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ABSTRACT

Background: Most cancer alterations occur in the noncoding portion of the human genome,
which contains important regulatory regions acting as genetic switches to ensure gene
expression occurs at correct times and intensities in correct tissues. However, large scale
discovery of noncoding events altering the gene expression regulatory program has been
limited to a few examples with high recurrence or high functional impact.

Results: We focused on transcription factor binding sites (TFBSs) that show similar mutation
loads than what is observed in protein-coding exons. By combining cancer somatic mutations in
TFBSs and expression data for protein-coding and miRNA genes, we evaluated the combined
effects of transcriptional and post-transcriptional alteration on the dysregulation of the regulatory
programs in cancer. The analysis of seven cancer cohorts culminated with the identification of
protein-coding and miRNA genes linked to mutations at TFBSs that were associated with a
cascading trans-effect deregulation on the cells’ regulatory program. Our analyses of cis-
regulatory mutations associated with miRNAs recurrently predicted 17 miRNAs as pan-cancer-
associated through deregulation of their target gene networks. Overall, our predictions were
enriched for protein-coding and miRNA genes previously annotated as cancer drivers.
Functional enrichment analyses highlighted that cis-regulatory mutations are associated with the
dysregulation of key pathways associated with carcinogenesis

Conclusions: These pan-cancer results suggest that our method predicts cis-regulatory
mutations related to the dysregulation of key gene regulatory networks in cancer patients. It
highlights how the gene regulatory program is disrupted in cancer cells by combining
transcriptional and post-transcriptional regulation of gene expression.
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INTRODUCTION

Dysregulation of the gene expression regulatory program in a cell is a hallmark of cancer. The
often observed aberrant gene expression in cancer can be triggered by deregulation at any
regulatory level (transcriptional and post-transcriptional) [1,2]. While a majority of studies have
focused on somatic mutations lying within protein-coding regions, most alterations occur in the
noncoding portion of the human genome, which contains cis-regulatory elements acting as
genetic switches to ensure gene expression occurs at correct times and intensities in the correct
cells and tissues [3]. Molecular alterations at these regions can alter the regulatory network of
the cells, conferring oncogenic behaviours, which has been associated with clinical and
histopathological features in cancer [3]. However, identification of noncoding cancer driver
events at cis-regulatory regions has been limited to a few examples with high recurrence or high
functional impact [3—7]. In recent work based on mutation recurrence along the human genome,
the Pan-Cancer Analysis of Whole Genomes (PCAWG) consortium, claimed that patients
harbour ~4.6 driver mutations. The PCAWG consortium estimated that driver point mutations in
noncoding regions (~1.2 per patient) were less frequent than driver point mutations in protein-
coding genes (~2.6 per patient) [8]. However, large scale discovery of noncoding drivers has
been hindered by their low level of recurrence, the target size of functional elements, technical
shortcomings, and their composite effect with small individual effect size on multiple regulatory
regions, e.g. slightly altering, but not obliterating, protein-DNA interactions [4,8]. Further, while
high-impact driver mutations are typically sought, medium-impact putative passengers can have
an aggregated effect in tumorigenesis, beyond annotated driver events [9].

Gene expression is mainly regulated at the transcriptional level by the binding of transcription
factors (TFs) to promoters (cis-regulatory regions surrounding genes’ transcription start sites,
TSSs) and enhancers (cis-regulatory regions distal to genes) at TF binding sites
(TFBSs) [10,11]. Most of the studies that predict noncoding driver mutations in cis-regulatory
regions rely on the identification of mutational hotspots, which are regions with higher mutation
frequencies than expected by chance [8,12-18]. Other studies explore somatic mutations with
potential effect on TF-DNA interactions [19-22] based on DNA sequence information alone,
followed by in vitro experiments to confirm the potential impact of the predicted mutations on
gene expression. Other studies directly combine somatic mutation data with gene expression
information to evaluate the impact of the mutations in cancer samples. For instance, studies
identified differential allele-specific expression of genes between cancer and normal cells to
pinpoint causal cis-regulatory variations in breast cancers [23,24]. Mutations close to the TSSs
of genes were shown to exert in-cis effect on the expression of the corresponding genes [25].
Another example is the xseq tool that associates mutations with changes in expression in gene
networks [26]. The tool has been originally developed to predict mutations in protein-coding
exons with trans-effect [26] and adapted to consider noncoding mutations associated with
protein-coding genes in B cell lymphomas [27]. This methodology specifically assesses the
trans-associations between mutations and gene network expression alteration in cancer
samples through either exonic or cis-regulatory mutations linked to protein-coding
genes [26,27].

At the post-transcriptional level, miRNAs control gene expression by acting as ‘buffers’ to induce
translational repression and mRNA degradation [28,29]. miRNA biogenesis generally comprises
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three steps in mammals: transcription of a primary transcript (pri-miRNA) that can be several
kilobases long, cleavage of the pri-miRNA into a precursor (pre-miRNA) of ~70bp, and cleavage
of the precursor to produce mature miRNAs of ~22bp [29,30]. The mature miRNA sequence is
then loaded in the RNA-induced silencing complex to specifically target mMRNAs for repression
through base pair complementarity at the 3'UTR of mRNA targets. A miRNA sequence is
predicted to target tens to hundreds of mMRNAs [31]. The influence of miRNA-based regulation
on mRNA translation is not an on/off system but rather an interplay between miRNA-binding site
specificity and miRNA abundance [28,32]. Therefore, even small changes in miRNA abundance
may have an effect on the expression of several direct targets but also other mRNAs through a
cascading effect, potentially leading to dysregulation patterns observed in cancer. This
observation, amongst others, suggests that miRNAs can act as cancer drivers [33,34].

Despite active research on post-transcriptional regulation and the identification of miRNAs and
their targets [35], the understanding of miRNA transcriptional regulation is currently limited [30].
One obstacle was the lack of precise identification of pri-miRNA TSSs. The FANTOMb5
consortium recently took advantage of the cap analysis of gene expression (CAGE) technology
to identify pri-miRNA TSSs genome-wide from different cell types and tissues in human and
mouse [36]. Given their short size and the fact that they are not recurrently mutated [8], we
hypothesize that the driver potential of miRNAs in cancer could be driven by cis-regulatory
mutations that alter their expression in cancers with downstream cascading effect on the gene
regulatory program of the cells.

The recent availability of high-quality sets of direct TF-DNA interactions [37], miRNA TSS
locations [36], somatic cancer mutations, and cancer cell expression data [38] provides an
unprecedented opportunity to analyze alterations of gene regulatory programs in cancer by
looking at both transcription and post-transcriptional levels of gene expression regulation. The
PCAWG consortium stated that the community is facing a ‘paucity’ in the discovery of
noncoding cancer drivers that could be shortened by analyzing larger sample datasets [8]. We
hypothesize that focusing on regulatory variants within TFBSs associated with protein-coding
and miRNA genes combined with gene expression data has the potential to pinpoint cis-
regulatory variants linked to the dysregulation of key gene regulatory networks in cancer
patients.

In this study, we adapted the framework of the xseq tool to predict cis-regulatory somatic
mutations associated with the dysregulation of gene networks by considering both protein-
coding and miRNA genes. We predicted genes that are associated with cis-regulatory mutations
and cascading trans-effects on the gene regulatory program alteration across seven cancer
patient cohorts from The Cancer Genome Atlas (TCGA) [38]. This analysis revealed 17 miRNAs
recurrently predicted in the different cohorts. Functional enrichment analyses of the deregulated
networks confirmed that pathways known to be associated with carcinogenesis are recurrently
disrupted. We conclude that interpretation of noncoding mutations can be improved by focusing
on TF-DNA interactions with the combined analysis of both transcriptional and post-
transcriptional regulation of gene expression to revert the paucity in the discovery of cancer-
associated noncoding events.
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RESULTS

Transcription factor binding sites harbour similar mutational load than
protein-coding exons

We considered somatic mutations from whole genome sequencing of 349 samples from seven
cancer patient cohorts (35 to 92 samples per cohort) covering seven distinct cancer types from
TCGA [38] (Additional file 1). Specifically, we selected samples where trios of somatic
mutations, RNA-seq, and small RNA-seq data were available. In aggregate, we examined
11,434,931 somatic single nucleotide variants and small insertions and deletions (from 2,832 to
1,014,969 per sample; Additional file 2; Figure S1).
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Figure 1. Comparison of mutation rates in TFBSs and exons versus their flanking regions and random
mutation rates. Each panel corresponds to a specific cancer cohort (see title boxes) and each point corresponds to
a sample. On each panel, the two central boxplots (shadowed) represent mutation rates in TFBS and exonic regions,
the remaining box plots correspond to mutation rates in increasing-size flanking regions (100, 500, and 1000 nt) and
mutation rates expected by chance (150 randomly distributed sets of mutations in the genome; Material and
methods).

To highlight cancer-associated cis-regulatory mutations, we considered a set of TFBSs
predicted as direct TF-DNA interactions in the human genome and stored in the UniBind
database [37]. We first assessed whether this set of TFBSs would represent regions of
functional interest similar to the coding portion of the human genome commonly studied to
predict cancer-associated mutations. These TFBSs cover ~2.2% (68,071,257 nt) of the human
genome, close to the exonic coverage of protein-coding genes (~2.6%; 81,416,464 nt).
Focusing on the somatic mutations, we observed that 1-2% of the mutations in each sample are
lying within these TFBSs (median of 277 mutations per sample; Additional file 2; Figure S2). As
expected, mutation rates in TFBSs varied between cancer cohorts but were similar to the
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mutation rates observed in exons of protein-coding genes (two-tailed Wilcoxon tests p-values
between 0.13 and 0.96; Figures 1 and S3-S4). We observed that TFBSs were less mutated
than their surrounding sequences with mutation rates increasing as the size of the flanking
regions increases (Figure 1). Note that regions of 1 kb surrounding TFBSs harbour mutation
rates similar to what is expected by chance (two-tailed Wilcoxon tests p-values between 0.56
and 0.95; Figures S3-S4). While exons exhibit mutation rates similar to those observed within
TFBSs (Figure S5), their flanking regions show a smaller increase in mutation rates than the
increase detected in the vicinity of TFBSs (Figures S6-S7).

Taken together, these results highlight that the mutation frequencies in the studied set of TFBSs
follow a similar pattern to what is observed in protein-coding exons. It provides an a posteriori
confirmation that the set of TFBSs we considered is likely composed of functional regions in the
human genome and could be used to highlight cis-regulatory mutations of functional interest in
cancer genomes.

Cis-regulatory and loss-of-function mutations are complementary
mechanisms to alter protein-coding gene networks

We sought to predict the cis-regulatory mutations lying in these TFBSs and that were linked to
cascading effects on gene network deregulation, a hallmark of carcinogenic events. We first
focused on the mutations linked to protein-coding genes and compared their effect to mutations
altering the function of protein-coding genes. Specifically, we considered a protein-coding gene
to be mutated through either a loss-of-function (LoF) somatic mutation in one of its exons as in
ref. [26] or a somatic mutation overlapping a TFBS associated with the gene. TFBSs were
linked to protein-coding or miRNA genes based on cis-regulatory element-to-gene associations
from GeneHancer [39] or distances to TSSs (Material and methods; Figure S8). We related the
mutations to their potential trans-effect on expression disruption in protein-coding gene
networks using the xseq tool, following approaches implemented in previous studies [26,27].
Specifically, the method uses a hierarchical bayesian approach to associate mutations with
expression dysregulation in biological networks associated with the mutated protein-coding
genes. In a nutshell, it assesses the posterior probability of the likely association between
observing mutations in a set of patients and observed deviations from neutral expression in
these samples for protein coding genes in the same network. The likely trans-associations
between mutations and gene network deregulation are first assessed in a sample-specific
manner and then across samples from the same cohort (Figure S9). Genes with low expression
in a given cohort were filtered out; the distribution of the 90th percentile of expression for genes
was decomposed into two Gaussian distributions corresponding to low and high expression
values and only genes lying in the high expression distribution were conserved (Material and
methods). Further, we corrected for copy number alteration to compensate for their cis-effect on
expression (Material and methods). LoF mutations and mutations overlapping TFBSs were
analyzed independently.

Pan-cancer analyses of the seven TCGA cohorts predicted 30 protein-coding genes when
considering LoF mutations (none in HNSC-US, LUAD-US, and LUSC-US; 2 in LIHC-US; 4 in
BRCA-US; 9 in STAD-US; 18 in UCEC-US) and 283 genes when considering cis-regulatory
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mutations (6 in LIHC-US; 22 in BRCA-US and HNSC-US; 35 in LUSC-US; 42 in STAD-US; 81
in LUAD-US; 107 in UCEC-US) (Figures 2 and S10-S12). Three genes were linked to
dysregulated networks in association with both LoF and cis-regulatory mutations but in different
patients and cohorts: ACVR2A, ARID1A, and GATA3 (Figure 2A). These three genes are
already known cancer drivers that we predict to be impacted by alternative mutational
mechanisms (LoF or cis-regulatory mutations). For the other genes, we observed that they were
either associated with LoF mutations or mutations in TFBSs across cohorts (e.g. TP53, RPL22,
and PDS5B with LoF mutations; PIK3C3 and CEBPB with cis-regulatory mutations; Figure 2).
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Figure 2. Pan-cancer predicted protein-coding genes. A) Predictions were obtained applying the xseq tool when
considering protein-coding genes mutated through either LoF (red triangles) or cis-regulatory (TFBS; green triangles)
mutations, independently. Genes predicted in at least two cohorts are depicted here. Genes known as cancer genes
(red stars) and TFs (blue stars) were found to be enriched (hypergeometric tests; p-values provided in the legend;
Material and methods). B) Samples where genes were predicted through cis-regulatory mutations were considered
for each cohort and assessed for the presence of LoF mutations in the same genes for the same cohort (TFBS &
Exon) or no LoF mutation in the corresponding gene (TFBS only).

From the combined list of 310 predicted protein-coding genes (Additional Files 3 and 4), 87
were already annotated as cancer genes (p-value = 1.5e-16; hypergeometric test) and 37 as
TFs (p-value = 0.0061; Figures S10-S12). Considering recurrent predictions over cancer types,
we observed 31 genes to be predicted in at least two cohorts. These 31 genes are enriched for
already known cancer drivers (p-value = 6.2e-6; hypergeometric test) and TFs (p-value = 0.044;
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hypergeometric test) (Figure 2A).

The genes identified through cis-regulatory mutations rarely contained LoF mutation in the same
patients (Figures 2B and S13). These results reinforce the possible complementary
mechanisms between LoF and cis-regulatory mutations at play in cancer patients to alter the
gene regulatory program of cancer cells. We observed that multiple genes could be predicted in
the same sample through cis-regulatory mutations (e.g. from 1 to 42 genes were predicted in
UCEC-US samples). Nevertheless, these genes tend to be interconnected in the dysregulated
genes’ networks with a maximum of 5 disconnected subgraphs per sample (Figure 3). All these
genes are predicted through mutations associated with cascading trans-effect in gene network
dysregulation but the method cannot pinpoint which specific event could be the main driver
event or if it is due to the combination of cis-regulatory mutations. When considering all the
predicted genes per cohort, we detect a similar pattern with subnetworks of interconnected
genes (Figures 3B and S14). Altogether, these interconnections suggest that the predicted
genes are likely involved in similar biological pathways with altered expression associated with
cis-regulatory somatic mutations.
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Figure 3. Networks of predicted protein-coding genes. A) Stacked histogram depicting the number of
disconnected networks of predicted protein-coding genes (see legend) per sample (number of samples on the y-axis)
for each cohort (x-axis). B) Network of all predicted genes in the UCEC-US cohort. The number of samples in which
each gene was predicted is provided using a color scale (see legend). TF genes are highlighted with an orange
background.
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Deregulation of transcriptional activity and cancer pathways are trans-effect
signature of the predicted cis-regulatory and loss-of-function mutations

Next, we performed enrichment analyses to shed light on the functional role of the somatic
mutations predicted to be associated with a cascading effect on gene expression alteration. One
advantage of xseq is its capacity to highlight the specific genes in the biological networks
associated with the candidate cancer-associated genes that are dysregulated in the samples
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harbouring the somatic mutations considered (Material and methods) [26]. We observed that
these genes were consistently found to be either up- or down-regulated in the samples with
predicted disrupted expression (see the blue and red colors in the upper and lower clusters in
Figure 4A). These results highlight sets of genes up- or down-regulated across samples where
cancer-associated genes are predicted.

We assessed the biological relevance of the networks predicted to be dysregulated in
association with the protein-coding genes predicted through LoF or cis-regulatory mutations.
Functional enrichment analysis was performed using pathways from KEGG [40],
WikiPathways [41], and Panther [42], and gene ontology biological processes (GO BP [43]) with
the EnrichR tool [44]. The dysregulated genes in the networks are enriched for transcriptional
activity (‘regulation of transcription, DNA-templated’ from GO BP; Figure S15). Combined with
the enrichment of TFs in the list of predicted cancer-associated genes, this result emphasizes
that the alteration of transcriptional regulation is a common feature of cancer cells throughout
cancer types. Focusing on biological pathways enriched in our list of genes from the
dysregulated networks, we found pathways already known to be associated with carcinogenesis
at the top of the enriched terms (e.g. ‘Pathways in cancer’, ‘WNT signaling’, ‘PI3K-Akt signaling’,
and ‘Focal adhesion’; Figures 4B-C and S15-S18). These results confirm that our approach
highlighted somatic exonic and cis-regulatory mutations associated with potential protein-coding
cancer-associated genes with cascading effect on regulatory alteration of key cancer-related
pathways.

The enrichment for cancer pathways represents a posteriori confirmation that our method can
pinpoint somatic events likely associated with carcinogenesis. Nevertheless, our results suggest
that alteration of gene network expression in different patients could be achieved through cis-
regulatory mutations associated with different genes involved in the same pathway.

Combining transcriptional and post-transcriptional regulation highlights pan-
cancer miRNAs associated with gene expression alteration

The analysis of protein-coding genes presented above exhibited that our methodology is able to
pinpoint cis-regulatory mutations likely associated with carcinogenesis. With miRNAs involved in
post-transcriptional regulation of gene expression, we hypothesized that our method could
highlight cis-regulatory mutations linked to miRNAs with downstream cascading effect on the
gene regulatory program of the cells. This new analysis aimed at combining transcriptional
(through mutations in TFBSs) and post-transcriptional (through miRNA-targets regulatory
networks) regulation to predict miRNAs associated with a trans-effect on gene expression
alteration through somatic mutations in cis-regulatory elements.
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Figure 4. Dysregulated protein-coding gene networks and functional enrichment analysis. A) Dysregulated
gene network in samples where FUS is predicted through cis-regulatory mutations in BRCA-US (rows: dysregulated
genes associated with FUS; columns: samples with FUS-associated cis-regulatory mutations). The color scale
represents the gene regulatory status posterior probability (red: up-regulation; blue: down-regulation). The green
horizontal bar on top shows the sample-specific dysregulation posterior probability computed by xseq for the samples
harboring a cis-regulatory mutation in the FUS gene. B) KEGG 2019 most enriched terms computed from all the
dysregulated genes associated with the predicted protein-coding genes (Figure 4A is one example for GATA3) by
xseq with LoF and C) cis-regulatory mutations in TCGA cohorts (columns). Terms (rows) are ordered by their mean
rank across all cohorts. Significance is provided as -log:.(p-value).
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Pan-cancer analyses of the seven TCGA cohorts predicted 98 miRNAs derived from 63 pre-
miRNAs as potential cancer-associated miRNAs (Figure S19; Additional Files 3 and 4). From
these 98 miRNAs, 73 were already annotated as cancer miRNAs in the miRCancer database
[48] (p-value = 9.6e-28; hypergeometric test), which is derived from text-mining of the scientific
literature in PubMed [49]. Moreover, miRCancer provides information about the cancer types
that are associated with miRNAs in the literature; ~35% of the predictions of cancer miRNAs in
specific cancer types were supported by the literature to be involved in the same cancer type (p-
value = 7.02e-27; hypergeometric test).

We identified a core set of 17 miRNAs (derived from 9 pre-miRNAs) that were identified in at
least five out of the seven cohorts (Figure 5A): hsa-miR-17-3p, hsa-miR-17-5p, hsa-miR-20a-3p,
hsa-miR-20a-5p, hsa-miR-708-3p, hsa-miR-708-5p, hsa-miR-92a-1-5p (predicted in all 7
cohorts), hsa-miR-18a-3p, hsa-miR-18a-5p, hsa-miR-155-3p, hsa-miR-155-5p (6 cohorts), hsa-
mMiR-205-3p, hsa-miR-205-5p, hsa-miR-324-3p, hsa-miR-324-5p, hsa-miR-629-3p, and hsa-
miR-629-3p (5 cohorts). We did not observe a correlation between the number of potential
target genes for a miRNA and the number of cohorts where it is predicted (Figure S20). All
these miRNAs are derived from precursors of already established oncomiRs or tumor
suppressor miRNAs, or known to be involved in immune response or inflammation [50-61].
Note that hsa-miR-17-3p, hsa-miR-17-5p, hsa-miR-18a-3p, hsa-miR-18a-3p, hsa-miR-20a-3p,
hsa-miR-20a-5p, and hsa-miR-92a-1-5p are part of a single miRNA cluster on chromosome 13
and this polycistronic cluster (known as miR-17-92) is well known to be composed of oncomiRs
involved in proliferation and tumor angiogenesis, and reducing apoptosis of cancer cells [50].

When visualizing the dysregulated networks of miRNA targets in samples harbouring the
predicted cancer-associated miRNAs, we observed subsets of the networks as up- or down-
regulated across patients from the same cohort (Figure 5B). This observation is similar to what
we detected in protein-coding gene networks (Figure 4A). Note that the miRNA target networks
observed with altered expression for a given miRNA may vary between cohorts for the same
MiRNA as some targets are specifically expressed or altered in a subset of tissues or cell types
(Figure S21).

Similar to what we detected with disrupted gene networks of protein-coding genes, functional
enrichment for miRNA targets with altered expression highlighted transcriptional activity terms
and biological pathways associated with carcinogenesis (Figure 5C). Further, these results were
recurrently found when considering disrupted target genes in each cohort independently
(Figures S15-S18). We discovered several virus infection-related terms enriched across the
cohorts (Figures 4B-C and 5C), arguing for a potential link between viral infections and cancer
initiation/progression, as previously suggested [62,63], via miRNAs.

Altogether, this study provides a first foray in the analysis of a combined effect of transcriptional
and post-transcriptional dysregulation downstream of somatic cis-regulatory mutations
associated with miRNAs in cancer cells. It highlights a core set of mMiRNAs associated with cis-
regulatory mutations that are linked to a cascading alteration of gene regulatory networks
involved in cancer onset and progression.
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Figure 5. Overview of miRNA driver predictions and their dysregulated target networks. A) miRNAs predicted
as potential drivers by xseq in at least two TCGA cohorts. Cell colors indicate the posterior probability computed over
the corresponding cohort. Red stars indicate that the miRNA is annotated as a cancer miRNA in miRCancer [48].
Blue stars indicate that the miRNA was reported as a cancer miRNA in the specific cancer type where it is predicted
by xseq, according to miRCancer annotation. B) Dysregulated network of target genes for hsa-mir-29a-3p predicted
in BRCA-US (rows: dysregulated targets; columns: samples with cis-regulatory mutations associated with hsa-mir-
29a-3p). The color scale represents gene regulatory status posterior probability (red: up-regulation; blue: down-
regulation represented as the posterior probability times -1). C) KEGG 2019 most enriched terms (rows) for all the
dysregulated genes associated with the identified miRNA drivers across TCGA cohorts (columns). Terms are ordered
by their mean rank across all cohorts. Significance is provided as -logio(p-value).
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Complementary analysis of independent breast cancer cohorts supports
several cancer-associated miRNA predictions

We aimed to assess the recurrence of the predictions for breast cancer obtained from the 92
samples of the BRCA-US cohort from TCGA in a complementary cohort. We applied the same
methodology with the same parameters on the BASIS breast cancer cohort [64], which is
composed of 256 breast cancer samples with the same trio of data types available (WGS, RNA-
seq, and miRNA expression - from microarrays; Additional file 5).

Similar to the BRCA-US TCGA analysis on protein-coding genes, our analysis of the BASIS
cohort predicted known cancer drivers identified by associating LoF or cis-regulatory mutations
with dysregulation of their gene networks. Further, we observed enrichment of similar key
cancer pathways when considering the dysregulated genes associated with the predicted
cancer-associated genes (Figures S22-S23). Breast cancers can be categorized into estrogen
receptor positive (ER+) and negative (ER-), each subtype harbouring a distinctive signature of
gene expression. We explored how the distribution of ER status in patients from the two cohorts
could impact the predictions of cancer-associated genes. The TCGA BRCA-US cohort is
composed of approximately the same number of ER+ and ER- patients while the BASIS cohort
is composed of 72% of ER+ patients. Given the size of the BASIS cohort (256 samples), it was
possible to perform two additional analyses on ER+ (184 samples) and ER- samples (72
samples) independently. The analysis of cis-regulatory mutations associated with protein-coding
genes revealed one prediction common to TCGA and ER+ BASIS cohorts (IL12RBI;
Figure S24). Despite this small intersection, the functional enrichment analysis of the
dysregulated genes associated to all predicted genes were similar in the two cohorts
(Figures S25-S26), suggesting that although the predictions vary among cohorts with different
aethiology, the dysregulated pathways are likely the same.
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Figure 6. Predicted miRNA drivers in breast cancer cohorts. Predicted miRNAs in TCGA (BRCA-US) and BASIS
(all samples and ER- samples only). The pie plots represent the distribution of samples with ER-/+ status.

We predicted four miRNAs associated with cis-regulatory mutations in the BASIS cohort when
considering all samples (Figure 6). Two of these miRNAs, hsa-miR-145-5p and hsa-mir-29a-3p,
were previously identified by our methodology using the BRCA-US cohort. We did not predict
any driver miRNAs associated with cis-regulatory mutations when examining specifically the
ER+ samples. However, we identified hsa-mir-17-3p, hsa-mir-17-5p, hsa-mir-18a-5p, hsa-mir-
20a-5p, and hsa-mir-155-5p when considering ER- samples. These five miRNAs were
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recurrently found across multiple TCGA cohorts (Figures 5-6). Note that when predicted using
the BRCA-US TCGA cohort, hsa-mir-17-3p, hsa-mir-17-5p, hsa-mir-18a-5p, and hsa-mir-20a-5p
miRNAs were predicted in a majority of ER- samples as well. As expected, these results confirm
that the cohort clinicopathological composition impacts the predictions as it can impact the
landscape gene expression distributions across samples. Nevertheless, the complementary
analyses of the TCGA and BASIS breast cancer cohorts exhibited hsa-mir-145-5p, hsa-mir-29a-
3p, hsa-mir-17-3p, hsa-mir-17-5p, hsa-mir-18-5p, and hsa-mir-20a-5p as recurrently predicted
breast cancer-associated miRNAs linked to cis-regulatory mutations and dysregulation of their
target gene networks. Functional enrichment analysis confirmed that the dysregulated miRNA
target gene networks are enriched for genes involved in transcriptional regulation and in cancer-
relevant pathways such as the P53 pathway, hypoxia, and DNA damage response (Figure S26).

Finally, we further evaluated the clinical potential of the predicted breast cancer miRNAs for
breast cancer survival estimation. For this purpose, we considered a third cohort,
METABRIC [65], which is composed of 1282 samples. We computed Kaplan-Meier survival
curves and log-rank tests using miRNA expression from the METABRIC cohort for the miRNAs
predicted as drivers in the BRCA-US and BASIS cohort (for 24 of the predicted miRNAs in
breast cancer). Examining both overall survival and breast cancer specific survival values, we
observed significant log-rank test p-values for hsa-mir-29a-3p, hsa-mir-1290, and hsa-mir-20a-
5p (without multiple hypothesis correction; Figure 7 and Figures S27-S28). Note that hsa-mir-
20a-5p and hsa-mir-29a-3p were recurrently predicted in our analyses of the BRCA-US and
BASIS cohorts. Taken together, these results reinforce a posteriori the potential of some
miRNAs we predicted as their level of expression could be used for prognosis.
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Figure 7. Survival curve analysis for some predicted miRNA drivers. Kaplan-Meier survival curves obtained using
the METABRIC cohort for the most significant driver miRNAs identified in the breast cancer cohorts. Samples were
separated into two groups according to the level of miRNA expression (above/below the median). Log-rank test p-
values are indicated. OS: overall survival. BCSS: breast cancer specific survival.
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DISCUSSION

In this study, we explored how cis-regulatory mutations at TFBSs could be used to predict
genes through the association of somatic mutations with a cascading trans-effect on gene
regulatory network dysregulation. Contrary to most methods predicting cancer-driving events
based on recurrence of mutations, we sought to couple cis-regulatory mutation information with
gene expression data from the same samples to highlight direct evidence of the regulatory
impact of the mutations. By integrating whole-genome somatic mutations, RNA-seq, and small
RNA-seq data with gene regulatory networks, we performed pan-cancer predictions of protein-
coding and miRNA genes associated with somatic cis-regulatory mutations in patients from
seven distinct cancer types. Our study provides a large-scale foray to predict cancer-associated
protein-coding and miRNA genes associated with somatic mutations by combining both
transcriptional and post-transcriptional information. Our results provide new insights into the
potential impacts and causes of the alteration of the gene regulatory program observed in
cancer cells along with their cascading effects on key biological pathways.

We specifically focused on somatic mutations lying within a high-quality set of TFBSs
representing direct TF-DNA interactions with both experimental and computational
evidence [37] and covering ~2% of the human genome. We acknowledge that this set of TFBSs
might represent a limited subset of all potential TFBSs in the human genome as it was derived
from experiments available for a reduced number of TFs and cell types/tissues (231 TFs out of
the ~1,600 human TFs reported [11] and 315 cell types and tissues). Moreover, some TFBSs
might not be active in the cell type of origin associated with the cancer types studied here.
Nevertheless, we provided evidence that the regions considered are likely enriched for
functional genomic elements since they harbour mutation rates similar to what is observed in
exonic regions (Figure 1). The reduced mutation rates in exons and the limited increase in
surrounding regions could be attributed to increased mismatch repair and nucleotide excision
repair in exons as previously shown [66,67]. Our similar observation when considering our set of
TFBSs is in line with our previous observation in B-cell lymphomas [27] but somewhat in
disagreement with previous studies showing that nucleotide excision repair is impaired by the
binding of TFs to DNA [68,69]. We hypothesize that the differences observed could be partially
explained by the fact that (1) our mutation rate analysis considered TFBSs predicted from
several cell lines and tissues instead of focusing on TFs and TFBSs specific to the considered
cell types or conditions (such as UV-exposure in melanoma), and (2) we did not filter TFBSs
based on open chromatin data from matched cell types.

Contrary to previous studies assessing the impact of mutations on TF-DNA binding affinity or
the enrichment for mutations in cis-regulatory regions [70-72], we particularly evaluated the
impact of cis-regulatory mutations on expression alteration in gene networks. As such, our
approach does not quantify the direct impact of mutations on the obliteration of TF-DNA
interactions but uses RNA information as the ultimate readout. A previous method
systematically assessed the potential impact of somatic mutations in genomic tiles near genes’
TSSs on gene expression [25]. Here, we considered mutations lying within a specific set of
TFBSs without restrictions on distances to TSSs and evaluated the trans-association of the
mutations with genes’ network deregulation. Nevertheless, we acknowledge that the method
misses mutations that would create new TFBSs as it is restricted to a set of predefined TFBSs.
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The analysis of protein coding genes showed 31 genes that were predicted in at least two (out
of the seven) TCGA cohorts analyzed, with many already known cancer drivers (Figure 2A). We
observed that the predicted protein-coding driver genes through the analysis of cis-regulatory
mutations did generally not contain mutations in exonic regions for the same patients
(Figures 2B and S13). This observation suggests complementary mechanisms acting upon
gene expression dysregulation with cascading effect on regulatory network disruption.

Given that miRNAs cover a small portion of the human genome, they harbour a small number of
somatic mutations [8], limiting the possibility to affect gene expression. The potential
mechanism that we propose here is the alteration of their regulatory elements. Our study
highlighted cis-regulatory mutations linked to miRNAs that were associated with dysregulation of
expression of the miRNA targets. In our pan-cancer analysis, we discovered a core set of 17
miRNAs associated with the dysregulation of key pathways involved in carcinogenesis. This
core set of miRNAs could represent a common feature for gene expression dysregulation
associated with cancer onset or progression

The analysis of the dysregulated networks associated with the predicted cancer-associated
genes (protein-coding and miRNAs) shows that many genes are dysregulated in a few samples
but rarely across all the mutated samples (Figure 5B). This observation suggests a phenotypic
heterogeneity (i.e. alterations of different parts of the same network lead to the same
phenotype). However, the functional enrichment analysis of the dysregulated genes shows
consistency across cohorts and across the analyzed types of mutations (LoF and cis-regulatory)
for both protein-coding and miRNA genes. Moreover, as originally described by Ding et al. [26],
the xseq probabilistic framework can highlight the specific samples where mutations are
associated with impact on gene expression, while it does not in other samples (Figure 4A). This
dichotomy can in principle be used to stratify samples and mutations but, in this study, was
limited by the number of samples considered.

We applied our methodology to two cohorts of breast cancer samples (TCGA BRCA-US and
BASIS). Given the large number of samples in BASIS (n=256), we performed three analyses
separately by considering (i) all samples, (ii) ER+ samples, and (iii) ER- samples. As expected,
we observed that predictions can vary depending on the samples histopathology. This is
particularly important for methods assessing impact on gene expression, which is influenced by
the clinical composition of the cohorts. We acknowledge that methodological differences
between the TCGA and BASIS cohorts (e.g. somatic mutation callings, small RNA-seq versus
microarrays and normalization for miRNAs) could provide additional explanations for the
variation in predictions. Although only one of the predicted protein-coding genes was predicted
in both the BASIS and the BRCA-US cohorts, the functional enrichment analysis of the
dysregulated gene networks was consistent. This observation suggests common dysregulated
pathways acting as attractors that could originate from (non-recurrent) distinct cancer-
associated events. It underlines the importance of addressing cancer as a disease with
perturbations manifested at the gene network level. However, our miRNA analyses highlighted
five miRNAs associated with cis-regulatory mutations and target gene expression alteration
recurrently altered across the BRCA-US and BASIS breast cancer cohorts (Figure 6).

Despite the multiple lines of evidence for the prediction of cancer-associated genes in this


https://paperpile.com/c/P7H0v1/oVYA
https://paperpile.com/c/P7H0v1/phxG
https://doi.org/10.1101/2020.06.25.170738
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.06.25.170738; this version posted June 26, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

study, we acknowledge that the predictions can provide false positives and false negatives due
to multiple reasons such as: (i) a limited number of TFs with high-quality TFBSs; (ii) TFBS-target
gene associations obtained by a naive approach combining information from an integrative
database [39] and association to the closest TSS (Figure S8); we hypothesize that many of
these associations may be irrelevant or incorrect and many others are missing; (iii) a diversity of
tumor purity within the considered samples (despite the original threshold of 80% used by
TCGA); (iv) a limited number of WGS datasets (tens of samples) within each cohort, compared
to the number of samples with WXS (hundreds) used in other studies; (v) prior networks that
might be incomplete. However, one of the main limitations of this project is the low number of
tumor samples with both WGS and RNA-seq data, this limitation not only biases the community
research towards the study of exonic regions, but also limits the statistical power of the methods
assessing the impact of cis-regulatory mutations on gene network expression alteration.

Altogether, we argue that our capacity to predict cancer-associated cis-regulation mutations will
increase as more high-quality TFBSs for more TFs and improved methods to associate TFBSs
to their target genes become available. In addition, focusing on cis-regulatory regions
specifically open or active in cancer samples would inform where somatic mutations are likely
effective. We expect that with more WGS, RNA-seq, and other genomics datasets derived from
cancer samples available, the community will resume the paucity in the detection of non-coding
cancer-associated events [8].

CONCLUSION

By integrating whole-genome somatic mutations, RNA-seq, and small RNA-seq data with gene
regulatory networks across seven cancer types, we were able to highlight cis-regulatory
mutations associated with the dysregulation of gene regulatory networks through specific
protein-coding and miRNA genes. The enrichment for known cancer genes, TFs, and the
functional enrichment analysis reinforce a posteriori the predicted protein-coding and miRNA
genes as being involved in biological pathway alteration affecting cancer development through
exonic and cis-regulatory alterations. Our study represents, to our knowledge, the first large-
scale analysis of cis-regulatory mutations that are linked to gene expression alteration in key
cancer-associated pathways. Our results suggest that this process can be achieved in a flexible
way as we observed different genes in different patients but all associated with deregulation of
the same pathways. Combining transcriptional and post-transcriptional information, we identified
a core set of 17 miRNAs linked to altered cancer pathways across cancer types. These pan-
cancer results here provide new insights into the impact and potential causes of miRNA-
mediated gene expression dysregulation. This work extends our capacity to address the
discovery gap of cancer-associated events identification through the analysis of noncoding
mutations and miRNA genes.

MATERIAL AND METHODS

All analyses were performed using the hgl9 human genome assembly. When data was
obtained from another human genome assembly, coordinates were converted to the hgl9
assembly using the liftOver tool provided by the UCSC Genome Browser [73,74].
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Cancer patient data

We considered TCGA [38] cohort samples for which trios of (i) whole genome somatic
mutations, (i) RNA-seq, and (iii) small RNA-seq data were available with at least 30 patients per
cohort. Data was downloaded from the International Cancer Genome Consortium (ICGC)
portal [75] through the icgc-get client (Additional file 6). Altogether, we collected data for 349
samples from seven TCGA patient cohorts (35 to 92 donors per cohort; Additional file 1): BRCA-
US (breast invasive carcinoma), HNSC-US (head and neck squamous cell carcinoma), LIHC-
US (liver hepatocellular carcinoma), LUAD-US (lung adenocarcinoma), LUSC-US (lung
squamous cell carcinoma), STAD-US (stomach adenocarcinoma), and UCEC-US (uterine
corpus endometrial carcinoma).

We collected data from 256 samples from the Breast Cancer Somatic Genetics Study (BASIS)
cohort [64,76] for which trios of whole genome somatic mutations, RNA-seq, and miRNA
microarray data were available (Additional file 5). miRNA expression was measured using the
Human miRNA Microarray Slide (Release 19.0) with Design ID 046064 (Agilent Technologies,
Santa Clara, CA, USA, see ref. [64] for details).

Somatic mutations

Somatic single nucleotide variants (SNVs) and small insertions and deletions (indels) called by
the tool MUSE [77] were retrieved from the ICGC portal for TCGA samples. For BASIS samples,
we retrieved SNVs and indels called by the tools CaVEMan [78] and Pindel [79], respectively,
used in the original study [64].

RNA-seq and small RNA-seq normalization

Both RNA-seq and small RNA-seq raw counts were filtered to remove all genes with O reads in
more than 50% of the samples for a given cohort. For each cohort, both matrices (RNA-seq and
small RNA-seq) of raw counts were normalized to counts per million (cpm) using the cpm
function from the R package edgeR [80] and the cpm values were scaled by log2 conversion.
To avoid zeros, we added a pseudo-count of 1. Note that small RNA-seq reads were mapped to
pre-miRNA coordinates by TCGA, providing information about pre-miRNA expression and not
mature miRNAs.

The normalized microarray miRNA expression matrix for BASIS samples was retrieved from the
original study where normalization was performed using the 90th percentile methodology [64].

Copy number alteration computation

We downloaded copy number alteration (CNA) values predicted using the GISTIC2 tool [81] for
TCGA samples through the Firebrowse database at http://firebrowse.org (Additional file 6).
BASIS CNA estimates were computed using ASCAT (v2.1.1) [82] and converted into GISTIC
format with -2 for homozygous loss (nMinor+nMajor=0), -1 for hemizygous loss
(nMinor+nMajor=1), 0 for normal (nMinor+nMajor=2), 1 for three copies (nMinor+nMajor=3), and
2 for more than three copies (nMinor+nMajor>3). The CNA values assigned to the protein-
coding genes were used in the xseq analysis to remove cis-effects of CNAs on the gene
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expression dysregulation assessment [26].

Mutation rate analysis

For each sample, we calculated the mutation rates by dividing the total number of mutated
nucleotides within a set of regions (TFBSs, exons, and flanking regions) by the total number of
nucleotides covered by the given set of regions. TFBS genomic positions were obtained from
UniBind [37] (see below). Protein-coding exon coordinates were retrieved from RefSeq
Curated [83] (Additional file 6). Flanking regions were computed by (i) extending TFBS or exonic
regions by 100, 500, and 1000 nucleotides on both sides using the flank bedtools subcommand
and (ii) removing regions overlapping TFBSs and exonic regions using the subtract bedtools
subcommand. Sets of regions were independently merged using the merge subcommand of the
bedtools [84].

Random expectation for mutation rates were computed using 150 random sets of somatic
mutations and applying the mutation rate computation described above. The random sets of
mutations were generated by shuffling the original coordinates within the same chromosomes
using the shuffle subcommand of the bedtools with the -chrom option.

MIiRNASs

Genomic coordinates of human pre-miRNAs were retrieved from miRBase v20 [45] as used to
predict miRNA TSSs from CAGE data by the FANTOMS consortium [36]. When miRNA names
in the miRNA-related files (expression, survival, cancer-associated miRNAs) used in this study
were mapped to older versions of miRBase (starting from version v10), we updated the names
to the ones used in the latest miRBase version (v22) using the miRBaseConverter
R/Bioconductor package [85].

Transcription factor binding sites

TFBSs were retrieved from the UniBind database (2019 version) at https://unibind.uio.no [37]
(Additional file 6). The TFBSs correspond to high confidence direct TF-DNA interactions with
both experimental (through ChlP-seq) and computational (through position weight matrices from
JASPAR [86]) evidence. TFBSs were derived from 1983 ChIP-seq experiments for 231 TFs
across 315 cell types and tissues [37].

TFBS-gene association

We used the cis-regulatory element-gene associations from the GeneHancer database (v4.9),
derived from 8 sources to associate TFBSs to genes (Additional file 6; Figure S8) [39]. TFBSs
overlapping a cis-regulatory element annotated in GeneHancer were associated with the
corresponding gene in GeneHancer. TFBSs not overlapping annotated elements were
associated with the closest TSS (for a protein-coding or a miRNA gene). We considered TSSs
associated with protein-coding genes from RefSeq Curated [83] and TSSs associated with
miRNAs by FANTOMS5 [36]. With this approach, about half of the TFBSs were associated to
protein-coding or miRNA genes using GeneHancer associations and the other half to the
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closest TSS.

TFBS mutations

Somatic mutations were intersected with TFBS locations using the intersect subcommand of
bedtools v2.25.0 [84]. All mutations in TFBSs associated with miRNAs were considered for the
xseq analysis (see below). For mutations in TFBSs associated with protein-coding genes, we
followed the approach previously used by Mathelier et al. for the xseq analysis [27]. Specifically,
we restricted the analysis to mutations associated with genes potentially dysregulated in the
corresponding samples. Following ref. [27], genes were considered as potentially dysregulated
in a given sample in cohort C if its expression value v satisfied v < y-10 or v > y+1o where p
and o correspond to the mean and standard deviation of the expression values of the gene in C.

Loss-of-function mutations

Following Ding et al. [26] for protein-coding exonic regions, we considered only LoF mutations
that are either (i) nonsense mutations (disruptive in-frame deletion, disruptive in-frame insertion,
stop gained, start lost, stop lost, and stop retained variant), (ii) frameshift mutations (frameshift
variant, initiator codon variant), or (iii) splice-site mutations (splice region variant, splice donor
variant, splice acceptor variant). The analysis was performed using somatic mutation data
obtained from whole exon sequencing in the same TCGA samples as for the other analyses.

Gene networks

Protein-coding gene networks were retrieved from ref. [26] and were composed of 898,032
interactions. Briefly, the networks were constructed by combining gene associations from
STRING v9.1 functional protein association [87], KEGG pathway datasets [40],
WikiPathway [41], and BioCyc [88] as integrated in the IntPath database [89], and TF-target
links from ENCODE [90] (see ref. [26] for more details). We updated the weights of the
connections whenever possible using the methods provided in xseq, following the methodology
described in ref. [26]. Specifically, the weight between a given gene g and a biological partner
gene p was set to 1 if p was found differentially expressed (Benjamini-Hochberg adjusted p-
value < 0.05) in samples where g is mutated in the same cohort (see Material and methods in
ref. [26] for details). If there existed such genes p, then only these genes were kept connected
to g. Original weights were kept otherwise.

miRNA-target networks

MiRNAs were associated with potential target protein-coding genes using predictions from
TargetScan v7.2 [31]. From the list of targets for each miRNA, we filtered out the targets with
less than two predicted binding sites for the given miRNA to reduce false positives [46,47].
miRNA-target weights were computed as t _score / 100 where t _score corresponds to the
targetScan context++ score percentiles from TargetScan. We updated the weights of the
connections whenever possible following the same strategy as for protein-coding genes (see
above).
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xseq analyses

The likely associations between mutations and dysregulation of gene or miRNA target networks
were calculated with xseq [26]. This method requires as input: a gene expression matrix of
samples (RNA-seq matrix), a binary sample-gene mutation matrix, and a weighted network of
connected genes. It outputs posterior probabilities associated to: (i) a sample-specific gene
regulatory status (GRS, the probability of a given gene being dysregulated in a sample) for each
gene connected to the gene associated with a mutation in a given sample, (ii) a sample-specific
dysregulation probability (SSD, the probability that a mutation in a given gene in a given sample
is associated with dysregulation of the gene’s network), and (iii) a dysregulation across the
cohort probability (DAC, the probability that mutations in a gene are associated with the
dysregulation of its network across patients) (Figure S9). In a first step, we removed lowly
expressed genes in a cohort following the approach described by Ding et al. [26]. Briefly, xseq
considers the 90th percentile of expression for each gene and decomposes the distribution of
these values into two Gaussian distributions corresponding to low and high expression values.
We considered for further analysis the genes for which their 90th percentile of expression
values lie within the high expression distribution with a posterior probability = 0.8 (see Ding et al.
[26] for details). Next, xseq was used to compute all the posterior probabilities to predict genes
and cis-regulatory mutations in the cancer patient cohorts. We considered potential cancer-
associated genes the ones with DAC = 0.8 and SSD = 0.5 in at least two samples.

Dysregulation heatmaps

The dysregulated networks for predicted protein-coding and miRNA genes are visualized as
heatmaps where columns correspond to mutated samples and rows to connected genes.
Heatmaps were constructed with connected genes dysregulated (GRS = 0.5) in at least one
sample with SSD = 0.5. These genes are referred to as dysregulated genes.

Aggregated and sample-specific networks

To evaluate whether the protein-coding genes predicted by cis-regulatory mutations are
connected in the filtered networks (see Gene networks section), we built an aggregate network
using all the predicted protein-coding genes within a cohort. We counted the number of
disconnected subgraphs using the R packages igraph [91] and ggnetwork [92]. Similarly, we
built sample-specific networks and counted the number of subgraphs in each sample, only
considering the predicted genes with DAC = 0.8 and SSD = 0.5.

Functional enrichment analysis

Given a list of dysregulated genes, functional enrichment analyses were performed using the R
package enrichR [44] for the  following databases: KEGG_2019 Human,
WikiPathways 2019 Human, GO_Biological_Process_2018, and Panther_2016.

Enrichment for cancer genes and TFs

Given a set of genes, we assessed their enrichment for cancer genes or TFs using
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hypergeometric tests using the stats::phyper function in R. The list of cancer protein-coding
genes considered was constructed by considering genes that appear in at least two of the
following databases: Network Cancer Gene [93], inToGen [94], and Cancer Gene Census [95].
Cancer miRNA genes were retrieved from miRCancer [48] (with data from May 1st 2019). TF
genes were retrieved from the human transcription factor database [11].

Survival analysis

To test whether miRNA expression was associated with survival, we used the METABRIC
breast cancer cohort [65] with mIRNA microarray expression [96] available for 1282 tumors.
Expression values were downloaded from the European Genome-Phenome Archive,
www.ebi.ac.uk/ega, accession number EGAS00000000122. Follow-up data were available from
Curtis et al. [65]. Kaplan-Meier survival analyses and log-rank tests were performed using the R
package survival with tumors separated into “high” or “low” miRNA expression groups
depending on expression values above or below the median.

Results accessibility

The analysis with all the scripts and parameters can be found through the following link:

https://bitbucket.org/CBGR/workspace/projects/DYS. We provide (i) the source code for the
analysis at https://bitbucket.ora/CBGR/dysmir_manuscript/src/master/ and (i) a pipeline for
users to run similar analysis with their own data at

https://bitbucket.org/CBGR/dysmir_pipeline/src/master/.

SUPPLEMENTARY DATA

Additional file 1. TCGA selected samples (specimen) with their ICGCITCGA IDs. Samples
were selected to provide WGS, RNA-seq, small RNA-seq, and CNA data. All samples
considered in this study correspond to solid tumors.

Additional file 2. Summary of the number of mutations in the TCGA cohorts. Basic summary
statistics (median, mean, and standard deviation) of the total number of mutations and the
number of mutations overlapping TFBSs.

Additional file 3. Identified driver genes (miRNAs and protein coding genes) with their
dysregulated targets.

Additional file 4. Summary of number of identified drivers and the number of dysregulated
genes per cohort.

Additional file 5. BASIS selected samples and their ER status. Samples were selected to
provide WGS, RNA-seq, miRNA microarray expression, and CNA data.

Additional file 6. Description of the resources used for this manuscript. Brief description of
the resources (gene lists, databases, external files) used to perform this study, with links to their
corresponding sites and the date when they were downloaded.
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