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ABSTRACT 

Protein residue-residue contact prediction from protein sequence information has undergone substantial 

improvement in the past few years, which has made it a critical driving force for building correct protein 

tertiary structure models. Improving accuracy of contact predictions has, therefore, become the forefront 

of protein structure prediction. Here, we show a novel contact map denoising method, ContactGAN, 

which uses Generative Adversarial Networks (GAN) to refine predicted protein contact maps. 

ContactGAN was able to make a consistent and significant improvement over predictions made by 

recent contact prediction methods when tested on two datasets including protein structure modeling 

targets in CASP13. ContactGAN will be a valuable addition in the structure prediction pipeline to 

achieve an extra gain in contact prediction accuracy. 

 

Introduction 

Protein structure prediction remains as one of the most important and unsolved problems in biology, 

more specifically in bioinformatics, biophysics, and structural biology. The tertiary structure of proteins 

can provide indispensable information for understanding the principle of how the protein structure is 

built and how it carries out biological functions. Knowledge of the protein structure also facilitates 

developing drug molecules by enabling structure-based drug design1,2 and serves as the basis for 

artificial protein design3. Computational protein structure prediction supplements experimental methods 

for determining structures. As observed in the community-wide protein structure prediction experiments, 

the Critical Assessment of techniques in protein Structure Prediction (CASP)4, the accuracy of 

prediction methods has significantly improved in the past few years. The main driver behind this 

accuracy boost is the improvement of residue-residue contact or distance prediction, which is used 

effectively to guide the construction of protein structure models5. 
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Residue contacts or distances of a protein are predicted from a multiple sequence alignment 

(MSA) of the protein6 . Predicting residue contacts from an MSA of the protein is not a recent novel 

idea. Rather, it has over 20 years of effort by different research groups toward establishing accurate 

prediction methods. In principle, evolutionary constraints for maintaining residue-residue contacts in a 

protein structure leave a trace in the MSA of the protein of interest and its homologous proteins. Earlier 

works applied relatively simple statistical approaches to detect co-related mutation patterns between 

two columns (i.e. residue pairs) in a MSA7-9. The accuracy of contact prediction was substantially 

improved a few years ago when the so-called co-evolution approaches, which use statistical inference 

based on the Potts model10, were introduced. The methods in this category include CCMPred11, 

Gremlin12, EVFold13, plmDCA10, FreeContact14,15, and MetaPSICOV15. Further improvement was 

observed more recently when deep learning, Convolutional Neural Networks (CNN)16 and Residual 

Networks17, were applied to the problem. The methods in this category includes DeepCov18, RaptorX-

contact19, DeepContact20, and trRosetta21.  

Although substantial improvement in contact prediction was observed, contact prediction is 

still far from perfect. Here, we propose ContactGAN, a novel contact map denoising and refinement 

method using Generative Adversarial Networks (GAN)22. GANs have been widely adopted for high-

level generation tasks in computer vision with applications including image-to-image translation23,24, 

image super resolution25, and image deblurring26. ContactGAN takes a contact map predicted by 

existing methods, which is considered as a low-resolution or noisy input, and outputs an improved map 

with a higher accuracy over the original map. ContactGAN was trained with predicted noisy contact 

maps coupled with corresponding native contact maps, which the networks were guided to generate. 

We show that we gain a consistent and substantial precision improvement over predicted maps 

by CCMPred, DeepCov, and DeepContact. When ContactGAN was applied to the current state-of-the-
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art contact prediction method, trRosetta, it showed an average precision improvement of 1.14% over 

L/1 long-contacts on the validation dataset we used. ContactGAN also demonstrated consistent 

improvement when tested on contact predictions made to the CASP135 protein dataset. It was also 

demonstrated that combining predicted maps computed by different methods improves the accuracy of 

generated maps. 

 

ContactGAN 

ContactGAN takes a predicted contact map as input and outputs a refined map. ContactGAN adopts the 

GAN framework, where two networks, a generative and a discriminative network, are trained with sets 

of predicted (noisy) and corresponding native (i.e. correct) contact maps so that refined maps can be 

generated by learning patterns from predicted and native maps. A native contact map we use contains 

binary values, 1 or 0, where 1 indicates that the C atom distance of the corresponding residue pair is 8 

Å or shorter. For training and validation, we prepared a dataset of 6640 non-redundant protein structures 

(see Methods), for which correct contact maps were generated  in addition to predicted maps computed 

by four existing contact map prediction methods: CCMPred, DeepContact, DeepCov, and trRosetta. 

These four methods are briefly explained in Methods. 

Figure 1 shows the network structure of ContactGAN. Figure 1a illustrates the overall 

architecture. The generator network, illustrated in Figure 1b, is a CNN consisting of a 2D convolution 

layer with 32 channels and a kernel size of 9, which is followed by 9 or 18 ResNet layers, a 2D 

convolution layer, and finally by a sigmoid layer. 18 ResNet blocks were used when refining contact 

maps generated by trRosetta and 9 for all the other methods. Each ResNet block contains 2 convolutional 

layers with 32 channels and skip connections, dropout (with a dropout probability 0.25), PReLU 

activations27, and Instance Normalization as we used a batch size of 1. In the series of the ResNet blocks, 
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we used dilation filters of 1, 2, and 4 dilations for the first 3 blocks, respectively and repeated this unit 

of 3 blocks in subsequent layers. The final convolutional layer uses a smaller kernel size of 3 with 32 

output channels. The last sigmoid layer outputs a contact probability for each pixel in the 2D contact 

map. We used a stride of 1 uniformly in all the filters in all the layers. 

 

Figure 1. The architecture of ContactGAN. a, the overall structure that connects the generator and the 

discriminator networks. The generator network takes a noisy predicted contact map and outputs a refined map. 

The discriminator network is to discriminate a generated map by the generator network and the native map, so 

that the generator is trained to produce indistinguishable maps from native maps by the discriminator. b, the 
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detailed network structure of the generator network. X is equal to 18 for handling maps from trRosetta and 9 for 

the other methods. The blue arrows indicate skip connections, which connect the input of a ResNet block and a 

plus sign, an operator that simply adds two matrices. c, the detailed structure of the discriminator network. See 

text for more details. 

 

The discriminator network (Figure 1c) is a fully convolutional binary classifier. It takes a contact 

map output from the generator and the corresponding native contact map and classifies the two maps 

into classes, either native (correct) or predicted. The discriminator network consists of 10 CNNs 

followed by a softmax layer. The first convolutional layer in the discriminator contains 32 channels, and 

the count is multiplied by a factor of 2 for each subsequent layer. We used PReLU and group 

normalization with a group size of 16 in the first convolutional layer and 32 in all other layers. 

 ContactGAN was trained and validated on the 6,640 proteins in the non-redundant dataset. 

6,344 proteins were used for training and 296 were used for validation. ContactGAN was trained 

separately for each contact prediction method using predicted maps and corresponding native contact 

maps. Trained models were further tested on 43 protein domains used as targets in CASP13. Note that 

protein sequence information and other features, such as MSA and secondary structure prediction, were 

not used in ContactGAN. 

 

Contact map improvement with ContactGAN 

In Table 1, we summarize ContactGAN’s performance in improving residue contact map prediction. 

On the left, results on the validation set in the non-redundant protein dataset are shown while on the 

right the results on the CASP13 dataset are shown. In this table, we only showed precision considering 

predicted contacts with the top L/2 and L/1 highest probabilities (L is the length of the protein). Results 

with more metrics are provided in Supplementary Table S1, S2, and S3. Supplementary Figure S1 
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shows improvements of the precision of individual predicted contact maps on the validation and the 

CASP13 datasets. 

 

Table 1. Summary of the improvement of contact map prediction by ContactGAN. 

a) Results of two datasets are shown: On the left, the validation set of 296 proteins in the non-redundant 

protein dataset; on the right, the CASP13 dataset. b) L/2 and L/1 shows precision values when top L/2 

or L/1 contact predictions with the highest probabilities were considered. L is the length of the protein. 

The columns Lg consider only long-range contacts (residue pairs separated by more than 23 residues) 

while Med+Lg columns consider medium- and long-range contacts (residue pairs separated by more 

than 11 residues). c) Each result show two values: up, original average precision by the existing method; 

bottom, average precision of denoised contact maps by ContactGAN. In the middle rows, contact maps 

Method Validation a) CASP13 

L/2 b) L/1 L/2 L/1 

Med+Lg Lg Meg+Lg Lg Med+Lg Lg Med+Lg Lg 

CCMpred 

 

0.367 

0.565 

0.308 

0.471 

0.268 

0.456 

0.215 

0.365 

0.232 

0.356 

0.209 

0.262 

0.164 

0.283 

0.121 

0.210 

DeepCov 

 

0.636 

0.656 

0.521 

0.539 

0.503 

0.522 

0.391 

0.403 

0.394 

0.473 

0.287 

0.332 

0.32 

0.373 

0.231 

0.251 

DeepContact 

 

0.609 

0.649 

0.500 

0.540 

0.480 

0.521 

0.373 

0.409 

0.475 

0.516 

0.336 

0.372 

0.382 

0.410 

0.267 

0.283 

C + Dv c) 

 

0.636 

0.683 

0.521 

0.577 

0.503 

0.557 

0.391 

0.443 

0.394 

0.500 

0.287 

0.363 

0.32 

0.396 

0.231 

0.283 

C + Dt 

 

0.609 

0.676 

0.500 

0.573 

0.480 

0.551 

0.373 

0.440 

0.475 

0.540 

0.336 

0.378 

0.382 

0.421 

0.267 

0.302 

Dv + Dt 

 

0.636 

0.691 

0.521 

0.579 

0.503 

0.558 

0.391 

0.441 

0.475 

0.527 

0.336 

0.39 

0.382 

0.420 

0.267 

0.309 

C + Dv + Dt 

 

0.636 

0.706 

0.521 

0.600 

0.503 

0.576 

0.391 

0.463 

0.475 

0.554 

0.336 

0.397 

0.382 

0.443 

0.267 

0.310 

trRosetta 

 

0.848 

0.849 

0.757 

0.765 

0.727 

0.733 

0.612 

0.619 

0.774 

0.790 

0.653 

0.660 

0.657 

0.668 

0.510 

0.518 
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of two or three methods were used as input: C, CCMpred; Dv, DeepCov; Dt, DeepContact. When 

multiple maps were used as input, the highest precision among the existing methods was shown as the 

original results. For trRosetta, three independent contact predictions were combined, each of which used 

an MSA with different E-value cutoffs, 0.001, 0.1, and 1.0. 

 

The first three rows show results for individual methods, CCMpred, DeepCov, and 

DeepContact. ContactGAN made substantial improvements for these methods in all the metrics, which 

was consistent between the validation set and the CASP13 set. Particularly, the improvements were 

largest for CCMpred, which had the lowest original precision among the three methods. For CCMpred, 

ContactGAN improved L/1 Long precision on the validation set from 0.215 to 0.365, an improvement 

of 69.8%. For the CASP13 set, the improvement for L/1 Long was larger, 73.5% (from 0.121 to 0.210). 

The improvement ranged from 25.4% to 72.6% for other metrics shown in Table 1 for CCMpred. The 

improvement was also consistent for DeepCov and DeepContact, but with smaller improvement margins 

than observed for CCMpred. For DeepCov, ContactGAN showed an improvement of 3.07% and 8.66% 

for L/1 Long on the validation and the CASP13 sets, respectively. The corresponding values for 

DeepContact were 9.65%, and 5.99%, respectively. 

The middle rows in Table 1 present ContactGAN performance using multiple channels, where 

a pairwise combination of the above three methods and all three methods together were used as input 

channels. To be able to take two or three contact maps as input, the network architecture of ContactGAN 

(Figure 1) was modified accordingly. The row with “C + Dv” shows the precision values with CCMPred 

and DeepCov as two input channels for ContactGAN. With these two channels, ContactGAN showed 

substantial improvement in every evaluation category over the two individual methods. It is interesting 

to note that the improvement was achieved not only over CCMpred, the method with lower accuracy, 

but also over the better method, DeepCov. We see similar improvements when CCMPred+DeepContact 
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and DeepCov+DeepContact were used as two-channel inputs. Then, we further extended the use of 

multi-channels to three channel inputs with CCMpred, DeepCov, and DeepContact altogether 

(C+Dv+Dt in the table), which resulted in a further improvement over two channel inputs. 

Improvements by combining additional method(s) are apparent in Figure 2, where L/1 Long precision 

values of each individual method and its combinations with other methods are compared. From 

originally predicted contact maps predicted by a single method, ContactGAN improved them with a 

large margin, which was further improved by using two contact maps predicted by different methods 

(two input channels). Furthermore, an even higher precision was achieved by using three methods as 

input. Starting from the original prediction by CCMpred, DeepCov, and DeepContact, L/1 Long 

precisions by the denoised maps using all three methods were improved by 115.3% (from 0.215 to 

0.463), 18.4%, and 24.1% on the validation set, and 156.2%, 34.2%, and 16.1% on the CASP13 set, 

respectively. 
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Figure 2. Improvement of L/1 Long precision by using additional predicted contact maps as input 

channels. Three sets of bars on the left show results for CCMpred (pale gray), DeepCov (black), and 

DeepContact (gray), respectively, on the validation set. The other three sets on the right are results on 

the CASP13 set. Orig(C), Orig(Dv), and Orig(Dt) are precision of the original contact maps predicted 

by CCMpred, DeepCov, and DeepContact, respectively. GAN indicates the precision of denoised maps 

by ContactGAN. Five bars in a set represent average precision of the original maps, those of the denoised 

maps by ContactGAN, denoised maps of a combination of two maps, (C+Dv, C+Dt, Dv+Dt), and 

denoised maps from the combination of three input maps (C+Dv+Dt). Precision values plotted are taken 

from Table 1. 

 

In the last row of Table 1 we show the results of the application of ContactGAN to trRosetta, 

a new method whose performance is one of the best among those published and available21. Since the 

base accuracy of trRosetta is significantly better than the other methods, we combined three different 

channels of trRosetta, each using different MSAs generated with a sequence E-value cutoff of 0.001, 

0.1, and 1.0, respectively, instead of combining with the other methods. Compared with the best 

prediction among the results with the three E-values, which is 0.001, ContactGAN made consistent 

improvements for all the metrics. For L/1 Long, ContactGAN improved by 1.14% (from 0.612 to 0.619) 

and 1.57% (0.510 to 0.518), for the validation set and the CASP13 set, respectively. The performance 

gains seen on trRosetta are lower than for the other methods, which was as expected since trRosetta 

provides highly accurate contact maps from the start. 

 

Contact prediction between secondary structure elements 

Next, we investigated which types of contacts were improved by ContactGAN. Particularly, we 

examined contacts between residues in secondary structure elements, -helix and -helix (denoted as 

 below), -strand and -strand (), and -helix and -strand (). To quantify the change made 
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by ContactGAN, we compared the fraction of correct contacts between secondary structure elements 

predicted among the top L/1 long-range contacts before and after applying ContactGAN. Figure 3c and 

3d show the cases of the three-channel ContactGAN with CCMpred, DeepCov, and DeepContact. For 

reference, the overall change of L/1 long precision of maps is shown in Figure 3a and 3b. The same 

plots for the other prediction methods are provided in Supplementary Figure S2. 

In Figure 3c and 3d, correct contacts between secondary structure elements share 74.0% and 

57.4% among predicted L/1 long contacts in the original prediction for the validation set and the 

CASP13 set, respectively. On the validation set (Figure 3c), all three types of correct secondary 

structure interactions increased or remained unchanged for about 72 to 78% of the maps. Thus, no 

preference for the secondary structure interaction type was observed. On the other hand, correct 

contact predictions were particularly increased in the CASP13 set (Figure 3d) compared to the 

other two types,  and  contacts, which did not show improvement in about half of the maps. 

Thus, we can see a tendency that long-range contact predictions have a relatively higher tendency 

to improve by ContactGAN. 
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Figure 3. Precision for contacts between secondary structure elements by the three-channel ContactGAN 

with CCMpred, DeepCov, and DeepContact. a, b, the overall L/1 long average precision values before and 

after applying ContactGAN for each map are plotted. For each map, the x-value shows the highest precision 

among the three methods, CCMpred, DeepCov, and DeepContact. a, the results on the validation set. 

ContactGAN improved or kept the same precision for 82.1% (243 out of 296) of maps. b, the results on the 

CASP13 set. ContactGAN improved or kept the same precision for 60.5% (26 out of 43) of maps. c, The fraction 

of correct long-range contacts between residues in -helix and -helix ( cyan), -strand and -strand (; 

magenta), and -helix and -strand (; black) among the top L/1 long predicted contacts are separately plotted. 

Contacts between residues in loop structure were not considered. The results shown are on the validation set. The 

fraction of correct contacts between andincreased or stayed the same for 71.9%, 78.0%, and 

72.2% of the maps, respectively. d, the results on the CASP13 set. The fraction of correct contacts between 

andincreased or stayed the same for 72.1%, 48.8%, and 51.2% of the maps, respectively. 

Supplemental Figure S2 provides the same type of plots for ContactGAN applied for individual prediction 

methods. 

 

Examples of improved contact map predictions by ContactGAN 

In this section, we show four examples of pairs of contact maps before and after applying ContactGAN. 

The first example (Figure 4a) is a ContactGAN application to a map predicted by CCMpred. For this 
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large protein of 672 amino acids (PDB ID: 3IG5A), the map by CCMpred is covered by noisy 

predictions with low probability values. The contact probability values of the entire map distributed in 

a narrow range from 0.0 to 0.17 with the standard deviation of 0.0064 (the diagonal region of the map, 

i.e. j=i, i+1, i-1 were discarded in these statistics). In contrast, ContactGAN map denoised it into more 

distinct contact patterns, which yielded a 61.98% improvement in L/1 long-range precision from 0.192 

to 0.311. The probability distribution of the denoised map showed minimum and maximum probabilities 

of 0.0 and 1.0 with a standard deviation of 0.076. 

The next example is the refinement of a predicted contact map by DeepContact for a 110 

residue-long -class protein (Figure 4b). On the right panel, we show the output from a two-channel 

ContactGAN that used predictions from DeepContact and CCMpred as input. Although the original 

map by DeepContact captures characteristic anti-parallel -sheet patterns correctly, those are buried in 

other false-positive contacts with high probability values. ContactGAN was able to clean the strong 

noise and improved the L/1 long precision from 0.227 to 0.545 over DeepContact, an improvement of 

141.1%. 

In Figure 4c, a map predicted by DeepCov for a 405 residue-long protein in the CASP13 

dataset was improved by the three-channel ContactGAN with CCMpred, DeepContact, and DeepCov.  

Similar to the previous two cases, the original map suffered from high noisy probability values for 

medium and long-range contacts, which were cleaned by ContactGAN. The L/1 long precision 

improvement achieved was 50.8% over DeepCov, and 45.1% over DeepContact. 

The last example was a contact map by trRosetta (MSA E-value: 10-3) refined by the three-

channel ContactGAN with trRosetta with three E-values (Figure 4d). For this map, a 3-channel input 

of trRosetta versions was fed to ContactGAN. Compared to the other three cases, the improvements 

made by ContactGAN visually seem minor; however, they include enhancement of critical very long-
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range contacts between residues 12-18 and 112-118. These correct contacts were very weakly predicted 

by trRosetta with the minimum, maximum, and the average values of 0.002, 0.148, and 0.03, 

respectively, which were strengthened to 0.009, 0.732, and 0.230 for the minimum, maximum, and 

average probability values, respectively. The precision improvement of L/1 long-range contacts was 

12.5% overall. 

 
Figure 4. Examples of contact maps before and after applying ContactGAN. For each panel, the map on the left 

is the original one predicted by an existing method and the map on the right is the denoised map by ContactGAN. 

The color scale shows predicted probability values of contacts, ranging from dark blue (0.0) to bright yellow (1.0). 

Contacts with the residue itself along the diagonal line are removed. a, a contact map for glutamate-cysteine 

ligase (PDB ID: 3IG5A; 672 amino acids (aa)) predicted by CCMpred. The L/1 long precision improved from 

0.192 to 0.311 by ContactGAN. b, a contact map of KOW6-KOW7 domain of human DSIF (PDB ID: 5OHQA, 

110 aa) predicted by DeepContact. This map was improved by a two-channel ContactGAN with CCMpred and 

DeepContact. The comparison here is made with DeepContact because it produced a more accurate map than 

CCMpred. The L/1 long precision improved from 0.227 to 0.545. c, a contact map of a CASP13 target protein, 

Enterococcal surface protein (CASP ID: T0987, PDB ID:6ORI; 405aa) predicted by DeepCov. It was improved 

by the three-channel ContactGAN with CCMpred, DeepCov, and DeepContact. This comparison is made with 

DeepCov because it produced the most accurate map among the three methods for this protein. The L/1 long 

precision improved from 0.386 to 0.582. d, a contact map of a CASP13 target protein, filamentous haemagglutinin 
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family protein (CASP ID: T0968s1, PDB ID:6CP9; 126 aa) by trRosetta using a MSA of E-value 0.001. It was 

improved by the three-channel ContactGAN with trRosetta with three E-values. The L/1 long precision improved 

from 0.407 to 0.458. 

 

Effect of contact map improvement in structure modeling 

Improvement in a predicted contact map can often make significant changes in resulting protein 

structure models that are constructed with the improved map. Figure 5 shows a few such examples. For 

the modeling, we used Rosetta28 with the constraints from the contact map and also from predicted 

dihedral angles by SPOT-1D29 (see Methods). In the figure, blue and red in a structure model indicate 

C atoms that were modelled within 2.0 Å and over 8.0 Å, respectively, from the correct position 

measured after superimposing the entire model structure to the native structure. 

The first example, Figure 5a, is a relatively simple structure with a -sheet and a layer of two 

helices. For this protein, ContactGAN improved the L/1 Long precision of the contact map from 0.468 

to 0.494. The model using the original map did not have the -sheet (the middle panel), which was 

substantially improved by using the denoised map by ContactGAN. The GDT-TS30,31 score of the 

models improved from 0.435 to 0.500 by the improved contact map. In the second example of 

filamentous haemagglutinin family protein (Figure 5b), the improved contact map made possible to 

correctly fold the core of the structure, which includes a -sheet and two -helices. For the protein 

structure in Figure 5c, a drastic effect was caused by the improved contact map, where the over 50-

residue long C-terminal tail was now folded. GDT-TS was improved from 0.322 to 0.415 by this change. 

The last example (Figure 5d) is the structure of insulin fructotransferase (PDB ID: 2INUA). The contact 

map refinement by ContactGAN resulted in substantial improvement of the -helix structure in the 

middle of the protein. The GDT-TS increased from 0.132 to 0.304 by the refinement.  
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Figure 5. Examples of protein structure models constructed with original and improved contact maps by 

ContactGAN. Left, the native structure; middle, the protein model constructed with the original contact map; 

right, the model constructed with the improved map. a, an artificially design protein, (PDB ID: 6MSP; 80 amino 

acids). The original map was predicted by trRosetta. The original contact map had L/1 Long precision was 0.468, 

which was improved to 0.494 by ContactGAN. With the improved contact map, GDT-TS of the protein model 

improved from 0.435 (middle) to 0.500 (right). b, filamentous haemagglutinin family protein, (PDB ID: 6CP9; 

126 aa). The original map was predicted by trRosetta with a L/1 Long precision was 0.407, which was improved 

to 0.458. With the improved contact map, GDT-TS of the protein model improved from 0.367 (middle) to 0.456 

(right). c, N-terminal domain of KaiA, (PDB ID: 1M2EA; 135 aa). The original map predicted by trRosetta with 

a L/1 Long precision of 0.748, which was improved to 0.859. GDT-TS of the protein model improved from 0.322 

(middle) to 0.415 (right). d, insulin fructotransferase (PDB ID: 2INUA; 410 aa). The original map was predicted 

by DeepCov with a L/1 Long precision of 0.587, which was improved to 0.652. GDT-TS of the protein model 

improved from 0.132 (middle) to 0.304 (right). 
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Discussion 

In this work, we present ContactGAN, a novel GAN-based denoising framework to push the limit of 

protein contact prediction. High-quality contact prediction is critical in recent procedures of protein 

structure prediction. Thus, ContactGAN will be a valuable addition to the structure prediction pipeline 

to achieve extra gain in the contact prediction accuracy. In principle, ContactGAN can be trained and 

applied to any contact prediction method. Besides contact prediction, a similar GAN approach will be 

able to improve other types of structural features used to guide structure modeling, such as main-chain 

and side-chain angle predictions21,29, as well as residue distance predictions32,33. Application of GAN to 

residue distance prediction is left for our future work. 
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Methods 

Protein structure and contact map dataset 

We prepared a dataset of 6,640 non-redundant protein structures, for each of which a contact map was 

computed by four existing contact map prediction methods. The predicted contact maps, together with 

the native (i.e. correct) contact maps, were used for training ContactGAN. A native contact map we use 

contains binary values, 1 or 0, where 1 indicates that the C atom distance of the corresponding residue 

pair is 8 Å or shorter. 

The protein dataset was constructed based on the PISCES34 protein dataset selected with a 

25% sequence identity, which was released before May 2018 (i.e. the beginning of CASP13). All these 

proteins were solved by X-ray or Nuclear Magnetic Resonance (NMR). From the PISCES dataset, 

proteins longer than 700 amino acid residues or shorter than 25 amino acid residues were discarded. 

Proteins were also excluded if they contain unknown amino acids in their sequence, have a knot in the 

structure that was checked by referring to the KnotProt2.0 database35, or have consecutive missing 

residues up to two residues in the structure. Structure gaps up to two residues were filled with the 

Modeller36 automodel protocol. 

In addition to this dataset, we used 43 contact prediction (RR) target protein domains in 

CASP13 as an independent test set. The lengths of the proteins ranged from 80 to 640 (average 243.1). 

They are available at the CASP13 website (http://predictioncenter.org/casp13/targetlist.cgi). 
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Predicting contact maps with four existing methods 

We used four existing contact map prediction methods, CCMpred, DeepContact, DeepCov, and 

trRosetta, to predict contact maps of the proteins in the dataset described above. Input MSAs were 

generated using DeepMSA37. This pipeline collects similar sequences to a target protein sequence in 

three stages of the database search. We used HHsuite38 version 3.2.0 and HMMER39 version 3.3 in 

DeepMSA. For sequence databases, Uniclust30 database40 dated October 2017, Uniref9041 dated April 

2018, and Metaclust_NR database42 dated January 2018 were used. These databases were released 

before CASP13 has started. 

CCMpred is a baseline contact prediction method, which uses the Pseudo-Likelihood 

Maximization (PLM) of direct couplings between pairs of amino acids in a MSA of the target protein11. 

CCMpred has shown more accurate predictions compared to other PLM based methods11, such as 

GREMLIN12 and plmDCA10. We fed a MSA generated by us using the above-mentioned pipeline. 

 DeepContact is one of the deep learning-based contact prediction methods20. DeepContact 

uses a CNN, which takes evolutionary coupling information produced by EVFold and CCMpred as well 

as the secondary structure prediction by PSIPRED43 besides an MSA of the target protein. We used the 

DeepContact code made available at Github by the authors (https://github.com/largelymfs/deepcontact). 

DeepContact takes a single protein sequence as input and its pipeline generates an MSA and other 

features for input of CNN and produces a matrix file of predicted residue-residue contacts. 

 DeepCov is another contact prediction method that uses deep learning18. DeepCov uses 

amino-acid covariance data derived directly from sequence alignments. Unlike DeepContact, DeepCov 

uses only MSA information as the input of CNNs. We used the code that was available at 

https://github.com/psipred/DeepCov. Input MSAs were generated by the DeepMSA pipeline described 

above. 
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 trRosetta uses the ResNet CNN architecture17. It was shown that trRosetta had superior 

performance to other existing methods on the CASP13 dataset. For trRosetta, we generated MSAs at 

three different E-values in the HHblits search steps of the DeepMSA pipeline, 0.001, 0.1, and 1.0. Since 

trRosetta outputs predicted distance between residue pairs, we used a distance cutoff of 8Å to decide if 

two residues are in contact. Since we ran trRosetta with three MSAs of different E-value cutoffs, we 

obtained three different contact predictions, which were considered as a 3-channel input for 

ContactGAN. 

 

Parameter training for ContactGAN 

A contact map predicted by a contact map prediction method (e.g. CCMpred), which we hereby refer to 

as a noisy map, is an input to the generator network of ContactGAN. The output map of the generator 

network and the corresponding native contact map of the noisy map were then used as inputs to the 

discriminator network. Out of 6640 pairs of noisy and native contact maps, 6,344 pairs were used for 

training and 296 were used as validation data. 

For training GANs, the generator and discriminator networks are trained together with a min-

max game-style objective function given by equation (1): 

min	
	
max

	~	ℙ
log 		 	

	~	ℙ
log 	 1 	             (1) 

where G and D are parameters of the generator and the discriminator networks of ContactGAN, 	ℙ  is 

the real (correct) data distribution, ℙ  is the generated (fake) data distribution, D(x) and D(z) are 

predicted probabilities by the discriminator that the real (x) and fake data z are real. The generator 

receives noisy data as input and generates denoised data. The discriminator then classifies input data to 

denoised data or real data. The minimax objective ensures that the generator generates good quality 

denoised data that can fool the discriminator into classifying denoised data as real data. 
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Following the above common practice for general GAN, the objective function for 

ContactGAN is formulated as shown in Equation 2, which is a linear combination of a content loss and 

an adversarial loss: 

	 		10 	 		  ,           (2) 

where	     	 		∑ ∑ , ,
		     and  (3)    

	 	 	                        (4)  

Here, L is the protein sequence length, T corresponds to the native contact matrix (map), and N is the 

input predicted (noisy) contact matrix, G(N) is the denoised matrix and D(G(N)) is the discriminator’s 

prediction of the denoised map, which ranges between 0 to 1. We optimize the negative of D(G(N)), as 

we want to fool the discriminator to consider that the denoised map to be as good as the native map. The 

content loss is defined by the Mean Squared Error (MSE) between the denoised map and the native map. 

The adversarial loss is given as the negative softmax probabilities of the discriminator predictions. 

We employed the Two Time-scale Update Rule (TTUR)44 to use separate learning rates for 

the generator and the discriminator for stable GAN training. We used learning rates of 0.0001 for the 

generator and 0.0004 for the discriminator. The batch size was set to 1 as contact maps (i.e. proteins in 

the dataset) are of different sizes. ContactGAN is trained for 50 epochs. We choose the best performing 

model on the validation dataset for testing the CASP13 test dataset. 

 

Building structure models from a contact map 

To build protein structure models from the predicted contact map, we used the energy minimization 

protocol, MinMover, in pyRosetta28. We added scoring terms that account for C-C contact predictions, 

which come from an input contact map, and backbone dihedral angle predictions, which was computed 

by SPOT-1D, in the energy function. 
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Contact predictions were represented as a flat-harmonic contact potential, f(x), and added to 

the Rosetta energy: 

0 8.0

.
8.0

  (5) 

 where x is the C-C distance between a residue pair. Contact potentials were added to only for the 

residue pairs that have a contact probability higher than a cutoff value (0.3 and 0.5 were used). 

As for the backbone dihedral angle prediction, we added circular harmonic constraints as 

follows: 

	 	

.
 (6) 

 where ang is the dihedral angle in the model, ang0 is a predicted dihedral angle by SPOT-1D. Dihedral 

angle constraints were added only for residues with a probability of helix or strand that is higher than a 

cutoff value (0.3 and 0.5 were used). 

We used two probability cutoff values, 0.5 and 0.3 for the predicted contact and angle 

probability cutoff. We used three different folding strategies that differ in the way we consider the short-, 

medium- and long-range contacts during the energy minimization21. Resulting models were relaxed 

using the FastRelax protocol in pyRosetta. For each combination of the probability cutoff and the 

modeling strategy, we generated 10 models. Thus, in total of 60 models were generated for a target 

protein. In Figure 5 we reported the model with the largest GDT-TS among the 60 models. 
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