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ABSTRACT
Background: Most cancer alterations occur in the noncoding portion of the human genome,
which  contains  important  regulatory  regions  acting  as  genetic  switches  to  ensure  gene
expression  occurs  at  correct  times  and  intensities  in  correct  tissues.  However,  large  scale
discovery  of  noncoding  events  altering  the  gene  expression  regulatory  program  has  been
limited to a few examples with high recurrence or high functional impact.

Results: We focused on transcription factor binding sites (TFBSs) that show similar mutation
loads than what is observed in protein-coding exons. By combining cancer somatic mutations in
TFBSs and expression data for protein-coding and miRNA genes, we evaluated the combined
effects of transcriptional and post-transcriptional alteration on the dysregulation of the regulatory
programs in cancer. The analysis of seven cancer cohorts culminated with the identification of
protein-coding and miRNA genes linked to mutations at TFBSs that were associated with a
cascading  trans-effect  deregulation  on  the  cells’  regulatory  program.  Our  analyses  of  cis-
regulatory mutations associated with miRNAs recurrently predicted 17 miRNAs as pan-cancer-
associated through deregulation of their  target gene networks. Overall,  our predictions were
enriched  for  protein-coding  and  miRNA  genes  previously  annotated  as  cancer  drivers.
Functional enrichment analyses highlighted that cis-regulatory mutations are associated with the
dysregulation of key pathways associated with carcinogenesis

Conclusions:  These  pan-cancer  results  suggest  that  our  method  predicts  cis-regulatory
mutations related to the dysregulation of key gene regulatory networks in cancer patients. It
highlights  how  the  gene  regulatory  program  is  disrupted  in  cancer  cells  by  combining
transcriptional and post-transcriptional regulation of gene expression.
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INTRODUCTION
Dysregulation of the gene expression regulatory program in a cell is a hallmark of cancer. The
often observed aberrant gene expression in cancer can be triggered by deregulation at any
regulatory level (transcriptional and post-transcriptional)  [1,2]. While a majority of studies have
focused on somatic mutations lying within protein-coding regions, most alterations occur in the
noncoding  portion  of  the  human genome,  which contains  cis-regulatory  elements  acting  as
genetic switches to ensure gene expression occurs at correct times and intensities in the correct
cells and tissues [3]. Molecular alterations at these regions can alter the regulatory network of
the  cells,  conferring  oncogenic  behaviours,  which  has  been  associated  with  clinical  and
histopathological  features  in  cancer  [3].  However,  identification  of  noncoding  cancer  driver
events at cis-regulatory regions has been limited to a few examples with high recurrence or high
functional impact [3–7]. In recent work based on mutation recurrence along the human genome,
the  Pan-Cancer  Analysis  of  Whole  Genomes  (PCAWG)  consortium,  claimed  that  patients
harbour ~4.6 driver mutations. The PCAWG consortium estimated that driver point mutations in
noncoding regions (~1.2 per patient) were less frequent than driver point mutations in protein-
coding genes (~2.6 per patient)  [8]. However, large scale discovery of noncoding drivers has
been hindered by their low level of recurrence, the target size of functional elements, technical
shortcomings, and their composite effect with small individual effect size on multiple regulatory
regions, e.g. slightly altering, but not obliterating, protein-DNA interactions [4,8]. Further, while
high-impact driver mutations are typically sought, medium-impact putative passengers can have
an aggregated effect in tumorigenesis, beyond annotated driver events [9].

Gene expression is mainly regulated at the transcriptional level by the binding of transcription
factors (TFs) to promoters (cis-regulatory regions surrounding genes’ transcription start sites,
TSSs)  and  enhancers  (cis-regulatory  regions  distal  to  genes)  at  TF  binding  sites
(TFBSs) [10,11]. Most of the studies that predict noncoding driver mutations in cis-regulatory
regions rely on the identification of mutational hotspots, which are regions with higher mutation
frequencies than expected by chance [8,12–18]. Other studies explore somatic mutations with
potential  effect on TF-DNA interactions  [19–22] based on DNA sequence information alone,
followed by  in vitro experiments to confirm the potential impact of the predicted mutations on
gene expression. Other studies directly combine somatic mutation data with gene expression
information to evaluate the impact of the mutations in cancer samples. For instance, studies
identified differential  allele-specific expression of  genes between cancer and normal cells  to
pinpoint causal cis-regulatory variations in breast cancers [23,24]. Mutations close to the TSSs
of genes were shown to exert in-cis effect on the expression of the corresponding genes [25].
Another example is the xseq tool that associates mutations with changes in expression in gene
networks  [26].  The tool has been originally developed to predict  mutations in protein-coding
exons  with  trans-effect [26] and  adapted  to  consider  noncoding  mutations  associated  with
protein-coding genes in  B cell  lymphomas  [27].  This  methodology  specifically  assesses the
trans-associations  between  mutations  and  gene  network  expression  alteration  in  cancer
samples  through  either  exonic  or  cis-regulatory  mutations linked  to  protein-coding
genes [26,27].

At the post-transcriptional level, miRNAs control gene expression by acting as ‘buffers’ to induce
translational repression and mRNA degradation [28,29]. miRNA biogenesis generally comprises
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three steps in mammals: transcription of a primary transcript (pri-miRNA) that can be several
kilobases long, cleavage of the pri-miRNA into a precursor (pre-miRNA) of ~70bp, and cleavage
of the precursor to produce mature miRNAs of ~22bp [29,30]. The mature miRNA sequence is
then loaded in the RNA-induced silencing complex to specifically target mRNAs for repression
through  base  pair  complementarity  at  the  3’UTR of  mRNA targets.  A  miRNA sequence  is
predicted to target tens to hundreds of mRNAs [31]. The influence of miRNA-based regulation
on mRNA translation is not an on/off system but rather an interplay between miRNA-binding site
specificity and miRNA abundance [28,32]. Therefore, even small changes in miRNA abundance
may have an effect on the expression of several direct targets but also other mRNAs through a
cascading  effect,  potentially  leading  to  dysregulation  patterns  observed  in  cancer.  This
observation, amongst others, suggests that miRNAs can act as cancer drivers [33,34].

Despite active research on post-transcriptional regulation and the identification of miRNAs and
their targets [35], the understanding of miRNA transcriptional regulation is currently limited [30].
One  obstacle  was  the  lack  of  precise  identification  of  pri-miRNA  TSSs.  The  FANTOM5
consortium recently took advantage of the cap analysis of gene expression (CAGE) technology
to identify pri-miRNA TSSs genome-wide from different cell  types and tissues in human and
mouse  [36]. Given their short size and the fact that they are not recurrently mutated  [8], we
hypothesize that  the driver potential  of  miRNAs in cancer could be driven by cis-regulatory
mutations that alter their expression in cancers with downstream cascading effect on the gene
regulatory program of the cells.

The  recent  availability  of  high-quality  sets  of  direct  TF-DNA  interactions  [37],  miRNA  TSS
locations  [36],  somatic  cancer  mutations,  and cancer  cell  expression  data  [38] provides  an
unprecedented opportunity  to  analyze alterations  of  gene regulatory programs in  cancer  by
looking at both transcription and post-transcriptional levels of gene expression regulation. The
PCAWG  consortium  stated  that  the  community  is  facing  a  ‘paucity’  in  the  discovery  of
noncoding cancer drivers that could be shortened by analyzing larger sample datasets [8]. We
hypothesize that focusing on regulatory variants within TFBSs associated with protein-coding
and  miRNA  genes  combined  with  gene  expression  data  has  the  potential  to  pinpoint  cis-
regulatory  variants  linked  to  the  dysregulation  of  key  gene  regulatory  networks  in  cancer
patients.

In  this  study,  we  adapted the framework  of  the  xseq tool  to  predict  cis-regulatory  somatic
mutations  associated  with  the dysregulation  of  gene  networks  by  considering  both  protein-
coding and miRNA genes. We predicted genes that are associated with cis-regulatory mutations
and cascading trans-effects on the gene regulatory program alteration across seven cancer
patient cohorts from The Cancer Genome Atlas (TCGA) [38]. This analysis revealed 17 miRNAs
recurrently predicted in the different cohorts. Functional enrichment analyses of the deregulated
networks confirmed that pathways known to be associated with carcinogenesis are recurrently
disrupted. We conclude that interpretation of noncoding mutations can be improved by focusing
on  TF-DNA  interactions  with  the  combined  analysis  of  both  transcriptional  and  post-
transcriptional regulation of gene expression to revert the paucity in the discovery of cancer-
associated noncoding events.

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 26, 2020. ; https://doi.org/10.1101/2020.06.25.170738doi: bioRxiv preprint 

https://paperpile.com/c/P7H0v1/8SD9
https://paperpile.com/c/P7H0v1/phxG
https://paperpile.com/c/P7H0v1/8SD9
https://paperpile.com/c/P7H0v1/XxFh
https://paperpile.com/c/P7H0v1/ofBx
https://paperpile.com/c/P7H0v1/phxG
https://paperpile.com/c/P7H0v1/XxFh
https://paperpile.com/c/P7H0v1/1l3c
https://paperpile.com/c/P7H0v1/0Boe
https://paperpile.com/c/P7H0v1/XJdP+b27C
https://paperpile.com/c/P7H0v1/lZN4+PbOb
https://paperpile.com/c/P7H0v1/lKMT
https://paperpile.com/c/P7H0v1/7n5L+1l3c
https://doi.org/10.1101/2020.06.25.170738
http://creativecommons.org/licenses/by/4.0/


RESULTS

Transcription  factor  binding  sites  harbour  similar  mutational  load  than
protein-coding exons
We considered somatic mutations from whole genome sequencing of 349 samples from  seven
cancer patient cohorts (35 to 92 samples per cohort) covering seven distinct cancer types from
TCGA  [38] (Additional  file  1).  Specifically,  we  selected  samples  where  trios  of  somatic
mutations,  RNA-seq,  and  small  RNA-seq  data  were  available.  In  aggregate,  we  examined
11,434,931 somatic single nucleotide variants and small insertions and deletions (from 2,832 to
1,014,969 per sample; Additional file 2; Figure S1).

Figure  1.  Comparison of  mutation rates  in  TFBSs and exons versus their  flanking regions and  random
mutation rates. Each panel corresponds to a specific cancer cohort (see title boxes) and each point corresponds to
a sample. On each panel, the two central boxplots (shadowed) represent mutation rates in TFBS and exonic regions,
the remaining box plots correspond to mutation rates in increasing-size flanking regions (100, 500, and 1000 nt) and
mutation  rates  expected  by  chance  (150  randomly  distributed  sets  of  mutations  in  the  genome;  Material  and
methods).

To  highlight  cancer-associated  cis-regulatory  mutations,  we  considered  a  set  of  TFBSs
predicted  as  direct  TF-DNA  interactions  in  the  human  genome  and  stored  in  the  UniBind
database  [37].  We  first  assessed  whether  this  set  of  TFBSs  would  represent  regions  of
functional  interest  similar  to  the coding portion  of  the human genome commonly studied to
predict cancer-associated mutations. These TFBSs cover ~2.2% (68,071,257 nt) of the human
genome,  close  to  the  exonic  coverage  of  protein-coding  genes  (~2.6%;  81,416,464  nt).
Focusing on the somatic mutations, we observed that 1-2% of the mutations in each sample are
lying within these TFBSs (median of 277 mutations per sample; Additional file 2; Figure S2). As
expected,  mutation  rates  in  TFBSs varied  between  cancer  cohorts  but  were  similar  to  the
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mutation rates observed in exons of protein-coding genes (two-tailed Wilcoxon tests p-values
between 0.13 and 0.96; Figures 1 and S3-S4). We observed that TFBSs were less mutated
than their  surrounding sequences with mutation rates increasing as the size of  the flanking
regions increases (Figure 1). Note that regions of 1 kb surrounding TFBSs harbour mutation
rates similar to what is expected by chance (two-tailed Wilcoxon tests p-values between 0.56
and 0.95; Figures S3-S4). While exons exhibit mutation rates similar to those observed within
TFBSs (Figure S5), their flanking regions show a smaller increase in mutation rates than the
increase detected in the vicinity of TFBSs (Figures S6-S7).

Taken together, these results highlight that the mutation frequencies in the studied set of TFBSs
follow a similar pattern to what is observed in protein-coding exons. It provides an a posteriori
confirmation that the set of TFBSs we considered is likely composed of functional regions in the
human genome and could be used to highlight cis-regulatory mutations of functional interest in
cancer genomes.

Cis-regulatory  and  loss-of-function  mutations  are  complementary
mechanisms to alter protein-coding gene networks
We sought to predict the cis-regulatory mutations lying in these TFBSs and that were linked to
cascading effects on gene network deregulation, a hallmark of carcinogenic events. We first
focused on the mutations linked to protein-coding genes and compared their effect to mutations
altering the function of protein-coding genes. Specifically, we considered a protein-coding gene
to be mutated through either a loss-of-function (LoF) somatic mutation in one of its exons as in
ref. [26] or  a somatic  mutation  overlapping  a  TFBS associated with  the gene.  TFBSs were
linked to protein-coding or miRNA genes based on cis-regulatory element-to-gene associations
from GeneHancer [39] or distances to TSSs (Material and methods; Figure S8). We related the
mutations  to  their  potential  trans-effect  on  expression  disruption  in  protein-coding  gene
networks using the  xseq tool, following approaches implemented in previous studies  [26,27].
Specifically,  the method uses a hierarchical  bayesian approach to associate mutations with
expression  dysregulation  in  biological  networks  associated  with  the  mutated  protein-coding
genes.  In  a  nutshell,  it  assesses  the posterior  probability  of  the  likely  association  between
observing mutations in a set of patients and observed deviations from neutral expression in
these samples  for  protein  coding  genes in  the  same network.  The likely  trans-associations
between  mutations  and  gene  network  deregulation  are  first  assessed  in  a  sample-specific
manner and then across samples from the same cohort (Figure S9). Genes with low expression
in a given cohort were filtered out; the distribution of the 90th percentile of expression for genes
was decomposed into two Gaussian distributions corresponding to low and high expression
values and only genes lying in the high expression distribution were conserved (Material and
methods). Further, we corrected for copy number alteration to compensate for their cis-effect on
expression  (Material  and  methods).  LoF  mutations  and  mutations  overlapping  TFBSs were
analyzed independently.

Pan-cancer  analyses  of  the  seven  TCGA cohorts  predicted  30  protein-coding  genes  when
considering LoF mutations (none in HNSC-US, LUAD-US, and LUSC-US; 2 in LIHC-US; 4 in
BRCA-US; 9 in STAD-US; 18 in UCEC-US) and 283 genes when considering cis-regulatory
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mutations (6 in LIHC-US; 22 in BRCA-US and HNSC-US; 35 in LUSC-US; 42 in STAD-US; 81
in  LUAD-US;  107  in  UCEC-US)  (Figures  2  and  S10-S12).  Three  genes  were  linked  to
dysregulated networks in association with both LoF and cis-regulatory mutations but in different
patients  and  cohorts:  ACVR2A,  ARID1A,  and  GATA3 (Figure  2A).  These  three genes  are
already  known  cancer  drivers  that  we  predict  to  be  impacted  by  alternative  mutational
mechanisms (LoF or cis-regulatory mutations). For the other genes, we observed that they were
either associated with LoF mutations or mutations in TFBSs across cohorts (e.g. TP53, RPL22,
and PDS5B with LoF mutations; PIK3C3 and CEBPB with cis-regulatory mutations; Figure 2).

Figure 2. Pan-cancer predicted protein-coding genes. A) Predictions were obtained applying the xseq tool when
considering protein-coding genes mutated through either LoF (red triangles) or cis-regulatory (TFBS; green triangles)
mutations, independently. Genes predicted in at least two cohorts are depicted here. Genes known as cancer genes
(red stars) and TFs (blue stars) were found to be enriched (hypergeometric tests; p-values provided in the legend;
Material and methods).  B) Samples where genes were predicted through cis-regulatory mutations were considered
for each cohort and assessed for the presence of LoF mutations in the same genes for the same cohort (TFBS &
Exon) or no LoF mutation in the corresponding gene (TFBS only).

From the combined list of 310 predicted protein-coding genes (Additional Files 3 and 4), 87
were already annotated as cancer genes (p-value = 1.5e-16; hypergeometric test) and 37 as
TFs (p-value = 0.0061; Figures S10-S12). Considering recurrent predictions over cancer types,
we observed 31 genes to be predicted in at least two cohorts. These 31 genes are enriched for
already known cancer drivers (p-value = 6.2e-6; hypergeometric test) and TFs (p-value = 0.044;
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hypergeometric test) (Figure 2A).

The genes identified through cis-regulatory mutations rarely contained LoF mutation in the same
patients  (Figures  2B  and  S13).  These  results  reinforce  the  possible  complementary
mechanisms between LoF and cis-regulatory mutations at play in cancer patients to alter the
gene regulatory program of cancer cells. We observed that multiple genes could be predicted in
the same sample through cis-regulatory mutations (e.g. from 1 to 42 genes were predicted in
UCEC-US samples). Nevertheless, these genes tend to be interconnected in the dysregulated
genes’ networks with a maximum of 5 disconnected subgraphs per sample (Figure 3). All these
genes are predicted through mutations associated with cascading trans-effect in gene network
dysregulation but the method cannot pinpoint  which specific event could be the main driver
event or if  it  is due to the combination of cis-regulatory mutations. When considering all  the
predicted genes per cohort,  we detect  a similar  pattern with subnetworks of  interconnected
genes (Figures  3B and S14).  Altogether,  these interconnections  suggest  that  the predicted
genes are likely involved in similar biological pathways with altered expression associated with
cis-regulatory somatic mutations.

Figure  3.  Networks  of  predicted  protein-coding  genes. A) Stacked  histogram  depicting  the  number  of
disconnected networks of predicted protein-coding genes (see legend) per sample (number of samples on the y-axis)
for each cohort (x-axis). B) Network of all predicted genes in the UCEC-US cohort. The number of samples in which
each gene was predicted is provided using a color scale (see legend). TF genes are highlighted with an orange
background.

Deregulation of transcriptional activity and cancer pathways are trans-effect
signature of the predicted cis-regulatory and loss-of-function mutations
Next,  we performed enrichment analyses to shed light  on the functional role of the somatic
mutations predicted to be associated with a cascading effect on gene expression alteration. One
advantage  of  xseq is  its  capacity  to  highlight  the  specific  genes  in  the biological  networks
associated with the candidate cancer-associated genes that are dysregulated in the samples
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harbouring the somatic mutations considered (Material and methods)  [26]. We observed that
these genes were consistently found to be either up- or down-regulated in the samples with
predicted disrupted expression (see the blue and red colors in the upper and lower clusters in
Figure 4A). These results highlight sets of genes up- or down-regulated across samples where
cancer-associated genes are predicted.

We  assessed  the  biological  relevance  of  the  networks  predicted  to  be  dysregulated  in
association with the protein-coding genes predicted through LoF or cis-regulatory mutations.
Functional  enrichment  analysis  was  performed  using  pathways  from  KEGG  [40],
WikiPathways [41], and Panther [42], and gene ontology biological processes (GO BP [43]) with
the EnrichR tool  [44]. The dysregulated genes in the networks are enriched for transcriptional
activity (‘regulation of transcription, DNA−templated’ from GO BP; Figure S15). Combined with
the enrichment of TFs in the list of predicted cancer-associated genes, this result emphasizes
that the alteration of transcriptional regulation is a common feature of cancer cells throughout
cancer  types.  Focusing  on  biological  pathways  enriched  in  our  list  of  genes  from  the
dysregulated networks, we found pathways already known to be associated with carcinogenesis
at the top of the enriched terms (e.g. ‘Pathways in cancer’, ‘WNT signaling’, ‘PI3K-Akt signaling’,
and ‘Focal adhesion’;  Figures 4B-C and S15-S18). These results confirm that our approach
highlighted somatic exonic and cis-regulatory mutations associated with potential protein-coding
cancer-associated genes with cascading effect on regulatory alteration of key cancer-related
pathways.

The enrichment for cancer pathways represents a posteriori confirmation that our method can
pinpoint somatic events likely associated with carcinogenesis. Nevertheless, our results suggest
that alteration of gene network expression in different patients could be achieved through cis-
regulatory mutations associated with different genes involved in the same pathway.

Combining transcriptional and post-transcriptional regulation highlights pan-
cancer miRNAs associated with gene expression alteration
The analysis of protein-coding genes presented above exhibited that our methodology is able to
pinpoint cis-regulatory mutations likely associated with carcinogenesis. With miRNAs involved in
post-transcriptional  regulation  of  gene  expression,  we  hypothesized  that  our  method  could
highlight cis-regulatory mutations linked to miRNAs with downstream cascading effect on the
gene regulatory  program of  the cells.  This  new analysis  aimed at  combining  transcriptional
(through  mutations  in  TFBSs)  and  post-transcriptional  (through  miRNA-targets  regulatory
networks)  regulation  to  predict  miRNAs  associated  with  a  trans-effect  on  gene  expression
alteration through somatic mutations in cis-regulatory elements.
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Figure 4.  Dysregulated protein-coding  gene networks and functional enrichment analysis. A) Dysregulated
gene network in samples where FUS is predicted through cis-regulatory mutations in BRCA-US (rows: dysregulated
genes  associated  with  FUS;  columns:  samples  with  FUS-associated  cis-regulatory  mutations).  The  color  scale
represents  the gene regulatory  status posterior  probability  (red: up-regulation;  blue:  down-regulation).  The green
horizontal bar on top shows the sample-specific dysregulation posterior probability computed by xseq for the samples
harboring a cis-regulatory mutation in the FUS gene.  B)  KEGG 2019 most enriched terms computed from all the
dysregulated genes associated with the predicted protein-coding genes (Figure 4A is one example for GATA3) by
xseq with LoF and C) cis-regulatory mutations in TCGA cohorts (columns). Terms (rows) are ordered by their mean
rank across all cohorts. Significance is provided as -log10(p-value).
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Pan-cancer analyses of the seven TCGA cohorts predicted 98 miRNAs derived from 63 pre-
miRNAs as potential cancer-associated miRNAs (Figure S19; Additional Files 3 and 4). From
these 98 miRNAs, 73 were already annotated as cancer miRNAs in the miRCancer database
[48] (p-value = 9.6e-28; hypergeometric test), which is derived from text-mining of the scientific
literature in PubMed [49]. Moreover, miRCancer provides information about the cancer types
that are associated with miRNAs in the literature; ~35% of the predictions of cancer miRNAs in
specific cancer types were supported by the literature to be involved in the same cancer type (p-
value = 7.02e-27; hypergeometric test).

We identified a core set of 17 miRNAs (derived from 9 pre-miRNAs) that were identified in at
least five out of the seven cohorts (Figure 5A): hsa-miR-17-3p, hsa-miR-17-5p, hsa-miR-20a-3p,
hsa-miR-20a-5p,  hsa-miR-708-3p,  hsa-miR-708-5p,  hsa-miR-92a-1-5p  (predicted  in  all  7
cohorts), hsa-miR-18a-3p, hsa-miR-18a-5p, hsa-miR-155-3p, hsa-miR-155-5p (6 cohorts), hsa-
miR-205-3p,  hsa-miR-205-5p,  hsa-miR-324-3p,  hsa-miR-324-5p,  hsa-miR-629-3p,  and  hsa-
miR-629-3p (5 cohorts).  We did not  observe a correlation  between the number of  potential
target genes for a miRNA and the number of cohorts where it  is predicted (Figure S20). All
these  miRNAs  are  derived  from  precursors  of  already  established  oncomiRs  or  tumor
suppressor  miRNAs,  or  known to be involved in  immune response or inflammation [50–61].
Note that hsa-miR-17-3p, hsa-miR-17-5p, hsa-miR-18a-3p, hsa-miR-18a-3p, hsa-miR-20a-3p,
hsa-miR-20a-5p, and hsa-miR-92a-1-5p are part of a single miRNA cluster on chromosome 13
and this polycistronic cluster (known as miR-17-92) is well known to be composed of oncomiRs
involved in proliferation and tumor angiogenesis, and reducing apoptosis of cancer cells [50].

When  visualizing  the  dysregulated  networks  of  miRNA  targets  in  samples  harbouring  the
predicted cancer-associated miRNAs, we observed subsets of the networks as up- or down-
regulated across patients from the same cohort (Figure 5B). This observation is similar to what
we detected in protein-coding gene networks (Figure 4A). Note that the miRNA target networks
observed with altered expression for a given miRNA may vary between cohorts for the same
miRNA as some targets are specifically expressed or altered in a subset of tissues or cell types
(Figure S21).

Similar to what we detected with disrupted gene networks of protein-coding genes, functional
enrichment for miRNA targets with altered expression highlighted transcriptional activity terms
and biological pathways associated with carcinogenesis (Figure 5C). Further, these results were
recurrently  found  when  considering  disrupted  target  genes  in  each  cohort  independently
(Figures S15-S18).  We discovered several  virus infection-related terms enriched across the
cohorts (Figures 4B-C and 5C), arguing for a potential link between viral infections and cancer
initiation/progression, as previously suggested [62,63], via miRNAs.

Altogether, this study provides a first foray in the analysis of a combined effect of transcriptional
and  post-transcriptional  dysregulation  downstream  of  somatic  cis-regulatory  mutations
associated with miRNAs in cancer cells. It highlights a core set of miRNAs associated with cis-
regulatory  mutations  that  are  linked  to  a  cascading  alteration  of  gene  regulatory  networks
involved in cancer onset and progression.
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Figure 5. Overview of miRNA driver predictions and their dysregulated target networks . A) miRNAs predicted
as potential drivers by xseq in at least two TCGA cohorts. Cell colors indicate the posterior probability computed over
the corresponding cohort. Red stars indicate that the miRNA is annotated as a cancer miRNA in miRCancer  [48].
Blue stars indicate that the miRNA was reported as a cancer miRNA in the specific cancer type where it is predicted
by xseq, according to miRCancer annotation. B) Dysregulated network of target genes for hsa-mir-29a-3p predicted
in BRCA-US (rows: dysregulated targets; columns: samples with cis-regulatory mutations associated with hsa-mir-
29a-3p).  The color  scale represents  gene regulatory  status posterior probability  (red:  up-regulation;  blue:  down-
regulation represented as the posterior probability times -1).  C) KEGG 2019 most enriched terms (rows) for all the
dysregulated genes associated with the identified miRNA drivers across TCGA cohorts (columns). Terms are ordered
by their mean rank across all cohorts. Significance is provided as -log10(p-value).
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Complementary  analysis  of  independent  breast  cancer  cohorts  supports
several cancer-associated miRNA predictions
We aimed to assess the recurrence of the predictions for breast cancer obtained from the 92
samples of the BRCA-US cohort from TCGA in a complementary cohort. We applied the same
methodology  with  the same parameters  on  the BASIS breast  cancer  cohort  [64],  which  is
composed of 256 breast cancer samples with the same trio of data types available (WGS, RNA-
seq, and miRNA expression - from microarrays; Additional file 5).

Similar to the BRCA-US TCGA analysis on protein-coding genes, our analysis of the BASIS
cohort predicted known cancer drivers identified by associating LoF or cis-regulatory mutations
with  dysregulation  of  their  gene  networks.  Further,  we  observed  enrichment  of  similar  key
cancer  pathways  when  considering  the  dysregulated  genes  associated  with  the  predicted
cancer-associated genes (Figures S22-S23). Breast cancers can be categorized into estrogen
receptor positive (ER+) and negative (ER-), each subtype harbouring a distinctive signature of
gene expression. We explored how the distribution of ER status in patients from the two cohorts
could  impact  the  predictions  of  cancer-associated  genes.  The  TCGA  BRCA-US  cohort  is
composed of approximately the same number of ER+ and ER- patients while the BASIS cohort
is composed of 72% of ER+ patients. Given the size of the BASIS cohort (256 samples), it was
possible  to  perform two  additional  analyses  on  ER+  (184  samples)  and  ER-  samples  (72
samples) independently. The analysis of cis-regulatory mutations associated with protein-coding
genes  revealed  one  prediction  common  to  TCGA  and  ER+  BASIS  cohorts  (IL12RB1;
Figure S24).  Despite  this  small  intersection,  the  functional  enrichment  analysis  of  the
dysregulated  genes  associated  to  all  predicted  genes  were  similar  in  the  two  cohorts
(Figures S25-S26), suggesting that although the predictions vary among cohorts with different
aethiology, the dysregulated pathways are likely the same.

Figure 6. Predicted miRNA drivers in breast cancer cohorts. Predicted miRNAs in TCGA (BRCA-US) and BASIS
(all samples and ER- samples only). The pie plots represent the distribution of samples with ER-/+ status.

We predicted four miRNAs associated with cis-regulatory mutations in the BASIS cohort when
considering all samples (Figure 6). Two of these miRNAs, hsa-miR-145-5p and hsa-mir-29a-3p,
were previously identified by our methodology using the BRCA-US cohort. We did not predict
any driver miRNAs associated with cis-regulatory mutations when examining specifically  the
ER+ samples. However, we identified hsa-mir-17-3p, hsa-mir-17-5p, hsa-mir-18a-5p, hsa-mir-
20a-5p,  and  hsa-mir-155-5p  when  considering  ER-  samples.  These  five  miRNAs  were

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 26, 2020. ; https://doi.org/10.1101/2020.06.25.170738doi: bioRxiv preprint 

https://paperpile.com/c/P7H0v1/BUVU
https://doi.org/10.1101/2020.06.25.170738
http://creativecommons.org/licenses/by/4.0/


recurrently found across multiple TCGA cohorts (Figures 5-6). Note that when predicted using
the BRCA-US TCGA cohort, hsa-mir-17-3p, hsa-mir-17-5p, hsa-mir-18a-5p, and hsa-mir-20a-5p
miRNAs were predicted in a majority of ER- samples as well. As expected, these results confirm
that  the  cohort  clinicopathological  composition  impacts the predictions  as  it  can impact  the
landscape  gene  expression  distributions  across  samples.  Nevertheless,  the  complementary
analyses of the TCGA and BASIS breast cancer cohorts exhibited hsa-mir-145-5p, hsa-mir-29a-
3p, hsa-mir-17-3p, hsa-mir-17-5p, hsa-mir-18-5p, and hsa-mir-20a-5p as recurrently predicted
breast cancer-associated miRNAs linked to cis-regulatory mutations and dysregulation of their
target gene networks. Functional enrichment analysis confirmed that the dysregulated miRNA
target gene networks are enriched for genes involved in transcriptional regulation and in cancer-
relevant pathways such as the P53 pathway, hypoxia, and DNA damage response (Figure S26).

Finally,  we further evaluated the clinical potential of the predicted breast cancer miRNAs for
breast  cancer  survival  estimation.  For  this  purpose,  we  considered  a  third  cohort,
METABRIC [65],  which is  composed of  1282 samples.  We computed Kaplan-Meier  survival
curves and log-rank tests using miRNA expression from the METABRIC cohort for the miRNAs
predicted as drivers in the BRCA-US and BASIS cohort (for 24 of the predicted miRNAs in
breast cancer). Examining both overall survival and breast cancer specific survival values, we
observed significant log-rank test p-values for hsa-mir-29a-3p, hsa-mir-1290, and hsa-mir-20a-
5p (without multiple hypothesis correction; Figure 7 and Figures S27-S28). Note that hsa-mir-
20a-5p and hsa-mir-29a-3p were recurrently predicted in our analyses of the BRCA-US and
BASIS  cohorts.  Taken  together,  these  results  reinforce  a  posteriori  the  potential  of  some
miRNAs we predicted as their level of expression could be used for prognosis.

Figure 7. Survival curve analysis for some predicted miRNA drivers. Kaplan-Meier survival curves obtained using
the METABRIC cohort for the most significant driver miRNAs identified in the breast cancer cohorts. Samples were
separated into two groups according to the level of miRNA expression (above/below the median). Log-rank test p-
values are indicated. OS: overall survival. BCSS: breast cancer specific survival.
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DISCUSSION
In this study,  we explored how cis-regulatory mutations at  TFBSs could be used to predict
genes  through  the association  of  somatic  mutations  with  a  cascading  trans-effect  on gene
regulatory network dysregulation.  Contrary to most methods predicting cancer-driving events
based on recurrence of mutations, we sought to couple cis-regulatory mutation information with
gene expression data from the same samples to highlight  direct  evidence of  the regulatory
impact of the mutations. By integrating whole-genome somatic mutations, RNA-seq, and small
RNA-seq data with gene regulatory networks, we performed pan-cancer predictions of protein-
coding and miRNA genes associated with somatic  cis-regulatory mutations  in  patients  from
seven distinct cancer types. Our study provides a large-scale foray to predict cancer-associated
protein-coding  and  miRNA  genes  associated  with  somatic  mutations  by  combining  both
transcriptional  and post-transcriptional  information.  Our results provide new insights into the
potential  impacts  and causes of  the  alteration  of  the  gene regulatory  program observed in
cancer cells along with their cascading effects on key biological pathways.

We  specifically  focused  on  somatic  mutations  lying  within  a  high-quality  set  of  TFBSs
representing  direct  TF-DNA  interactions  with  both  experimental  and  computational
evidence [37] and covering ~2% of the human genome. We acknowledge that this set of TFBSs
might represent a limited subset of all potential TFBSs in the human genome as it was derived
from experiments available for a reduced number of TFs and cell types/tissues (231 TFs out of
the ~1,600 human TFs reported [11] and 315 cell types and tissues). Moreover, some TFBSs
might not be active in the cell  type of origin associated with the cancer types studied here.
Nevertheless,  we  provided  evidence  that  the  regions  considered  are  likely  enriched  for
functional genomic elements since they harbour mutation rates similar to what is observed in
exonic  regions (Figure 1).  The reduced mutation rates in  exons and the limited increase in
surrounding regions could be attributed to increased mismatch repair and nucleotide excision
repair in exons as previously shown [66,67]. Our similar observation when considering our set of
TFBSs  is  in  line  with  our  previous  observation  in  B-cell  lymphomas  [27] but  somewhat  in
disagreement with previous studies showing that  nucleotide excision repair is impaired by the
binding of TFs to DNA [68,69]. We hypothesize that the differences observed could be partially
explained  by  the fact  that  (1)  our  mutation  rate analysis  considered  TFBSs predicted from
several cell lines and tissues instead of focusing on TFs and TFBSs specific to the considered
cell types or conditions (such as UV-exposure in melanoma), and (2) we did not filter TFBSs
based on open chromatin data from matched cell types.

Contrary to previous studies assessing the impact of mutations on TF-DNA binding affinity or
the enrichment for mutations in cis-regulatory regions  [70–72],  we particularly evaluated the
impact  of  cis-regulatory  mutations  on expression  alteration  in  gene networks.  As  such,  our
approach  does  not  quantify  the  direct  impact  of  mutations  on  the  obliteration  of  TF-DNA
interactions  but  uses  RNA  information  as  the  ultimate  readout.  A  previous  method
systematically assessed the potential impact of somatic mutations in genomic tiles near genes’
TSSs on gene expression  [25]. Here, we considered mutations lying within a specific set of
TFBSs without  restrictions on distances to TSSs and evaluated the trans-association of the
mutations with genes’ network deregulation.  Nevertheless, we acknowledge that the method
misses mutations that would create new TFBSs as it is restricted to a set of predefined TFBSs.
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The analysis of protein coding genes showed 31 genes that were predicted in at least two (out
of the seven) TCGA cohorts analyzed, with many already known cancer drivers (Figure 2A). We
observed that the predicted protein-coding driver genes through the analysis of cis-regulatory
mutations  did  generally  not  contain  mutations  in  exonic  regions  for  the  same  patients
(Figures 2B  and  S13).  This  observation  suggests  complementary  mechanisms  acting  upon
gene expression dysregulation with cascading effect on regulatory network disruption.

Given that miRNAs cover a small portion of the human genome, they harbour a small number of
somatic  mutations  [8],  limiting  the  possibility  to  affect  gene  expression.  The  potential
mechanism  that  we  propose  here  is  the  alteration  of  their  regulatory  elements.  Our  study
highlighted cis-regulatory mutations linked to miRNAs that were associated with dysregulation of
expression of the miRNA targets. In our pan-cancer analysis, we discovered a core set of 17
miRNAs associated with the dysregulation of key pathways involved in carcinogenesis.  This
core  set  of  miRNAs  could  represent  a  common feature  for  gene  expression  dysregulation
associated with cancer onset or progression

The analysis  of  the  dysregulated networks  associated  with  the predicted cancer-associated
genes (protein-coding and miRNAs) shows that many genes are dysregulated in a few samples
but rarely across all the mutated samples (Figure 5B). This observation suggests a phenotypic
heterogeneity  (i.e.  alterations  of  different  parts  of  the  same  network  lead  to  the  same
phenotype).  However,  the  functional  enrichment  analysis  of  the  dysregulated  genes  shows
consistency across cohorts and across the analyzed types of mutations (LoF and cis-regulatory)
for both protein-coding and miRNA genes. Moreover, as originally described by Ding et al. [26],
the  xseq probabilistic  framework  can  highlight  the  specific  samples  where  mutations  are
associated with impact on gene expression, while it does not in other samples (Figure 4A). This
dichotomy can in principle be used to stratify samples and mutations but, in this study, was
limited by the number of samples considered. 

We applied our methodology to two cohorts of breast cancer samples (TCGA BRCA-US and
BASIS). Given the large number of samples in BASIS (n=256), we performed three analyses
separately by considering (i) all samples, (ii) ER+ samples, and (iii) ER- samples. As expected,
we  observed  that  predictions  can  vary  depending  on  the  samples  histopathology.  This  is
particularly important for methods assessing impact on gene expression, which is influenced by
the  clinical  composition  of  the  cohorts.  We  acknowledge  that  methodological  differences
between the TCGA and BASIS cohorts (e.g. somatic mutation callings, small RNA-seq versus
microarrays  and  normalization  for  miRNAs)  could  provide  additional  explanations  for  the
variation in predictions. Although only one of the predicted protein-coding genes was predicted
in  both  the  BASIS  and  the  BRCA-US  cohorts,  the  functional  enrichment  analysis  of  the
dysregulated gene networks was consistent. This observation suggests common dysregulated
pathways  acting  as  attractors  that  could  originate  from  (non-recurrent)  distinct  cancer-
associated  events.  It  underlines  the  importance  of  addressing  cancer  as  a  disease  with
perturbations manifested at the gene network level. However, our miRNA analyses highlighted
five miRNAs associated with cis-regulatory  mutations  and target  gene expression alteration
recurrently altered across the BRCA-US and BASIS breast cancer cohorts (Figure 6).

Despite  the multiple  lines  of  evidence  for  the prediction  of  cancer-associated genes in  this
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study, we acknowledge that the predictions can provide false positives and false negatives due
to multiple reasons such as: (i) a limited number of TFs with high-quality TFBSs; (ii) TFBS-target
gene associations  obtained  by  a naive  approach combining  information from an integrative
database [39] and association to the closest TSS (Figure S8); we hypothesize that many of
these associations may be irrelevant or incorrect and many others are missing; (iii) a diversity of
tumor purity  within  the considered  samples  (despite  the original  threshold  of  80% used by
TCGA); (iv) a limited number of WGS datasets (tens of samples) within each cohort, compared
to the number of samples with WXS (hundreds) used in other studies; (v) prior networks that
might be incomplete. However, one of the main limitations of this project is the low number of
tumor samples with both WGS and RNA-seq data, this limitation not only biases the community
research towards the study of exonic regions, but also limits the statistical power of the methods
assessing the impact of cis-regulatory mutations on gene network expression alteration.

Altogether, we argue that our capacity to predict cancer-associated cis-regulation mutations will
increase as more high-quality TFBSs for more TFs and improved methods to associate TFBSs
to  their  target  genes  become  available.  In  addition,  focusing  on  cis-regulatory  regions
specifically open or active in cancer samples would inform where somatic mutations are likely
effective. We expect that with more WGS, RNA-seq, and other genomics datasets derived from
cancer samples available, the community will resume the paucity in the detection of non-coding
cancer-associated events [8].

CONCLUSION
By integrating whole-genome somatic mutations, RNA-seq, and small RNA-seq data with gene
regulatory  networks  across  seven  cancer  types,  we  were  able  to  highlight  cis-regulatory
mutations  associated  with  the  dysregulation  of  gene  regulatory  networks  through  specific
protein-coding  and  miRNA  genes.  The  enrichment  for  known  cancer  genes,  TFs,  and  the
functional enrichment analysis reinforce a posteriori the predicted protein-coding and miRNA
genes as being involved in biological pathway alteration affecting cancer development through
exonic and cis-regulatory alterations. Our study represents, to our knowledge, the first large-
scale analysis of cis-regulatory mutations that are linked to gene expression alteration in key
cancer-associated pathways. Our results suggest that this process can be achieved in a flexible
way as we observed different genes in different patients but all associated with deregulation of
the same pathways. Combining transcriptional and post-transcriptional information, we identified
a core set of 17 miRNAs linked to altered cancer pathways across cancer types. These pan-
cancer  results  here  provide  new insights  into  the  impact  and  potential  causes  of  miRNA-
mediated  gene  expression  dysregulation.  This  work  extends  our  capacity  to  address  the
discovery  gap  of  cancer-associated  events  identification  through  the  analysis  of  noncoding
mutations and miRNA genes.

MATERIAL AND METHODS
All  analyses  were  performed  using  the  hg19  human  genome  assembly.  When  data  was
obtained  from another  human  genome assembly,  coordinates  were  converted  to  the  hg19
assembly using the liftOver tool provided by the UCSC Genome Browser [73,74].
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Cancer patient data
We  considered  TCGA  [38] cohort  samples  for  which  trios  of  (i)  whole  genome  somatic
mutations, (ii) RNA-seq, and (iii) small RNA-seq data were available with at least 30 patients per
cohort.  Data  was  downloaded  from  the  International  Cancer  Genome  Consortium  (ICGC)
portal [75] through the  icgc-get client (Additional file 6). Altogether, we collected data for 349
samples from seven TCGA patient cohorts (35 to 92 donors per cohort; Additional file 1): BRCA-
US (breast invasive carcinoma), HNSC-US (head and neck squamous cell carcinoma), LIHC-
US  (liver  hepatocellular  carcinoma),  LUAD-US  (lung  adenocarcinoma),  LUSC-US  (lung
squamous  cell  carcinoma),  STAD-US  (stomach  adenocarcinoma),  and  UCEC-US  (uterine
corpus endometrial carcinoma).

We collected data from 256 samples from the Breast Cancer Somatic Genetics Study (BASIS)
cohort  [64,76] for  which  trios  of  whole  genome  somatic  mutations,  RNA-seq,  and  miRNA
microarray data were available (Additional file 5). miRNA expression was measured using the
Human miRNA Microarray Slide (Release 19.0) with Design ID 046064 (Agilent Technologies,
Santa Clara, CA, USA; see ref. [64] for details).

Somatic mutations
Somatic single nucleotide variants (SNVs) and small insertions and deletions (indels) called by
the tool MuSE [77] were retrieved from the ICGC portal for TCGA samples. For BASIS samples,
we retrieved SNVs and indels called by the tools CaVEMan [78] and Pindel [79], respectively,
used in the original study [64].

RNA-seq and small RNA-seq normalization
Both RNA-seq and small RNA-seq raw counts were filtered to remove all genes with 0 reads in
more than 50% of the samples for a given cohort. For each cohort, both matrices (RNA-seq and
small  RNA-seq)  of  raw counts  were normalized  to  counts per  million  (cpm)  using the  cpm
function from the R package edgeR [80] and the cpm values were scaled by log2 conversion.
To avoid zeros, we added a pseudo-count of 1. Note that small RNA-seq reads were mapped to
pre-miRNA coordinates by TCGA, providing information about pre-miRNA expression and not
mature miRNAs.

The normalized microarray miRNA expression matrix for BASIS samples was retrieved from the
original study where normalization was performed using the 90th percentile methodology [64].

Copy number alteration computation
We downloaded copy number alteration (CNA) values predicted using the GISTIC2 tool [81] for
TCGA samples  through  the  Firebrowse  database  at  http://firebrowse.org (Additional  file  6).
BASIS CNA estimates were computed using ASCAT (v2.1.1)  [82] and converted into GISTIC
format  with  -2  for  homozygous  loss  (nMinor+nMajor=0),  -1  for  hemizygous  loss
(nMinor+nMajor=1), 0 for normal (nMinor+nMajor=2), 1 for three copies (nMinor+nMajor=3), and
2 for  more than three copies (nMinor+nMajor>3).  The CNA values assigned to the protein-
coding  genes  were  used in  the  xseq analysis  to  remove cis-effects  of  CNAs on the gene
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expression dysregulation assessment [26].

Mutation rate analysis
For each sample,  we calculated the mutation rates by dividing the total  number of  mutated
nucleotides within a set of regions (TFBSs, exons, and flanking regions) by the total number of
nucleotides covered by the given set of regions. TFBS genomic positions were obtained from
UniBind  [37] (see  below).  Protein-coding  exon  coordinates  were  retrieved  from  RefSeq
Curated [83] (Additional file 6). Flanking regions were computed by (i) extending TFBS or exonic
regions by 100, 500, and 1000 nucleotides on both sides using the flank bedtools subcommand
and (ii) removing regions overlapping TFBSs and exonic regions using the  subtract bedtools
subcommand. Sets of regions were independently merged using the merge subcommand of the
bedtools [84].

Random  expectation  for  mutation  rates  were  computed  using  150  random sets  of  somatic
mutations and applying the mutation rate computation described above. The random sets of
mutations were generated by shuffling the original coordinates within the same chromosomes
using the shuffle subcommand of the bedtools with the -chrom option.

miRNAs 
Genomic coordinates of human pre-miRNAs were retrieved from miRBase v20 [45] as used to
predict miRNA TSSs from CAGE data by the FANTOM5 consortium [36]. When miRNA names
in the miRNA-related files (expression, survival, cancer-associated miRNAs) used in this study
were mapped to older versions of miRBase (starting from version v10), we updated the names
to  the  ones  used  in  the  latest  miRBase  version  (v22)  using  the  miRBaseConverter
R/Bioconductor package [85].

Transcription factor binding sites
TFBSs were retrieved from the UniBind database (2019 version) at  https://unibind.uio.no [37]
(Additional file 6). The TFBSs correspond to high confidence direct TF-DNA interactions with
both experimental (through ChIP-seq) and computational (through position weight matrices from
JASPAR  [86]) evidence. TFBSs were derived from 1983 ChIP-seq experiments for 231 TFs
across 315 cell types and tissues [37].

TFBS-gene association
We used the cis-regulatory element-gene associations from the GeneHancer database (v4.9),
derived from 8 sources to associate TFBSs to genes (Additional file 6; Figure S8) [39]. TFBSs
overlapping  a  cis-regulatory  element  annotated  in  GeneHancer  were  associated  with  the
corresponding  gene  in  GeneHancer.  TFBSs  not  overlapping  annotated  elements  were
associated with the closest TSS (for a protein-coding or a miRNA gene). We considered TSSs
associated  with  protein-coding  genes from RefSeq  Curated  [83] and  TSSs associated  with
miRNAs by FANTOM5  [36]. With this approach, about half of the TFBSs were associated to
protein-coding  or  miRNA  genes  using  GeneHancer  associations  and  the  other  half  to  the

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 26, 2020. ; https://doi.org/10.1101/2020.06.25.170738doi: bioRxiv preprint 

https://unibind.uio.no/
https://paperpile.com/c/P7H0v1/XxFh
https://paperpile.com/c/P7H0v1/YIvx
https://paperpile.com/c/P7H0v1/8pPe
https://paperpile.com/c/P7H0v1/ofBx
https://paperpile.com/c/P7H0v1/mVjS
https://paperpile.com/c/P7H0v1/ofBx
https://paperpile.com/c/P7H0v1/mDzN
https://paperpile.com/c/P7H0v1/XxFh
https://paperpile.com/c/P7H0v1/uIyd
https://paperpile.com/c/P7H0v1/T6f6
https://paperpile.com/c/P7H0v1/YIvx
https://paperpile.com/c/P7H0v1/ofBx
https://paperpile.com/c/P7H0v1/oVYA
https://doi.org/10.1101/2020.06.25.170738
http://creativecommons.org/licenses/by/4.0/


closest TSS.

TFBS mutations
Somatic mutations were intersected with TFBS locations using the  intersect subcommand of
bedtools v2.25.0 [84]. All mutations in TFBSs associated with miRNAs were considered for the
xseq analysis (see below). For mutations in TFBSs associated with protein-coding genes, we
followed the approach previously used by Mathelier et al. for the xseq analysis [27]. Specifically,
we restricted the analysis to mutations associated with genes potentially dysregulated in the
corresponding samples. Following ref. [27], genes were considered as potentially dysregulated
in a given sample in cohort C if its expression value v satisfied v < μ-1σ or v > μ+1σ where μ
and σ correspond to the mean and standard deviation of the expression values of the gene in C.

Loss-of-function mutations
Following Ding et al. [26] for protein-coding exonic regions, we considered only LoF mutations
that are either (i) nonsense mutations (disruptive in-frame deletion, disruptive in-frame insertion,
stop gained, start lost, stop lost, and stop retained variant), (ii) frameshift mutations (frameshift
variant, initiator codon variant), or (iii) splice-site mutations (splice region variant, splice donor
variant,  splice  acceptor  variant).  The  analysis  was  performed  using  somatic  mutation  data
obtained from whole exon sequencing in the same TCGA samples as for the other analyses.

Gene networks
Protein-coding gene networks were retrieved from ref.  [26] and were composed of  898,032
interactions.  Briefly,  the  networks  were  constructed  by  combining  gene  associations  from
STRING  v9.1  functional  protein  association  [87],  KEGG  pathway  datasets  [40],
WikiPathway [41], and BioCyc  [88] as integrated in the IntPath database  [89], and TF-target
links  from  ENCODE  [90] (see  ref.  [26] for  more  details).  We  updated  the  weights  of  the
connections whenever possible using the methods provided in xseq, following the methodology
described in ref. [26]. Specifically, the weight between a given gene g and a biological partner
gene  p was set to 1 if  p was found differentially expressed (Benjamini-Hochberg adjusted p-
value ≤ 0.05) in samples where g is mutated in the same cohort (see Material and methods in
ref. [26] for details). If there existed such genes p, then only these genes were kept connected
to g. Original weights were kept otherwise.

miRNA-target networks
miRNAs  were  associated  with  potential  target  protein-coding  genes  using  predictions  from
TargetScan v7.2 [31]. From the list of targets for each miRNA, we filtered out the targets with
less than two predicted binding sites for the given miRNA to reduce false positives  [46,47].
miRNA-target  weights  were  computed  as  t_score /  100  where  t_score corresponds  to  the
targetScan context++  score  percentiles  from  TargetScan.  We  updated  the  weights  of  the
connections whenever possible following the same strategy as for protein-coding genes (see
above).
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xseq analyses
The likely associations between mutations and dysregulation of gene or miRNA target networks
were calculated with  xseq [26].  This method requires as input:  a gene expression matrix of
samples (RNA-seq matrix), a binary sample-gene mutation matrix, and a weighted network of
connected genes.  It  outputs posterior  probabilities  associated to:  (i)  a sample-specific  gene
regulatory status (GRS, the probability of a given gene being dysregulated in a sample) for each
gene connected to the gene associated with a mutation in a given sample, (ii) a sample-specific
dysregulation probability (SSD, the probability that a mutation in a given gene in a given sample
is associated with dysregulation of  the gene’s network),  and (iii)  a dysregulation across the
cohort  probability  (DAC,  the  probability  that  mutations  in  a  gene  are  associated  with  the
dysregulation  of  its  network across patients)  (Figure S9).  In a first  step,  we removed lowly
expressed genes in a cohort following the approach described by Ding et al. [26]. Briefly, xseq
considers the 90th percentile of expression for each gene and decomposes the distribution of
these values into two Gaussian distributions corresponding to low and high expression values.
We considered  for  further  analysis  the  genes for  which  their  90th  percentile  of  expression
values lie within the high expression distribution with a posterior probability ≥ 0.8 (see Ding et al.
[26] for details). Next, xseq was used to compute all the posterior probabilities to predict genes
and cis-regulatory mutations in  the cancer patient  cohorts.  We considered potential  cancer-
associated genes the ones with DAC ≥ 0.8 and SSD ≥ 0.5 in at least two samples.

Dysregulation heatmaps 
The dysregulated networks for predicted protein-coding and miRNA genes are visualized as
heatmaps  where  columns  correspond  to  mutated  samples  and  rows  to  connected  genes.
Heatmaps were constructed with connected genes dysregulated (GRS ≥ 0.5) in at least one
sample with SSD ≥ 0.5. These genes are referred to as dysregulated genes.

Aggregated and sample-specific networks
To  evaluate  whether  the  protein-coding  genes  predicted  by  cis-regulatory  mutations  are
connected in the filtered networks (see Gene networks section), we built an aggregate network
using  all  the  predicted  protein-coding  genes  within  a  cohort.  We  counted  the  number  of
disconnected subgraphs using the R packages  igraph [91] and  ggnetwork [92].  Similarly, we
built  sample-specific  networks and counted the number  of  subgraphs in  each sample,  only
considering the predicted genes with DAC ≥ 0.8 and SSD ≥ 0.5.

Functional enrichment analysis
Given a list of dysregulated genes, functional enrichment analyses were performed using the R
package  enrichR  [44] for  the  following  databases:  KEGG_2019_Human,
WikiPathways_2019_Human, GO_Biological_Process_2018, and Panther_2016.

Enrichment for cancer genes and TFs
Given  a  set  of  genes,  we  assessed  their  enrichment  for  cancer  genes  or  TFs  using
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hypergeometric tests using the  stats::phyper function in R. The list  of  cancer protein-coding
genes considered was constructed by considering genes that  appear in  at  least  two of  the
following databases: Network Cancer Gene [93], inToGen [94], and Cancer Gene Census [95].
Cancer miRNA genes were retrieved from miRCancer  [48] (with data from May 1st 2019). TF
genes were retrieved from the human transcription factor database [11].

Survival analysis
To test  whether  miRNA expression  was  associated with  survival,  we  used  the METABRIC
breast cancer cohort  [65] with miRNA microarray expression  [96] available for 1282 tumors.
Expression  values  were  downloaded  from  the  European  Genome-Phenome  Archive,
www.ebi.ac.uk/ega, accession number EGAS00000000122. Follow-up data were available from
Curtis et al. [65]. Kaplan-Meier survival analyses and log-rank tests were performed using the R
package  survival with  tumors  separated  into  “high”  or  “low”  miRNA  expression  groups
depending on expression values above or below the median.

Results accessibility
The  analysis  with  all  the  scripts  and  parameters  can  be  found  through  the  following  link:
https://bitbucket.org/CBGR/workspace/projects/DYS.  We  provide  (i)  the  source  code  for  the
analysis  at  https://bitbucket.org/CBGR/dysmir_manuscript/src/master/ and  (ii)  a  pipeline  for
users  to  run  similar  analysis  with  their  own  data  at
https://bitbucket.org/CBGR/dysmir_pipeline/src/master/.

SUPPLEMENTARY DATA
Additional file 1.  TCGA selected samples (specimen) with their ICGC/TCGA IDs. Samples
were  selected  to  provide  WGS,  RNA-seq,  small  RNA-seq,  and  CNA  data.  All  samples
considered in this study correspond to solid tumors.

Additional file 2. Summary of the number of mutations in the TCGA cohorts. Basic summary
statistics (median,  mean, and standard deviation)  of  the total  number of  mutations and the
number of mutations overlapping TFBSs.

Additional  file  3.  Identified driver  genes (miRNAs and protein coding genes)  with their
dysregulated targets.

Additional file 4. Summary of number of identified drivers and the number of dysregulated
genes per cohort.

Additional file 5.  BASIS selected samples and their ER status. Samples were selected to
provide WGS, RNA-seq, miRNA microarray expression, and CNA data.

Additional file 6. Description of the resources used for this manuscript. Brief description of
the resources (gene lists, databases, external files) used to perform this study, with links to their
corresponding sites and the date when they were downloaded.
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