read counts to a normal distribution). Gender and the first 15 PEER174

factors21 were used as covariates. For each tissue, q-values were calculated from nominal p-values and a175

false discovery rate threshold of ≤ 0.05 was applied to identify significant eQTLs.176

To obtain sets of tissue-specific eQTLs, we first took the union of all eQTLs for tissues in set T , given177

by:178

M =
⋃
t∈T

St

where St is the set of eQTLs in tissue t. We defined the set of tissue-specific eQTLs for each tissue as179

the list of significant eQTLs that were significant in only that tissue.180

Enrichment analysis was performed by taking the set of signals assigned to each tissue t ∈ T at each181

stringency threshold. Each tissue-assigned signal (i.e. 99% genetic credible set) was then mapped to the182

corresponding GWAS index SNP reported in Mahajan et al. 2018b., yielding a set of index SNPs for each183

tissue t.184
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For each tissue t, fold enrichments were estimated by taking the observed number of tissue-specific185

eQTLs among the set of tissue-assigned signals for tissue t divided by the mean number of overlapping186

signals across the 1,000 permuted sets of matched SNPs corresponding to the set of signals (i.e. mapped187

index SNPs) assigned to tissue t. Empirical p-values were calculated by:188

pemp =
nnull≥obs +1

N +1

where nnull≥observed is the number of instances where the number of overlapping tissue-specific eQTLs189

among a null set of matched SNPs was greater than or equal to the number observed among the set of190

tissue-assigned signals and N is the total number of permutations.191

Functional fine-mapping192

A set of comparative functional fine-mapping analyses were performed using the program fgwas (v193

0.3.6) and the summary statistics from the GWAS meta-analysis for T2D unadjusted for BMI3 and three194

annotation schemes:195

• null analysis without any genomic annotations196

• multi-tissue combined analysis using 13-state chromatin state maps for islet, liver, skeletal mus-197

cle, and subcutaneous adipose tissue from Varshney et al. 201719 (described above in section198

“Partitioning chromatin states”).199

• deep islet analysis based on 15-state chromatin segmentation map for human islet from Thurner et200

al. 201822; notably, these states were based on a richer set of input features assayed in islets that201

included ATAC-seq and whole-genome bisulfite sequencing, in addition to histone ChIP-seq.202

For both the multi-tissue and deep islet analysis, fgwas was used to obtain a ‘full model’ by first seeding a203

model with the single annotation that yielded the greatest model likelihood in a single annotation analysis.204

This model was extended by iteratively adding annotations - in descending order based on their model205

likelihoods - until the incorporation of additional annotations no longer increased the model likelihood of206

the joint model. The ‘full’ model resulting from this procedure was then reduced by iteratively dropping207

annotations that yielded an increased cross-validated likelihood upon their exclusion from the joint model.208
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The “best joint model” was obtained when this process no longer improved the cross-validated likelihood.209

The annotations remaining in the “best joint model” were then carried forward for functional fine-mapping.210

In the next step, a locus partitioned analysis was performed using the set of annotations from the211

“best joint model” for the multi-tissue and deep islet analysis, or no annotations for the null analysis. The212

default behaviour of fgwas involves partitioning the genome into ‘blocks’ of 5,000 SNPs and assuming213

no more than one causal variant per block. To account for allelic heterogeneity at loci with conditionally214

independent signals and to facilitate a comparison with the 99% genetic credible sets (that were constructed215

using conditionally deconvoluted credible sets), the genome was partitioned into 1 Mb windows centered216

about each index variant (specified using the –bed command) and fgwas was run using the appropriate217

set of input annotations for each of the three analytic schemes. Windows involving multiple independent218

signals required separate fgwas runs, each corresponding to the appropriate set of approximate conditioned219

summary statistics (i.e. conditioning on the effect of one or more additional signals at a locus)3. The220

resulting PPA values for each SNP in each partitioned ‘block’ was used to construct 99% functional221

credible sets by ranking SNP by PPA in descending order and retaining those that yielded a cumulative222

PPA ≥ 0.99.223

To compare the differences in fine-mapping resolution between the multi-tissue and deep islet schemes,224

at each signal, the difference between maximum 99% functional credible set PPA for each scheme with225

that resulting from the null analysis was obtained as a baseline. These differentials over the null were226

then compared between the multi-tissue and deep islet schemes and significance was assessed using the227

Wilcoxon rank-sum test. Comparative tests were performed for each set of tissue-assigned signals across228

the four stringency thresholds.229

Gene co-expression230

Genes with TPM counts < 0.1 in > 50% of samples per tissue were excluded and the remaining genes231

were ranked based on their mean expression across all tissues. For each set of tissue-assigned genetic232

signals, at each specified classifier threshold, a set of genes was determined based on nearest proximity233

to the index SNP for each signal. Signals that corresponded to 99% genetic credible sets where coding234

variants accounted for a cumulative PPA ≥ 0.1 were excluded from the analysis. A background set of235

10/41

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 25, 2020. ; https://doi.org/10.1101/2020.06.25.169706doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.25.169706
http://creativecommons.org/licenses/by-nd/4.0/


genes was then obtained by including all genes with rank values +/- 150 about the rank values of each236

gene in the filtered set. Null sets of genes were then delineated by sampling genes from the background237

set that had rank values within 100 of those for each gene in the gene set. This last step was repeated to238

generate 1,000 sets of null genes. To assess coexpression in each of the 54 tissues, the rank sum of the239

genes in the set was recorded and compared with the mean rank sum across the 1,000 sets of null genes240

separately for each tissue. An empirical p-value was determined with the equation:241

pemp =
nnull≤obs +1

N +1

where nnull≤obs is the number of instances when the rank sum of genes in a null set was less than242

or equal to the observed rank sum in a given tissue and N is the number of permutations. To gauge the243

magnitude of coexpression, an enrichment factor was defined by taking the mean rank sum across the244

null sets divided by the observed rank sum. This procedure was repeated for sets of the second and third245

nearest genes to each index SNP corresponding to tissue-assigned signals across classifier thresholds.246

Physiological cluster enrichment247

A set of T2D-associated SNPs that were clustered into physiology groups were obtained from a recent248

study23. As previously described, summary statistics (Z-scores) for a range T2D-relevant metabolic249

traits (e.g. anthropometric, lipid, and glycemic) were used to cluster 94 coding and non-coding SNPs250

associated with T2D using “fuzzy” C-means clustering of Euclidean measures23. An additional, and251

partially overlapping, set of 94 T2D-associated SNPs was also accessed and was previously clustered into252

physiology groups using an input set of sample size-adjusted Z-scores corresponding to 47 T2D-related253

traits and nonnegative matrix factorization (bNMF) clustering24. As not all of the physiologically-clustered254

SNPs were present among the set of index SNPs corresponding to the 380 fine-mapped genetic association255

signals, pairwise LD was measured between all SNPs in these sets using the LDproxy tool on the LD Link256

website (https://ldlink.nci.nih.gov/) and all European populations from the 1000 Genomes Project257

(Phase 3) as a reference. Physiologically-clustered SNPs were assigned to fine-mapping index SNPs based258

on maximum pairwise LD where r2 > 0.3. From this approach, 82/94 SNPs and 63/94 SNPs from the two259

sets of physiologically-clustered signals (from Mahajan et al. 2018a. and Udler et al. 2018., respectively)260
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were mapped to fine-mapped signals in Mahajan et al. 2018b. For each set of tissue-assigned signals with261

n signals, assigned at each classifier threshold, null SNP sets were generated by randomly sampling n262

signals from the set of 380 fine-mapped signals. A null distribution was obtained by generating 10,000263

null sets and recording the overlap of null signals with each of the physiologically-clustered signals. An264

empirical p-value was obtained with the equation:265

pemp =
nnull≥obs +1

N +1

Where nnull≥obs is the number of instances where the observed overlap between a null set and a266

reference set of physiologically assigned signals was greater than or equal to the observed value for the267

query set of tissue-assigned signals and N is the total number of null sets (i.e. 10,000). An enrichment268

factor was obtained by taking the observed overlap divided by the mean of the null overlap values.269

Enrichment for trait-associated SNPs from GWAS270

GWAS summary statistics for all available traits and diseases were downloaded from the NHGRI-EBI271

GWAS catalogue (https://www.ebi.ac.uk/gwas/; v1.0; accessed Aug 23, 2019). Coordinates for all272

trait-associated SNPs in the catalogue were mapped to genome build GRCh38. GRCh38 coordinates273

for index SNPs corresponding to each of the 99% genetic credible sets were obtained from the Ensembl274

website (https://www.ensembl.org/) by querying with reference SNP id number. Proxy SNPs were275

determined for each SNP in the set of index SNPs corresponding to the 99% genetic credible sets by using276

the –show-tags function in PLINK (v 1.90b3) to identify SNP proxies with linkage disequilibrium (LD)277

r2 ≥ 0.8 among a reference panel of European individuals from the 1000 Genomes Project (Phase 3). VCF278

files for SNPs from the 1000 Genomes Project mapped to genome build GRCh38 were downloaded from279

the project website (http://ftp.1000genomes.ebi.ac.uk/). For each set of tissue-assigned signals,280

enrichment was assessed across each of the 3,616 diseases or traits in the GWAS catalogue. The observed281

number of SNPs overlapping the set of index and proxy SNPs corresponding to the tissue-assigned signals282

and the set of trait-associated SNPs for a given GWAS was recorded. To obviate bias due to local LD,283

multiple SNPs (i.e. index and proxies) corresponding to a single signal that were shared with the set of284

GWAS SNPs were recorded as a single overlap for that signal. A null distribution of SNP overlaps was285
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obtained through 10,000 rounds of random sampling from the set of index SNPs corresponding to each of286

the 380 fine-mapped credible sets. An empirical p-value was obtained with the formula:287

pemp =
nnull≥obs +1

N +1

where nnull≥obs is the number of instances where the number of SNP overlaps between a null and288

GWAS SNP set exceeded the observed overlap for the set of tissue-assigned signals. The magnitude of289

enrichment was measured by the number of observed overlaps divided by the mean of the overlaps across290

the null sets.291

Results292

An integrative approach for obtaining tissue-of-action scores at trait-associated loci293

We set out to quantify, in the form of TOA scores, the contribution of disease-relevant tissues to each294

genetic association signal from a recent GWAS meta-analysis of T2D by integrating genetic, genomic and295

transcriptomic data. To do this, we developed a scheme that derived, for each GWAS signal, a measure296

of overlap with tissue-specific regulatory annotations, and then combined these, using weights derived297

from both genetic fine-mapping and genome-wide measures of tissue- and annotation-specific enrichment298

(Figure 1).299

We used chromatin states from a recent study19 to form a reference set of epigenomic annotations300

focusing on tissues involved in insulin secretion (pancreatic islets) and insulin-response (skeletal muscle,301

subcutaneous adipose, and liver) that play central roles in the pathophysiology of T2D. There is support302

for the role of these tissues from patterns of overall genome-wide enrichment of tissue-specific regulatory303

features and from the known effects at the subset of T2D association signals for which causal mechanisms304

have been established13, 14, 19, 22, 25.305

To obtain tissue scores at each genetic signal, we first delineated a set of annotation vectors based306

on the physical position of each SNP in the corresponding 99% genetic credible set (from Bayesian307

fine-mapping) with respect to the panel of tissue-specific chromatin states (Figure 1). For non-coding308

SNPs, binary values were used to encode genome mapping (i.e. whether or not a SNP maps to a regulatory309
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region in a given tissue as shown in Step 1A in Figure 1). For the minority of credible set SNPs that map310

to coding sequence, quantification focused on measures of tissue-specific RNA expression for the genes311

concerned to further inform the relative importance of the evaluated tissues (see Methods) (Figure 1, Step312

1B).313

Next, we combined and scaled the annotation vectors to yield a vector of tissue scores that were314

used to partition the PPA of each credible SNP (Step 2). To facilitate this partitioning and to account for315

the relative importance of relevant tissues with respect to overall T2D pathogenesis, we first estimated316

genome-wide enrichment of T2D-associated SNPs across a set of tissue-specific genomic annotations.317

We used the enrichment values as weights to adjust the relative tissue contributions of SNPs mapping to318

distinct functional annotations or to functional annotations shared in more than one tissue (see Methods)319

(Supplementary Figure 1A-C). This allowed us, for example, to upweight the islet contribution, relative320

to that for skeletal muscle, for SNPs mapping to enhancers shared between these tissues to account for the321

different genome-wide enrichment priors observed for these tissues.322

Across all tissues, we found that the active transcription start site (TSS) annotation, distinguished323

by strong ChIP-seq signal for H3K27ac and H3K4me1 histone modifications, was the most consistently324

enriched feature (log2 fold enrichment from 2.46 to 2.79) (Supplementary Figure 1A-B). However, the325

most highly-enriched single annotation detected involved type 1 active enhancers in human islets (as326

characterized by H3K27ac and H3K4me3) (log2 FE=2.84, 95% CI, 1.48-3.62). Coding sequence was also327

highly enriched for T2D-associated variants (log2 FE=2.59, 95% CI, 2.08-3.01) (Supplementary Figure328

1B).329

In the final step, the tissue partitioned PPA values were combined across all SNPs in the credible set330

to yield a set of TOA scores for each association signal which preserves the information captured by the331

fine mapping (Figure 1: Step 3). PPA values corresponding to SNPs not mapping to active regulatory332

annotations in any of the four evaluated tissues (e.g. repressed or quiescent regions) were allocated to333

an “unclassified” score (see Methods). The resulting set of TOA scores for each genetic signal captures334

the strength of genetic, genomic, and transcriptomic evidence that the signal acts through each of the335

evaluated tissues. Using this framework, we calculated TOA scores for each of the 380 fine-mapped T2D336

signals (Supplementary Table 1).337
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Tissue-of-action scores support a key role for strong enhancers in human islets338

By combining TOA scores across all 380 signals, we estimated the relative contribution of each tissue339

to the overall genetic risk of T2D reflected across fine-mapped loci. Islet accounted for the largest share340

of the cumulative TOA score (29%) with markedly lower contributions from liver, adipose, and skeletal341

muscle (Figure 2A, inset). Across the 380 loci, 80% of the cumulative TOA score was attributable to342

SNPs mapping to coding regions or to active chromatin states in these four tissues (Figure 2A). Within343

this fraction, SNPs mapping to weakly transcribed regions accounted for the largest share (51%) relative344

to those mapping to coding and other regulatory annotations (Figure 2A). Overall, weakly transcribed345

regions account for 23% of the genome (ranging from 22% in skeletal muscle to 26% in islet), and are346

generally located near other more active annotations (Supplementary Figure 1D).347

Crucially, credible sets vary markedly in their fine-mapping resolution (median credible set size 42348

SNPs, range 3997 SNPs: median maximum PPA value 0.24, range 0.01-1.0). We reasoned that the349

estimates for weakly transcribed regions (and for annotations to tissues outside the four most relevant to350

diabetes) were likely inflated by incomplete fine-mapping: less resolved credible sets involving multiple351

SNPs are likely to map to disparate annotations across tissues. When we evaluated the 101 signals352

with maximum PPA>0.5, the TOA score proportions attributed to weak transcription and unclassified353

proportions decreased to 40% and 14%, respectively (Figure 2B). These proportions further decreased354

amongst the 41 signals with maximum PPA>0.9 (31% and 5% respectively) (Figure 2C). In contrast, the355

relative contribution of SNPs mapping to strong enhancers increased with greater fine-mapping resolution356

(from 18% to 26%) (Figure 2A-C). In particular, the contribution for strong enhancers in islet was357

disproportionately high among the most finely-mapped signals and underscores a prominent role for these358

regulatory regions in T2D risk (Figure 2C).359

Although the relative TOA score proportions varied with fine-mapping resolution, the contribution360

from islet was consistently greater than that for liver, adipose, or muscle (by a factor of 1.5) (Figure361

2A-C, inset). Notably, for credible SNP mapping to strong enhancers, the relative TOA proportions362

were considerably higher for islets (57-63%) than for adipose (18-24%), liver (14%), and skeletal muscle363

(5-6%). Increasing fine-mapping resolution tracked with increasing evidence that causal variants were364

disproportionately concentrated in islet strong enhancers (Figure 2A-C, outset). When we additionally365
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weighted TOA scores by the adjusted GWAS effect size for each signal (see Methods), the overall islet366

contribution increased further, albeit slightly, from 29% to 31% across all signals (Supplementary Figure367

2D-F). Overall, the profile of tissue-of-action scores (particularly across more signals with greater fine-368

mapping resolution) recapitulates the epigenomic architecture of T2D derived from earlier studies, which369

have indicated that regulatory annotations in islets - and strong enhancers in particular - are particularly370

important (Figure 2B-C).371

Distinct TOA profiles indicate pleiotropic effects in multiple tissues372

The prime motivation for generating TOA scores was to identify the tissues that most likely mediate373

disease risk at each genetic signal. We first sought to identify signals where only a single tissue was likely374

relevant to disease risk. We found that 10% (39/380) signals had profiles where the TOA score for one375

of the four tissues exceeded a threshold of 0.8, consistent with predominant action in a single tissue: 21376

of these involved primary or unique signals at their respective loci whereas the remaining 18 arose from377

secondary signals at loci with multiple independent signals (Supplementary Table 1). Among the primary378

signals, 14 mapped to islet (including signals at MTNR1B, SLC30A8, CDKN2A/B loci), five to liver (e.g.379

AOC1, WDR72), and two to adipose (EYA2, GLP2R) (Figure 2D-E). No primary signal met this criterion380

for skeletal muscle: the signal with the highest TOA score for skeletal muscle (0.88) corresponded to381

a secondary signal (rs148766658) at the ANK1 locus (Figure 2D). The proportion of signals with TOA382

profiles consistent with a single tissue of action increased with greater fine-mapping resolution (17/101 or383

16% of signals with maximum PPA≥0.5) (Supplementary Table 1).384

Aside from these 39 signals, calculated TOA scores for most T2D signals revealed substantial contri-385

butions from multiple tissues. We reasoned that this apparent “tissue sharing” could have arisen for two386

main reasons. The first involves a highly resolved signal from genetic fine-mapping at which the causal387

variant maps to a single regulatory element active in multiple tissues. The second occurs when a lower388

resolution signal encompasses many credible set variants that map to distinct regulatory elements with389

different patterns of tissue specificity. There was some evidence in favor of the latter: maximum credible390

set PPA values positively correlated with the SSD between TOA scores (i.e. more refined credible sets391

corresponded to higher measures of tissue specificity) (Adj.R2=0.04, p-value=9.8x10−5, Supplementary392
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Figure 3). However, the magnitude of the effect of fine-mapping resolution on tissue specificity was small393

(the beta coefficient for the regression of SSD on maximum PPA was 0.17). We conclude that differences394

in fine-mapping resolution alone do not account for the extent of “tissue-sharing” observed across T2D395

signals, implying that many signals involved regulatory elements shared across tissues.396

To explore this further, we considered signals likely to involve shared effects across tissues on the397

basis that the difference between the two highest TOA scores was <0.10 (Supplementary Table 2). The398

resulting set of “shared” signals conspicuously spanned the range of mapping resolution, as indicated399

by the number of credible SNPs and maximum PPA for each signal (Figure 2E). There were eight400

signals that were fine-mapped to a single credible SNP (i.e. maximum PPA>0.99) and most clearly401

demonstrated tissue-shared regulation. This included the primary, non-coding signal at the PROX1 locus402

(rs340874) with effects in both islet (TOA=0.50) and liver (TOA=0.49): the index SNP at this signal403

(PPA=1.0) mapped to a common active transcription start site in these tissues (Supplementary Figure404

4A, Supplementary Table 2). This set also included primary signals at the RREB1 (rs9379084; islet405

TOA=0.31; adipose TOA=0.27; muscle TOA=0.22), CCND2 (rs76895963; islet TOA=0.53; adipose406

TOA=0.47), and BCL2A (rs12454712; muscle TOA=0.52; adipose TOA=0.48) loci (Supplementary407

Figure 4A, Supplementary Table 2). There were an additional 33 signals with apparent tissue-sharing408

where the fine-mapping resolution was somewhat less precise (maximum PPA>=0.5). These included409

the primary signal at the TCF7L2 locus (rs7903146; adipose TOA=0.37; islet TOA=0.31) and secondary410

signals at HNF4A (rs191830490 [liver TOA=0.40, islet TOA=0.31] and rs76811102 [islet TOA=0.32,411

muscle TOA=0.25, liver TOA=0.24]) (Supplementary Figure 4B, Supplementary Table 2). Amongst412

the total of 101 signals at which the fine-mapping resolution was such as to identify a lead SNP with PPA413

exceeding 0.5, 41% had evidence that they might involve regulatory effects in two or more tissues.414

A rule-based classifier for assigning fine-mapped signals to tissues415

As tissue-of-action scores appeared to distinguish specific from shared signals (Figure 2D-E), we imple-416

mented a rule-based classifier that assigns signals to tissues according to their TOA scores across a range417

of stringencies. A GWAS signal was assigned to a tissue if that tissue had the highest TOA score and418

exceeded a specified TOA threshold (ranging from permissive thresholds of zero and 0.2 to more stringent419
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thresholds of 0.5 and 0.8). Consistent with the observation that islet accounted for most of the cumulative420

PPA across loci (Figure 2A-C), more signals were assigned to islet than to liver, muscle, or adipose tissue421

across all TOA thresholds. For example, at a TOA threshold of 0.2, 178 signals (47%) were classified422

as islet whereas a total of 137 signals (36%) were assigned to insulin-responsive peripheral tissues (58423

adipose, 49 liver, 30 muscle) (Figure 3A, left panel). Given the extent of tissue sharing observed across424

signals, we adapted the classifier scheme to allow for a shared category (defined as above): at the same425

TOA threshold, this yielded 110 islet, 33 liver, 27 adipose and 8 muscle signals, plus 137 shared signals426

(Figure 3A, right panel). These proportional differences between islet, muscle, adipose, and liver were427

maintained across TOA thresholds (Figure 2D). For example, the distribution of the 39 signals classified at428

the 0.8 threshold included 22, 10, 6 and 1 signals classified as islet, liver, adipose, and muscle, respectively429

(Figure 2D).430

Principal component analysis of these data revealed that most variation in TOA scores (50%) dis-431

tinguished islet signals from those assigned by the classifier to insulin-responsive peripheral tissues,432

consistent with the distinct functions of these tissues in regulating glucose homeostasis (Figure 3B). The433

distinction between liver and adipose signals accounted for a further 31% of variation. Signals classified434

as shared mapped between the clusters of tissue-assigned signals (Figure 3B). For example, three of the435

six conditionally-independent signals at the CCND2 locus (including the primary signal at rs76895963;436

PPA=1.0) classified as “shared”, and mapped equidistant between adipose and islet clusters (Figure 3B,437

Supplementary Table 1). Other clear examples include the primary signals at the PROX1 and BCL2A438

loci described above that exhibit profiles with sharing between islet and liver, and muscle and adipose,439

respectively (Figure 3B).440

Despite incorporating data from the four tissues most relevant to T2D pathogenesis, a considerable441

number of signals remained unclassified across stringency thresholds (e.g. 65 signals at the 0.2 threshold),442

reflecting the appreciable proportion of cumulative PPA at these signals attributable to credible set SNPs443

that did not map to active regulatory regions in any of these tissues. This can, in part, be explained by444

the poorer fine-map resolution of these signals compared to classified signals (median credible set size:445

57 versus 36 SNPs; median maximum PPA: 0.20 vs. 0.25). However, it is possible that some of the446

unclassified signals involve tissues or cell types not explicitly included in our analysis. Indeed, signals447

18/41

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 25, 2020. ; https://doi.org/10.1101/2020.06.25.169706doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.25.169706
http://creativecommons.org/licenses/by-nd/4.0/


that remained unclassified at the TOA score ≥0.2 threshold were more likely to map to regions that were448

actively repressed or quiescent (i.e. low signal) in the four evaluated tissues (Supplementary Table 3).449

Given that a subset of T2D signals are driven by adiposity and presumed to act through central450

mechanisms3, one obvious omission from the tissues considered in our primary analysis was brain (or,451

more specifically, hypothalamus). For example, T2D-associated variants at the obesity-associated MC4R452

locus (encoding the melanocortin 4 receptor) were assigned as unclassified in our analyses3, 26–29. However,453

using chromatin state maps from multiple brain regions, we found a deficit, rather than an excess, of454

PPA enrichment amongst active enhancers (0.032 vs.0.147; p-value=7.5x10−5) and promoters (0.007455

vs.0.043; p-value=0.0054) for unclassified signals (as compared to classified) (Supplementary Table 3).456

The data available did not, however, include chromatin state maps for the hypothalamus. Overall, it is to457

be expected that classification of currently-unclassified signals will improve with increased fine-mapping458

resolution and the availability of detailed chromatin annotations from additional tissue and cell types.459

Tissue-assigned signals are validated by orthogonal tissue-specific features460

We sought to validate the performance of the classifier by evaluating how assignments from the TOA clas-461

sifier matched tissue-specific information from three orthogonal sources: tissue-specific eQTL enrichment,462

“functional” fine-mapping, and proximity-based gene coexpression analysis of non-coding signals. For463

these evaluations, we used the version of the classifier that allows for a shared designation.464

To determine if tissue-assigned signals were matched to tissue-specific eQTLs, we assembled cis-465

eQTLs for liver, skeletal muscle, subcutaneous adipose tissue (all GTEx V7) and human islets5, and466

defined sets of tissue-specific eQTLs (see Methods). The set of signals assigned by the TOA classifier467

to islets were significantly, and selectively, enriched for islet-specific eQTLs across all TOA thresholds468

(ranging from 10-fold to 31-fold enrichment [p-values<0.001]) as compared to matched sets of SNPs469

(see Methods) (Figure 3C). Similarly, the set of signals assigned by the TOA classifier to liver showed470

marked, selective, enrichment for liver-specific eQTLs across TOA thresholds (Figure 3C). Overall, the471

more confidently assigned genetic signals retained at more stringent TOA thresholds tended to have larger472

point effect estimates, though the reduced number of signals meeting the more stringent thresholds led to473

wider confidence intervals and some reduction in the statistical significance of the enrichments. Relatively474
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few signals were assigned to adipose and skeletal muscle at higher thresholds (Figure 3A): nonetheless,475

adipose-assigned signals were the most enriched for adipose-specific eQTLs at lower stringency (e.g.476

5-fold enrichment, p-value = 0.021, at the 0.2 threshold (Figure 3C). In contrast, although sets of signals477

classified as shared showed some enrichment for tissue-specific eQTLs at less stringent thresholds, these478

enrichments were generally lower than those for signals assigned to the corresponding tissues (Figure 3C).479

These data indicate that the tissue assignments made by the classifier are consistent with the information480

from cis-eQTL analyses in corresponding tissues.481

The second validation analysis was motivated by the use of high-resolution epigenomic maps to482

improve genetic fine-mapping. For the present study, we had derived TOA scores using chromatin483

states based solely on ChIP-seq data19: this was a conscious decision designed to minimize technical484

differences in the depth of annotation available between tissues given that chromatin accessibility and485

DNA methylation data were not as widely available. However, we had previously shown that islet486

enhancer chromatin states obtained from a segmentation analysis that incorporated information from DNA487

methylation, ATAC-seq, and histone ChIP-seq data yielded higher enrichment of T2D-associated SNPs488

than enhancer states delineated from ChIP-seq data alone22. We reasoned that accurate assignment of islet489

signals by the TOA classifier would be expected to result in an improvement in fine-mapping, following490

the use of fine-grained islet functional information, which was restricted to the set of islet-assigned signals.491

To test this hypothesis, we performed a comparative “functional” fine-mapping analysis (see Methods)492

using this richer set of islet annotations22 and found that the mean maximum credible set PPA significantly493

increased for islet-assigned signals relative to the corresponding value from a joint analysis based on494

ChIP-seq data alone (e.g. mean PPA increase=0.064; p-value=0.0027 at the 0.2 threshold) (Figure 3D).495

This was true across all TOA thresholds. In contrast, credible sets for signals assigned to insulin-responsive496

peripheral tissues showed no improvement in fine-mapping resolution with the richer islet annotations497

(Figure 3D). These data indicate that the tissue assignments made by the TOA classifier are consistent498

with the information from more detailed functional annotations in relevant tissues.499

The third validation approach involved assessing genes for overlapping coexpression30. Although the500

genes lying closest to the lead regulatory variants at GWAS signals are not guaranteed to be the causal501

transcript, the set of “nearest genes” is, nonetheless, likely to be enriched for the genes responsible for502
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mediating such associations31. As such, we reasoned that performance of the classifier would be reflected503

in the extent to which genes near non-coding signals were coexpressed in the corresponding tissue as504

compared to more distal genes. We assigned a single (nearest) gene to each tissue-classified signal and505

found that the set of genes nearest to islet-assigned signals showed the most pronounced coexpression in506

human islet tissue across all TOA thresholds (e.g. p-value=0.0003 at threshold 0.8) (Figure 3E) and across507

an expanded set of tissues, including 53 tissues from the GTEx Project (Supplementary Figure 5A).508

This coexpression signal was lost for the sets of second- and third-nearest genes (Supplementary Figure509

5B-C). Similar results were observed for liver, muscle and adipose (Figure 3E). In contrast to the sets of510

nearest genes annotated to signals assigned to specific tissues, gene sets annotated to signals classified511

as either “shared” or “unclassified” did not show pronounced co-expression in any of the evaluated512

tissues (Figure 3E, Supplementary Figure 5A). These data indicate that the tissue assignments made by513

the classifier are consistent with the information from co-expression analyses in corresponding tissues.514

Collectively, the data from these three analyses further supports the validity of the tissue-of-action scores515

generated by our approach.516

Tissue-assigned signals are supported by physiological clustering517

It is possible to assign T2D risk alleles with respect to physiological impact based on patterns of genetic518

association with related quantitative traits such as fasting glucose and insulin levels, circulating lipid519

levels, and anthropometric traits2, 23, 24, 32, 33. At the same time, those same physiological processes map to520

specific tissues (e.g. insulin secretion from pancreatic islets). We asked therefore if the tissue assignment of521

signals by the TOA-classifier (based on tissue-specific molecular data) was consistent with the assignments522

made on the basis of whole body physiology. We focused on a set of 82 T2D-associated variants that had523

previously been partitioned using a “fuzzy” clustering algorithm23 to six physiological clusters and were524

in linkage disequilibrium with lead variants from the set of 380 fine-mapped credible sets (see Methods).525

We first asked if these signals assigned to these six physiological clusters differed with respect to526

their TOA score distributions. Variants assigned to the two insulin secretion clusters (characterised by527

associations with reduced fasting glucose and HOMA-B levels but differing with respect to effects on528

proinsulin and HDL cholesterol levels) had higher islet TOA scores than variants in the other physiological529
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clusters (enrichment = 1.5, 1.7 [p=0.006, 0.03] for the type 2 and type 1 insulin secretion cluster,530

respectively) (Figure 3F-G). Variants assigned to the insulin action and dyslipidemia clusters corresponded531

to signals with significantly higher adipose ( 1.5-fold, p=0.034) and liver scores ( 2.9-fold, p=0.009),532

respectively (Figure 3F-G). Reciprocally, sets of TOA-classifier tissue-assigned signals were significantly533

enriched for SNPs from relevant physiology sets (Supplementary Figure 6A). Similar results were534

obtained from a different (but overlapping) set of physiological clusters derived using an alternative535

clustering scheme24 (Supplementary Figure 6B-C).536

These patterns were confirmed by evaluating enrichment across all phenotypes present in the NHGRI-537

EBI GWAS catalogue. For example, T2D signals assigned to adipose by the TOA-classifier were enriched538

for variants associated with traits relevant to fat distribution (e.g waist-to-hip ratio adjusted for BMI, 3.5-539

fold, p-value<0.0001) whereas signals assigned to liver and islet were enriched for SNPs associated with540

total cholesterol levels (3.3-fold, p-value=0.0011) and acute insulin response (2.3-fold, p-value=0.009),541

respectively (Supplementary Figure 7). Collectively, these results indicate that tissue assignments based542

on TOA scores derived from molecular data are consistent with inference based on in vivo physiology.543

Epigenomic clustering implicates multiple tissues at loci with independent signals544

The 380 fine-mapped genetic credible sets map to 239 loci, 84 of which harboured multiple conditionally-545

independent signals3. As disparate signals within the same locus cannot be assumed, purely on the basis546

of genomic adjacency, to influence disease risk through the same downstream mechanism, we asked how547

often the classifier assigned independent signals at a locus to different tissues. We focused on the 0.2548

threshold as this allowed us to assign signals to each of the four T2D-relevant tissues, whilst still being549

widely validated by the approaches described above (Figure 3). There were 60 loci where at least two550

signals were assigned to a tissue or designated as “shared” (Supplementary Figure 8), but we focused on551

19 loci where two or more independent signals received tissue-specific assignments (rather than “shared”).552

Of these, there were nine loci where constituent signals were given identical tissue assignments. These553

included PPARG and EYA2 (all signals designated as adipose) and seven others - including MTNR1B and554

GIPR – at which all signals were assigned to islet (Figure 4A).555

This left ten loci where there was divergent assignment of signals. One of the clearest examples556
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involves the HNF1B locus where three signals (each comprising non-coding variants) varied markedly557

in their TOA scores from islet and liver (Figure 4B). The lead signal, at rs10908278, was assigned558

to islet as the credible variants with the highest PPAs (0.72 and 0.13) both mapped to the same strong559

islet-specific enhancer (Figure 4C). In contrast, the rs10962 signal was assigned to liver as the likely560

causal variant (PPA=0.98) mapped to a strongly transcribed region specific to liver. The remaining signal,561

at rs2189301, was classified as “shared” as the principal credible set variants (both with PPA=0.49) mapped562

to a transcribed region in both islet and liver, with the latter showing a stronger epigenomic signature for563

transcription (Figure 4C).564

Large-scale GWAS meta-analysis in Europeans has uncovered multiple signals at the ANK1 locus. One565

of these, at rs13262681, colocalises with an eQTL for NKX6.3 expression in pancreatic islets3. Using the566

TOA-classifier, we found that this signal (rs13262861; PPA=0.97) was designated as islet given overlap567

with a strong islet enhancer. On the other hand, an independent signal at rs148766658 ( 43 Kb from568

rs13262861) was categorized as a muscle signal as credible set SNPs (maximum PPA=0.25) mapped569

to strong enhancer and transcribed chromatin states in skeletal muscle (Supplementary Figure 9A-B).570

These data suggest that this “locus” is really a composite of overlapping associations, with entirely distinct571

effector transcripts and tissues-of-action. Notably, a recent GWAS meta-analysis of T2D in 433,530572

East Asians has uncovered independent signals in this region that distinctly colocalize with either an573

eQTL for NKX6-3 in islet or an eQTL for ANK1 expression in skeletal muscle and subcutaneous adipose574

tissues34. Although there is incomplete LD between the specific ANK1 variants detected in the European575

and East Asian meta-analyses (between the secondary signals in particular), our results are consistent576

with the presence of distinct signals near ANK1 with disparate tissue effects. This example highlights the577

growing limitations of segmenting the genome into loci, based purely on measures of adjacency, with578

component signals at each locus considered to share some functional relationship. Instances such as this,579

where proximal signals represent functionally distinct mechanisms, indicate that such assumptions can be580

misleading and are likely to become less tenable as the density of GWAS hits for each disease of interest581

increases.582

Amongst the ten loci displaying evidence for “tissue heterogeneity” across signals was TCF7L2. Of583

the seven independent signals at TCF7L2 revealed by conditional fine-mapping, two (at rs7918400 and584
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rs140242150) were assigned solely to liver (Figure 4B). The remaining five signals revealed contributions585

from both islet and adipose (Figure 4B). This group includes the lead signal at TCF7L2 (lead SNP,586

rs7903146), which remains the strongest common variant T2D association in Europeans. This signal was587

classified as “shared”, with similar TOA scores from islet (0.31) and adipose (0.37). Crucially, this signal588

did not fine-map exclusively to rs7903146 (PPA=0.59; MAF=0.26) in Europeans: the 99% credible set589

included two additional SNPs3. Variant rs34872471 (PPA=0.36) is in near perfect LD (r2=0.99) with590

rs7903146 in Europeans35. While rs7903146 has a pronounced islet signature due to mapping to an591

epigenetically active region in islet (a strong enhancer with high chromatin accessibility and low DNA592

methylation), rs34872471 mapped to a strong enhancer active only in adipose (Supplementary Figure593

9C). The net effect, based on this information, is a “shared” designation. In truth, either there is a single594

causal variant at this locus (rs7903146, or potentially, rs34872471) and once resolved, this signal can595

be correctly assigned to the relevant tissue; or both SNPs are directly contributing to T2D risk through596

distinct mechanisms in islet and adipose tissue.597

TOA scores advance resolution of effector transcripts598

Given the TOA-score classifier was able to discriminate sets of genetic signals that were supported599

by orthogonal validation features, we next considered the value of TOA scores to clarify regulatory600

mechanisms and enhance the identification of downstream effector transcripts at T2D-associated loci. One601

widely used approach for promoting candidate causal genes at GWAS loci involves identifying cis-eQTL602

signals that colocalize with trait-associated SNPs36, 37. However, cis-eQTL signals show appreciable tissue603

specificity, raising the possibility of misleading inference if analyses are conducted in a tissue irrelevant to604

the signal of interest38, 39. For example, a cis-eQTL specific to liver is likely to be more informative for a605

T2D signal assigned to liver, than one assigned to islet.606

We explored the utility of incorporating TOA scores for T2D-relevant tissues into a previous colocal-607

ization analysis3 fine-mapping resolution, we evaluated eQTL colocalisation results involving the 101608

T2D GWAS signals with credible sets featuring lead SNPs with maximum PPA>=0.5. A total of 378609

eQTL colocalizations (eCaviar CLPP>=0.01) were detected across 53 signals with a median of four610

colocalizations (implicating four distinct pairs of tissues and eGenes) per signal (Supplementary Table 4).611
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At some loci, the number of colocalizations detected can be substantial: at the CLUAP locus, for example,612

the lead T2D SNP (rs3751837, PPA=0.90) was the source of 64 cis-eQTL colocalizations involving 15613

eGenes across 37 tissues (Supplementary Table 4).614

Restricting colocalization results to those SNP-gene pairs arising from the tissue assignments provided615

by the TOA-classifier (at a threshold of 0.2) reduced the number of colocalizations to 133 at 32 signals, a616

65% reduction overall, and a 36% reduction (from 209 at 49 signals) if considering only the subset of617

colocalizations that involved the four T2D-relevant tissues (Supplementary Table 5). This reduced set618

of TOA-filtered colocalizations retained many of the T2D effector transcripts previously reported in the619

literature, including those benefiting from additional chromatin conformation data7, 8. For example, the620

primary signal at the CDC123-CAMK1D locus (rs11257655; PPA=1.0) was classified as an islet signal621

(TOA=0.40) and has been previously reported to colocalize with an eQTL for CAMK1D expression in622

human islets5, 18. The regulatory element harboring this variant was recently shown, using promoter capture623

HiC, to physically interact with the CAMK1D promoter in human islet cells8. Similarly, the designation of624

islet signals at the MTNR1B (rs10830963; PPA=1.0; TOA=1.0) and IGF2BP2 (rs150111048; PPA=0.94;625

TOA=0.96) loci was consistent with colocalized eQTLs implicating MTNR1B and IGF2BP2 as effector626

genes at these loci influencing T2D risk through effects on human islet function5, 7.627

At other signals, the integration of TOA scores with eQTL colocalization data allowed us to further628

resolve signals that featured multiple candidate eGenes in T2D-relevant tissues. For example, the lead SNP629

at the CCND2 locus (rs76895963; PPA=1) has 16 eQTL colocalizations, involving three eGenes across 11630

tissues. Of these, only two involved any of the four T2D-relevant tissues, implicating CCND2 expression in631

subcutaneous adipose (CLPP=1.0) and skeletal muscle (CLPP=1.0). From a TOA perspective, this signal632

was classified as “shared” with high TOA scores for both islet (0.53) and adipose (0.47). This suggests633

that of the two colocalized eQTLs, the eQTL affecting CCND2 expression in adipose tissue is likely to634

be more important to T2D pathophysiology. CCND2 encodes cyclin D2, a signaling protein involved in635

cell cycle regulation and cell division. Consistent with our inference, CCND2 was previously shown to636

be differentially expressed between insulin-sensitive and insulin-resistant individuals in subcutaneous637

adipose tissue but not in skeletal muscle40.638

At the CLUAP1 locus, referred to above, the lead signal (rs3751837) was classified as “shared” with639
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comparable TOA scores across each of the four T2D-relevant tissues (0.22-0.29). Restricting to these four640

tissues, reduced the overall number of colocalizations (across genes and tissues) from 64 to 16. Of the641

remaining colocalized eQTLs, the highest colocalization posterior probability (CLPP=0.41) corresponded642

to an eQTL where the T2D-risk allele associates with increased expression of TRAP1 in subcutaneous643

adipose (Supplementary Table 5). This variant is also associated with TRAP1 expression in skeletal644

muscle. TRAP1 encodes TNF Receptor Associated Protein 1, a chaperone protein that expresses ATPase645

activity and functions as a negative regulator of mitochondrial respiration, modulating the metabolic646

balance between oxidative phosphorylation and aerobic glycolysis41. Although TRAP1 has not been647

directly implicated in T2D risk, a proteomic analysis has previously found TRAP1 protein levels to be648

differentially abundant in cultured myotubes from T2D patients versus normal glucose tolerant donors42.649

Further experimental validation will be required to resolve the effector transcript(s) at this and other T2D-650

associated loci. However, these results, collectively, demonstrate that TOA scores can be systematically651

incorporated into integrative analyses to prioritise effector transcripts, particularly when there are multiple652

candidate genes in multiple relevant tissues.653

Discussion654

We have developed a principled and extensible approach for integrative multi-omic analysis to advance655

the resolution of genetic mechanisms at disease-associated loci by elucidating relevant tissues-of-action.656

Existing approaches in this space have focused on characterizing the contributions of tissue- and cell-type657

specific regulatory features to the overall genetic architecture of the complex trait of interest (e.g. through658

genome-wide enrichment or heritability partitioning). However, to ensure that functional follow-up is659

directed to appropriate cellular systems, it is also critical to understand tissue- and cell type-specific effects660

at each individual signal. In line with previous work, our analyses support a prominent role for pancreatic661

islets in the pathogenesis of T2D, but these results also emphasize the extent to which risk-associated662

variants may involve shared effects across multiple tissues. Some of this tissue “sharing” was the result663

of incomplete resolution of causal variants at less well fine-mapped signals. However, we also found664

multiple examples of fine-mapped signals that overlapped regulatory elements active in multiple tissues665

(pointing to pleiotropic effects across tissues) as well as of loci where independent signals manifested666
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diverse tissue-of-action profiles667

A salient exemplar of these scenarios for tissue “sharing” is the TCF7L2 locus that plays a distinguished,668

but as yet mechanistically-unresolved role in T2D pathogenesis and is complicated by pronounced allelic669

heterogeneity. The tissue-of-action for the lead signal at rs7903146 has been the subject of recent debate:670

early studies emphasized consequences focused on islet dysfunction whereas recent data have supported671

a role in adipose tissue43, 44. Evidence from murine studies has supported an important role for Tcf7l2672

in pancreatic β -cell proliferation, insulin secretion, and glucose homeostasis45–48. In human studies,673

variation at rs7903146 has been associated with chromatin accessibility and TCF7L2 gene expression in674

islets18, 43. However, TCF7L2 activation also regulates Wnt signaling during adipogenesis and in vivo675

deactivation of TCF7L2 protein in mature adipocytes results in hepatic insulin resistance and systemic676

glucose intolerance44. TCF7L2 expression was also found to be downregulated in human subjects with677

impaired glucose tolerance and adipocyte insulin resistance44. Our TOA analysis of this signal yielded a678

profile that is consistent with shared effects in both pancreatic islets and adipocytes that jointly contribute679

to T2D pathogenesis. In addition, two independent signals at this locus (rs7918400 and rs140242150)680

had profiles that suggest a primary mechanism of action in liver, a possibility supported by in vivo studies681

linking liver-specific perturbations of Tcf7l2 expression in adult mice to altered hepatic glucose production682

and glucose production49, 50. Overall these data lend credence to the idea that the impact of genetic683

variation at this locus on T2D risk is mediated through several parallel mechanisms operating via multiple684

tissues. This may explain why it has such a comparatively large effect on T2D-risk in humans.685

In this study, we have incorporated gene-level expression data and publicly available chromatin states686

based on histone ChIP-seq to determine tissues-of-action at loci associated with T2D. This scheme687

yielded tissue designations that were supported by validation analyses (e.g. functional fine-mapping and688

physiological clustering) and are consistent with previously elucidated effector mechanisms at specific loci.689

However, such tissue designations, though informative, constitute a first step and will undoubtedly become690

more refined with the increasing availability and incorporation of higher resolution datasets. In particular,691

our approach will benefit from more extensive genetic fine-mapping that will accompany large-scale692

discovery efforts involving greater samples, denser imputation reference panels, and the inclusion of more693

diverse populations representing underrepresented genetic ancestries.694
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The performance of our approach will also improve with regulome maps delineated from chromatin695

segmentation or hierarchical clustering analyses based on an expanded set of input features (e.g. PTM and696

transcription factor ChIP-seq, DNA methylation, chromatin accessibility). This allows more of the genome697

to be assigned to a regulatory state. For example, incorporating ATAC-seq and whole-genome bisulfite698

sequencing, in addition to histone PTM ChIP-seq data, into a chromatin segmentation analysis of human699

islets reduced the proportion of quiescent regions from 6.6% to 3.1%19, 22. Interestingly, islet enhancer700

annotations characterised by the presence of mediator binding were recently shown to exhibit a notably701

strong enrichment of islet-specific chromatin interactions8; the inclusion of such input features would help702

to delineate regulatory annotations that can further differentiate tissue effects. Similarly, elucidating key703

tissues at coding variants will benefit from long-read RNA sequencing methods that will make it possible704

to leverage patterns of isoform expression. Furthermore, discerning molecular features under a spectrum705

of biological contexts (e.g. hyperglycemia, developmental stages) will provide valuable insight into the706

specific conditions, within tissues-of-action, that are most relevant to individual genetic signals.707

Lastly, incorporating regulatory information ascertained from single-cell approaches (e.g. scRNA-seq708

and snATAC-seq) will advance the resolution of cells-of-action against different physiological backdrops.709

Indeed, it may be the case that some of the tissue sharing observed in this study is reflecting cell type710

composition within tissues rather than sharing across tissues. The inclusion of single-cell regulome maps711

will help resolve this question.712

The strategy presented here for integrating multi-omic information can provide valuable insight for713

prioritising variants and determining appropriate model systems to employ in experimental validation714

studies. This scheme may also enhance the construction of process-specific genetic risk scores that can715

identify and profile individuals with genetic burden that impacts pathophysiological processes impacting716

specific tissues and organ systems. Lastly, this approach can be deployed more widely across other717

complex diseases, especially as more tissue and cell-specific data becomes available. To support this wider718

use, we have implemented our method and made it openly available in an R package: Tissue of ACTion719

scores for Investigating Complex trait-Associated Loci (TACTICAL).720
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Description of Supplemental Data721

Supplemental Data include nine figures and five tables.722

Data and Code Availability723

The method described in this study has been implemented in an R package titled TACTICAL (Tissue724

of ACTion scores for Investigating Complex trait-Associated Loci). The package can be installed from725

GitHub through the URL: https://github.com/Jmtorres138/TACTICAL.726

Acknowledgements727

ALG is a Wellcome Trust Senior Fellow in Basic Biomedical Science. MIM was a Wellcome Senior728

Investigator and an NIHR Senior Investigator. This work was funded in Oxford by the Wellcome Trust729

(095101 [ALG], 200837 [ALG], 098381 [MIM], 106130 [ALG, MIM], 203141 (ALG, MIM], 203141730

[MIM]), Medical Research Council (MR/L020149/1) [MIM, ALG], European Union Horizon 2020731

Programme (T2D Systems) [ALG], and NIH (U01-DK105535; U01-DK085545) [MIM, ALG] and NIHR732

(NF-SI-0617-10090) [MIM]. The research was funded by the National Institute for Health Research733

(NIHR) Oxford Biomedical Research Centre (BRC) [ALG, MIM]. AP was supported by the Rhodes734

Trust, the Natural Sciences and Engineering Research Council of Canada, and the Canadian Centennial735

Scholarship Fund. This work was also supported by Oxford Biomedical Research Computing (BMRC)736

facility, a joint development between the Wellcome Centre for Human Genetics and the Big Data Institute737

supported by Health Data Research UK and the NIHR Oxford Biomedical Research Centre. The views738

expressed are those of the author and not necessarily those of the NHS, the NIHR or the Department of739

Health.740

Web Resources741

Online resources used in this study include:742

1000 Genomes Project data, http://ftp.1000genomes.ebi.ac.uk743

Chromatin state maps (Varshney), https://theparkerlab.med.umich.edu744

29/41

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 25, 2020. ; https://doi.org/10.1101/2020.06.25.169706doi: bioRxiv preprint 

https://github.com/Jmtorres138/TACTICAL
http://ftp.1000genomes.ebi.ac.uk
https://theparkerlab.med.umich.edu
https://doi.org/10.1101/2020.06.25.169706
http://creativecommons.org/licenses/by-nd/4.0/


DIAGRAM website, https://www.diagram-consortium.org745

Ensembl gene annotations, https://www.ensembl.org746

fgwas software, https://github.com/joepickrell/fgwas747

GTEx Portal website, https://gtexportal.org748

LD Link, https://ldlink.nci.nih.gov749

NHGRI-EBI GWAS catalogue, https://www.ebi.ac.uk/gwas750

Declaration of Interests751

MMcC has served on advisory panels for Pfizer, NovoNordisk, Zoe Global; has received honoraria from752

Merck, Pfizer, NovoNordisk and Eli Lilly; has stock options in Zoe Global and has received research753

funding from Abbvie, AstraZeneca, Boehringer Ingelheim, Eli Lilly, Janssen, Merck, NovoNordisk, Pfizer,754

Roche, Sanofi Aventis, Servier Takeda. As of June 2019, MMcC is an employee of Genentech, and holds755

stock in Roche. AM is now an employee of Genentech, and holds stock in Roche.756

References757

1. Xue, A. et al. Genome-wide association analyses identify 143 risk variants and putative regulatory758

mechanisms for type 2 diabetes. Nat. Commun. 9, 2941, DOI: 10.1038/s41467-018-04951-w (2018).759

2. Scott, R. A. et al. An Expanded Genome-Wide Association Study of Type 2 Diabetes in Europeans.760

Diabetes 66, 2888 LP – 2902, DOI: 10.2337/db16-1253 (2017).761

3. Mahajan, A. et al. Refining the accuracy of validated target identification through coding variant762

fine-mapping in type 2 diabetes. Nat. genetics 50, 559–571, DOI: 10.1038/s41588-018-0084-1 (2018).763

4. Visscher, P. M. et al. 10 Years of GWAS Discovery: Biology, Function, and Translation. Am. journal764

human genetics 101, 5–22, DOI: 10.1016/j.ajhg.2017.06.005 (2017).765

5. van de Bunt, M. et al. Transcript Expression Data from Human Islets Links Regulatory Signals from766

Genome-Wide Association Studies for Type 2 Diabetes and Glycemic Traits to Their Downstream767

Effectors. PLOS Genet. 11, e1005694, DOI: 10.1371/journal.pgen.1005694 (2015).768

30/41

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 25, 2020. ; https://doi.org/10.1101/2020.06.25.169706doi: bioRxiv preprint 

https://www.diagram-consortium.org
https://www.ensembl.org
https://github.com/joepickrell/fgwas
https://gtexportal.org
https://ldlink.nci.nih.gov
https://www.ebi.ac.uk/gwas
10.1038/s41467-018-04951-w
10.2337/db16-1253
10.1038/s41588-018-0084-1
10.1016/j.ajhg.2017.06.005
10.1371/journal.pgen.1005694
https://doi.org/10.1101/2020.06.25.169706
http://creativecommons.org/licenses/by-nd/4.0/


6. Khamis, A. et al. Laser capture microdissection of human pancreatic islets reveals novel eQTLs769

associated with type 2 diabetes. Mol. Metab. 24, 98–107, DOI: 10.1016/j.molmet.2019.03.004 (2019).770

7. Greenwald, W. W. et al. Pancreatic islet chromatin accessibility and conformation reveals distal en-771

hancer networks of type 2 diabetes risk. Nat. Commun. 10, 2078, DOI: 10.1038/s41467-019-09975-4772

(2019).773

8. Miguel-Escalada, I. et al. Human pancreatic islet three-dimensional chromatin architecture pro-774

vides insights into the genetics of type 2 diabetes. Nat. Genet. 51, 1137–1148, DOI: 10.1038/775

s41588-019-0457-0 (2019).776

9. Khetan, S. et al. Type 2 Diabetes Associated Genetic Variants Regulate Chromatin Accessibility in777

Human Islets. Diabetes db180393, DOI: 10.2337/db18-0393 (2018).778

10. Thomsen, S. K. et al. Systematic Functional Characterization of Candidate Causal Genes for Type 2779

Diabetes Risk Variants. Diabetes 65, 3805 LP – 3811, DOI: 10.2337/db16-0361 (2016).780

11. Parker, S. C. J. et al. Chromatin stretch enhancer states drive cell-specific gene regulation and harbor781

human disease risk variants. Proc. Natl. Acad. Sci. 110, 17921 LP – 17926, DOI: 10.1073/pnas.782

1317023110 (2013).783

12. Pasquali, L. et al. Pancreatic islet enhancer clusters enriched in type 2 diabetes risk-associated variants.784

Nat. Genet. 46, 136–143, DOI: 10.1038/ng.2870 (2014).785

13. Scott, L. J. et al. The genetic regulatory signature of type 2 diabetes in human skeletal muscle. Nat.786

Commun. 7, 11764, DOI: 10.1038/ncomms11764 (2016).787

14. Zhong, H. et al. Liver and Adipose Expression Associated SNPs Are Enriched for Association to788

Type 2 Diabetes. PLOS Genet. 6, e1000932, DOI: 10.1371/journal.pgen.1000932 (2010).789

15. Wakefield, J. A Bayesian Measure of the Probability of False Discovery in Genetic Epidemiology790

Studies. The Am. J. Hum. Genet. DOI: 10.1086/519024 (2007).791

16. The Wellcome Trust Case Control Consortium et al. Bayesian refinement of association signals for792

14 loci in 3 common diseases. Nat. Genet. 44, 1294, DOI: 10.1038/ng.2435 (2012).793

31/41

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 25, 2020. ; https://doi.org/10.1101/2020.06.25.169706doi: bioRxiv preprint 

10.1016/j.molmet.2019.03.004
10.1038/s41467-019-09975-4
10.1038/s41588-019-0457-0
10.1038/s41588-019-0457-0
10.1038/s41588-019-0457-0
10.2337/db18-0393
10.2337/db16-0361
10.1073/pnas.1317023110
10.1073/pnas.1317023110
10.1073/pnas.1317023110
10.1038/ng.2870
10.1038/ncomms11764
10.1371/journal.pgen.1000932
10.1086/519024
10.1038/ng.2435
https://doi.org/10.1101/2020.06.25.169706
http://creativecommons.org/licenses/by-nd/4.0/


17. The GTEx Consortium. The Genotype-Tissue Expression (GTEx) pilot analysis: Multitissue gene794

regulation in humans. Science 348, 648–660, DOI: 10.1126/science.1262110 (2015).795

18. Viñuela, A. et al. Influence of genetic variants on gene expression in human pancreatic islets –796

implications for type 2 diabetes. bioRxiv 655670, DOI: 10.1101/655670 (2019).797

19. Varshney, A. et al. Genetic regulatory signatures underlying islet gene expression and type 2 diabetes.798

Proc. Natl. Acad. Sci. 114, 2301–2306, DOI: 10.1073/pnas.1621192114 (2017).799

20. Ernst, J. & Kellis, M. Chromatin-state discovery and genome annotation with ChromHMM. Nat.800

Protoc. 12, 2478, DOI: 10.1038/nprot.2017.124 (2017).801

21. Pickrell, J. K. Joint Analysis of Functional Genomic Data and Genome-wide Association Studies of802

18 Human Traits. Am. J. Hum. Genet. 94, 559–573, DOI: 10.1016/j.ajhg.2014.03.004 (2014).803

22. Thurner, M. et al. Integration of human pancreatic islet genomic data refines regulatory mechanisms804

at type 2 diabetes susceptibility loci. eLife DOI: 10.7554/eLife.31977 (2018).805

23. Mahajan, A. et al. Fine-mapping type 2 diabetes loci to single-variant resolution using high-806

density imputation and islet-specific epigenome maps. Nat. Genet. 50, 1505–1513, DOI: 10.1038/807

s41588-018-0241-6 (2018).808

24. Udler, M. S. et al. Type 2 diabetes genetic loci informed by multi-trait associations point to disease809

mechanisms and subtypes: A soft clustering analysis. PLOS Medicine 15, e1002654, DOI: 10.1371/810

journal.pmed.1002654 (2018).811

25. Franks, P. W. & McCarthy, M. I. Exposing the exposures responsible for type 2 diabetes and obesity.812

Science 354, 69 LP – 73, DOI: 10.1126/science.aaf5094 (2016).813

26. Fan, W., Boston, B. A., Kesterson, R. A., Hruby, V. J. & Cone, R. D. Role of melanocortinergic814

neurons in feeding and the agouti obesity syndrome. Nature 385, 165–168, DOI: 10.1038/385165a0815

(1997).816

27. Fan, W., Voss-Andreae, A., Cao, W. H. & Morrison, S. F. Regulation of thermogenesis by the central817

melanocortin system. Peptides 26, 1800–1813, DOI: 10.1016/j.peptides.2004.11.033 (2005).818

32/41

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 25, 2020. ; https://doi.org/10.1101/2020.06.25.169706doi: bioRxiv preprint 

10.1126/science.1262110
10.1101/655670
10.1073/pnas.1621192114
10.1038/nprot.2017.124
10.1016/j.ajhg.2014.03.004
10.7554/eLife.31977
10.1038/s41588-018-0241-6
10.1038/s41588-018-0241-6
10.1038/s41588-018-0241-6
10.1371/journal.pmed.1002654
10.1371/journal.pmed.1002654
10.1371/journal.pmed.1002654
10.1126/science.aaf5094
10.1038/385165a0
10.1016/j.peptides.2004.11.033
https://doi.org/10.1101/2020.06.25.169706
http://creativecommons.org/licenses/by-nd/4.0/


28. Xi, B., Chandak, G. R., Shen, Y., Wang, Q. & Zhou, D. Association between common polymorphism819

near the MC4R gene and obesity risk: a systematic review and meta-analysis. PloS one 7, e45731–820

e45731, DOI: 10.1371/journal.pone.0045731 (2012).821

29. Martinelli, C. E. et al. Obesity due to Melanocortin 4 Receptor (MC4R) Deficiency Is Associated with822

Increased Linear Growth and Final Height, Fasting Hyperinsulinemia, and Incompletely Suppressed823

Growth Hormone Secretion. The J. Clin. Endocrinol. & Metab. 96, E181–E188, DOI: 10.1210/jc.824

2010-1369 (2011).825

30. Lee, H. K., Hsu, A. K., Sajdak, J., Qin, J. & Pavlidis, P. Coexpresion analysis of human genes across826

many microarray data sets. Genome Res. DOI: 10.1101/gr.1910904 (2004).827

31. Stacey, D. et al. ProGeM: A framework for the prioritization of candidate causal genes at molecular828

quantitative trait loci. Nucleic Acids Res. DOI: 10.1093/nar/gky837 (2019).829

32. Dimas, A. S. et al. Impact of Type 2 Diabetes Susceptibility Variants on Quantitative Glycemic Traits830

Reveals Mechanistic Heterogeneity. Diabetes 63, 2158 LP – 2171, DOI: 10.2337/db13-0949 (2014).831

33. Wood, A. R. et al. A Genome-Wide Association Study of IVGTT-Based Measures of First-Phase832

Insulin Secretion Refines the Underlying Physiology of Type 2 Diabetes Variants. Diabetes 66, 2296833

LP – 2309, DOI: 10.2337/db16-1452 (2017).834

34. Spracklen, C. N. et al. Identification of type 2 diabetes loci in 433,540 East Asian individuals. Nature835

DOI: 10.1038/s41586-020-2263-3 (2020).836

35. Auton, A. et al. A global reference for human genetic variation. Nature 526, 68–74, DOI: 10.1038/837

nature15393 (2015).838

36. Giambartolomei, C. et al. Bayesian Test for Colocalisation between Pairs of Genetic Association839

Studies Using Summary Statistics. PLOS Genet. 10, e1004383, DOI: 10.1371/journal.pgen.1004383840

(2014).841

37. Hormozdiari, F. et al. Colocalization of GWAS and eQTL Signals Detects Target Genes. The Am. J.842

Hum. Genet. 99, 1245–1260, DOI: 10.1016/j.ajhg.2016.10.003 (2016).843

33/41

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 25, 2020. ; https://doi.org/10.1101/2020.06.25.169706doi: bioRxiv preprint 

10.1371/journal.pone.0045731
10.1210/jc.2010-1369
10.1210/jc.2010-1369
10.1210/jc.2010-1369
10.1101/gr.1910904
10.1093/nar/gky837
10.2337/db13-0949
10.2337/db16-1452
10.1038/s41586-020-2263-3
10.1038/nature15393
10.1038/nature15393
10.1038/nature15393
10.1371/journal.pgen.1004383
10.1016/j.ajhg.2016.10.003
https://doi.org/10.1101/2020.06.25.169706
http://creativecommons.org/licenses/by-nd/4.0/


38. Gamazon, E. R. et al. Using an atlas of gene regulation across 44 human tissues to inform complex844

disease- and trait-associated variation. Nat. Genet. 50, 956–967, DOI: 10.1038/s41588-018-0154-4845

(2018).846

39. Bettella, F. et al. Cross-tissue eQTL enrichment of associations in schizophrenia. PLoS ONE DOI:847

10.1371/journal.pone.0202812 (2018).848

40. Elbein, S. et al. Global gene expression profiles of subcutaneous adipose and muscle from glucose-849

tolerant, insulin-sensitive, and insulin-resistant individuals matched for BMI. Diabetes 60, 1019–1029,850

DOI: 10.2337/db10-1270 (2011).851

41. Yoshida, S. et al. Molecular chaperone TRAP1 regulates a metabolic switch between mitochondrial852

respiration and aerobic glycolysis. Proc. Natl. Acad. Sci. 110, E1604 LP – E1612, DOI: 10.1073/853

pnas.1220659110 (2013).854

42. Al-Khalili, L. et al. Profiling of human myotubes reveals an intrinsic proteomic signature associated855

with type 2 diabetes. Transl. Proteomics 2, 25–38, DOI: 10.1016/j.trprot.2013.12.002 (2014).856

43. Gaulton, K. J. et al. A map of open chromatin in human pancreatic islets. Nat. genetics 42, 255–259,857

DOI: 10.1038/ng.530 (2010).858

44. Chen, X. et al. The Diabetes Gene and Wnt Pathway Effector TCF7L2 Regulates Adipocyte Develop-859

ment and Function. Diabetes 67, 554 LP – 568, DOI: 10.2337/db17-0318 (2018).860

45. Shao, W. et al. The expression of dominant negative TCF7L2 in pancreatic beta cells during861

the embryonic stage causes impaired glucose homeostasis. Mol. metabolism 4, 344–352, DOI:862

10.1016/j.molmet.2015.01.008 (2015).863

46. Mitchell, R. K. et al. Selective disruption of Tcf7l2 in the pancreatic β cell impairs secretory function864

and lowers β cell mass. Hum. Mol. Genet. DOI: 10.1093/hmg/ddu553 (2015).865

47. Da Silva Xavier, G. et al. Abnormal glucose tolerance and insulin secretion in pancreas-specific866

Tcf7l2-null mice. Diabetologia DOI: 10.1007/s00125-012-2600-7 (2012).867

34/41

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 25, 2020. ; https://doi.org/10.1101/2020.06.25.169706doi: bioRxiv preprint 

10.1038/s41588-018-0154-4
10.1371/journal.pone.0202812
10.2337/db10-1270
10.1073/pnas.1220659110
10.1073/pnas.1220659110
10.1073/pnas.1220659110
10.1016/j.trprot.2013.12.002
10.1038/ng.530
10.2337/db17-0318
10.1016/j.molmet.2015.01.008
10.1093/hmg/ddu553
10.1007/s00125-012-2600-7
https://doi.org/10.1101/2020.06.25.169706
http://creativecommons.org/licenses/by-nd/4.0/


48. Shu, L. et al. Decreased TCF7L2 protein levels in type 2 diabetes mellitus correlate with down-868

regulation of GIP- and GLP-1 receptors and impaired beta-cell function. Hum. Mol. Genet. DOI:869

10.1093/hmg/ddp178 (2009).870

49. Ip, W. et al. Liver-Specific Expression of Dominant-Negative Transcription Factor 7-Like 2 Causes871

Progressive Impairment in Glucose Homeostasis. Diabetes 64, 1923 LP – 1932, DOI: 10.2337/872

db14-1329 (2015).873

50. Boj, S. F. et al. Diabetes Risk Gene and Wnt Effector Tcf7l2/TCF4 Controls Hepatic Response874

to Perinatal and Adult Metabolic Demand. Cell 151, 1595–1607, DOI: 10.1016/j.cell.2012.10.053875

(2012).876

35/41

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 25, 2020. ; https://doi.org/10.1101/2020.06.25.169706doi: bioRxiv preprint 

10.1093/hmg/ddp178
10.2337/db14-1329
10.2337/db14-1329
10.2337/db14-1329
10.1016/j.cell.2012.10.053
https://doi.org/10.1101/2020.06.25.169706
http://creativecommons.org/licenses/by-nd/4.0/


Fine-mapped genetic 
credible set 

 Chromosome

-l
o
g

1
0
(p

)

SNP1 SNP4SNP3SNP2 SNP5

P
PA

0.2

0.8

1.0

0.6

0.0

0.4

Transcription

Enhancer

Islet Adipose Muscle Liver

Promoter 0,  01, 1, 

1, 0, 0,  0

0, 0, 0,  0

Islet

Adipose

Muscle

Liver

SNP

SNP

Islet Adipose Muscle Liver

Expression Specificity Scores

0.2,  00.5, 0.3, 

Conditionally independent 
association from GWAS

Partition PPA of each SNP 
in credible set 

Map SNP to genomic annotations 
(Step 1A)  

Reference tissue-specific 
RNA expression for coding SNPs 
(Step 1B)

Combine and scale 
annotation vectors 

Partition SNP PPA with 
resultant scale vector to 

get tissue scores (Step 2)

Combine tissue scores 
across all SNPs in 

credible set (Step 3)

L
o
c
u

s

TOA Scores

Islet
 score,

Adipose 
score,

Muscle
score,

 Liver
scorePPA x 

  

Figure 1. Systematic approach for obtaining tissue-of-action scores. Fine-mapping of

conditionally-independent GWAS signals results in a set of credible variants, each with a posterior

probability of association (PPA). The illustrated example shows a signal with five SNPs in its credible set

with SNP3 as the variant with the maximum PPA. Each credible SNP is then mapped to a panel of

chromatin state annotations across four disease-relevant tissues to obtain a set of annotation vectors (Step

1A). An additional annotation vector for SNPs mapping to coding sequence (CDS) is obtained from

expression specificity scores (ESS) calculated from gene expression levels across the four tissues (Step

1B). The set of annotation vectors for each SNP are then summed and scaled, yielding a vector used to

partition the PPA value (Step 2). The resultant vectors for each SNP in a genetic credible set are then

summed and scaled to yield a tissue-of-action (TOA) score for each tissue at the GWAS signal

corresponding to the credible set (Step 3). Any residual PPA values from SNPs not mapping to any of the

evaluated tissue annotations are allocated to an “unclassified” score (grey column in matrix).
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Figure 2. The profile of tissue-of-action scores across T2D signals. A) The proportion of total PPA

summed across all 380 signals is shown for each tissue (inset). The proportion of total PPA is also shown

for each annotation group (outset). Proportions are also exhibited for the subset of signals with maximum

credible set PPA > 0.5 in panel B and for the subset of signals with maximum PPA > 0.9 in panel C. D)

The profile of TOA scores is shown for the top 20 signals ranked for each tissue. The locus name and rs

accession number for the index SNP is indicated for each signal. Signals at loci with multiple

conditionally-independent signals are indicated by parenthetical numbers (i.e. one is primary signal, two

is secondary signal, etc.). E) Relationship between fine-mapping resolution and TOA score diversity.

Log2 of the number of credible SNPs for each fine-mapped signal is shown on the x-axis and the log2

value of the sum of square differences between TOA scores for each signal is shown on the y-axis (i.e.

higher values on the y-axis correspond to greater tissue “specificity”). The profile of TOA scores are

indicated within pie charts where the diameter of each circle corresponds to the maximum PPA for the

credible set. The line thickness for each circle indicates a coding score for each credible set (i.e. the

proportion of cumulative PPA attributable to coding variants). The left panel shows all credible sets with

unclassified scores < 0.10 (n=259) and the right panel highlights the subset of “tissue-specific” signals

with TOA scores ≥ 0.8. The ten “tissue-specific” signals with the highest maximum credible set PPA are

labeled in the right panel.
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Figure 3. Enrichment of tissue-specific epigenomic and physiological features among classified

signals. A) Number of signals assigned to each tissue by the classifier for each of the four TOA score

thresholds: 0.0, 0.2, 0.5, and 0.8 (left panel). Signal counts are shown across thresholds using a classifier

that assigns signals with two or more TOA scores within 0.1 of each other as “shared” signals (right

panel). B) PCA plots of the decomposition of the TOA score matrix comprising the 306 signals with

“unclassified” scores ≤ 0.5. Each point corresponds to a signal where the size indicates the maximum

credible set PPA and the color indicates the assigned tissue at the TOA score threshold ≥ 0.2 using the

classifier that included a “shared” designation. C) Selective enrichment of tissue-specific eQTLs among

credible sets for signals assigned to subcutaneous adipose, islet, liver, and skeletal muscle tissue. Color

indicates significance of enrichment. D) Selective improvement in fine-mapping resolution at

islet-assigned signals when richer islet chromatin states are deployed. Comparison of functional

fine-mapping resolution using a panel of chromatin state annotations based on histone ChIP-seq across the

four T2D relevant tissues versus chromatin states based on islet ChIP-seq, ATAC-seq, and DNA

methylation (WGBS). E) Coexpression of nearest genes annotated to sets of tissue-assigned signals across

stringency thresholds. Shape indicates the tissue to which the set of signals were assigned. F) Selective

TOA score enrichment within relevant sets of physiology-assigned signals. Size corresponds to the

number assigned signals in each physiology group. G) Tile plot of TOA scores for

physiologically-assigned signals. Signals are ordered by physiology group and the corresponding GWAS

locus is shown.
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Figure 4. Multiple tissues implicated by epigenomic scores at heterogenous loci. A) Profile of TOA

scores for the nine loci with all signals receiving identical, “non-shared” tissue assignments at the 0.2

stringency threshold B) Profile of TOA scores for the ten loci with all signals receiving distinct,

“non-shared” tissue assignments at the 0.2 threshold. C) epigenomic profile of PPA values attributable to

each credible SNP of the primary signal at the HNF1B locus. For each credible SNP, the PPA value

attributable to each tissue annotation is shown along with its position on chromosome 17 (genome build

hg19). Chromatin state maps for islet, adipose, muscle, and liver tissue from Varshney et al. 2017. are

shown along with ATAC-seq tracks for seven representative islet samples, called ATAC-seq peaks from a

set of islet ATAC samples (n=17), and DNA methylation (whole genome bisulfite sequencing) in human

islets from Thurner et al. 2018.
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