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Abstract 5 

To study the effect of host genetics on gut microbiome composition, the MiBioGen consortium 

curated and analyzed whole-genome genotypes and 16S fecal microbiome data from 18,473 

individuals (25 cohorts). Microbial composition showed high variability across cohorts: we 

detected only 9 out of 410 genera in more than 95% of the samples. A genome-wide association 

study (GWAS) of host genetic variation in relation to microbial taxa identified 30 loci affecting 10 

microbome taxa at a genome-wide significant (P<5x10-8) threshold. Just one locus, the lactase 

(LCT) gene region, reached study-wide significance (GWAS signal P=8.6x10-21); it showed an 

age-dependent association with Bifidobacterium abundance. Other associations were suggestive 

(1.94x10-10<P<5x10-8) but enriched for taxa showing high heritability and for genes expressed in 

the intestine and brain. A phenome-wide association study and Mendelian randomization 15 

analyses identified enrichment of microbiome trait loci SNPs in the metabolic, nutrition and 

environment domains and indicated food preferences and diseases as mediators of genetic 

effects.  

Main Text 

Introduction  20 

The gut microbiome is an integral part of the human holobiont and is often considered an organ 

in itself. More than 1013 microorganisms, in large part bacteria, make up the human gut 

microbiota1, and in recent years, many studies have highlighted the link between its perturbations 

and immune, metabolic, neurologic and psychiatric traits, as well as with drug metabolism and 

cancer2. Environmental factors, like diet and medication, are known to play a significant role in 25 
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shaping the gut microbiome composition3–5 although twin, family and population-based studies 

have provided compelling evidence that the genetic component also plays a role in determining 

the gut microbiota composition, and a proportion of bacterial taxa show heritability6,7. 

Several studies8–10 have investigated the effect of genetics on microbiome composition through 

genome-wide association studies (GWAS) and have suggested dozens of genetic loci that affect 5 

the overall microbiome composition or the abundance of specific bacterial taxa. However, little 

cross-replication across these studies has been observed so far11,12. This may be due to a number 

of factors. First, methodological differences in the collection, processing, sequencing and 

annotation of stool microbiota are known to have significant effects on the results13–15, and can 

therefore generate heterogeneity and a lack of reproducibility across studies. Second, most 10 

association signals reported so far are rather weak and prone to non-replication, suggesting that 

existing studies of 1,000-2,000 samples8–10 are underpowered. Finally, some of the GWAS 

signals related to microbiome compositions may be population-specific, i.e. they may represent 

bona fide population differences in genetic structure and/or environment.  

To address these challenges in microbiome GWAS studies and obtain valuable insights 15 

into the relationship between host genetics and microbiota composition, we set up the 

international consortium MiBioGen12. In this study, we have coordinated 16S rRNA gene 

sequencing profiles and genotyping data from 18,473 participants from 25 cohorts from the 

USA, Canada, Israel, South Korea, Germany, Denmark, the Netherlands, Belgium, Sweden, 

Finland and the UK. We performed a large-scale, multi-ethnic, genome-wide meta-analysis of 20 

the associations between autosomal human genetic variants and the gut microbiome. We 

explored the variation of microbiome composition across different populations and investigated 

the effects of differences in methodology on the microbiome data. Through the implementation 

of a standardized pipeline, we then performed microbiome trait loci (mbTL) mapping to identify 

genetic loci that affect the relative abundance (mbQTLs) or presence (microbiome Binary Trait 25 

loci, or mbBTLs) of microbial taxa. Finally, we focused on the biological interpretation of 

GWAS findings through Gene Set Enrichment Analysis (GSEA), Phenome-wide association 

studies (PheWAS) and Mendelian randomization (MR) approaches. 
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Results 

Landscape of microbiome composition across cohorts 

Our study included cohorts that were heterogeneous in terms of ethnic background, age, 

male/female ratio and microbiome analysis methodology. Twenty-one cohorts included samples 

of single ancestry, namely European origin (17 cohorts, N=13,399), Middle-Eastern (1 cohort, 5 

N=481), East Asian (1 cohort, N=811), Hispanic (1 cohort N=1,097) and African American (1 

cohort, N=114), while four cohorts were multi-ethnic (N=2,571).  

The age range was also diverse: 23 cohorts comprised adult or adolescent individuals 

(N=16,765) and two cohorts (N=1,708) consisted of children (Supplementary Materials, Fig. 1A, 

Tables S1, S2). The microbial composition of different cohorts was profiled by targeting three 10 

distinct variable regions of the 16S rRNA gene: V4 (10,413 samples, 13 cohorts), V3-V4 (4,211 

samples, 6 cohorts) and V1-V2 (3,849 samples, 6 cohorts) (Fig. 1A). To account for coverage 

heterogeneity resulting from differences in sequencing depth and bacterial load across samples, 

all microbiome datasets were rarefied to 10,000 reads per sample. Next, we performed 

taxonomic classification using direct taxonomic binning instead of OTU clustering methods12.  15 

In general, cohorts were variable in their microbiome structure at various taxonomic 

levels. This variation may be largely driven by the heterogeneity between populations and 

technical differences derived from using diverse collection methods, DNA extraction protocols 

and sequencing strategies (Tables S1, S3). Out of these factors, we identified that the DNA 

extraction method was a principal contributor to heterogeneity, with a non-redundant effect size 20 

of 37% on the microbiome variation (measured as average genus-abundance per cohort; stepwise 

distance-based redundancy analysis R2adjDNAext=0.22, Padj=1.5x10-3) (Table S4). The median 

richness at genus-level was significantly different across cohorts (Fig. 1F; pairwise Wilcoxon 

rank sum test; FDR<0.05), with the COMPULS and NTR cohorts exceeding the overall median 

of 90 genera by more than 15% and the HCHS/SOL cohort yielding the lowest median richness 25 

of 54 (SD:14) genera. The microbial Shannon diversity index also varied notably between study 

cohorts (Fig. 1G), with DanFund presenting the highest diversity index of 3.52 (SD:0.28), well 

above the PNP, HCHS/SOL, NGRC and KSCS cohorts, with median diversities below 2.5. The 

cohorts with the lowest and highest diversity, HCHS/SOL and DanFund, used specific DNA 
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extraction kits (NucleoSpin Soil and PowerLyzerPowerSoil, respectively) that were not used in 

any other cohorts, possibly contributing to their outlying alpha diversities (Table S3). In total, the 

different cohort ethnicities, 16S rRNA target-amplicons and DNA extraction methods accounted 

for 32% of the variance in the observed richness. 

Combining all samples (N=18,473) resulted in a total richness of 410 genus-level 5 

taxonomic groups that had a relative abundance higher than 0.1% in at least one cohort. This 

observed total richness appears to be below the estimated saturation level (Fig. 1B), suggesting 

that a further increase in sample size and a higher sequencing depth are needed to capture the 

total gut microbial diversity (Fig. 1D). As expected, the core microbiota (the number of bacterial 

taxa present in over 95% of individuals) decreased with the inclusion of additional cohorts (see 10 

Methods, Fig. 1C). The core microbiota comprise nine genera, of which seven were previously 

identified as such4, plus the genera Ruminococcus and Lachnoclostridium (Fig. 1E). Of these 

nine genera, the most abundant genus was Bacteroides (18.19% (SD:8.37)), followed by 

Faecalibacterium (6.28% (SD:2.24)), Blautia (3.48% (SD:2.76)) and Alistipes (2.93% 

(SD:1.47)). Among the European cohorts that compose the largest genetically and 15 

environmentally homogeneous cluster, the core microbiota also included Ruminiclostridium, 

Fusicatenibacter, Butyricicoccus and Eubacterium, genera which typically produce short-chain 

fatty acids16.  

Given the high heterogeneity of microbial composition across cohorts, we applied both 

per-cohort and whole study-filters for taxa inclusion in GWAS. Cohort-wise, the inclusion 20 

criteria for GWAS on bacterial abundance was that the taxon is present in more than 10% of 

samples from each cohort, while for the binary trait (bacterial presence vs absence) GWAS, a 

taxon had to be seen in at least 10% and maximally 90% of the cohort samples. Study-wide 

cutoffs for mbQTL mapping included an effective sample size of at least 3,000 samples and 

presence in at least three cohorts (see Methods). For mbBTLs, a mean abundance for a taxon of 25 

higher than 1% in the taxon-positive samples was required. This filtering resulted in 258 taxa 

being included in our analysis (Table S3).  
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Figure 1. Diversity of microbiome composition across the MiBioGen cohorts. (A) Sample 
size, ethnicity, genotyping array and 16S profiling method. The SHIP/SHIP-TREND and 
GEM_v12/GEM_v24/GEM_ICHIP subcohorts are combined in SHIP and GEM, respectively 
(see Methods), resulting in the 22 cohorts depicted in the figure. (B) Total richness (number of 5 
genera with mean abundance over 0.1%, i.e. 10 reads out of 10,000 rarefied reads) by number of 
cohorts investigated. (C) Number of core genera (genera present in >95% of samples from each 
cohort) by number of cohorts investigated. (D) Correlation of cohort sample size with total 
number of genera. (E) Unweighted mean relative abundance of core genera across the entire 
MiBioGen dataset. (F) Per-sample richness across the 22 cohorts. Asterisks indicate cohorts that 10 
differ significantly from the others (pairwise Wilcoxon rank sum test; FDR<0.05). (G) Diversity 
(Shannon index) across the 22 cohorts, with the DanFund and PNP cohorts presenting higher and 
lower diversity in relation to the other cohorts (pairwise Wilcoxon rank sum test; FDR<0.05). 
 

Heritability of microbial taxa and alpha diversity  15 

We performed the estimation of heritability (H2) of gut microbiome composition based on two 

twin cohorts included in our study (Table S5). The TwinsUK cohort, composed of 1,176 

samples, including 169 monozygotic (MZ) and 419 dizygotic (DZ) twin pairs, was used to 

estimate H2 using the ACE (additive genetic variance (A)/shared environmental factors (C)/ non-

shared factors plus error (E)) model. The NTR cohort (only MZ twins, N=312, 156 pairs) was 20 
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used to replicate the MZ intraclass correlation coefficient (ICC). None of the alpha diversity 

metrics (Shannon, Simpson and inverse Simpson) showed evidence for heritability (A<0.01, 

P=1). Among 159 bacterial taxa that were present in more than 10% of twin pairs (>17 MZ pairs, 

>41 DZ pairs in TwinsUK), 19 taxa showed evidence for heritability (Pnominal<0.05) (Fig. 2A). 

The ICC shows concordance between TwinsUK and NTR for these 19 bacterial taxa (R=0.25, 5 

P=0.0018, Fig. 2B).  

The SNP-based heritability calculated from mbQTL summary statistics using linkage 

disequilibrium (LD) score regression showed no bacterial taxa passing the significance threshold, 

given the number of 204 tested taxa (Z<3.67, Table S5). The results of the SNP-based 

heritability and twin-based heritability showed significant correlation across the tested taxa 10 

(R=0.24, P=9.6x10-4). 

 

 
Figure 2. Heritability of microbiome taxa and its concordance with mbQTL mapping. (A) 
Microbial taxa that showed significant heritability in the TwinsUK cohort (P<0.05). Taxa with at 15 
least one genome-wide significant (GWS) mbQTL hit are marked red. Only taxa present in more 
than 10% of pairs (>17 MZ pairs, >41 DZ pairs) are shown. (B) Correlation of monozygotic ICC 
between TwinsUK and NTR cohort. Only taxa with significant heritability (P<0.05) that are 
present in both TwinsUK and NTR are shown. Red and blue dots indicate bacterial taxa 
with/without GWS mbQTLs (P<5x10-8), respectively. (C) Correlation between heritability 20 
significance (-log10PH2 TwinsUK) and the number of loci associated with microbial taxon at 
relaxed threshold (PmbQTL<1x10-5). Taxa with at least one GWS-associated locus are marked red. 
Error bars represent 95% confidence intervals. 
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GWAS meta-analysis identified 30 loci associated with gut microbes at genome-

wide significance level 

First, we studied the genetic background of the alpha diversity (i.e. Simpson, inverse Simpson 

and Shannon diversity indices). We identified no significant hits in the meta-GWAS (P>5x10-8; 

Fig. S1, Table S6), which is in line with the observed lack of heritability for this trait in the twin 5 

cohorts.  

Next, we used two separate GWAS meta-analysis approaches to explore the effect of host 

genetics on the abundance levels or presence/absence of bacterial taxa in the gut microbiota. We 

performed a mbQTL analysis (mbQTL) of the genetic effect on relative bacterial abundance, 

only including samples with non-zero abundance (see Methods). We also performed a mbBTL 10 

analysis gauging the presence/absence of each bacterial taxon. For each taxon, the analysis was 

performed in each cohort separately. Results from the different cohorts were meta-analyzed 

using a weighted z-score method.  

In total, 18,473 samples with both microbiome 16S rRNA profiling data and imputed 

genetic data were included in the mbQTL mapping analysis. mbQTL mapping was performed for 15 

212 taxa (132 genera, 35 families, 20 orders, 16 classes and 9 phyla) that passed taxon inclusion 

cutoffs (Online Methods, Table S3). At genome-wide significance level (P<5x10-8) we identified 

mbQTLs for 457 SNPs mapping to 20 distinct genetic loci, associated with 27 taxa (Figs. 3, S2, 

Tables S7, S8). mbBTL mapping covered 173 taxa that passed taxon inclusion cutoffs (see 

Methods), including 105 genera, 31 families, 17 orders, 13 classes and 7 phyla. At P<5x10-8, 10 20 

loci were found to be associated with presence/absence of bacterial taxa using a three-stage 

procedure (Pearson correlation of SNP dosage with microbial presence/absence followed by 

meta-analysis and validation using logistic regression adjusted for covariates, see Methods) (Fig. 

3, Tables S7, S9). For one taxon, family Peptococcaceae, two independent mbBTLs were 

detected (Fig. 3, Table S7). The effect sizes of the leading SNPs at the 30 genome-wide 25 

significant loci were consistent across cohorts, with the exception of two mbQTLs presenting 

heterogeneity (Cochran’s Q P<0.05), including the LCT association with phylum Actinobacteria 

and a cluster of related taxa (class Actinobacteria, order Bifidobacteriales, family 

Bifidobacteriaceae and genus Bifidobacterium) and the association in 3q26.31 (FNDC3B, 

leading SNP rs4428215) to the genus Oxalobacter (Fig. S3). In both the mbQTL and mbBTL 30 
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mapping, the only association that passed strict study-wide significance cutoff (P<1.94x10-10 for 

the total of 258 taxa included in the analysis) was observed between variants mapping to the LCT 

locus and the genus Bifidobacterium and related taxa at higher ranks (from family 

Bifidobacteriaceae to phylum Actinobacteria).  

 5 
Figure 3. Manhattan plot of the mbTL mapping meta-analysis results. MbQTLs are indicated by 
letters. MbBTLs are indicated by numbers.  
 

Heterogeneity of microbiome composition reduces the power of genetic 

association analysis 10 

The substantial variation in taxonomic composition driven by technical factors, including 16S 

domain and DNA extraction kits, has a significant effect on microbiome GWAS. For example, 

the genus Bifidobacterium, which showed the strongest genetic effect, was present in 93% of the 
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samples in those cohorts that used the V4 domain of the 16S rRNA gene, but only in 78% and 

62% of the samples sequenced by V3-V4 and V1-V2 domains, respectively. Similar to the 16S 

domain, the DNA isolation method showed a strong influence on Bifidobacterium abundance, 

which ranged from 35.7% to 100% depending on the DNA isolation kit (Table S3). Another 

example is the large effect of the sequencing domain on the presence of the Archaea, in 5 

particular genus Methanobrevibacter. The proportion of Archaea-positive individuals in cohorts 

sequenced by V3-V4 or V4 domains was around 25-35%, similar to the prevalence estimated 

using shotgun metagenomics sequencing3, whereas Archaea were not detected at all in cohorts 

that used the V1-V2 domain. This lack of Archaea detection dramatically reduces the sample 

size for mbTL mapping and may well explain the lack of genome-wide significant mbTLs for 10 

this domain, despite its moderate heritability (H2=0.319). In general, half of the 212 bacterial 

taxa that passed either the quantitative or binary mbTL filtering cutoff showed substantial 

differences in abundance or presence between 16S domains or DNA extraction methods (Table 

S3). However, our design did not always allow us to distinguish the causes of heterogeneity 

since the methodological discrepancy overlapped biological variance between cohorts, including 15 

ethnicity, age, body mass index (BMI) and study design. For example, most of the cohorts that 

used the V1-V2 16S domain had German ancestry, whereas the group of cohorts that used the 

V3-V4 domain was very diverse and included several non-European or multi-ethnic cohorts 

(Table S1). Despite the expected effects of microbiome heterogeneity on the heterogeneity of 

mbTLs effects, we did not observe this correlation for either genome-wide significant or 20 

suggestive mbTLs (Fig. S4A). However, the taxa with higher inter-cohort variation and smaller 

effective sample size showed smaller numbers of genome-wide significant (P<5x10-8) and 

suggestive (P<1x10-5) associated loci (Figs. S4B, S4C). Thus, the microbiome heterogeneity 

reduced the power of analysis but didn’t induce heterogeneity of mbTL effects.  

LCT locus association to Bifidobacterium is age- and ethnicity-dependent 25 

Among the mbQTLs, the strongest association signal was seen for variants located in a large 

block of about 1.5Mb at 2q21.3, which includes the LCT gene and 12 other protein-coding genes. 

We found 317 SNPs (P<5x10-8) from this locus that were associated with the genus 

Bifidobacterium and higher taxonomic ranks (family Bifidobacteriaceae, order Bifidobacteriales, 
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class Actinobacteria, phylum Actinobacteria). This locus has been previously associated with the 

abundance of Bifidobacterium in Dutch8, UK7 and US17 cohorts. Previous studies have also 

shown a positive correlation of Bifidobacterium abundance with the intake of milk products, but 

only in individuals homozygous for the low-function LCT haplotype, thereby indicating the role 

of gene–diet interaction in regulating Bifidobacterium abundance8. In our study, the strongest 5 

association was seen for rs182549 (P=8.63x10-21), which is a perfect proxy for the functional 

LCT variant rs4988235 (r2=0.996, D’=1 in European populations). This association showed 

evidence for heterogeneity across cohorts (I2=58.4%, Cochran’s Q P=1.32x10-4). The leave-one-

out strategy showed that the cohort contributing the most to the detected heterogeneity was the 

COPSAC2010 cohort, which includes children with an age range of 4-6 years (Table S2), which 10 

pulled effect estimates towards zero at a younger age (Figs. 4A, 4B). Once this study was 

excluded from the meta-analysis, heterogeneity was reduced (I2=48.2%, Cochran’s Q P=0.004). 

A meta-regression analysis showed that age and ethnicity accounted for 11% of this 

heterogeneity (Pfixed=3.76x10-21, Prandom=6.5x10-8), and graphical representation of this meta-

regression (Fig. 4C) suggested a non-linear relationship between age and the mbQTL effect. The 15 

inclusion of quadratic and cubic terms of age in the model resulted in 42% of the heterogeneity 

being accounted for and showed evidence that the remaining residual heterogeneity was slight 

(Cochran’s Q P=0.03) (Fig. 4C).  

Following these observations, we decided to investigate the effect of age and ethnicity in 

the multi-ethnic GEM cohort, which has a comparable sample size for both infants and adults. In 20 

total, this cohort comprised 1,243 individuals, with an age range between 6 and 35 years, and 

nearly half of the participants 16 years or younger. Our analysis showed a significant SNP–age 

interaction on the level of Bifidobacterium abundance (P<0.05, see Methods). Those individuals 

homozygous for the rs182549*C/C genotype showed a higher abundance of the genus 

Bifidobacterium in the adult group, but not in the younger group (Fig. 4D). The age–genotype 25 

interaction was significant in the GEM_v12 and GEM_ICHIP subcohorts, both comprising 

European individuals, while the GEM_v24 cohort, mainly composed of individuals of different 

Israeli subethnicities (see Methods) who live in Israel, showed neither an mbQTL effect 

(BetaSNP=-0.002 [95%CI: -0.21, 0.21]) nor an interaction with age (P>0.1). The lack of an LCT 

mbQTL effect in adults was also replicated in another Israel cohort in the study (PNP, 481 30 

adults, BetaSNP=-0.20 [95%CI: -0.61, 0.20]). Thus the three cohorts that reported the lowest LCT 
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effect sizes were two cohorts of Israeli ethnicity volunteered in Israel (GEM_v24, PNP) and a 

child cohort (COPSAC, BetaSNP=-0.18 [95%CI: -0.36, -0.01]). 

 
Figure 4. Association of the LCT locus (rs182549) with the genus Bifidobacterium. (A) Forest 
plot of effect sizes of rs182549 and abundance of Bifidobacterium. (B) Meta-regression of the 5 
association of mean cohort age and mbQTL effect size. (C) Meta-regression analysis of the 
effect of linear, squared and cubic terms of age on mbQTL effect size. (D) Age-dependence of 
mbQTL effect size in the GEM cohort. Blue boxes include samples in the age range 6–16 years 
old. Red boxes include samples with age ≥17 years. The rs182549*T allele is a proxy of the 
rs4988235*C allele, which is associated to functional recessive hypolactasia. 10 

Bacteria-associated are genetically enriched for genes related to metabolism 

The remaining 29 loci that associated at the genome-wide significance level (P<5x10-8) did not 

pass our strict cutoff of correction for the number of tested taxa (P<1.46x10-10). However, these 

loci include functionally relevant variants (i.e. the FUT2 gene suggested in earlier studies 18), and 

overall showed concordance with the heritability of microbial taxa. Six out of nine taxa that 15 
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showed the strongest evidence for heritability in the TwinsUK cohort (P<0.01) have genome-

wide significant mbTLs (Fig. 2B): genus Turicibacter, family Peptostreptococcaceae and class 

Actinobacteria with its nested taxa: order Bifidobacteriales, family Bifidobacteriaceae and genus 

Bifidobacterium. For the taxa with genome-wide significant mbTLs, the number of independent 

loci associated with a relaxed threshold of 1x10-5 strongly correlated with heritability 5 

significance (R=0.73, P=3.3x10-6, Fig. 2C), suggesting that more mbTLs would be identified for 

this group of bacteria with a larger sample size.  

Of loci with an association that did not achieve our stringent study-wide threshold, but 

did pass the nominal genome-wide significance threshold, the strongest mbQTL included 66 

SNPs located in the UHRF1BP1L locus (12q23.1) that associated with the Streptococcus genus 10 

and Streptococcaceae family (rs11110281, P=1.46x10-9). Eight genes located in this locus were 

identified by FUMA as positional candidates, including the closest gene, UHRF1BP1L, which is 

expressed in adipose tissue, liver and skeletal muscle. None of these genes could be prioritized as 

a prominent functional candidate based on published data and co-expression networks 19. In the 

LLD cohort, the Streptococcus genus and Streptococcaceae family were positively correlated 15 

with stool levels of inflammatory markers chromogranin A (RSp=0.22, Padj=1.89x10-7) and 

calprotectin (RSp=0.16, Padj=1.4x10-3) and with the intake of proton pump inhibitors (PPI) 

(RSp=0.21, Padj=9.42x10-7) (Table S10).  

In mbQTL analysis, the FUT2-FUT1 locus was associated to the abundance of the 

Ruminococcus torques genus group, a genus from the Lachnospiraceae family. The associated 20 

leading SNP (rs35866622 for R. torques group, P=1.9x10-8) is a proxy for the functional variant 

rs601338, which introduces a stop-codon in FUT2 (r2=0.8; D’=0.9 in European populations, 

according to LDlink)20. The other proxy of the functional FUT2 SNP, rs281377 (r2=0.71, D’=1, 

European populations), showed association to the Ruminococcus gnavus genus group in the 

binary analysis, although this signal was slightly above the genome-wide significance threshold 25 

(P=5.79x10-8) (Table S9). FUT2 encodes the enzyme alpha-1,2-fucosyltransferase, which is 

responsible for the secretion of fucosylated mucus glycans in the gastrointestinal (GI) mucosa21. 

Individuals homozygous for the stop-codon (rs601338*A, non-secretors) do not express ABO 

antigens on the intestinal mucosa. We observed that the tagging rs35866622*T (non-secretor) 

allele was associated with a reduced abundance of the R. torques group and a decreased presence 30 

of the R. gnavus group. Ruminococcus sp. are specialized in the degradation of complex 
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carbohydrates22, thereby supporting a link between genetic variation in the FUT2 gene, levels of 

mucus glycans and the abundance of this taxa. When assessing the link between this variant and 

phenotypes in the LLD (N=875) and FGFP cohorts (N=2,259), the strongest correlation for the 

R. torques group was seen with fruit intake (LLD: RSp=-0.19, Padj=3.1x10-5; FGFP: RSp=-0.10, 

Padj=1.4x10-4, Tables S10, S11), which corresponds with the association of FUT2 with food 5 

preferences, as discussed in results of PheWAS (see below).  

Several other suggestive mbQTLs can be linked to genes potentially involved in host–

microbiome crosstalk. One of them includes eight SNPs in 9q21 (top-SNP rs602075, P=1.77x10-

8) that were associated with the abundance of Allisonella. The 9q21 locus includes PCSK5, RFK 

and GCNT1, of which RFK encodes the enzyme that catalyzes the phosphorylation of riboflavin 10 

(vitamin B2). The majority of gut bacteria can produce riboflavin23, which is used by bacteria for 

their metabolism but is also absorbed in the colon and used by the host for cellular respiration 

and immune defense24. Another associated locus on 10p13 (rs61841503, P=4.7x10-8), which 

affects the abundance of the heritable family Peptostreptococcaceae, is located in the CUBN 

gene, the receptor for the complexes of cobalamin (vitamin B12) with gastric intrinsic factor (the 15 

complex required for absorption of cobalamin). CUBN is expressed in the kidneys and the 

intestinal epithelium and is associated with B12-deficient anemia and albuminuria25. Cobalamin 

is required for host–microbial interactions26, and supplementation with cobalamin for seven days 

induced a substantial shift in the microbiota composition of an in vitro colon model27. These 

associations suggest that some members of the gut microbiome community might be affected by 20 

genetic variants that regulate the absorption and metabolism of vitamins B2 and B12. 

Among mbBTLs, the strongest evidence for association was seen for a block of 10 SNPs 

(rs7574352, p=1.48x10-9) associated with the family Peptococcaceae, a taxon negatively 

associated with stool levels of gut inflammation markers chromogranin A (LLD: RSp=-0.31, 

Padj=4.4x10-18, Table S10) and calprotectin (LLD: RSp=-0.11, Padj=0.058) and with ulcerative 25 

colitis (FGFP: RSp=-0.06, Padj=0.09, Table S11). The association block is located in the 

intergenic region in the proximity (220kb apart) of IRF1, which is involved in insulin resistance 

and susceptibility to type 2 diabetes (T2DM)28. Another genus, Turicibacter, which was the most 

heritable taxon determined by the twin analysis, was associated with rs555115 (P=3.34x10-8), 

which is located in IGSF21, an immunoglobulin superfamily gene. Turicibacter is associated 30 

with decreased stool frequency and higher tea intake in the LLD cohort (Table S10) and is 
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negatively associated with smoking in the FGFP (Table S11). The genus Anaerostipes was 

observed to be linked with rs17319026 (P=4.67x10-8), located in carboxylesterase 5A (CES5A), 

which is involved in xenobiotic metabolism. Finally, the prevalence of the Lachnospiraceae 

family was associated with SNPs located in the olfactory receptor family 1 subfamily F member 

1 (OR1F1). Although no associations have been reported between this SNP or the bacteria and 5 

food-related phenotypes, this gene is one of the olfactory receptors that regulates the perception 

of smell, which, in turn, might influence food preferences. 

mbTLs are enriched for genes expressed in intestine and brain and associated with 

metabolic phenotypes 

To systematically explore the potential functions of the identified mbTLs, we performed a 10 

functional mapping analysis, GSEA and PheWAS, followed by Bayesian colocalization analysis 

and genetic correlation of Bifidobacterium abundance to various traits. FUMA annotation 

(Functional Mapping and Annotation of GWAS, see Methods) of associated loci returned 130 

positional and eQTL genes from 20 mbQTLs. GSEA on the 130 positional and eQTL genes 

suggested the 20 mbQTL loci to be enriched for genes expressed in the small intestine (terminal 15 

ileum) and brain (substania nigra) (Figs. S5A, B). The positional candidates for mbBTLs did not 

show any enrichment in GSEA analysis.  

To systematically assess the biological outcomes of the mbTLs, we looked up the 30 

mbTLs in the summary statistics for 4,155 complex traits and diseases, using the GWAS 

ATLAS29. First, we performed the analysis on single SNP overlap; next, we performed a gene-20 

based analysis, and finally a phenotype domain enrichment analysis among mbTL hits. In the 

single SNP analysis of 30 mbTLs, five were associated with one or more phenotypes with 

P<5x10-8 (Table S12). The loci associated with the most phenotypes were: rs182549 (LCT) and 

rs35866622 (FUT1/ FUT2), followed by rs4428215 (FNDC3B) from the mbQTLs and 

rs11647069 (PMFBP1) and rs9474033 (PKHD1) from the mbBTLs.  25 

Rs182549 (LCT, Bifidobacterium) was associated with multiple dietary and metabolic 

phenotypes, and the causal involvement of the SNP across pairs of traits was confirmed by 

colocalization test (PP.H4.abf > 0.9) for 58 out of 60 phenotypes. The rs182549*C allele, which 

predisposes to lactose intolerance, was negatively associated with obesity30 and positively 
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associated with several nutritional phenotypes, T2DM diagnosis (OR=1.057 [95%CI:1.031, 

1.085], P=1.74x10-5) and family history of T2DM (paternal: OR=1.054 [95%CI:1.035, 1.073], 

P=1.41x10-8; maternal: OR=1.035 [95%CI:1.016, 1.053], P=0.0002, siblings: OR=1.03 

[95%CI:1.009, 1.052]) in the UK Biobank cohort29. Moreover, the functional LCT SNP 

rs4988235 variant was in strong linkage disequilibrium with top mbQTL hit and associated with 5 

1,5-anhydroglucitol (P=4.23x10-28)31, an indicator of glycemic variability32.  

Rs35866622*C (proxy of the secretor allele in FUT1/FUT2 locus) was positively 

associated with fish intake and height. The secretor allele was negatively associated with the risk 

of cholelithiasis and Crohn’s disease, alcohol intake frequency, high cholesterol and waist-to-hip 

ratio (adjusted for BMI) with PP.H4.abf > 0.9. The strongest genetic correlation of 10 

Bifidobacterium was with raw vegetable intake (rg=0.36, P=0.0018), although this correlation 

was not statistically significant after correction for multiple testing. The gene-based analysis 

indicated a strong link of the LCT locus with metabolic traits (P=5.7x10-9 for BMI), whereas the 

FUT1/FUT2 locus showed to contain several nutritional (P=1.26x10-20 for oily fish intake), 

immune-related (P=1.73x10-12 for mean platelet volume), gastrointestinal (cholelithiasis, 15 

P=8.77x10-14) and metabolic signals (high cholesterol, P=1.13x10-13) (Fig. 5, Table S13). 

Next, we performed a phenotype domain enrichment analysis (described in Methods) to 

see if any of the phenotype domains were enriched among the PheWAS signals (Fig. 5). Overall, 

the top loci were enriched with signals associated with the metabolic domain supported by 10 

mbTLs, followed by nutritional, cellular, immunological, psychiatric, ophthalmological and 20 

respiratory traits and the activities domain (Fig. 5, Table S14). 
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Figure 5. Phenome-wide association study (PheWAS) domain enrichment analysis. The 
analysis covered top-SNPs from 30 mbTLs and 20 phenotype domains. Three thresholds for 
multiple testing were used: 0.05, 8.3x10-5 (Bonferroni adjustment for number of phenotypes and 5 
genotypes studied) and 5x10-8 (an arbitrary genome-wide significance threshold). Only 
categories with at least one significant enrichment signal are shown. 
 

Mendelian randomization (MR) analysis 

To identify the potential causal links between gut microbial taxa and phenotypes, we performed 10 

bi-directional two-sample MR analyses using the TwoSampleMR package33. We focused on two 

groups of phenotypes: (1) diseases, including autoimmune, cardiovascular, metabolic and 

psychiatric diseases and (2) nutritional phenotypes. 
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Figure 6. Mendelian randomization (MR) analysis. The X-axes show the SNP-exposure effect 
and the Y-axes show the SNP-outcome effect. The figures show only the significant results 
(Padj<0.05). Blue dots represent microbial trait as exposure, red dots used in the graphs with 
microbial trait as outcome. (A) MR analysis of microbiome taxa abundance with diseases. (B) 5 
MR analysis of microbiome taxa abundance with dietary preference factors. 
 

We used GWAS summary statistics of complex traits in conjunction with our meta-

analysis results (30 mbTL loci) to find complex traits (exposure) that suggest a causal 

relationship to microbiome composition (outcome) and, in the reverse direction, to find bacterial 10 

taxa (exposure) that affect complex traits (outcome). The complexity of mechanisms by which 

host genetics affect microbiome composition and the limited impact of genetic variants on 

microbial taxa variability require caution when performing and interpreting causality estimation 

using MR analysis34. We therefore carried out several sensitivity analyses and excluded any 

results that showed evidence of being confounded by pleiotropy (see Methods).  15 

When using complex traits as the exposure, we found two diseases that showed evidence 

for a causal relationship with microbiome composition (based on a multiple testing adjusted P-

value, PBHadj<0.05, Table S15). Specifically, our MR results suggest that doubling the genetic 
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liability of asthma increases the abundance of the genus Candidatus Soleaferrea by 0.28 standard 

deviations (SD) (standard error (SE) of the estimate=0.01, PBHadj=0.01, Table S15) and that 

doubling genetic liability of celiac disease increases the abundance of the genus Enterorhabdus 

by 0.06 SD (SE=0.01, PBHadj=0.006, see Table S15). In line with our observations, members of 

the Enterorhabdus genus have been shown to play a role in gluten metabolism35. In the reverse 5 

direction, with bacterial exposure affecting disease outcome, we found evidence that a higher 

abundance of the class Actinobacteria may have a protective effect on ulcerative colitis 

(OR=0.30 [95%CI: 0.23-0.38] for each SD increase in bacteria abundance, PBHadj=0.003) (Fig 

6A). 

Next, we assessed the causal direction between dietary preference factors from the UK 10 

Biobank and the abundance of gut microbial taxa. While instrument strength for MR analysis 

was comparable for both microbiome and nutritional phenotypes (median F statistic per trait was 

36 and 41, respectively, Table S15), there was no evidence of causal relationships leading from 

bacterial taxa to dietary preference factors. In the opposite direction, four nutritional phenotypes 

showed evidence of a causal effect on the abundance of several taxa. Doubling the genetic 15 

liability of avoiding wheat products and of consuming hot drinks was associated with an 5.41 SD 

increase and an 0.95 SD decrease in the abundance of Streptococcus, respectively (SE=1.21, 

PBHadj=2.7x10-3 and SE=0.27, PBHadj=0.39). Doubling the genetic liability of consuming 

skimmed milk was associated with a 3.36 SD increase in the abundance of the family 

Ruminococcaceae UCG013 (SE=0.88, PBHadj=0.01), while each SD increase in cheese intake 20 

frequency was associated with 1.2 increase in abundance of Peptococcus (SE=0.31, 

PBHadj=1.1x10-2) (Fig. 6B). Several interesting associations were detected at a more relaxed 

threshold (PBHadj<0.1), including the potential effect of alcohol intake frequency on increased 

abundance of Ruminococcus1 (0.37 SD for each SD increase in intake frequency, SE=0.12, 

PBHadj=0.09), a causal link that has also been observed in animals36. 25 

Discussion 

We report here on the relationship between host genetics and gut microbiome composition in 

18,473 individuals from 25 population-based cohorts of European, Hispanic, Middle Eastern, 

Asian and African ancestries. We have estimated the heritability of the human gut microbiome 
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and the effect of host genetics on the presence and abundance of individual microbial taxa 

(mbTL analysis) profiled using 16S rRNA gene sequencing. We studied the heterogeneity of the 

mbTLs signals and characterized the impact of technical and biological factors on their effect 

size. Lastly, we explored the relevance of the identified mbTLs to human disease and health-

related traits using gene-set enrichment analysis, phenome-wide association studies and 5 

Mendelian randomization approaches.  

Our large, multi-ethnic study allowed for an informative investigation of the human gut 

microbiome, providing a snapshot of its composition across different ethnicities and geographic 

locations. However, our analyses were complicated by two factors: the large heterogeneity in the 

data that reflects biological differences in the cohorts’ ethnicities and ages and the 10 

methodological effects introduced by the different approaches used for collecting and processing 

samples. Overall, eight different methods were used to extract DNA from fecal samples, which 

strongly influenced the proportions of identified bacteria13. In addition, three different variable 

regions of 16S rRNA gene were chosen for amplification, which also vastly misrepresent 

microbiome composition37. Together with the variation in participants’ ethnicity, age and BMI 15 

across cohorts, this led to a remarkable variation in microbiome richness, diversity and 

composition. These variations are likely also influenced by differences in diet, medication, 

lifestyle and other factors known to affect the microbiome composition3,4, but these data were 

not available for all the cohorts and therefore not included in our analysis. Of the 410 genera 

identified in all cohorts with a presence rate higher than 1%, only nine genera were found in 20 

more than 95% of samples; these form the core microbiome. This combination of technical and 

biological heterogeneity led to the substantial variation seen in the microbiome composition, 

which reduced the power of mbTL analysis. Despite the large total sample size of 18,473 

participants, the actual power to detect taxon-specific mbQTLs was limited by the taxon 

presence rate; excluding taxa with a sample size less than 3,000 individuals resulted in 212 taxa 25 

for mbQTL and 173 taxa for mbBTL mapping.  

We performed three types of genetic analysis of microbiome composition: we analyzed 

the effect of genetics on alpha diversity, bacterial abundance and bacterial presence. We did not 

identify a genetic effect on bacterial diversity, which was expected given the lack of detectable 

heritability of this trait. Thirty taxon-specific mbTLs were identified at the genome-wide 30 

significance level of 5x10-8. Most of them (20 out of 30) affected taxa abundance, while the 
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remaining 10 affected taxa presence. Even with our large sample size, the number of mbTLs 

revealed and their significance is rather modest. Despite the number of microbial traits (258 taxa) 

included in the study, only one locus passed a conservative study-wide significance threshold of 

P<1.94x10-10: the association of the LCT locus with Bifidobacterium (P=8.63x10-21). The 

statistical significance of the top-SNPs for the rest of the mbTLs lay in the suggestive zone, 5 

between a study-wide threshold of P<1.94x10-10 and a nominal genome-wide significance of 

P<5x10-8. However, our mbTL mapping results are concordant with heritability analyses: the 

heritable taxa tend to have more genome-wide significant loci and suggestively associated loci, 

and twin-based heritability is significantly correlated with SNP-based heritability. Our results 

confirm that only a subset of gut bacteria are heritable and that the genetic architecture affecting 10 

the abundance of heritable taxa is complex and polygenic. They also confirm the claim that the 

overall impact of host genetics on gut microbiome composition is rather modest compared to the 

effect of the environment5. 

The large heterogeneity in microbiome composition we have revealed points to the need 

to formulate guidelines for future microbiome GWAS. Standardized methodology should be 15 

aspired to, not only in computational analysis pipelines, but also in sample collection and 

storage, and especially DNA extraction and 16S PCR primers. Furthermore, we would advise 

researchers to aim for homogeneity in participants’ ages and ethnicities, given the age- and 

ethnicity/geography-dependent mbQTL heterogeneity of Bifidobacterium and Oxalobacter 

mbQTLs. Finally, the sample size and sequencing depth needs to be further increased in order to 20 

capture a wider range of taxa with lower abundance and prevalence.  

The strongest association determined in this study was that between the LCT locus and 

the Bifidobacterium genus. It has been shown that the functional SNP in the LCT locus, 

rs4988235, determines not only the abundance of the Bifidobacterium genus, but also the 

strength of association between the genus and milk/dairy product intake8. Here, we showed the 25 

age-dependent nature of the LCT-Bifidobacterium association – the effect is weaker in children 

and adolescents and in populations of non-European ancestry, which is in line with current 

knowledge on lactose intolerance38,39, while the strongest effect was observed in the HCHS/SOL 

cohort which comprises individuals of Hispanic/Latin American ethnicity and shows the highest 

prevalence of the rs182549*C/C genotype (683 out of 1,097 individuals). The lactose intolerant 30 

allele of the top LCT SNP (rs182549*C, associated with increased abundance of Bifidobacteria) 
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was also associated with increased T2DM diagnosis and risk in family members in the UK 

Biobank study29. On the other hand, the T (lactose tolerant) allele of the same SNP is associated 

with increased BMI and waist circumference, but not with circulating concentration of glucose or 

insulin. Thus, the possible association between lactose intolerance and T2DM might be mediated 

through lower calcium intake, which is known to increase the risk of T2DM40, rather than 5 

through BMI. 

To explore the potential functional effects of mbTLs on health-related traits, we used 

GSEA, PheWAS and MR approaches. The GSEA indicated enrichment of mbQTLs for genes 

expressed in the small intestine and brain. Both tissues are known to be strongly connected to 

microbiome composition, so our results support the role of the gut microbiome on the gut-brain 10 

axis, and likely in gastrointestinal, brain and mood disorders, which have been the focus of 

several studies, e.g.41–43. The PheWAS analysis revealed a significant overlap between the 

genetic effect on gut microbes and a broad range of host phenotypes, including metabolic traits 

(6 mbTLs), cell signaling traits (3 mbTLs), immunological traits (2 mbTLs), nutritional 

phenotypes (2 mbTLs), psychiatric traits (2 mbTLs) and other phenotype groups (Table S14). 15 

The PheWAS enrichment analysis indicated that genetic determinants of bacterial abundance are 

also involved in regulating host metabolism, particularly for obesity-related traits. Among the 

interesting bacteria, earlier studies have linked the relative abundances of Ruminococcus44, 

Lachnospiraceae45 and Ruminococcaceae46 to obesity.  

Genetic anchors to microbiome variation also allow for estimation of causal links with 20 

complex traits through MR approaches47–49. Our results indicate that some autoimmune diseases, 

in particular asthma and celiac disease, may affect the abundance of specific bacterial taxa. 

Moreover, our MR results provide evidence of a protective effect from Actinobacteria in 

ulcerative colitis, a link that was proposed in several cross-sectional studies that reported an 

increased abundance of Actinobacteria in healthy individuals compared to IBD patients50,51, 25 

although these results were not always consistent across studies52,53. Consistent with our 

observation, the most abundant species from the class Actinobacteria, Bifidobacterium, was 

previously shown to have a beneficial effect on ulcerative colitis in a clinical trial52,54.  

Finally, we observed that nutritional phenotypes are also causally linked to changes in 

bacteria abundance, but not vice versa. However, it is important to realize that there are likely to 30 

be other causal relationships between bacteria and phenotypes that we were unable to detect due 
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to the limited power of the microbiome GWAS, the modest size of a genetic component for 

either the bacteria or the nutritional phenotype, or the presence of more complex bi-directional 

relationships that are difficult to detect with the current data. Nonetheless, our results generally 

support the hypothesis that the genetic effect on the microbiome composition can be mediated by 

diet and is affected by diseases. The PheWAS analysis indicated that SNPs associated with the 5 

LCT and FUT2 loci are also associated to dietary preference factors, including fish, cereal, bread, 

alcohol, vegetable and ground coffee intake, along with other diet-related phenotypes. MR 

analysis indicated a causal effect of dietary preference factors on several bacteria, but not vice 

versa; we did not identify any bacteria that affect nutritional phenotypes. The genes found to be 

associated with mbTLs also included olfactory receptors and genes involved in the absorption 10 

and metabolism of B2 and B12 vitamins, such as RFK, CUBN and OR1F1. It has been proposed 

that the genetic determinants of dietary factors affect the gut microbiome composition55; our 

results confirm this hypothesis and we have indicated links between certain nutritional categories 

and specific microbial taxa. 

In summary, here we report the largest study to date to investigate the genetics of human 15 

microbiome across multiple ethnicities. The observed heterogeneity and high inter-individual 

variability of the microbiome substantially reduces the statistical power of the analysis. 

Consequently, similar to early GWAS studies, we reported limited number of associated loci. 

Nevertheless, our results point to causal relationships between specific loci and bacterial taxa and 

health-related traits. Heritability estimates suggest that these associations are likely part of a 20 

larger spectrum, currently undetectable in the existing sample size. This warrants future studies 

that should take advantage of larger sample sizes, harmonized protocols and more advanced 

microbiome analysis methods, including metagenomics sequencing instead of 16S profiling and 

quantifying bacterial cell counts. Given the essential role of the gut microbiome in the 

metabolism of food and drugs, our results contribute to the development of personalized nutrition 25 

and medication strategies based on both host genomics and microbiome data. 

Acknowledgements 

Authors declare no conflict of interest.  

We thank Jackie Senior and Kate McIntyre for editing the manuscript.  

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 28, 2020. ; https://doi.org/10.1101/2020.06.26.173724doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.26.173724
http://creativecommons.org/licenses/by-nc-nd/4.0/


26 

 

The funding and acknowledgements per cohorts are given in Cohort Acknowledgements section 

of Supplementary materials.  

All GWAS summary statistics is available on www.mibiogen.org built using MOLGENIS 

framework56.  

References 5 

1. Sender, R., Fuchs, S. & Milo, R. Revised Estimates for the Number of Human and 
Bacteria Cells in the Body. PLOS Biol. 14, e1002533 (2016). 

2. Gilbert, J. A. et al. Current understanding of the human microbiome. Nat. Med. 24, 392–
400 (2018). 

3. Zhernakova, A. et al. Population-based metagenomics analysis reveals markers for gut 10 
microbiome composition and diversity. Science 352, 565–569 (2016). 

4. Falony, G. et al. Population-level analysis of gut microbiome variation. Science 352, 560–
564 (2016). 

5. Rothschild, D. et al. Environment dominates over host genetics in shaping human gut 
microbiota. Nature 555, 210–215 (2018). 15 

6. Goodrich, J. K. et al. Human Genetics Shape the Gut Microbiome. Cell 159, 789–799 
(2014). 

7. Goodrich, J. K. et al. Genetic Determinants of the Gut Microbiome in UK Twins. Cell 
Host Microbe 19, 731–743 (2016). 

8. Bonder, M. J. et al. The effect of host genetics on the gut microbiome. Nat. Genet. 48, 20 
1407–1412 (2016). 

9. Wang, J. et al. Genome-wide association analysis identifies variation in vitamin D 
receptor and other host factors influencing the gut microbiota. Nat. Genet. 48, 1396–1406 
(2016). 

10. Turpin, W. et al. Association of host genome with intestinal microbial composition in a 25 
large healthy cohort. Nat. Genet. 48, 1413–1417 (2016). 

11. Kurilshikov, A., Wijmenga, C., Fu, J. & Zhernakova, A. Host Genetics and Gut 
Microbiome: Challenges and Perspectives. Trends Immunol. 38, (2017). 

12. Wang, J. et al. Meta-analysis of human genome-microbiome association studies: the 
MiBioGen consortium initiative. Microbiome 6, 101 (2018). 30 

13. Sinha, R. et al. Assessment of variation in microbial community amplicon sequencing by 
the Microbiome Quality Control (MBQC) project consortium. Nat. Biotechnol. 35, 1077–
1086 (2017). 

14. Sinha, R., Abnet, C. C., White, O., Knight, R. & Huttenhower, C. The microbiome quality 
control project: baseline study design and future directions. Genome Biol. 16, 276 (2015). 35 

15. Vandeputte, D., Tito, R. Y., Vanleeuwen, R., Falony, G. & Raes, J. Practical 
considerations for large-scale gut microbiome studies. FEMS Microbiol. Rev. 41, S154–
S167 (2017). 

16. Louis, P., Young, P., Holtrop, G. & Flint, H. J. Diversity of human colonic butyrate-
producing bacteria revealed by analysis of the butyryl-CoA:acetate CoA-transferase gene. 40 
Environ. Microbiol. 12, 304–314 (2010). 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 28, 2020. ; https://doi.org/10.1101/2020.06.26.173724doi: bioRxiv preprint 

http://www.mibiogen.org/
https://doi.org/10.1101/2020.06.26.173724
http://creativecommons.org/licenses/by-nc-nd/4.0/


27 

 

17. Blekhman, R. et al. Host genetic variation impacts microbiome composition across human 
body sites. Genome Biol. 16, 191 (2015). 

18. Zhernakova, D. V et al. Individual variations in cardiovascular-disease-related protein 
levels are driven by genetics and gut microbiome. Nat. Genet. 50, 1524–1532 (2018). 

19. Deelen, P. et al. Improving the diagnostic yield of exome- sequencing by predicting gene–5 
phenotype associations using large-scale gene expression analysis. Nat. Commun. 10, 
2837 (2019). 

20. Machiela, M. J. & Chanock, S. J. LDlink: a web-based application for exploring 
population-specific haplotype structure and linking correlated alleles of possible 
functional variants. Bioinformatics 31, 3555–7 (2015). 10 

21. Kashyap, P. C. et al. Genetically dictated change in host mucus carbohydrate landscape 
exerts a diet-dependent effect on the gut microbiota. Proc. Natl. Acad. Sci. 110, 17059–
17064 (2013). 

22. Crost, E. H. et al. Mechanistic Insights Into the Cross-Feeding of Ruminococcus gnavus 
and Ruminococcus bromii on Host and Dietary Carbohydrates. Front. Microbiol. 9, 2558 15 
(2018). 

23. Magnúsdóttir, S., Ravcheev, D., de Crécy-Lagard, V. & Thiele, I. Systematic genome 
assessment of B-vitamin biosynthesis suggests co-operation among gut microbes. Front. 
Genet. 6, (2015). 

24. Yoshii, K., Hosomi, K., Sawane, K. & Kunisawa, J. Metabolism of Dietary and Microbial 20 
Vitamin B Family in the Regulation of Host Immunity. Front. Nutr. 6, (2019). 

25. Haas, M. E. et al. Genetic Association of Albuminuria with Cardiometabolic Disease and 
Blood Pressure. Am. J. Hum. Genet. 103, 461–473 (2018). 

26. Rowley, C. A. & Kendall, M. M. To B12 or not to B12: Five questions on the role of 
cobalamin in host-microbial interactions. PLOS Pathog. 15, e1007479 (2019). 25 

27. Xu, Y. et al. Cobalamin (Vitamin B12) Induced a Shift in Microbial Composition and 
Metabolic Activity in an in vitro Colon Simulation. Front. Microbiol. 9, (2018). 

28. Gysemans, C. et al. Interferon regulatory factor-1 is a key transcription factor in murine 
beta cells under immune attack. Diabetologia 52, 2374–2384 (2009). 

29. Watanabe, K. et al. A global overview of pleiotropy and genetic architecture in complex 30 
traits. Nat. Genet. 51, 1339–1348 (2019). 

30. Nicklas, T. A. et al. Self-perceived lactose intolerance results in lower intakes of calcium 
and dairy foods and is associated with hypertension and diabetes in adults. Am. J. Clin. 
Nutr. 94, 191–8 (2011). 

31. Shin, S.-Y. et al. An atlas of genetic influences on human blood metabolites. Nat. Genet. 35 
46, 543–550 (2014). 

32. Suhre, K. et al. Metabolic Footprint of Diabetes: A Multiplatform Metabolomics Study in 
an Epidemiological Setting. PLoS One 5, e13953 (2010). 

33. Hemani, G. et al. The MR-Base platform supports systematic causal inference across the 
human phenome. Elife 7, (2018). 40 

34. Wade, K. H. & Hall, L. J. Improving causality in microbiome research: can human genetic 
epidemiology help? Wellcome Open Res. 4, 199 (2019). 

35. Zhang, L. et al. Effects of Gliadin consumption on the Intestinal Microbiota and 
Metabolic Homeostasis in Mice Fed a High-fat Diet. Sci. Rep. 7, 44613 (2017). 

36. Posteraro, B. et al. Liver Injury, Endotoxemia, and Their Relationship to Intestinal 45 
Microbiota Composition in Alcohol-Preferring Rats. Alcohol. Clin. Exp. Res. 42, 2313–

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 28, 2020. ; https://doi.org/10.1101/2020.06.26.173724doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.26.173724
http://creativecommons.org/licenses/by-nc-nd/4.0/


28 

 

2325 (2018). 
37. Brooks, J. P. et al. The truth about metagenomics: quantifying and counteracting bias in 

16S rRNA studies. BMC Microbiol. 15, 66 (2015). 
38. Coluccia, E. et al. Congruency of Genetic Predisposition to Lactase Persistence and 

Lactose Breath Test. Nutrients 11, 1383 (2019). 5 
39. Lapides, R. A. & Savaiano, D. A. Gender, Age, Race and Lactose Intolerance: Is There 

Evidence to Support a Differential Symptom Response? A Scoping Review. Nutrients 10, 
(2018). 

40. Pittas, A. G., Lau, J., Hu, F. B. & Dawson-Hughes, B. The Role of Vitamin D and 
Calcium in Type 2 Diabetes. A Systematic Review and Meta-Analysis. J. Clin. 10 
Endocrinol. Metab. 92, 2017–2029 (2007). 

41. Valles-Colomer, M. et al. The neuroactive potential of the human gut microbiota in 
quality of life and depression. Nat. Microbiol. 4, (2019). 

42. Lloyd-Price, J. et al. Multi-omics of the gut microbial ecosystem in inflammatory bowel 
diseases. Nature 569, 655–662 (2019). 15 

43. Vich Vila, A. et al. Gut microbiota composition and functional changes in inflammatory 
bowel disease and irritable bowel syndrome. Sci. Transl. Med. 10, eaap8914 (2018). 

44. Ottosson, F. et al. Connection Between BMI-Related Plasma Metabolite Profile and Gut 
Microbiota. J. Clin. Endocrinol. Metab. 103, 1491–1501 (2018). 

45. Tun, H. M. et al. Roles of Birth Mode and Infant Gut Microbiota in Intergenerational 20 
Transmission of Overweight and Obesity From Mother to Offspring. JAMA Pediatr. 172, 
368–377 (2018). 

46. Finnicum, C. T. et al. Metataxonomic Analysis of Individuals at BMI Extremes and 
Monozygotic Twins Discordant for BMI. Twin Res. Hum. Genet. 21, 203–213 (2018). 

47. Sanna, S. et al. Causal relationships among the gut microbiome, short-chain fatty acids 25 
and metabolic diseases. Nat. Genet. 51, 600–605 (2019). 

48. Jia, J. et al. Assessment of Causal Direction Between Gut Microbiota–Dependent 
Metabolites and Cardiometabolic Health: A Bidirectional Mendelian Randomization 
Analysis. Diabetes 68, 1747–1755 (2019). 

49. Yang, Q., Lin, S. L., Kwok, M. K., Leung, G. M. & Schooling, C. M. The Roles of 27 30 
Genera of Human Gut Microbiota in Ischemic Heart Disease, Type 2 Diabetes Mellitus, 
and Their Risk Factors: A Mendelian Randomization Study. Am. J. Epidemiol. 187, 1916–
1922 (2018). 

50. Rinninella, E. et al. What is the Healthy Gut Microbiota Composition? A Changing 
Ecosystem across Age, Environment, Diet, and Diseases. Microorganisms 7, 14 (2019). 35 

51. Plichta, D. R., Graham, D. B., Subramanian, S. & Xavier, R. J. Therapeutic Opportunities 
in Inflammatory Bowel Disease: Mechanistic Dissection of Host-Microbiome 
Relationships. Cell 178, 1041–1056 (2019). 

52. Frank, D. N. et al. Molecular-phylogenetic characterization of microbial community 
imbalances in human inflammatory bowel diseases. Proc. Natl. Acad. Sci. 104, 13780–40 
13785 (2007). 

53. Morgan, X. C. et al. Dysfunction of the intestinal microbiome in inflammatory bowel 
disease and treatment. Genome Biol. 13, R79 (2012). 

54. Tursi, A. et al. Treatment of Relapsing Mild-to-Moderate Ulcerative Colitis With the 
Probiotic VSL#3 as Adjunctive to a Standard Pharmaceutical Treatment: A Double-Blind, 45 
Randomized, Placebo-Controlled Study. Am. J. Gastroenterol. 105, 2218–2227 (2010). 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 28, 2020. ; https://doi.org/10.1101/2020.06.26.173724doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.26.173724
http://creativecommons.org/licenses/by-nc-nd/4.0/


29 

 

55. Goodrich, J. K., Davenport, E. R., Waters, J. L., Clark, A. G. & Ley, R. E. Cross-species 
comparisons of host genetic associations with the microbiome. Science 352, 29–32 (2016). 

56. Swertz, M. A. et al. The MOLGENIS toolkit: rapid prototyping of biosoftware at the push 
of a button. BMC Bioinformatics 11, S12 (2010). 

57. Quast, C. et al. The SILVA ribosomal RNA gene database project: improved data 5 
processing and web-based tools. Nucleic Acids Res. 41, D590–D596 (2012). 

58. Cole, J. R. et al. The Ribosomal Database Project: improved alignments and new tools for 
rRNA analysis. Nucleic Acids Res. 37, D141-5 (2009). 

59. McCarthy, S. et al. A reference panel of 64,976 haplotypes for genotype imputation. Nat. 
Genet. 48, 1279–1283 (2016). 10 

60. Howie, B., Marchini, J. & Stephens, M. Genotype Imputation with Thousands of 
Genomes. G3 1, 457–470 (2011). 

61. Howie, B., Fuchsberger, C., Stephens, M., Marchini, J. & Abecasis, G. R. Fast and 
accurate genotype imputation in genome-wide association studies through pre-phasing. 
Nat. Genet. 44, 955–959 (2012). 15 

62. Carmi, S. et al. Sequencing an Ashkenazi reference panel supports population-targeted 
personal genomics and illuminates Jewish and European origins. Nat. Commun. 5, 4835 
(2014). 

63. Deelen, P. et al. Genotype harmonizer: automatic strand alignment and format conversion 
for genotype data integration. BMC Res. Notes 7, 901 (2014). 20 

64. Westra, H.-J. et al. Systematic identification of trans eQTLs as putative drivers of known 
disease associations. Nat. Genet. 45, 1238–1243 (2013). 

65. Zhu, Z. et al. Integration of summary data from GWAS and eQTL studies predicts 
complex trait gene targets. Nat. Genet. (2016). doi:10.1038/ng.3538 

66. Cochran, W. G. The Combination of Estimates from Different Experiments. Biometrics 25 
10, 101 (1954). 

67. Willer, C. J., Li, Y. & Abecasis, G. R. METAL: fast and efficient meta-analysis of 
genomewide association scans. Bioinformatics 26, 2190–2191 (2010). 

68. Watanabe, K., Taskesen, E., van Bochoven, A. & Posthuma, D. Functional mapping and 
annotation of genetic associations with FUMA. Nat. Commun. 8, 1826 (2017). 30 

69. Auton, A. et al. A global reference for human genetic variation. Nature 526, 68–74 
(2015). 

70. Võsa, U. et al. Unraveling the polygenic architecture of complex traits using blood eQTL 
metaanalysis. bioRxiv 447367 (2018). doi:10.1101/447367 

71. Pers, T. H., Timshel, P. & Hirschhorn, J. N. SNPsnap: a Web-based tool for identification 35 
and annotation of matched SNPs. Bioinformatics 31, 418–420 (2015). 

72. Bulik-Sullivan, B. et al. An atlas of genetic correlations across human diseases and traits. 
Nat. Genet. 47, 1236–41 (2015). 

73. Giambartolomei, C. et al. Bayesian test for colocalisation between pairs of genetic 
association studies using summary statistics. PLoS Genet. 10, e1004383 (2014). 40 

74. Qin, J. et al. A metagenome-wide association study of gut microbiota in type 2 diabetes. 
Nature 490, 55–60 (2012). 

75. Karlsson, F. H. et al. Gut metagenome in European women with normal, impaired and 
diabetic glucose control. Nature 498, 99–103 (2013). 

76. Koeth, R. a et al. Intestinal microbiota metabolism of l-carnitine, a nutrient in red meat, 45 
promotes atherosclerosis. Nat. Med. 19, 576–85 (2013). 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 28, 2020. ; https://doi.org/10.1101/2020.06.26.173724doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.26.173724
http://creativecommons.org/licenses/by-nc-nd/4.0/


30 

 

77. Coit, P. & Sawalha, A. H. The human microbiome in rheumatic autoimmune diseases: A 
comprehensive review. Clin. Immunol. 170, 70–79 (2016). 

78. Vatanen, T. et al. Variation in Microbiome LPS Immunogenicity Contributes to 
Autoimmunity in Humans. Cell 165, 842–853 (2016). 

79. O’Mahony, S. M., Clarke, G., Borre, Y. E., Dinan, T. G. & Cryan, J. F. Serotonin, 5 
tryptophan metabolism and the brain-gut-microbiome axis. Behav. Brain Res. 277, 32–48 
(2015). 

80. RAPID GWAS OF THOUSANDS OF PHENOTYPES FOR 337,000 SAMPLES IN THE 
UK BIOBANK. Available at: http://www.nealelab.is/uk-biobank.  

81. Bowden, J. et al. A framework for the investigation of pleiotropy in two-sample summary 10 
data Mendelian randomization. Stat. Med. 36, 1783–1802 (2017). 

82. Hartwig, F. P., Davey Smith, G. & Bowden, J. Robust inference in summary data 
Mendelian randomization via the zero modal pleiotropy assumption. Int. J. Epidemiol. 46, 
1985–1998 (2017). 

83. Bowden, J., Davey Smith, G. & Burgess, S. Mendelian randomization with invalid 15 
instruments: effect estimation and bias detection through Egger regression. Int. J. 
Epidemiol. 44, 512–525 (2015). 

84. Verbanck, M., Chen, C.-Y., Neale, B. & Do, R. Detection of widespread horizontal 
pleiotropy in causal relationships inferred from Mendelian randomization between 
complex traits and diseases. Nat. Genet. 50, 693–698 (2018). 20 

85. Shim, H. et al. A Multivariate Genome-Wide Association Analysis of 10 LDL 
Subfractions, and Their Response to Statin Treatment, in 1868 Caucasians. PLoS One 10, 
e0120758 (2015). 

86. Burgess, S., Butterworth, A. & Thompson, S. G. Mendelian Randomization Analysis With 
Multiple Genetic Variants Using Summarized Data. Genet. Epidemiol. 37, 658–665 25 
(2013). 

87. von Rhein, D. et al. The NeuroIMAGE study: a prospective phenotypic, cognitive, genetic 
and MRI study in children with attention-deficit/hyperactivity disorder. Design and 
descriptives. Eur. Child Adolesc. Psychiatry 24, 265–281 (2015). 

88. Naaijen, J. et al. COMPULS: design of a multicenter phenotypic, cognitive, genetic, and 30 
magnetic resonance imaging study in children with compulsive syndromes. BMC 
Psychiatry 16, 361 (2016). 

89. Fernández-Calleja, J. M. S. et al. Non-invasive continuous real-time in vivo analysis of 
microbial hydrogen production shows adaptation to fermentable carbohydrates in mice. 
Sci. Rep. 8, 15351 (2018). 35 

90. Bisgaard, H. et al. Deep phenotyping of the unselected COPSAC 2010 birth cohort study. 
Clin. Exp. Allergy 43, 1384–1394 (2013). 

91. Bisgaard, H. The Copenhagen Prospective Study on Asthma in Childhood (COPSAC): 
design, rationale, and baseline data from a longitudinal birth cohort study. Ann. Allergy, 
Asthma Immunol. 93, 381–389 (2004). 40 

92. Stokholm, J. et al. Maturation of the gut microbiome and risk of asthma in childhood. Nat. 
Commun. 9, 141 (2018). 

93. Dantoft, T. M. et al. Cohort description: The Danish study of Functional Disorders. Clin. 
Epidemiol. Volume 9, 127–139 (2017). 

94. Caporaso, J. G. et al. Ultra-high-throughput microbial community analysis on the Illumina 45 
HiSeq and MiSeq platforms. ISME J. 6, 1621–1624 (2012). 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 28, 2020. ; https://doi.org/10.1101/2020.06.26.173724doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.26.173724
http://creativecommons.org/licenses/by-nc-nd/4.0/


31 

 

95. Kooijman, M. N. et al. The Generation R Study: design and cohort update 2017. Eur. J. 
Epidemiol. 31, 1243–1264 (2016). 

96. Medina-Gomez, C. et al. Challenges in conducting genome-wide association studies in 
highly admixed multi-ethnic populations: the Generation R Study. Eur. J. Epidemiol. 30, 
317–330 (2015). 5 

97. Radjabzadeh, D. et al. Diversity, compositional and functional differences between gut 
microbiota of children and adults. Sci. Rep. 10, 1040 (2020). 

98. Hamza, T. H. et al. Common genetic variation in the HLA region is associated with late-
onset sporadic Parkinson’s disease. Nat. Genet. 42, 781–5 (2010). 

99. Hill-Burns, E. M. et al. Parkinson’s disease and Parkinson’s disease medications have 10 
distinct signatures of the gut microbiome. Mov. Disord. 32, 739–749 (2017). 

100. Willemsen, G. et al. The Netherlands Twin Register Biobank: A Resource for Genetic 
Epidemiological Studies. Twin Res. Hum. Genet. 13, 231–245 (2010). 

101. Walter, S. A., Kjellström, L., Nyhlin, H., Talley, N. J. & Agréus, L. Assessment of normal 
bowel habits in the general adult population: the Popcol study. Scand. J. Gastroenterol. 15 
45, 556–566 (2010). 

102. Kjellström, L. et al. A randomly selected population sample undergoing colonoscopy. 
Eur. J. Gastroenterol. Hepatol. 26, 268–275 (2014). 

103. Ikram, M. A. et al. The Rotterdam Study: 2018 update on objectives, design and main 
results. Eur. J. Epidemiol. 32, 807–850 (2017). 20 

104. Volzke, H. et al. Cohort Profile: The Study of Health in Pomerania. Int. J. Epidemiol. 40, 
294–307 (2011). 

105. Frost, F. et al. Impaired Exocrine Pancreatic Function Associates With Changes in 
Intestinal Microbiota Composition and Diversity. Gastroenterology 156, 1010–1015 
(2019). 25 

106. LaVange, L. M. et al. Sample Design and Cohort Selection in the Hispanic Community 
Health Study/Study of Latinos. Ann. Epidemiol. 20, 642–649 (2010). 

107. Sorlie, P. D. et al. Design and Implementation of the Hispanic Community Health 
Study/Study of Latinos. Ann. Epidemiol. 20, 629–641 (2010). 

108. Conomos, M. P. et al. Genetic Diversity and Association Studies in US Hispanic/Latino 30 
Populations: Applications in the Hispanic Community Health Study/Study of Latinos. Am. 
J. Hum. Genet. 98, 165–184 (2016). 

109. Marotz, C. et al. DNA extraction for streamlined metagenomics of diverse environmental 
samples. Biotechniques 62, (2017). 

110. Verdi, S. et al. TwinsUK: The UK Adult Twin Registry Update. Twin Res. Hum. Genet. 35 
1–7 (2019). doi:10.1017/thg.2019.65 

 
  

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 28, 2020. ; https://doi.org/10.1101/2020.06.26.173724doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.26.173724
http://creativecommons.org/licenses/by-nc-nd/4.0/

	Genetics of human gut microbiome composition
	Abstract

	Main Text
	Introduction
	Results
	Landscape of microbiome composition across cohorts
	Heritability of microbial taxa and alpha diversity
	GWAS meta-analysis identified 30 loci associated with gut microbes at genome-wide significance level
	Heterogeneity of microbiome composition reduces the power of genetic association analysis
	LCT locus association to Bifidobacterium is age- and ethnicity-dependent
	Bacteria-associated are genetically enriched for genes related to metabolism
	mbTLs are enriched for genes expressed in intestine and brain and associated with metabolic phenotypes
	Mendelian randomization (MR) analysis

	Discussion
	Acknowledgements
	References


