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Abstract  
Single molecule Förster Resonance energy transfer (smFRET) is a mature and 
adaptable method for studying the structure of biomolecules and integrating their 
dynamics into structural biology. The development of high throughput 
methodologies and the growth of commercial instrumentation have outpaced the 
development of rapid, standardized, and fully automated methodologies to 
objectively analyze the wealth of produced data. Here we present DeepFRET, an 
automated standalone solution based on deep learning, where the only crucial 
human intervention in transiting from raw microscope images to histogram of 
biomolecule behavior, is a user-adjustable quality threshold. Integrating all standard 
features of smFRET analysis, DeepFRET will consequently output common kinetic 
information metrics for biomolecules. We validated the utility of DeepFRET by 
performing quantitative analysis on simulated, ground truth, data and real smFRET 
data. The accuracy of classification by DeepFRET outperformed human operators 
and current commonly used hard threshold and reached >95% precision accuracy 
only requiring a fraction of the time (<1% as compared to human operators) on 
ground truth data. Its flawless and rapid operation on real data demonstrates its 
wide applicability. This level of classification was achieved without any 
preprocessing or parameter setting by human operators, demonstrating 
DeepFRET’s capacity to objectively quantify biomolecular dynamics. The provided 
a standalone executable based on open source code capitalises on the widespread 
adaptation of machine learning and may contribute to the effort of benchmarking 
smFRET for structural biology insights. 
 
Introduction    
Single molecule Förster resonance energy transfer (smFRET) combined with TIRFm 
(total internal reflection fluorescence microscopy) is a key powerful method to study 
the structure of biomolecules and provide a dynamic perspective in structural 
biology (1). Capturing the real-time readouts of nanometer scale distances of 
individual biomolecules by smFRET allows the direct observations of dynamics, 
interactions and intermediates of stochastic non accumulating events, as well as 
dynamic equilibria between unsynchronized molecules, all of which are obscured 
in ensemble averaging techniques (2–10). The high fidelity and proficiency, of 
smFRET established it as a key toolbox for the accurate characterization of 
mechanisms, biomolecular interactions function and even structures of 
biomolecules (11–15) , under both in vitro (16–18) and in vivo (19, 20) conditions. 
Despite its great quantitative utility and profound impact for structural biology, 
smFRET is not a direct imaging modality and data treatment for extracting 
quantitative dynamic information rely on multiple layers of preprocessing: raw 
image treatment, trace selection and data analysis. Raw image treatment (4, 5, 10, 
21, 22) and data analysis of the selected smFRET traces is in general well-
standardized and relies on well-defined methodologies with strong theoretical 
backing (21, 23).  
The actual trace selection is time consuming, but crucial due to the presence of 
undesired phenomena at the single molecule scale, such as sample aggregation, 
fluorescent contaminants, incomplete or incorrect sample labeling, complex 
photophysical behaviors and high noise, to mention a few (3, 8, 24). Existing 
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software (3–5, 10, 21, 22) by single molecule labs can simplify the tedious and time 
consuming selection of traces, and were recently expanded to large data sets (4) , 
albeit requiring some form of manual supervision and hyper-parameter tuning by an 
expert user. This need for human intervention could potentially be subjected to 
cognitive biases especially by less experienced users and could limit the expansion 
of smFRET to classic biology labs. The increasing expansion of smFRET to 
structural biology labs would benefit from rapid and benchmarked methodologies, 
reproducible across laboratories, with minimal human intervention. This is 
highlighted by several initiatives to standardise the smFRET field (1, 3, 22, 25, 26). 
 
Recent advances in machine learning (ML) and specifically deep learning (DL) (27), 
have radically improved our capacity to access and extract information from 
abstract and noisy inputs independently of human interventions as we (28) and 
others have shown (29–36). DL implementations are providing high level robust 
performances and have been successfully used to analyze and augment a wide 
range of the fluorescence microscopy analysis pipeline including assessing 
microscope image quality (37), in-silico cell labeling (31), single cell morphology 
analysis (32, 34), detecting single molecules (38) and linking smFRET experiments 
with molecular dynamics simulations (39), amongst others (29–36).  
 
Deep learning-based analysis has several advantages over other approaches: It 
recognizes abstract patterns and learn useful features directly from the raw input 
data which allows implementation of analysis routines that don’t require extensive 
data preprocessing or empirically defined rules and thus offer reproducible and less 
opinionated evaluation of single molecule data; It is significant faster than human 
annotation for large single molecule data sets; it comes close to, or outperforms 
human performance; and its performance is increased when increasing data set 
size constituting an ideal case for evaluating the large data sets obtained from single 
molecule data (29–36). Especially important are convolutional DNN which learn how 
to best recognize particular aspects of the given data through several rounds of 
optimization. The network then classifies data into predefined classes based on the 
provided training labels. While the training of a DNN is generally a computationally 
intensive process, once trained the final model can easily be shared and used for 
making predictions at almost no computational cost to end users. 
  
Here we provide DeepFRET, an all-inclusive analysis software with a pre-trained 
DNN at its core, for rapid, objective and accurate assessment of smFRET data for 
quantifying biomolecular dynamics. The fully automated analysis software operates 
with minimal crucial human intervention and requires only a threshold on the data 
quality confidence, as an initial step, so as to output detailed quantification of 
structural dynamic from raw images. This is attained by an intuitive and user-friendly 
interface that integrates and automates common smFRET analysis procedures (3–
5, 10, 21, 22) from raw image analysis and background-corrected intensity trace 
extraction (40), to sophisticated trace classification, statistical analysis of single 
molecule data and production of publication quality figures of dynamic structural 
biology insights (see Materials and Methods). DeepFRET comes as a free-to-use 
standalone executable allowing end users with limited programming skills to easily 
operate it. A script-based version implemented entirely in Python enables experts 
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to adjust features pipelining the analysis specified for their needs. We anticipate 
DeepFRET to take full advantage of the widespread digitization and open repository 
of smFRET data and form a reference point setting a bar for the data quality and 
data classification performance metrics, offering additional benchmarking the field 
for dynamic structural biology.  
 
Results  
DeepFRET software package  
DeepFRET is an open source software package that implements a neural network 
model architecture for data evaluation integrating in a user-friendly platform all 
common procedures for smFRET analysis (Fig. 1). The neural network model 
architecture used here (Fig. S1 and S2) is based on a deep convolutional neural 
network to recognize particular spatial features present in the data. The model first 
passes the data through several layers of convolutions of different lengths, and in 
the process learns to recognize which particular elements of a sample are present 
at different length scales, to best classify it correctly. This has previously been used 
to label time series data such as electrocardiographs (41) or electrical readouts in 
DNA sequencing (42). Additionally, we added a long short-term memory (LSTM) 
layer after the convolutional layers, as this will also help the model to learn 
temporality in the data and propagate to the later frames the learned information 
(See Methods) (43, 44). A detailed description of the model hyperparameters and 
architecture can be found in the Methods section. 
 
To ensure that the predictions of DeepFRET would generalize to a wide range of 
experimentally observable behaviors independently of biological systems or 
experimental conditions, we provide a fully pre-trained DNN model. The 
implemented DNN is pre-trained on 150.000 simulated traces that uniformly sample 
all possible FRET states, their respective lifetimes and occupancies, as well as all 
possible noise levels, ensuring that the data represents all theoretically possible 
configurations (See Fig. S3-S5 Materials and Methods for software and algorithms). 
As such DeepFRET does not require the selection of any direct initial guesses of 
FRET values or user defined parameter pretraining. We do however provide both a 
script-based method for simulating smFRET data, as well as a simple graphical 
interface for expert end-users to adjust simulation distribution parameters (see See 
Fig. S6 and Materials and Methods) if needed (e.g. for specific circumstances or 
stricter criteria). This offers experts the possibility to benchmark the impact of e.g. 
one’s own sorting criteria, noise and optical correction factors. 
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Fig. 1. Overview of single molecule FRET evaluation and analysis using DeepFRET. a) Cartoon of the 
typical heterogenous data acquired in smFRET experiments. The limited standardization in the field for the 
criteria for data selection for downstream analysis may yield different structural and kinetic information. b) 
Screenshots of the provided standalone software that integrates deep learning and reduces the selection to a 
single user-adjustable criteria: the confidence threshold. The simple and intuitive GUI integrates all the features 
of our approach for rapid traces extraction from raw images to filtering of traces based on the predicted 
classification, treatment of smFRET data to extraction of publication quality figures c) End-to-end sequence 
classification of smFRET traces by deep learning. Raw signals of donor-donor, donor-acceptor and acceptor-
acceptor intensities in the form of ASCII files can also be loaded with the DeepFRET software. The pre-trained 
DNN will classify individual frames to one of six different categories: bleached, static smFRET, dynamic 
smFRET, aggregate, noisy and scrambled. A final smFRET confidence score is calculated, depending on each 
of the categories, that is used for threshold.  
 
We built DeepFRET to treat both Alternative Laser Excitation (ALEX) and non ALEX 
FRET data. DeepFRET imports raw microscope images and performs colocalization 
of the two channels, to extract background corrected intensity traces of DD (donor 
excitation; donor emission), DA (donor excitation; acceptor emission), their 
respective stoichiometry, and in the case of ALEX data, also AA (acceptor 
excitation; acceptor emission) (see Fig. 1a, and Fig. S4). Alternatively, one can 
directly load and process previously-obtained time-traces without their associated 
videos. 
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For a given time trace the DNN predicts and outputs six softmaxed probabilities pi 
to each time frame (Fig. S5 and Methods), representing the six categories it has 
been trained to recognize: bleached (B), static smFRET within the experimental time 
frame (S), dynamic smFRET (D), aggregate (A), noisy (N), and all other types of non 
treatable data smFRET data defined here as scrambled (X) (Fig. S5 and S7). Both 
static and dynamic traces are included for further analysis. Given these 
probabilities, which sums to one, a simple sliding window then searches for frames 
predicted by the DNN to be bleached (pB > 0.5, see Fig. S5, S7, S8 for evaluation 
accuracy, and blinking exclusion) . When bleaching is found the rest of the trace is 
removed so as to exclude the photobleached frames part of a trace from further 
analysis. If the trace still contains a minimum number of viable frames (here set to 
15, but adjustable), the probabilities are summed up over all remaining time frames 
for each of the five remaining categories and divided by the number of frames for 
normalisation (see Materials and Methods and Fig. S5, S7, S8). We define the 
summaries of the combined static and dynamic trace scores as the “DeepFRET 
score”, representing the DNN model confidence that a trace is truly smFRET. The 
user-friendly interface displays all the categories and their associated probabilities, 
and offers the option for expert users to manually revise the classified traces.  
If the DeepFRET score is above the user defined threshold, the trace is accepted 
for subsequent analysis (see Fig. 1b, Fig. 1c and Materials and Methods). 
Subsequent analysis involves two-channel fitting of idealized FRET traces using 
Hidden Markov modelling HMM (using the open-source package pomegranate); 
data and statistical evaluation of the abundance of FRET states and lifetimes; 
application of correction factors; and transition density plots (see Fig. S6, S9, S10, 
S11). The number of underlying FRET distributions is automatically determined 
using Bayesian information criterion (BIC), offering the unbiased analysis of 
distribution of biomolecular distances (See Fig. S6, S9-S11). All data can be directly 
exported in publication quality figures or extracted as data for user specific analysis 
if required.  
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Fig. 2. High quality FRET data evaluation. a) Simulated dynamic smFRET traces transitioning between FRET 
states 0.3 and 0.7 (left, “ground truth”) were mixed with a larger number of traces not showing smFRET (center). 
The overall distribution (right, “combined”) shows how the desired data can be drowned out in non-smFRET 
contaminant traces. The distribution would correspond to a raw distribution as extracted from raw image 
analysis of smFRET on proteins before any trace selection b) Automatic selection of data based on median 
stoichiometry, single molecule intensity and bleaching. The number n designates the number of traces accepted 
by the model. Tightening the selection thresholds results in slight improvement of the poor overlap of the 
selected data with ground truth data, highlighting the need for a time consuming and prone to potential 
cognitive biases human intervention. c) Automatic classification of all traces of the combined set by DeepFRET, 
based only on DeepFRET score threshold variation. Even at a low threshold DeepFRET selection follows the 
ground truth data. Increasing the score threshold further increases the fidelity of data selection. DeepFRET 
correctly assigns the dynamic, bleaching and aggregate behavior on the same smFRET traces as in (b) (see 
Fig. S4 for more data). The single user adjustable score threshold outperforms commonly used thresholds 
offering rapid, cross-lab reproducibility and fully automatic data treatment. P: precision, R: recall, TN: true 
negatives, FP: false positives, FN: false negatives, TP: true positives.  
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Performance of DeepFRET  
To test our DeepFRET performance in practice we initially compared it with 
commonly used threshold values. We simulated 200 ground-truth smFRET traces 
and merged them with a dataset containing 5000 random, non-smFRET traces (too 
noisy, aggregates of multiple molecules, aberrant single molecule behavior. see 
Methods for parameter descriptions). The obtained overall FRET distribution is akin 
to what one would observe experimentally before any preprocessing of smFRET 
data on proteins (Fig. 2a). Common procedures for pre-selecting valid data for 
treatment often rely on an initial automatic threshold for discarding this large 
fraction of non-smFRET data (see Fig. 1a). This is based on any number of 
combinations of the anticorrelated signal of the donor and acceptor, fluorophore 
bleaching, noise levels, or certain ranges of fluorophore stoichiometry, if recorded 
using ALEX methods (3, 45, 46). We first removed photobleaching and then 
accepted or rejected traces based on commonly used thresholds of median 
stoichiometry and max intensity (but not anticorrelation, see Materials and Methods) 
without any manual post-inspection of the data. Fig. 2b displays ground truth 
distribution (green) and the distribution of the accepted traces (pink) for varying the 
above thresholds. We recovered a poorly-defined FRET distribution, that even at 
the tightest threshold does not recapitulate the underlying ground-truth two-state 
conformational equilibrium. We calculated the common model evaluation metrics 
“precision” and “recall” (see Materials and Methods) to quantify the quality of the 
predictions. The precision and recall, though improved by tightening the threshold, 
remain around 0.22 and 0.40, in the best case for simple thresholding (Fig. 2b). The 
fact that out of 366 selected traces only 80 were true positive, while 286 were false 
positive and 120 false negative, highlights the need for human intervention as many 
traces are indistinguishable with simple statistical characterization (selected 
examples shown in the examples below the histograms (Fig. 2b). 
 
DeepFRET on the other hand allowed the high fidelity recovery of the underlying 
ground truth distribution reaching precision of 0.91 when setting a DeepFRET score 
of 0.85 (Fig. 2c) without the need of human intervention. The virtually identical FRET 
distributions, matching the ground truth data, that are derived for practically the 
entire spectra of score thresholds (0.25 to 0.85) show no systematic biases 
originating from data evaluation and illustrate the minimum impact of human 
interventions when using DeepFRET (see also Fig. S12). As expected the fidelity of 
DeepFRET pertained to correctly identifying single or complex multistate FRET 
distributions (see Fig.2 and Figs. S12, S13) reaching precision 0.91 as compared to 
just 0.22 for standard threshold setting in the absence of further human intervention. 
The practically identical precision and recall for single, double or triple, state FRET 
distributions independently of threshold further support the wide applicability to 
multiple biological systems. 
 
Quantification of precision and recall of the selection for various DeepFRET score 
thresholds displays the trade offs in recovering high fraction of useful data. (see Fig. 
S12). Thresholding data with scores in the regime 0.8-0.9 appears optimal for 
maintaining sufficient and high fidelity data (Fig. S12). Based on these data we 
suggest a score threshold of 0.85 as optimal for maintaining high precision at 
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reasonable recall values. Depending on data sets users may need to adjust the 
threshold. The power of DeepFRET is further highlighted by the classification for the 
traces that were assigned as false negative and false positive by commonly 
accepted thresholds (traces in Fig. 2B and Fig. 2C) (see also Fig. S4 and Fig. S14). 
In summary, the fidelity of classification accuracy appears to significantly supersede 
currently used simple thresholding, without human interventions. This was achieved 
in a fraction of the time required for data classification by human operators (~1 
minute for 10,000 traces on a normal laptop, as compared to potentially days for 
manually inspected traces). This improved classification was also achieved entirely 
without any preprocessing or post-inspection of data, illustrating the power of 
DeepFRET to operate without human interventions and its potential to benchmark 
the reproducibility of smFRET data acquisition methods for multiple biomolecular 
systems across laboratories.  
 

 
 

Fig. 3. Confusion matrices of DeepFRET classification based on the ground truth data test. a) 
Classification accuracy of data in the 6 categories for ALEX-enabled model, or the ALEX-disabled model. The 
absolute number of frames is shown while the fractions for each classification is displayed in parentheses (as 
calculated row-wise for each true label). The diagonal percentages shows the accurate classification of 
DeepFRET b) per-trace classification accuracy, based on accepting only traces that are classified as smFRET 
(static/dynamic), and nonFRET data . 
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We quantified and displayed using confusion matrix the discordance between the 
ground truth data and the data selected and classified by DeepFRET (Fig. 3). In the 
confusion matrices displayed in Fig.3 each row represents the predicted 
classification of traces while each column represents the ground truth data. The 
high classification accuracy for the annotation of individual frames is highlighted by 
the clear diagonal feature. We found similar classification performance for a DNN 
trained on non-ALEX FRET (by a DNN with only DD and DA inputs, which we will 
refer to as “ALEX-disabled”) (Fig. 3 right panels) signifying the applicability of the 
DeepFRET approach to both ALEX and non-ALEX FRET data. The misclassification 
between static and dynamic smFRET traces is practically non-existent, and 
consists of <3% dynamic traces being misclassified as static, for both model types. 
This is important for accurately quantifying the abundance of static and dynamic 
subpopulations within the experimental time frame, which has been shown to have 
a clear experimental impact (12, 47–49).  
 
DeepFRET was found to classify bleached or aggregated frames with a 98% the 
true positives for ALEX-FRET model enabled (97% for the non-ALEX model), 
whereas only 89% (and 83% for ALEX-disabled) of the scrambled traces were 
correctly classified (see also Fig. S14 for a detailed breakdown of the precision and 
recall). We note that the model is trained with a noise contribution that is drawn 
from a normal distribution of varying width (σ between 0.01 to 0.30, multiplied by 
the maximum single fluorophore intensity) with a small contribution of gamma-
distributed noise. As such traces with σ above 0.25 are characterised by the 
employed DNN as “noisy” (see Fig. S14 and Methods). In order to allow experts to 
accept more noisy traces, or traces with fast transition rates that may appear as 
noisy for a given imaging conditions, we integrated in DeepFRET a visual trace 
simulator. This user friendly simulator allows generation of traces with ground truth 
labels of traces where all parameters are tunable so as to integrate the specific 
needs of each lab (See Figs. S6, S11).  
 
We found the classification accuracy of each frame to be consistent with the 
classification accuracy on each trace, later derived from the overall most probable 
class given all predictions of individual frames of a trace (Fig. 3a, Fig. 3b, Fig. S2, 
S6 and Methods). This is achieved by adding a bidirectional long short-term 
memory, LSTM, layer at the end of the DNN (Fig. S1). The LSTM layer allows 
coherent predictions throughout the trace and forward propagation of information 
detected in the first frames such as e.g fluorophore detection or bleaching, to the 
predictions for later frames. By collapsing the per-trace confusion matrix into a 
binary “smFRET” and “non-smFRET” (as shown by the cross-lines in Fig. 3b), 
DeepFRET was found to be very balanced overall, with a true-positive rate of 94% 
for smFRET traces, and a true-negative rate of non- smFRET traces (Fig. 3c), 
resulting in an overall balanced classification accuracy of 94% for the ALEX-
enabled model and 93% for the ALEX-disabled model. 
 
We then compared the classification accuracy of DeepFRET to the accuracy of 
three different human operators working with smFRET, to evaluate the feasibility of 
manually inspecting and making decisions about smFRET examples. We simulated 
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1000 ground truth traces, of which only 46 contained actual smFRET, at different, 
randomly chosen levels of noise. The participants were not informed about the 
underlying distribution, nor the true number of smFRET traces. The test revealed 
that the average performance of the human operators, scoring 0.76 +/- 0.10 in 
precision and 0.83+/-0.14 in recall, was close to the precision-recall curve of the 
DNN, on a relatively small dataset (Fig. S15). Notably, one participant scored slightly 
better than the model in both precision and recall, but spent an average of 5 s per 
trace, which would significantly increase data treatment time, thus making this 
unfeasible in a high-throughput setting. The large spread on precision and recall 
attained by human operators on these data furthermore suggests a large possible 
spread in experimental outcomes and highlights the advantages of unifying, 
reproducible methodologies independent of human interventions. We therefore 
argue that DeepFRET is equally good, or better, as careful manual inspection while 
offering orders of magnitude faster data evaluation.  
 

 
Fig. 4. Method evaluation on real, previously published smFRET data. At DeepFRET score threshold of 0.85 
a high fidelity data selection is achieved resulting in a similar distribution as compared to manual selection. 
 
DeepFRET performance on real data 
The model’s generalizability was subsequently demonstrated by evaluation on real 
experimental smFRET data previously published by us (10). The selected published 
dataset contains thousands of traces that included aggregates and incomplete 
labeled molecules, due to the low labeling efficiency. Our pre-screening (using 
median stoichiometry and intensity distributions) and subsequent manual 
inspection resulted in 214 to exhibit smFRET. Applying our trained model with a 
threshold of 0.85, without any other parameter tuning, recovered 228 traces, with a 
FRET distribution very closely matching manual selection (Fig. 4, Fig. S16). The 
DeepFRET score of human vs machine selection displays the importance of 
quantitative and reproducible assessment of trace scores (Fig. S17). The total data 
evaluation time of < 50 ms per trace (on a recent laptop) free of human intervention 
highlights the potential of DeepFRET to rapidly and reliably evaluate high 
throughput single molecule FRET data. Most importantly, the trace selection is 
deterministic, strictly relies on the score threshold and is thus independent of 
potential human cognitive bias. This clearly demonstrates the ability of the DNN to 
generalize to a completely new set of experimental data, without any prior 
expectations for signal-to-noise ratio, anti-correlation, underlying FRET distribution, 
etc. offering the possibility to rapidly analyse single molecule FRET data for 
structural biology insights. 
 
To ensure the facile operation of DeepFRET by non-machine learning experts and 
users without any programming skills we provided a standalone executable along 
with simple and detailed instructions on how to use it (see Methods). DeepFRET 
implements and automates in a user friendly and intuitive platform all common 
procedures for single molecule FRET analysis: sophisticated raw image analysis 
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from raw .tiff files; particle and signal detection and localization; pixel intensity 
extraction for each individual biomolecule on both spectral channels and 
background corrected fluorescence and FRET trace trajectories; automatic trace 
classification and sorting; unbiased analysis of number of FRET states based on 
BIC analysis; 2-channel fitting of idealized FRET traces using HMM analysis based 
on calculated number of states by BIC; data and statistical evaluation of abundance 
of FRET states and lifetimes; application of correction factors; and transition density 
plots (see Figs. S9-11). DeepFRET furthermore offers interoperability and 
backwards-compatible trace loading from .txt files exported from the popular iSMS 
software package. The software can export all results to publication-ready quality 
figures and also allows extraction of data for further user-specific downstream 
analysis if desired.  
 
The freely available open source code and the underlying mathematical operations 
that are based on many commonly used packages (e.g. NumPy, SciPy, Matplotlib) 
will allow expert users to adjust features pipelining the analysis depending on their 
needs (see Code Availability). The DNN model is trained using Keras/TensorFlow, 
one of the most popular frameworks for deep learning. While the DNN is pre-trained 
with DeepFRET, we also provide the option for simulating new data with additional 
parameters offering the possibility of DNN model re-training to meet the specialized 
needs of trained users (e.g. multicolour FRET). The programming interface on the 
other hand allows the convenient implementation of additional scripts pipelining the 
analysis and to potentially expand it to additional single molecule time series 
analysis. 
 
Discussion and Conclusions 
smFRET is a powerful toolkit, key for exploring dynamic structural biology, but to 
meet its full potential, automated standardized and user independent analysis of 
data are essential. Because the experimental conditions, instruments and biological 
systems drastically vary across laboratories, the treatment of data based on semi-
automatic methods and simplified assumptions could yield different conclusions. 
DeepFRET is designed to fill this void and analyse data independently of any 
assumptions and reproducibly across laboratories. Our experiments show that a 
neural network classifier trained on purely simulated single molecule FRET time 
series accurately and efficiently recognizes and classifies single molecule FRET 
both in simulated ground truth data and in real-world dataset. DeepFRET 
classification accuracy consistently outperformed trace selection using commonly 
published thresholds. Similarly it supersedes the selection accuracy of human 
operators and importantly, only requiring a fraction of the time (minutes vs weeks if 
traces are manually selected). Such drastic reduction of analysis times will allow 
acquisition of even larger data sets expanding the field for high throughput analysis 
and improving the robustness of conclusion. The fact that DeepFRET does so only 
requiring a score threshold, as a sole human intervention, demonstrates its strength 
as a novel smFRET analysis method and its potential to form a reference against 
which the quality of the data and the structural biology insights are benchmarked. 
DeepFRET was found to operate flawlessly for both ALEX and non-ALEX smFRET 
data highlighting its precise classification and applicability across laboratories and 
methods. The limited effect of human operators on data selection on the other, hand 
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illustrates its potential to contribute to the standardisation of the field, increasing 
reproducibility across laboratories. We anticipate that DeepFRET, combined with 
the advent of commercial single molecule instruments, will contribute in 
materialising the smFRET as a robust mainstream toolkit for structural biology labs. 
 
DeepFRET’s neural network is trained to operate for smFRET data but our approach 
of time series classification and sequence annotation can conveniently be extended 
to consider a spectrum of stochastic single molecule trajectories of individual 
turnovers including tracking (50) (51–53) ,constant force measurements (54) and 
blinking of individual molecules (55, 56) using either simulated or high-quality 
annotated experimental data for training. Consequently we expect the neural 
network of DeepFRET or similar approaches to be a paradigm shift and enable new 
fully automated analysis methodologies related to biomolecular recognition, to 
protein folding and dynamics and to super resolution. Such advances are 
paramount for increasing the breadth and impact of single molecule studies to be 
fully exploited in structural biology. 
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Materials and Methods 
We first define a nomenclature that will be used throughout the text and plots: DD, 
DA, AA (donor excitation→donor emission; donor excitation→acceptor emission; 

acceptor excitation→acceptor emission, respectively). A separate background signal 
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is not considered, as we assume all model inputs to be background-corrected (i.e. 

background is 0). 
 
Synthetic smFRET data generation 
Deep learning requires large amounts of diverse data in order to generalize well to 
unseen data. We have developed a method to generate the required thousands of 
ground-truth traces to cover every type of empirically observed trace, with a 
dedicated user interface option (Fig. S2). This algorithm includes the generation of 
TIRF-microscopy smFRET traces of ALEX or non ALEX data. The traces sample any 
given FRET value with tunable dye photobleaching lifetime, signal noise, dye 
blinking, donor bleedthrough, aggregates (i.e. more than one donor/acceptor 
fluorophore) of any given size, as well as well as a “scrambling” feature, to account 
for fluorophore phenomena that could not be classified as stemming from smFRET.  
 
In order to generate traces, for each pair we first generate the underlying FRET 
states from an adjustable Hidden Markov model, and assume unscaled unit-
intensities for DD, DA, AA. Then, if the energy transferred is defined by 
 
(1) FRET = DA / (DD + DA) 
 
the remaining intensity of the donor is 
  
(2) DD = 1 – FRET 

 
and from (1), the transferred intensity is 
 
(3) DA = –(DD * FRET) / (FRET – 1) 
 
In a perfectly-aligned setup, one can expect that 
 
(4)  DA + AA = AA 
 
such that the stoichiometry S will be exactly 
 
(5) S = (DD + DA) / (DD + DA + AA) = 0.5 
 
Initially, all fluorophores are simulated with intensity of 1 (with absolute scaling only 
adjusted after applying all other parameters). Additionally, the intensity of AA should 
always be 1, regardless of the current FRET state. In practice, the AA intensity may 
not be exactly half of DD+DA (and consequently one might observe S that deviates 
slightly from 0.5). To account for this, we uniformly sample “AA-mismatch” as a 

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 27, 2020. ; https://doi.org/10.1101/2020.06.26.173260doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.26.173260
http://creativecommons.org/licenses/by-nc/4.0/


	

15 
 

percentage of the unit intensity signal. Upon fluorophore photobleaching, with 
lifetimes sampled from an exponential distribution, either DD or DA/AA is set to 0. 
Noise, AA-mismatch and donor bleedthrough are added to the ground truth signals 
to obtain the observable DD, DA, and AA, we can calculate realistic, observable 
values for E and S. For each synthetic trace, the noise is drawn from a Normal (μ = 
0, σ) distribution of varying σ. We found that, on top of the normally distributed 
noise, we could add the noise from a (centered) Gamma (k = 1, θ = 1.1) distribution 
multiplied with the noise amplitude at each frame (and is thus controlled via the 
noise parameter). This did not visually alter the spread of the distribution 
significantly, but improved robustness of predictions on real data, as we found 
empirically that the noise of experimental data never exactly followed a pure normal 
distribution. 
 
State-of-the-art neural networks are able to achieve human-like or better 
performance on a wide range of classification tasks. Recently, however, it has been 
demonstrated how small modifications to the input can lead to wildly inaccurate 
outputs (57). During the development of our smFRET classification model, we 
observed how photophysical artifacting (described as ‘interesting effects’ by TJ 
Ha’s group (8)) would lead the model to make confident yet very inaccurate 
predictions To fix this, our trace generation algorithm contains extensive 
“scrambling”; we found that by randomly flipping one of the channels, creating 
strong correlations by multiplication of the channels or adding bursts of high noise 
and long dark states we could avoid ”adversarial-like” predictions. We note that 
scrambled data is not meant to mimic observable data, but instead to make the 
model robust against mis-predictions on highly aberrant data that does not fall into 
the other observable categories. 
 
We generated ground truth traces, where every frame of the sequence was labelled 
as one of 5 categories: “(B) bleached”, “(A) aggregate”, “(N) noisy”, “(X) scrambled”, 
“(S) static smFRET” or “(D) dynamic smFRET”(see Fig. S4 for examples). 
Additionally, we applied label smoothing with a strength of 0.05, as this has been 
shown to greatly improve model robustness and prediction confidence (58). 
 
For training the model, we set the following parameters (easily adjustable in the 
interface See Fig. S6): 

- Acceptor-only mismatch between 70 % and 130 % of the donor intensity.	
- Up to 4 distinct FRET states with a minimum distance of 0.1 FRET between 

states, with below 0 and 0.2 probability of transitioning from one state to 
another, at any frame, as determined by a Markov transition matrix.	

- 0.15 probability that the trace is an aggregate.	
- 0.20 probability that a non-aggregate trace contains photoblinking.	
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- 0.15 probability that a trace is scrambled, and in this case 0.90 probability 
that the scrambling is due to incorrectly colocalized fluorophores.	

- Donor-bleedthrough between 0 % and 15 % the donor intensity into the 
acceptor channel.	

- Noise drawn from a Normal(0, σ) distribution with σ between 0.01 and 0.30.	
- 0.8 probability that the noise has an additional layer of gamma noise on top, 

to mimic shot noise. 
- Individual trace duration of 300 frames.	
- Exponentially decaying photobleaching lifetime centered around 500 frames 

(which will generate a fraction of traces that don’t contain any 
photobleaching).	

- 0.1 probability that the molecule will fall off the surface at a time given by an 
exponentially decaying lifetime centered around 500 frames (so it might not 
happen during the time of observation)	

 
With these parameters, directly applicable as input for the algorithm (see Code 
Availability), we randomly initially generated 250.000 traces of 300 frames each of 
randomized configurations. We then under-sampled data to balance the labels (as 
neural network classifiers perform worse if trained on highly class-imbalanced data 
sets) based on the first frame of each trace. This resulted in approximately 150.000 
traces, roughly equally distributed over the 5 possible classes (bleaching being 
present in most traces naturally ends up accounting for a higher fraction of the 
overall frames). We used 80% for training the classifier and the remaining 20% for 
validation. After the training procedure, we generated an additional test set with 
33.000 new traces and under-sampled it as previously, to roughly 20.000 traces, 
and based our statistical analysis on those alone. 
 
We supplied only the raw features DD, DA and AA to the model (or only DD and DA 
for the non-ALEX-enabled model), where for each trace, signals were normalized to 
the max of all signals in that trace, so as to preserve the relative intensities between 
donor and acceptor. In this way, predictions done on individual smFRET traces are 
fully independent from every other in a given experiment, and also independent 
from non-standardized instrument intensity units (i.e. “arbitrary units”). 
 
Neural network model setup and hyperparameters 
An LSTM-RNN (long short-term memory recurrent neural network) classifier was 
implemented in Keras with TensorFlow as backend. The structure of the network 
(Fig. S1) was inspired by a recent sequence classifier for ECG time series (41) that 
employs both skip connections and batch normalization as means to prevent 
overfitting. Here, we replaced the global pooling layer with stride-1 max pooling 
layers, and added a bidirectional LSTM layer before the final fully connected layer, 
which we found lead to more temporally causal and context-sensitive predictions 
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(e.g. if the model spots multiple bleaching steps in the beginning of a trace, this 
information is propagated throughout, so the whole trace can be confidently 
marked as aggregated). 
 
Each residual block (“Res” in Fig. S1) contains n = 2x filters, where x is 5 and is 
incremented by 1 at every 4th block. The kernel size k starts from 16 and is reduced 
by 4 at every 4th Res block, so as to learn larger-scale features and gradually 
smaller ones. The initial convolution has the same hyper-parameters as the first 
residual block. A 1 x k convolution is added in each residual block for efficiency 
(59). To avoid problems with vanishing gradients throughout such a deep model, 
each residual block keeps a copy of the input vector and adds it to the output vector 
(denoted by the “+” symbol). The long short-term memory (LSTM) cell is 
bidirectional and contains 16 units, and has a dropout rate of 0.4 applied to the 
outputs. For each frame, the outputs are distributed among six different classes by 
a dense layer with softmax activation. 
 
The model loss was minimized in batches of 32 samples with the Adam optimizer, 
using the default parameters and the default learning rate of 0.001 The learning rate 
was decreased by a factor of 10 if validation loss showed no improvement over 2 
consecutive epochs. The training was stopped early if no improvement in the 
validation loss was observed over 5 consecutive epochs. Convolutional kernels 
were initialized as proposed by (60). Other layer configurations were left at their 
Keras defaults. The final model output is passed through a softmax layer, thus that 
for each frame the probabilities between all classes sum up to exactly 1. Further 
experimentation with optimizers and learning rates showed no significant 
improvement over the above configuration. 
 
Bleaching detection. In order to avoid having single-frame bleaching triggering the 
remainder of the trace being marked as bleached, we employ a sliding window over 
the whole trace. In each window, at least 4 out of 7 frames must be marked as 
bleached with >0.5 probability by the model. If this condition is satisfied, all frames 
in the window and every frame onwards is marked as bleached, and excluded from 
the calculation of smFRET confidence. The model predicts with >99% accuracy 
bleaching (Fig. 3). Additionally, if bleaching happens faster than the first 15 frames, 
the whole trace is classified as bleached, regardless of model classification, as the 
DeepFRET score would otherwise end up being artificially inflated (see below). 
 
For stoichiometry-based thresholding (Fig. 2), we employed a similar sliding 
window, but instead marked frames as bleached if the stoichiometry was outside 
of the range (0.3, 0.7).  
 
Precision and recall. We use precision and recall to quantify classifier 
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performance. These are defined as 
 
(6) Precision:  P = Tp / (Tp + Fp) 
 
(7) Recall:   R=Tp / (Fn + Tp) 
 
Where Tp, Fp, Fn are True positive, False positive and False negative respectively 
 
DeepFRET score calculation and trace classification. In order to calculate the 
confidence score, probabilities for all categories for each frame are first predicted 
by the model, and bleached frames (see above) excluded from the score 
calculation. The average probability pi over all frames t, for each of the remaining 
five categories is calculated, resulting in five category scores Pi for each category 
i. 
 

 
 
Static smFRET (S), dynamic smFRET (D) scores are summed into the final 
DeepFRET score, and aggregate (A), noisy (N), and scrambled (X) scores ignored 
for calculation of this (but retained and displayed for explainability for the user). 
See Fig. S5, S7 for examples on all trace types. 
 
Model performance evaluation  
Noise level of synthetic data. We changed the label of traces to “noisy” if the initial 
noise was drawn from a Normal(μ = 0, σ) with σ above 0.25. Traces above this level 
of noise could no longer statistically be approximated as normally distributed by 
D’Agostino-Pearson two-sided test for normality (Fig. S4) (which is a requirement 
for fitting the correct number of FRET states in a trace, using a mixture model). 
Although a σ of 0.20 also fulfilled the p < 0.05 test statistic, we chose to opt for a 
limit of 0.25, as we found that the neural network would otherwise have a tendency 
to discard less noisy data too frequently. 
 
Trends in human vs. machine selection. To test for differences in the way a 
human vs. our trained model would select traces, three participants partook in 
manual selection of generated data (Fig. S15), similar to that of Fig. 2, only this 
time with 1000 traces, wherein 46 were true smFRET traces and 954 non-usable 
traces. The number of true smFRET traces and underlying distributions were 
unknown to the participants. 
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Performance test and comparison with existing software. For testing simple 
thresholding vs. DeepFRET (Fig. 2, Fig. S12, Fig. S13) we generated data with the 
following parameters: 

- Acceptor-only mismatch between 70 % and 130 % of the donor intensity.	
- Donor-bleedthrough of 5 % of the donor intensity into the acceptor channel.	
- Noise drawn from a Normal(0.11) distribution	
- 1 (0.5 FRET), 2 (0.3, 0.7 FRET) or 3 FRET states (0.2, 0.5, 0.8 FRET)	
- Transition probability of 0.1 between states, at each frame.	

 
Other parameters were set to the same value as what is used to generate training 
data. Furthermore, all generated ground truth traces that didn’t bleach were 
discarded. 
 
Our definition of “simple thresholding” is based on single molecule intensity, median 
stoichiometry and the presence of bleaching. We chose here not to use any values 
for anti-correlation as this assumes that all molecules of interest are equally 
dynamic, when smFRET studies have shown that this may not always be the case 
(12, 47, 48). 
 
Extra features of the software platform 
Hidden Markov model and statistical analysis  
The DeepFRET GUI has the option to fit traces with a Hidden Markov model, with 
adjustable strictness on the number of states, according to recent best practices 
for smFRET data analysis, including the ability to switch between predicting states 
from raw fluorescence intensities or EFRET values. (61) We fit the traces using the 
pomegranate implementation of the Baum-Welch algorithm (62). We further provide 
the option to predict state values directly from the Markov Model or from the median 
of the classified frames for each trace, to maintain compatibility and comparability 
with current results in the field. We provide clustering of subsequent transition 
density plots, lifetime estimates with detection of degenerate states, and 
publication-ready plots for pearson correlation coefficients, DD/DA histograms and 
EFRET-Stoichiometry histograms. 
The Hidden Markov model was verified on externally available data from the kinSoft 
challenge, as well as simulated data produced within DeepFRET. 
  
Data availability. All data used for model training and instructions on how to use 
it, is available at https://github.com/hatzakislab/DeepFRET-Model/ 
 
Code availability. We provide DeepFRET as an accessible GUI for everyone, as 
well as the Python source code for expert users. The code for the GUI as well as 
compiled executables, with instructions for how to edit and recompile the GUI is 
located at https://github.com/hatzakislab/DeepFRET-GUI.  
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