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Abstract18

Phenology–the timing of life-history events–is a key trait for understanding re-19

sponses of organisms to climate. The digitization and online mobilization of herbar-20

ium specimens is rapidly advancing our understanding of plant phenological response21

to climate and climatic change. The current practice of manually harvesting data from22

individual specimens, however, greatly restricts our ability to scale-up data collection.23

Recent investigations have demonstrated that machine-learning approaches can facil-24

itate this effort. However, present attempts have focused largely on simplistic binary25

coding of reproductive phenology (e.g., presence/absence of flowers). Here, we use26

crowd-sourced phenological data of buds, flowers, and fruits from > 3000 specimens27

of six common wildflower species of the eastern United States (Anemone canadensis28

L., A. hepatica L., A. quinquefolia L., Trillium erectum L., T. grandiflorum (Michx.)29

Salisb., and T. undulatum Wild.) to train models using Mask R-CNN to segment and30

count phenological features. A single global model was able to automate the binary31

coding of each of the three reproductive stages with > 87% accuracy. We also success-32

fully estimated the relative abundance of each reproductive structure on a specimen33

with ≥ 90% accuracy. Precise counting of features was also successful, but accuracy34

varied with phenological stage and taxon. Specifically, counting flowers was signifi-35

cantly less accurate than buds or fruits likely due to their morphological variability36

on pressed specimens. Moreover, our Mask R-CNN model provided more reliable data37

than non-expert crowd-sourcers but not botanical experts, highlighting the importance38

of high-quality human training data. Finally, we also demonstrated the transferability39

of our model to automated phenophase detection and counting of the three Trillium40

species, which have large and conspicuously-shaped reproductive organs. These results41

highlight the promise of our two-phase crowd-sourcing and machine-learning pipeline42

to segment and count reproductive features of herbarium specimens, thus providing43

high-quality data with which to investigate plant response to ongoing climatic change.44
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1 Keywords:45

automated regional segmentation, deep learning, digitized herbarium specimen, plant phenology, regional convolutional46

neural network, reproductive structures, visual data classification.47

2 Introduction48

Climate change is a potent selective force that is shifting the geographic ranges of geno-49

types, altering population dynamics of individual species, and reorganizing entire assem-50

blages in all environments. A key functional trait in this regard is phenology: the timing of51

life-history events, such as the onset of flowering or migration. The use of museum specimens52

has invigorated and enriched the investigation of phenological responses to climatic change,53

and is one of several research directions that has brought a renewed sense of purpose and54

timeliness to natural history collections (Meineke et al., 2018, 2019; Willis et al., 2017; Davis55

et al., 2015; Hedrick et al., 2020). Herbarium specimens greatly expand the historical depth,56

spatial scale, and species diversity of phenological observations relative to those available57

from field observations (Wolkovich et al., 2014). In many cases, herbarium specimens pro-58

vide the only means of assessing phenological responses to climatic changes occurring over59

decades to centuries (Davis et al., 2015). However, a great challenge in using these specimens60

is accessing and rapidly assessing phenological state(s) of the world’s estimated 393 million61

herbarium specimens (Thiers, 2017; Sweeney et al., 2018).62

The ongoing digitization and online mobilization of herbarium specimens has facilitated63

their broad access with significant economies of scale (Nelson and Ellis, 2019; Sweeney et al.,64

2018; Hedrick et al., 2020) and accelerated advances in scientific investigations, including65

phenological assessment efforts that were underway prior to mass digitization (Davis et al.,66

2015; Miller-Rushing et al., 2006; Primack et al., 2004). Digitization 2.0 (sensu Hedrick67

et al., 2020) has also sparked the integration and development of new scholarly disciplines68

and lines of inquiry not possible previously. Whereas Digitization 1.0 refers to the generation69

of digitized products from physical specimens, Digitization 2.0 is the use of natural history70
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collections to answer scientific questions using only their digitized representation, rather than71

the physical specimen itself.72

In recent years, scientists have used these digitized herbarium specimens in novel ways73

(e.g., Meineke et al., 2018, 2019; Hedrick et al., 2020) and greatly increased the pace at74

which key phenological trait data can be harvested from tens of thousands of specimens.75

CrowdCurio–Thoreau’s Field Notes (Willis et al., 2017) was one of the first attempts to move76

beyond the standard practice of coding phenology of herbarium specimens using binary (pres-77

ence/absence) coding (e.g., specimen A has flowers, specimen B has fruits: Miller-Rushing78

et al., 2006; Primack et al., 2004). Many of these efforts have also focused largely on flow-79

ering, ignoring other key phenophases. Rather, users of CrowdCurio use a crowd-sourcing80

pipeline to score and quantify all phenophase features–bud, flowers, and fruits–for each spec-81

imen processed. This pipeline has facilitated the first development of ratio-based approaches82

to quantitatively assess the early, peak, and terminal phenophases from herbarium specimens83

and determine phenological changes within and between seasons (Love et al., 2019; Williams84

et al., 2017). The recent large-scale deployment of the CrowdCurio pipeline on Amazon’s85

Mechanical Turk has demonstrated the power and scale of such fine-grained phenophasing86

to understand latitudinal variation in phenological responses (Park et al., 2019).87

Despite the great promise of crowd-sourcing for phenophase detection, it is still time-88

consuming and can become cost-prohibitive to process entire collections spanning whole89

continents. Machine-learning approaches have the potential to open up new opportunities90

for phenological investigation in the era of Digitization 2.0 (Pearson et al., 2020). Recent91

efforts (Lorieul et al., 2019) have demonstrated that fully automated machine-learning meth-92

ods–and deep learning approaches based on convolutional neural networks in particular–can93

determine the presence of a fruit or flower in a specimen with > 90% accuracy. Convolutional94

neural networks were proven effective at predicting all phenophases of a specimen, based on95

classification of nine phenological categories. These predictions, estimated from proportions96

of buds, flowers and fruits, reach an accuracy (true positive rate) > 43%, which is equiva-97
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lent to the capability of human experts (Lorieul et al., 2019). This large-scale automated98

phenophase estimation, based on an annotation method developed by Pearson (2019), was99

tested on species belonging to a particularly difficult taxon (i.e., the Asteraceae family), for100

which visual analysis of numerous and tiny reproductive structures is known to be visually101

challenging. This work demonstrated the potential of deep learning technologies to esti-102

mate fine-grained phenophases, but further improvements are needed to support ecological103

investigation of diverse taxa.104

Although Pearson (2019) successfully determined reproductive status (i.e., fertile vs.105

sterile specimens), neither the precise location (i.e., image segment) nor the number of106

phenofeatures present on a specimen was quantified (Lorieul et al., 2019). A quantitative107

machine-learning approach would have the value and impact that CrowdCurio has already108

achieved, but could be scaled-up in speed and cost-effectiveness. A recent proof-of-concept109

study (Goëau et al., in press) used human-scored data to train and test a model using110

instance segmentation with Mask R-CNN (Masked Region-based Convolutional Neural Net-111

work: He et al., 2017) to locate and count phenological features of Streptanthus tortuosus112

Kellogg (Brassicaceae). This assessment clarified several determinants of model success for113

identifying and counting phenological features, including: the type of masking applied to114

human annotations; and the size and type of reproductive features identified (e.g., flower-115

ing buds, flowers, immature and mature fruits). Moreover, the model was more successful116

identifying and counting flowers than fruits, and was applied only to a single species with117

relatively little human-scored training data (21 herbarium specimens). The transferability118

of this model to other, more distantly related species was not examined.119

Here, we leverage extensive data gathered using our crowd-sourcing platform CrowdCurio120

to develop and evaluate an instance segmentation approach using Mask R-CNN to train121

and test a model to identify and count phenological features of a larger number of species.122

Specifically, we investigated digitized specimens from six common spring-flowering herbs123

of the eastern United States: Anemone canadensis, A. hepatica, A. quinquefolia, Trillium124
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erectum, T. grandiflorum, and T. undulatum. As with any feature-detection model, accurate125

human-collected data are required to train, test, and refine these models. We thus gathered126

phenological data from these species using CrowdCurio to provide expert annotation data127

of buds, flowers, and fruits to train and test our models. Phenological data previously128

collected by non-expert citizen scientists was used to further evaluate the performance of129

these models (Park et al., 2019). Our goals were to: (1) determine how reliably we could130

localize and count these features; (2) determine the accuracy in automated scoring of different131

phenological features; and (iii) assess the transferability of models trained on one species to132

other, distantly related ones.133

3 Materials and Methods134

3.1 Dataset135

Our experiments are based on a subset of the data used in Park et al. (2018, 2019) com-136

prising six species in two genera of common spring-flowering herbs, Anemone and Trillium.137

This subset includes 3073 specimens of: Anemone canadensis (N = 108), A. hepatica (N =138

524), A. quinquefolia (N = 686), Trillium erectum (N = 862), T. grandiflorum (N = 226),139

and T. undulatum (N = 667). Each specimen (herbarium sheet) was previously examined us-140

ing the CrowdCurio–Thoreau’s Field Notes platform by, on average, three citizen-scientists.141

For the purposes of this study, these specimens were additionally scored by expert botanists142

to provide the most accurate training and testing data possible. Annotators added markers143

in the center of each visible reproductive structure (bud, flower, or fruit), and determined144

its type, number, and spatial location. For our experiments, we randomly split this dataset145

into two parts: one (N = 2457) for training the deep-learning models and one for testing146

them (i.e., for evaluating their predictive performance; N = 615).147

Apart from the comparative experiment described in §4.5, only the annotations of experts148

were used to train and test the deep-learning models. We also only used the annotations149
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of one of the experts for each specimen (selected in a pre-defined order). The final dataset150

contains 7909 reproductive structures (6321 in the training set and 1588 in the test set) with151

the following imbalanced distribution: 492 buds (6.2%), 6119 flowers (77.4%), and 1298152

fruits (16.4%). Fruits were counted without any knowledge of seeds.153

3.2 Deep-learning framework154

Several deep-learning methods have been developed in recent years to count objects in155

images. One family of methods can be qualified as density-oriented methods (Zhang et al.,156

2015; Wang et al., 2015; Boominathan et al., 2016). They are usually based on U-Net157

architectures (Ronneberger et al., 2015) that are trained on annotations of object centers158

(indicated by dots) and predict density maps that are integrated to obtain counts. U-159

Net-based methods were developed originally for counting crowds and have been extended160

recently to counting cells (Falk et al., 2019) and animals (Arteta et al., 2016). The drawback161

of these methods is that they are better suited for cases where the density of objects in the162

image is high. This is not true in our case; the examined herbarium specimens averaged < 3163

objects per specimen, even fewer if we consider buds, flowers, and fruits separately.164

Another deep-learning method is “direct counting” (a.k.a. “glancing”), which trains the165

model with the true count on the global image (e.g., Segúı et al., 2015). The main drawback166

of direct counting is that it cannot predict a count value that has no representative image167

in the training set. That is, the network is not really counting but only inferring the counts168

from the global content of the image. In preliminary experiments (not reported here), we169

found that direct-count methods tended to systematically under-estimate the true counts170

and have an unacceptably high variance.171

The alternative method that we used in this study is to equate counting with object-172

detection; the counts of the object of interest is then equal to the sum up the number of173

detected objects. To detect buds, flowers, and fruits, we used Mask R-CNN, which is among174

the best-performing methods for instance segmentation tasks in computer vision (He et al.,175
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2017). We used Facebook’s implementation of Mask R-CNN (Massa and Girshick, 2018)176

using the PyTorch framework (Paszke et al., 2019) with a ResNet-50 architecture (He et al.,177

2016) as the backbone CNN and the Feature Pyramid Networks (Lin et al., 2017) for instance178

segmentation. To adapt this architecture to the data in our study (see previous section), we179

had to address the following methodological issues:180

1. Mask computation. The training data expected by Mask R-CNN must consist of181

all the objects of interest visible in the training images, each object being detected182

individually and associated with a segmented region (encoded in the form of a binary183

mask). However, the data available for our study did not fully meet these conditions as184

the objects were detected only by dot markers (roughly in the centre of the reproduc-185

tive structure). From these dot markers, we generated dodecagons, such as the ones186

illustrated in Figure 1, which best covered the reproductive structures. To adapt the187

size of the dodecagons to buds, flowers, and fruits, we manually segmented five of each188

(selected at random from each genus) and calculated the average radius of the circle189

enclosing each structure.190

2. Input image size. Images were resized to 1024 pixels (long edge) × 600 pixels191

(short edge). This guaranteed a sufficient number of pixels for the smallest dodecagons192

while maintaining a reasonable training time (5–10 hours per model) on a computer193

comparable to a mid-tier consumer device (i.e., recent GPUs with ±12 GB of RAM).194

3. Anchor size. Anchors are the raw rectangular regions of interest used by Mask R-195

CNN to select the candidate bounding boxes for mask detection. We designated their196

size so as to guarantee that all dodecagons had their entire area covered.197

[Figure 1 about here.]198

Figure 2 illustrates four example detections using Mask R-CNN: one with a perfectly199

predicted count, and three with over- or under-estimated counts. For each example, we200
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show (a part of) the original image, the ground-truth masks (computed from expert botanist201

input), and the automated detections computed by the deep-learning framework.202
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[Figure 2 about here.]203
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We then trained a set of models corresponding to three distinct scenarios to be evaluated:204

1. One model per species. In this scenario, we trained one Mask R-CNN model for205

each species (i.e., six models in total) to detect its buds, flowers, and fruits.206

2. One single model for all species. In this scenario, we trained a single Mask R-CNN207

for all species and all types of reproductive structures (buds, flowers, fruits).208

3. Cross-species models. Last, we assessed the transferability of models trained on209

some species to other ones. We trained three models on only two Trillium species:210

i.e., one on T. erectum and T. grandiflorum, one on T. erectum and T. undulatum,211

and one on T. undulatum and T. grandiflorum. Each of these three models were then212

tested on the Trillium species not included in the training set.213

3.3 Evaluation metrics and statistics214

We evaluated the accuracy of the models in four ways:215

1. Counting error. The counting error ei,k for a specimen i and a given type of repro-216

ductive structure k ∈ {bud, flower, fruit} was defined as the difference between the217

true count and the predicted count:218

ei,k = ĉi,k − ci,k (1)

where ci,k is the true count of reproductive structures of type k in specimen i and ĉi,k219

is the predicted count. Note that the counting error can be positive or negative. A de-220

tailed description of the distribution of the counting error is provided using letter-value221

plots (Heike et al., 2017), which provide a more comprehensive view of the statistics222

through a larger number of quantiles.223

2. Mean Absolute Error (MAE). The MAE measures the overall error by averaging224

the absolute value of the counting error of each specimen and each type of reproductive225
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structure:226

MAE =
1

N

∑
i

∑
k

|ei,k| (2)

3. Coefficient of determination (R2). This statistic measures the amount of variance227

explained or accounted by the model:228

R2 = 1−
∑

i(ci − ĉi)
2∑

i(ci − c)2
(3)

where i indexes the observations and ranges from 1 to the total number of observations,229

ci is the observed count, ĉi is the predicted count, and c is the mean of the observed230

counts.231

4. Predicted counts box-plots. A detailed description of the distribution of the pre-232

dicted counts as a function of the true counts is provided using box-plots indicating233

median value, quartiles, variability outside quartiles, and outliers.234

3.4 Machine-learning vs. crowd-sourcing235

We compared the counts predicted by Mask R-CNN with those obtained when the re-236

productive structures on herbarium specimens were counted by crowd-sourcers (Park et al.,237

2019). The comparison was done on the intersection of the test sets of both studies (i.e, on238

544 specimens, equal to 88% of the test set of previous experiments). These 544 specimens239

were annotated by 483 different annotators using Amazon Mechanical Turk. On average,240

each specimen was annotated by 2.5 different crowd-sourcers.241
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4 Results242

4.1 A single model vs. species-specific models243

The R2 value for the separate training model for each species and the single model for244

all species was 0.70 and 0.71, respectively. Thus, the single model for all species provides245

marginally better results while being simpler to implement and more scalable. As shown in246

Fig. 3, the main problem of single species training models is that they tend to over-predict247

the number of reproductive structures (number of positive errors > than number of negative248

errors; Fig. 3). The extreme outlier in Fig. 3 with a very high negative error resulted from249

a species being assessed by the model that had been misidentified in the collection.250

The predictions of the single species training models were very accurate for ≤ 3 repro-251

ductive structures, whereas the single model for all species had high accuracy when ≤ 4252

reproductive structures were present (Fig. 4). The variance of the predicted counts was253

higher for specimens with more reproductive structures but the median predicted count254

equalled the actual count for ≤ 7 reproductive structures and the counting error (interquar-255

tile distance) was usually < 1 structure. Specimens with > 8 reproductive structures had256

larger errors but only accounted for 4.2% of the specimens examined.257

[Figure 3 about here.]258

[Figure 4 about here.]259

4.2 Distinguishing reproductive structures260

4.2.1 Counting results261

The overall numbers of detected reproductive structures and their relative proportions262

were very close to their actual values (Table 1). The Mean Absolute Error (MAE) was also263

quite low for all types of reproductive structures, but this is due in large part to the fact264

that the median number of structures per phase and specimen is low. The median number265
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of fruits and buds, in particular, is much lower than the median number of flowers. The R2
266

values (Table 1) and the box plots of the predicted counts (Fig. 6) provide a more relevant267

comparison of the predictive performance for each type of structure. Flowers are the best268

detected structures (R2 = 0.76), followed by fruits (R2 = 0.33) and buds (R2 = 0.12). The269

lower performance for buds is due to several factors: (i) the lower number of samples in270

the training set–90.25% of specimens had no buds and 98.05% had < three buds, (ii) their271

smaller size and (iii), their visual appearance that is less distinctive than flowers or fruits.272

Fruits are affected by the same factors but to a lesser extent.273

[Table 1 about here.]274

[Figure 5 about here.]275

[Figure 6 about here.]276

4.2.2 Occurrence and dominance of reproductive structures277

Although the model was not developed or trained to directly detect presence or absence278

of each reproductive structure, we were able to extrapolate the presence of each feature279

and which feature was most frequent on a specimen (Table 2). The detection accuracy of280

buds, flowers, and fruits was > 87% and the accuracy of determining relative abundance of a281

certain organ category (e.g., number of flowers > number buds or fruits) was > 90% (Table282

2). Confidence in this strong result should be tempered by the actual frequency of occurrence283

and dominance. Observed relative presences of buds, flowers, and fruits, and dominance of284

fruits vs. flowers all are quite disparate. Error rates (false negatives and positives) for these285

all are non-zero, but are lower in all presence and dominance categories (Table 2).286

[Table 2 about here.]287
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4.3 Species-specific models288

Overall, the reproductive structures were detected more accurately for Trillium species289

than Anemone species (Figs. 7 and 8). At the species-specific level, the R2 score was lowest290

for A. canadensis (0.01) which is the species with the least number of training samples (108291

specimens). The R2 score was better for the other species and increased with the number292

of training samples: R2 = 0.51 for T. grandiflorum, R2 = 0.64 for A. hepatica, R2 = 0.76293

for T. undulatum, R2 = 0.85 for A. quinquefolia and R2 = 0.89 for T. erectum. Counting294

errors rarely exceeded ±2, and the few strong outliers corresponded to very difficult cases or295

annotation errors. The median value of predicted counts was correct in almost all cases (Fig.296

7); exceptions were for T. grandiflorum specimens with four structures and A. hepatica with297

seven, both corresponding to instances involving a small number of specimens with large298

numbers of reproductive structures.299

[Figure 7 about here.]300

[Figure 8 about here.]301

4.4 Model transferability302

The aim of this experiment was to assess whether reproductive structures on one species303

could be estimated using a model trained on a different, related species. Unsurprisingly,304

estimation was less accurate when the target species was not represented in the training set305

(Figs. 9–11). However, it is still possible to count the reproductive structures of a target306

species based on a model trained on different species of the same genus (i.e., without any307

specimen of the target species in the training data). The R2 score was higher for T. erectum308

(R2=0.72; Fig. 9) and T. undulatum (R2=0.66; Fig. 10), which are morphologically more309

similar to one another than either is to T. grandiflorum (R2=0.02; Fig. 11). Figures only310

show the results for Trillium but similar conclusions were obtained for Anemone (R2 scores311
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respectively equal to 0.75 for A. quinquefolia, 0.39 for A. hepatica and -0.39 for A. canaden-312

sis).313

314

[Figure 9 about here.]315

[Figure 10 about here.]316

[Figure 11 about here.]317

4.5 Machine-learning vs. crowd-sourcing318

On average, the deep learning model had a significantly lower (P < 0.001) MAE and319

better R2 score than any individual crowd-sourcer, but still an order of magnitude larger320

than the MAE of botanical experts (Table 3 and 4). Interestingly, we can observe that321

crowd-sourcers have a much harder time detecting buds than the Mask R-CNN model. The322

MAE obtained by averaging the counts of the different crowd-sourcers was only marginally323

higher than the MAE from Mask R-CNN (P = 0.3). Note that a counts averaging strategy324

could also be used for the deep learning approach, i.e., by averaging the scoring of several325

deep learning models. This technique is referred to as an ensemble of models in the machine326

learning community and is known to bring very significant improvements. The most simple327

yet very efficient method to build an ensemble is to train several times the same model but328

with a different random initialization of the parameters. Such strategy could be implemented329

in future work.330

[Table 3 about here.]331

[Table 4 about here.]332
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5 Discussion333

Mask R-CNN models trained with human-annotated trait data were efficient and pro-334

duced robust results. Our models worked well for both identifying and counting phenological335

features, but accuracy differed for buds, flowers, and fruits. Automated counts using Mask336

R-CNN models were more accurate than counts made by crowd-sourcers but not those of337

botanical experts. Finally, the Mask R-CNN model could be transferred to other species338

after being trained with data from reasonably close phylogenetic relatives, with relatively339

small impacts on counting accuracy.340

Point masking with minor modification is efficient and produces robust re-341

sults. Recent efforts by Goëau et al. (in press) to segment and count reproductive structures342

used training data collected by botanical experts from 21 herbarium specimens of a single343

species (Streptanthus tortuosus). In our work, we applied Mask R-CNN to segment and count344

reproductive structures of six species, belonging to two different genera; accurate training345

data were derived from both botanical experts and crowd-sourcers using the CrowdCurio in-346

terface (Willis et al., 2017). Although Goëau et al. (in press) found that training data from347

point masks, like those generated from CrowdCurio, produced less accurate results than those348

derived from fully masked training data, obtaining the latter is time intensive and difficult349

to scale to large numbers of specimens. Whereas Goëau et al. (in press) produced three type350

of training data, “point masks” (produced from a 3 × 3-pixel box around a manual point351

marker); (ii) “partial masks” (extensions of point masks to include partial segmentation us-352

ing the Otsu segmentation method (Otsu, 1979); and (iii) manually produced “full masks” of353

each reproductive structure, we only used modified partial masks (derived from point mark-354

ers) with Mask R-CNN. These modified partial masks were scaled to the size of reproductive355

structures for each species and yielded high accuracy and efficiency for phenophase detection356

and counting. The scaling of our modified partial masks combined with the approximately357

circular shapes of the reproductive structures we studied likely led to the success of our ap-358

proach. Our two-step workflow integrating expert-scored and crowd-sourced citizen science359
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data with automated machine-learning models also is less time-intensive and more scalable360

than a workflow requiring detailed polygon masks of structures for training.361

Feature detection and counting accuracy is high across all phenological fea-362

tures. Lorieul et al. (2019) were the first to apply machine-learning to detect phenophases363

and developed a presence-absence model that could identify reproductive specimens with364

≈ 96% accuracy. Their model was less accurate in detecting flowers or fruits (≈ 85% and365

≈ 80% accuracy, respectively), and they did not consider buds. In contrast, we used Mask366

R-CNN to accurately identify the presence of each of the three reproductive stages (buds,367

flowers, or fruits) with ≥ 87% accuracy (Table 2). Moreover, a single globally-trained model368

was more efficient and had greater accuracy than multiple species-specific models (Figs. 7369

and 8). This points towards the possibility of developing a more streamlined workflow to370

accurately score phenophases of many different species simultaneously.371

We also successfully estimated the relative abundance of each reproductive structure372

on a specimen with ≥ 90% accuracy (Table 2). Herbarium specimens can vary greatly373

in phenological state. Because different reproductive organs can co-exist at various times374

through plant development (and may not all be represented simultaneously on herbarium375

sheets), simply quantifying presence or absence of phenological structures limits inference376

about phenological state. In this regard, the Mask R-CNN model performed better on Tril-377

lium—with its large flowers and fruits, generally borne singly, and suspended on an elongate378

stalk—than on Anemone—with its small clusters of flowers on shorter stalks that are often379

pressed against a background of clustered leaves. The combination of smaller flowers, more380

complex morphology, and background “noise” on Anemone specimens (e.g., overlapping381

structures) likely made both model training and phenophase detection more prone to error.382

This result supports the recent hypotheses that successful application of machine-learning to383

phenophase assessment will be dependent on species-specific morphological details (Goëau384

et al., in press). Along these lines, plant morphological trait databases could help facilitate385

the identification of suitable taxa to be analysed with machine-learning methods.386
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Precise quantification of different reproductive structures, as demonstrated here, allows387

the determination of finer-scale phenophases (e.g., early flowering, peak flowering, peak388

fruiting). For this exercise, the lowest mean absolute error (MAE) was for bud counts, most389

likely due to the morphological consistency of buds and their rarity on specimens (Table390

1). In contrast, MAE for counting flowers was significantly worse than for buds or fruits.391

We attribute this result to the greater number of flowers, ontogenetic variability in floral392

morphology, and variation in appearance of dried, pressed specimens.393

Variation in appearance of reproductive features among dried and pressed specimens of a394

single species also could add complexity to automated detection of phenological features and395

merits further investigation. Perhaps more consequentially, large variation in the number of396

reproductive organs resulted in unbalanced datasets (Table 1). Numerous data augmentation397

approaches can be implemented to improve comparisons and model selection for such data398

sets (e.g., Tyagi and Mittal, 2020), but these approaches have been used more frequently399

in classification or semantic segmentation (Chan et al., 2019) than in instance segmentation400

approaches such as we used here. Developing data augmentation approaches for instance401

segmentation would be a useful direction for future research. But even if collectors collect402

more flowering than non-flowering specimens, estimating the quantity of buds, flowers and403

fruits on any specimen is more informative than recording only their presence or absence.404

Botanical experts perform better than the model. When considered in aggregate,405

the MAE for segmenting and counting all three phenophases using Mask R-CNN was lower406

than that of crowd-sourcers but still an order of magnitude higher than that of botanical407

experts (Tables 2, 3). This result reinforces the suggestion that abundant and reliable408

expert data are essential for properly training and testing machine learning models (Brodrick409

et al., 2019). Additionally, it was evident in some cases that the precise detection of the410

phenological feature was quite inaccurate (Figure 2).411

Machines can apply learning from one species to another, but success is vari-412

able. For the first time to our knowledge, we have demonstrated that training data from413
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related taxa can be used to detect and count phenological features of a species not rep-414

resented in the training set (Figs. 9–11). We limit our discussion of transferability here415

to species of Trillium owing to the ease of detecting and counting phenological features in416

this genus. Though in some cases species-specific models were highly transferable, model417

transferability varied greatly. For example, training on T. undulatum and testing on T.418

erectum (and vice-versa) was more accurate than when Mask R-CNN models trained with419

data from either of these species was applied to T. grandiflorum. Trillium undulatum and420

T. erectum are more similar morphologically than either is to T. grandiflorum, suggesting421

that morphological similarity may be a better guide for transferability success than phyloge-422

netic relatedness (see Farmer and Schilling, 2002, for phylogenetic relationships of Trillium).423

This conclusion implies that transferability may be particularly challenging for clades that424

exhibit high morphological diversity and disparity among close relatives. The relationship425

between phylogenetic relatedness, morphological diversity, and model transferability should426

be investigated in future studies. The assessment of the sizes of the reproductive struc-427

tures that could be captured by this type of approach should also be analysed, to facilitate428

transferability.429

Future directions. The presence of reproductive structures has been determined only430

infrequently during large-scale digitization and transcription efforts by the natural-history431

museums that generate this content. However, interest is growing rapidly in using herbar-432

ium specimens for investigating historical changes in phenology and other ecological traits433

and processes. Our results have demonstrated success in automating the collection of large434

amounts of ecologically-relevant data from herbarium specimens. Together with controlled435

vocabularies and ontologies that are being developed to standardize these efforts (Yost et al.,436

2018), our two-stage workflow has promise for automating and harvesting phenological data437

from images in large virtual herbaria. In the long term, we would like to use the CrowdCurio438

workflow to generate reliable human-annotated data to further refine automated models for439

detecting phenological responses to climatic change from herbarium specimens across diverse440
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clades and geographies. Finally, our results documenting transferability of machine-learning441

models from one species to another are preliminary, but promising. Although our univer-442

sal model trained on all taxa performed better than our individual, species-specific models,443

there may be better ways to guide these efforts. For example, a hierarchy of individual444

models could yield more accurate results. These hierarchies might be phylogenetically or-445

ganized (e.g., taxonomically by order, family, genus), leveraging information about shared446

morphologies common to related taxa and further governed by a set of rules that parse new447

specimens for phenophase detection based on their known taxonomic affinities (e.g., by gen-448

era). Similar approaches are already being applied today by corporations like Tesla Motors.449

Their automated driving suite uses different models for vehicle path prediction versus vehicle450

detection (Karpathy et al., 2014; Tesla, 2019).451
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Chan, R., M. Rottmann, F. Hüger, P. Schlicht, and H. Gottschalk. 2019. Application of493

decision rules for handling class imbalance in semantic segmentation .494

Davis, C. C., C. G. Willis, B. Connolly, C. Kelly, and A. M. Ellison. 2015. Herbarium records495

are reliable sources of phenological change driven by climate and provide novel insights into496

species’ phenological cueing mechanisms. American Journal of Botany 102:1599–1609.497
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Table 1: Predicted and true counts (percent of specimens in parentheses) of buds, flowers,
and fruits for all specimens pooled.

Buds Flowers Fruits All
True number of structures 107 (6.7) 1241 (78.1) 240 (15.1) 1588

Predicted number of structures 109 (6.1) 1431 (80.0) 248 (13.9) 1788
MAE 0.20 0.51 0.27 0.33

R2 0.12 0.76 0.33 0.71
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Table 2: Accuracy of detection and relative dominance of buds, flowers, and fruits (data
pooled for all species). Values are percentages.

Buds Flowers Fruits Flowers≥Buds Fruits≥Flowers
Observed 9.75 82.92 20.00 96.09 21.13
True positives (correctly detected) 51.66 97.25 78.86 98.98 76.15
True negatives (correctly undetected) 91.89 49.52 89.83 8.33 95.65
False positives 8.10 50.47 10.16 91.66 3.71
False negatives 48.33 2.74 21.13 1.01 23.84
Overall Accuracy 87.97 89.11 87.64 95.44 92.03
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Table 3: Comparison of the counting error resulting from crowd-sourcing, deep learning and
expert annotation – performance is measured by the Mean Absolute Error (MAE).

Buds Flowers Fruits All
Experts 0.009 0.027 0.073 0.036
Crowd-sourcing (isolated annotator) 0.526 0.487 0.314 0.442
Crowd-sourcing (average over all annotators) 0.418 0.405 0.243 0.355
Deep learning (model trained on all species) 0.201 0.507 0.266 0.325
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Table 4: Comparison of the counting error resulting from crowd-sourcing, deep learning and
expert annotation – performance is measured by R2 score.

Buds Flowers Fruits All
Experts 0.989 0.996 0.961 0.990
Crowd-sourcing (isolated annotator) -2.969 0.758 0.306 0.555
Crowd-sourcing (average over all annotators) -1.527 0.828 0.401 0.686
Deep learning (model trained on all species) 0.141 0.750 0.329 0.707
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Figure 1: Example of a specimen of the training set containing six reproductive structures
(flowers) marked by dodecagons.
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Figure 2: Examples of detection (colors do not have a particular meaning) - Left Column:
original image; Center Column: ground-truth markers; Right Column: automatically
detected masks. The first row corresponds to a typical case with a perfect count. The second
row corresponds to a case of over-estimated counts (one of the flowers was detected as two
flowers). The last two rows correspond to under-estimated counts (some structures were
missed or aggregated as one).
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Figure 3: Letter-value plot of the counting error for the two training strategies: one model
per species vs. one single model for all species.
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Figure 4: Box-plots of the predicted vs. expected counts for the two training strategies:
(Left) separate training models for each species, (Right) single training model for all
species.
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Figure 5: Letter-value plot of the counting error for each type of reproductive structure.

35

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 25, 2020. ; https://doi.org/10.1101/2020.06.25.169888doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.25.169888
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 6: Box-plots of the predicted vs. expected counts for each type of reproductive
structure. From left to right: buds, flowers, fruits.
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Figure 7: Boxplot of the predicted counts vs. expected counts for each species. (A):
Anemone canadensis ; (B): A. hepatica; (C): A. quinquefolia; (D): Trillium erectum; (E):
T. grandiflorum; (F): T. undulatum.
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Figure 8: Letter-value plot of the counting error for each species.
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Figure 9: Box-plots of the predicted counts vs. expected counts for Trillium erectum. Left:
Model trained on T. erectum data; Right: model trained on T. undulatum and T. grandi-
florum.
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Figure 10: Box-plots of predicted counts vs. observed counts for Trillium undulatum. Left:
Model trained on T. undulatum data; Right: model trained on T. erectum and T. grandi-
florum.
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Figure 11: Box-plots of predicted counts vs. expected counts for Trillium grandiflorum.
Left: Model trained on T. grandiflorum data; Right: model trained on T. erectum and T.
undulatum
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