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ABSTRACT 
 
We report a meta-analysis of breast, prostate, ovarian, and endometrial cancer genome-wide 
association data (effective sample size: 237,483 cases/317,006 controls).  This identified 465 
independent lead variants (P<5x10-8) across 192 genomic regions.  Four lead variants were >1Mb 
from previously identified risk loci for the four cancers and an additional 23 lead variant-cancer 
associations were novel for one of the cancers.  Bayesian models supported pleiotropic effects 
involving at least two cancers at 222/465 lead variants in 118/192 regions.  Gene-level association 
analysis identified 13 shared susceptibility genes (P<2.6x10-6) in 13 regions not previously 
implicated in any of the four cancers and not uncovered by our variant-level meta-analysis.  
Several lead variants had opposite effects across cancers, including a cluster of such variants in 
the TP53 pathway.  Fifty-four lead variants were associated with blood cell traits and suggested 
genetic overlaps with clonal hematopoiesis.  Our study highlights the remarkable pervasiveness 
of pleiotropy across hormone-related cancers, further illuminating their shared genetic and 
mechanistic origins at variant- and gene-level resolution. 
 
INTRODUCTION 
 
Cancers of the breast, prostate, ovary and endometrium together accounted for nearly 22% of all new 
cancer cases diagnosed and approximately 1.2 million deaths worldwide in 20181.  These four cancers 
share common etiologies.  Disease risks have been linked to variations in sex steroid hormones (e.g., 
hormone replacement therapy increases the risks of breast, ovarian, and endometrial cancers2–4) and 
shared genetic risk factors (pleiotropy).  For example, rare highly penetrant germline mutations in the 
BRCA1 and BRCA2 genes elevate risks of breast, ovarian, and prostate cancers and have yielded 
fundamental cross-cancer mechanistic and therapeutic insights5.  This provides the motivation for the 
identification of additional shared genetic risk factors, including pleiotropic common variants that 
may affect the risk of multiple cancers. 
 
In 2016, we combined summary data from individual genome-wide association studies (GWAS) of 
breast, prostate, and ovarian cancer susceptibility that included a total of 112,349 cancer cases and 
116,421 controls to identify 12 new cancer risk loci6.  Since then, most of these loci have been 
replicated at genome-wide significance (P < 5 x 10-8) in larger, single-cancer GWAS of breast7, 
prostate8, or ovarian cancer9.  We have now combined the results from these larger GWAS together 
with the results from an endometrial cancer GWAS10 in order to address four main aims.  First, to 
combine single nucleotide polymorphism (SNP)-level associations across breast, prostate, ovarian, 
and endometrial cancers to identify susceptibility loci that have not been previously reported for any 
of the four cancers.  Second, to use the combined data set to identify novel susceptibility loci for one 
of the four cancers in genomic regions that contain a known susceptibility locus for another of the 
four cancers.  Third, to determine the combination of the four cancers that is most likely to underlie 
the association at the lead SNPs of all susceptibility loci identified in the combined data set in order to 
map shared or cross-cancer loci.  Fourth, to carry out gene-level association analysis based on this 
powerful combined SNP-level data set to identify candidate cancer susceptibility genes in loci not 
previously identified by single- and multi-cancer SNP-level association analyses. 
 
RESULTS 
 
Cross-cancer genome-wide association meta-analysis 
 
We used meta-analysis based on the Han and Eskin model11,12 to combine summary results for 
9,530,997 variants with minor allele frequency > 1% from the largest genome-wide association data 
sets for susceptibility to breast7, prostate8, ovarian9, and endometrial cancers10 published as of August 
2019 (Methods).  All cases and controls included were of European ancestry (Supplementary Table 
1).  A recent study13 has shown that some breast cancer susceptibility SNPs have subtype-specific 
associations where the allele that confers risk of developing one subtype is protective for another 
subtype.  Due to their opposite directions, such allelic associations may be masked in an analysis that 
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does not take into account subtype-specific associations.  Subtype-specific data were available for the 
current study by estrogen receptor (ER)-status for breast cancer and for high-grade serous ovarian 
cancer (HGSOC), which is the most common histological subtype of epithelial ovarian cancer and 
known to be similar at the molecular level with ER-negative breast cancer14.  Therefore, we also 
conducted an additional meta-analysis combining the results for ER-positive breast cancer, ER-
negative breast cancer, HGSOC, prostate cancer, and endometrial cancer.  Hereafter, we refer to this 
additional analysis as the subtype-focused meta-analysis. 
 
The genomic control inflation statistic scaled for 1,000 cases and 1,000 controls, λ1000, was 1.00 for 
both the main and the subtype-focused meta-analysis (Supplementary Fig. 1).  The main meta-
analysis identified 441 independent (correlated with r2 < 0.05; Methods) lead SNPs at genome-wide 
significance (P < 5 x 10-8).  These spanned 183 regions at least 1 Mb apart (Supplementary Table 2; 
Supplementary Fig. 2a; Methods).  The subtype-focused meta-analysis identified 393 independent 
genome-wide significant lead SNPs spanning 169 regions at least 1 Mb apart (Supplementary Table 
2; Supplementary Fig. 2b).  Two hundred and twenty-eight lead SNPs were in common to both 
analyses.  Of the remaining 165 lead SNPs that were unique to the subtype-focused analysis, 156 
SNPs were within 1 Mb of a lead SNP identified in the same region in the main analysis.  Fifteen of 
these 156 SNPs were independent (r2 < 0.05) of the main analysis lead SNP from the same region 
(Supplementary Table 2).  Nine lead SNPs were unique to the subtype-focused analysis and > 1 Mb 
from the main analysis lead SNPs (Supplementary Table 2).  Thus, in total, the main and subtype-
focused analyses identified 465 (441 + 15 + 9) independent lead SNPs spanning 192 (183 + 9) 
regions.  We replicated at P < 5 x 10-8 in our current combined data set all 12 cancer susceptibility 
loci that we first identified in our previous multi-cancer study of breast, prostate, and ovarian cancer 
(Supplementary Table 2)6. 
 
Cancer susceptibility loci not previously identified for any of the four cancers 
 
We identified four lead SNPs at genome-wide significance (P < 5 x 10-8) that were at least 1 Mb away 
from any previously published genome-wide significant lead risk SNPs for any of the cancers 
evaluated in this study (Table 1; Methods).  Two lead SNPs were identified from the main meta-
analysis and two were identified from the subtype-focused meta-analysis. 
 
Two additional lead SNPs, rs66686620 in the 2p13.3 region (ANTXR1) and rs6065253 in the 20q12 
region (MAFB) were also genome-wide significant and over 1 Mb away from any previously reported 
lead risk SNP for any of the four cancers as of August 2019 (Supplementary Table 2).  However, 
since then associations (P < 5 x 10-8) within this 1 Mb interval have been identified in a breast cancer 
genome-wide association meta-analysis by Zhang et al.13 (i) in the 2p13.3 region (rs4602255) through 
the addition of ~10% more cases and ~9% more controls to the breast cancer data set used here and 
(ii) in the 20q12 region (rs6065254) through the use of a statistical model that accounted for 
heterogeneity in associations by hormone receptor status and tumor grade in the expanded breast 
cancer data set.  SNPs rs6065253 and rs6065254 were perfectly correlated (r2 = 1; distance between 
SNPs = 52bp) but rs66686620 and rs4602255 were independent (r2 = 0.003; distance between SNPs = 
141kb) suggesting that the multi-cancer 2p13.3 signal is a distinct association. 
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Table 1 The cancer susceptibility loci not previously identified for any of the four cancers.a 

Region, Lead SNP, Alleles (EA/OA), Cancer OR (95% CI) P 

positionb  nearest gene EAF       

2p24.3 rs7586503 T/A Breast 0.98 (0.96-0.99) 2.0 x 10-3 

15995041 RNU5E-7P 0.28 Prostate 0.95 (0.93-0.97) 1.6 x 10-7 

   Ovarian 0.99 (0.96-1.02) 5.3 x 10-1 

   Endometrial 0.95 (0.92-0.99) 6.0 x 10-3 

   Meta-analysisc (main) 6.0 x 10-9 

6q16.2 rs377527229 C/CAAA Breast 1.03 (1.02-1.05) 5.9 x 10-6 

100091541 Y_RNA 0.23 Prostate 1.03 (1.01-1.05) 1.1 x 10-3 

   Ovarian 1.04 (1.01-1.08) 6.4 x 10-3 

   Endometrial 1.03 (1.00-1.07) 8.5 x 10-2 

   Meta-analysisc (main) 2.8 x 10-9 

3q27.1 rs6784596 G/A ER-pos breast 1.00 (0.98-1.01) 7.3 x 10-1 

184267740 EIF2B5-AS1 0.51 ER-neg breast 1.05 (1.03-1.07) 2.0 x 10-5 

   Prostate 0.97 (0.95-0.98) 8.5 x 10-5 

   HGSOC 1.01 (0.98-1.04) 5.3 x 10-1 

   Endometrial 1.06 (1.03-1.09) 2.3 x 10-4 

   Meta-analysisc (subtype) 4.8 x 10-8 

17p11.2 rs5819638 CT/C ER-pos breast 1.03 (1.02-1.05) 1.3 x 10-4 

17857626 TOM1L2 0.33 ER-neg breast 1.03 (1.00-1.05) 2.8 x 10-2 

   Prostate 1.04 (1.02-1.06) 2.1 x 10-5 

   HGSOC 1.01 (0.97-1.04) 7.7 x 10-1 

   Endometrial 1.03 (0.99-1.06) 1.4 x 10-1 

      Meta-analysisc (subtype) 4.9 x 10-8 
a> 1 Mb away from any previously reported lead SNP for any of the four cancers. 
bBuild 37 position. 
cThe Han and Eskin “RE2C*” model does not report a combined effect size estimate and confidence interval. 
Abbreviations: SNP, single nucleotide polymorphism; EA, effect allele; OA, other allele; EAF, effect 
allele frequency; OR, odds ratio; CI, confidence interval; ER-pos, estrogen receptor-positive breast cancer; ER-neg, estrogen 
receptor-negative breast cancer; HGSOC, high-grade serous ovarian cancer. 

 
Cancer susceptibility loci not previously identified for one of the four cancers 
 
In addition to the four loci described above, we identified 23 associations that were novel for at least 
one of the cancers evaluated in this study (Table 2).  We did this by examining the lead SNPs (main 
and/or subtype-focused meta-analysis P < 5 x 10-8) to identify those lead SNPs that were (i) 
associated with one of the cancers at P < 10-3 in the contributing single-cancer data set and (ii) > 1 Mb 
away from any previously identified genome-wide significant lead risk SNP for the same cancer (> 10 
Mb when applying this criterion to the extended major histocompatibility complex region; chr6:25—
35Mb).  The 23 new associations included eight for breast cancer, five for prostate cancer, and five 
each for ovarian and endometrial cancer susceptibility (Table 2).  These associations involved 21 lead 
SNPs since two lead SNPs, rs1806845 and rs3819772, each met these criteria for two cancer types 
(Table 2).  Associations between these lead SNPs and all cancers included in this study are listed in 
Supplementary Tables 3 and 4. 
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Table 2 The cancer susceptibility loci not previously identified for one of the four cancers.a   

Lead SNP Chr Pos EA OA EAF OR (95% CI) Single-cancer Pb 4-cancer P Nearest Gene 

Breast cancer (main analysis)        

rs2546628 5 177882698 G A 0.33 1.02 (1.01-1.04) 4.4 x 10-4 1.6 x 10-8 COL23A1 

rs71475909 11 47377283 G A 0.36 0.97 (0.96-0.99) 3.2 x 10-5 1.6 x 10-8 SPI1 

rs58876856 11 66825559 C T 0.09 0.96 (0.93-0.98) 4.3 x 10-5 1.9 x 10-8 RHOD 

rs11066309 12 112883476 A G 0.43 0.97 (0.96-0.98) 3.3 x 10-6 1.3 x 10-8 PTPN11 

rs368962324 15 40947788 C CAAAA 0.84 1.04 (1.02-1.05) 2.6 x 10-5 8.8 x 10-12 CASC5 

rs1806845a 15 50681906 T G 0.36 0.97 (0.96-0.98) 9.6 x 10-6 5.4 x 10-9 GABPB1-AS1 

rs80326387 15 66705043 A G 0.26 1.03 (1.01-1.04) 1.2 x 10-4 2.7 x 10-11 MAP2K1 

rs73179015 22 43420441 A G 0.07 0.95 (0.93-0.98) 1.0 x 10-4 1.5 x 10-8 PACSIN2 

Prostate cancer (main analysis)        

rs56168262 1 51467096 C CT 0.47 1.04 (1.03-1.06) 4.6 x 10-7 1.2 x 10-12 CDKN2C 

rs3819772a 3 172225624 A C 0.44 0.97 (0.95-0.98) 2.3 x 10-5 1.0 x 10-8 TNFSF10 

rs571173399 5 132441799 G T 0.24 0.96 (0.94-0.98) 1.1 x 10-4 2.1 x 10-10 HSPA4 

rs10835920 11 32489664 T C 0.36 0.97 (0.96-0.99) 7.1 x 10-4 2.4 x 10-8 WT1-AS 

rs1806845a 15 50681906 T G 0.36 0.97 (0.95-0.98) 1.4 x 10-4 5.4 x 10-9 GABPB1-AS1 

Ovarian cancer (main analysis)        

rs3819772a 3 172225624 A C 0.44 0.96 (0.93-0.98) 6.0 x 10-4 1.0 x 10-8 TNFSF10 

rs138581118 6 151844694 A G 0.06 0.90 (0.85-0.96) 7.6 x 10-4 4.5 x 10-9 CCDC170 

rs13287517 9 19064129 C G 0.38 1.05 (1.02-1.08) 3.4 x 10-4 2.7 x 10-14 HAUS6 

HGSOC (subtype-focused analysis that included HGSOC and ER-status for breast cancer) 

rs35383942 1 201437832 T C 0.06 0.88 (0.82-0.95) 5.3 x 10-4 5.8 x 10-10 PHLDA3 

rs78378222 17 7571752 G T 0.01 0.75 (0.64-0.88) 3.7 x 10-4 1.6 x 10-15 TP53 

Endometrial cancer (main analysis)        

rs11240568 1 203793793 C G 0.27 1.07 (1.04-1.11) 3.3 x 10-5 1.2 x 10-10 ZC3H11A 

rs2811476 3 127898501 C A 0.27 0.92 (0.89-0.95) 1.7 x 10-6 8.8 x 10-32 EEFSEC 

rs9265885 6 31313220 C G 0.52 0.94 (0.91-0.97) 6.2 x 10-5 1.0 x 10-11 HLA-B 

rs7463114 8 29507094 C T 0.68 0.95 (0.92-0.98) 9.1 x 10-4 4.9 x 10-19 RPL17P33 

rs796945 10 90150837 T C 0.64 0.95 (0.92-0.98) 8.1 x 10-4 8.2 x 10-10 RNLS 
a> 1 Mb away from any previously reported lead SNP for one of the four cancers and single-cancer P < 10-3 for that cancer.  There are 23 
new associations involving 21 lead SNPs: rs1806845 is a new association for two cancers (breast and prostate) and rs3819772 is a new 
association for two cancers (prostate and ovarian). 
bAssociations between these lead SNPs and the other cancer types included in this study are listed in Supplementary Tables 3 and 4. 
Abbreviations: SNP, single nucleotide polymorphism; Chr, chromosome; Pos, build 37 position; EA, effect allele; OA, other allele; EAF, 
effect allele frequency; OR, odds ratio; CI, confidence interval; HGSOC, high-grade serous ovarian cancer; ER, estrogen receptor. 

 
We identified seven associations for breast cancer (in addition to the eight reported above) that were 
new in the context of the breast cancer data set used in this study but have since been reported for 
breast cancer at P < 5 x 10-8 in the meta-analysis by Zhang et al.13 described above (five of the seven 
associations; Supplementary Table 5) or in a trans-ancestry genome-wide association meta-analysis 
by Shu et al.15 (two of the seven associations; Supplementary Table 5).  Shu et al. combined the 
breast cancer data set used in this study with a data set that included over 24,000 breast cancer cases 
and 24,000 controls of Asian ancestry. 
 
We also assessed the relationship between 461 lead SNPs that were within 1 Mb of one of the 463 
lead SNPs previously published for breast, prostate, ovarian, and/or endometrial cancer risk and those 
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lead SNPs (Methods).  We found that 187 of the 461 lead SNPs were independent (r2 < 0.05) of the 
previously published proximal single-cancer lead SNPs (Supplementary Table 6).  This included 8 
of the 21 SNPs in Table 2: rs71475909, rs58876856, rs1806845, rs80326387, rs73179015, 
rs56168262, rs3819772, and rs9265885. 
 
Bayesian re-evaluation of lead variants 
 
We used the breast, prostate, ovarian, and endometrial cancer summary genetic association data to 
also perform meta-analysis within a Bayesian framework16 for each lead SNP identified in the main 
and subtype-focused meta-analysis (Methods).  This was motivated by two aims.  First, to identify 
the subset or combination of cancers that was most likely to be responsible for the association at each 
lead SNP.  Second, to quantify the combined evidence of association for this subset of cancers at the 
lead SNP in terms of the posterior probability of association (PPA), assuming a prior probability of 
association of 1 in 100,000.  The Bayesian framework evaluated the evidence for 16 combinations at 
each lead SNP from the main meta-analysis (four non-pleiotropic combinations involving one cancer 
type only, six involving pairs and four involving triplets of cancers, one with all four cancers, and one 
where none of the cancers are associated) and 32 combinations at each lead SNP from the subtype-
focused meta-analysis. 
 
The Bayesian meta-analysis confirmed that the combination of cancers with greatest evidence for 
underpinning the association at each of the lead SNPs listed in Table 2 included the cancer for which 
we report the association as novel (Supplementary Table 7).  It also confirmed that for all but one of 
these lead SNPs, the PPA for this combination of cancers exceeded 80% (Supplementary Table 7).  
The only exception was rs58876856 with a PPA of 67% for the top-ranked combination that included 
contributions from breast, prostate, and endometrial cancer.  Further, the top combination included at 
least three cancers for each of the four lead SNPs listed in Table 1 and these combinations all 
achieved PPA > 80% (Supplementary Table 7).  The top-ranked combination involved all the 
cancers included in this study for 18 lead SNPs in 16 regions (PPA > 80%; Figure 1).  The top 
combination involved at least two cancers and had PPA > 80% for 222 of the 465 lead SNPs (in 118 
of the 192 regions; Supplementary Table 8 and Methods).  The associations at the remaining lead 
SNPs were driven by a single cancer or the combination of ER-positive and ER-negative breast 
cancer (Supplementary Table 8). 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 29, 2020. ; https://doi.org/10.1101/2020.06.16.146803doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.16.146803
http://creativecommons.org/licenses/by-nc-nd/4.0/


 10 

 
Fig. 1: Eighteen lead SNPs in 16 regions where the Bayesian framework indicated that there was evidence for association 
with all four cancers out of breast, prostate, ovarian, and endometrial cancer.  These lead SNPs are in 16 distinct regions 
at least 1 Mb apart.  Eleven of the 18 SNPs were identified in the main meta-analysis and seven in the subtype-focused meta-
analysis.  The black dashed lines indicate Z-scores of +/- 1.96 and the red dashed line indicates a P-value of 5 x 10-8.  Z-scores 
> 10 were set to 10 and -log10(P-values) > 20 were set to 20 to enable improved visualization of data points with less extreme 
values.  “Combined” refers to -log10(P-values) from the Han and Eskin model-based main or subtype meta-analysis.  
Chromosomal positions are based on build 37. 
 
Associations between lead variants and other diseases and traits 
 
We investigated whether the 465 lead SNPs identified in this study or SNPs in strong linkage 
disequilibrium (LD; r2 > 0.8) with them were associated with other diseases and traits at genome-wide 
significance (P < 5 x 10-8) in previously published studies (Methods)17.  We found that 97/465 lead 
SNPs (or SNPs in strong LD) were associated with at least one trait or disease (other than breast, 
prostate, ovarian, and/or endometrial cancer; Supplementary Table 9).  These associated traits or 
diseases were classified in terms of broader categories (specifically, Experimental Factor Ontologies 
or EFOs)18.  The 97 SNPs were associated with 190 unique EFOs (Supplementary Table 9).  The 
two EFOs associated with the largest number of lead SNPs were EFO_0004586 (“complete blood cell 
count”; 54/97 SNPs, including 42/222 SNPs that were associated with at least two cancers based on 
the Bayesian evaluation) and EFO_0004339 (“body height”; 10/97 SNPs).  A recent (unpublished) 
study19 has substantially increased the number of genomic loci associated with blood cell phenotypes 
and there are now 16,900 known genetic associations involving 29 blood cell traits.  Having shown 
that ~12% of the lead SNPs from our study (or nearly a fifth of the lead SNPs with detectable cross-
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cancer effects in the Bayesian evaluation) were associated with blood cell traits (EFO_0004586), we 
asked if the converse was true: were genome-wide significant SNPs from the recent blood cell trait 
GWAS also enriched for low P-values in the main four-cancer meta-analysis?  We found that there 
was evidence for such enrichment (Fig. 2a), the enrichment was driven by all four cancers but 
particularly breast and prostate cancer (Fig. 2a), and the enrichment closely paralleled that seen at 
variants known to be associated with height (Fig. 2b)20, another highly polygenic quantitative trait 
that ranked second in our EFO list.  We found that this enrichment was not restricted to SNPs 
associated with a particular blood cell index class as classified by Vuckovic et al.19 (Fig. 2c) or with 
the counts of a particular blood cell type (Fig. 2d). 
 
(a)      (b) 

 
(c)        (d) 

 
Fig. 2: Quantile-quantile (Q-Q) plots of negative logarithm (base 10) P-values from the main meta-analysis (“Combined”) 
and the single-cancer data (breast, prostate, ovarian, and endometrial cancer) at independent variants (r2 < 0.05) 
associated at genome-wide significance with (a) blood cell traits in Vuckovic et al.19 and (b) height in Yengo et al20.  
Manhattan plot of negative logarithm (base 10) P-values from the main meta-analysis at variants associated at genome-wide 
significance in Vuckovic et al. with (c) blood cell index classes and (d) blood cell type-specific counts.  Classes and counts are 
described in detail in Vuckovic et al. (for example, the Red Cell class includes red blood cell counts and other indices such as 
hemoglobin and hematocrit while the RBC count includes the red blood cell counts only).  The red dashed line in the 
Manhattan plots indicates genome-wide significance (P < 5 x 10-8).  Negative log10(P-values) > 20 were set to 20 in the Q-Q 
plots and > 30 were set to 30 in the Manhattan plots to enable improved visualization of data points with less extreme values.  
Abbreviations: BASO, basophil; HLSR, high light scatter reticulocyte; MONO, monocyte; PLT, platelet; RET, reticulocyte; EO, 
eosinophil; LYMPH, lymphocyte; NEUT, neutrophil; RBC, red blood cell; WBC, white blood cell. 
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Functional annotation of the new lead SNP-cancer associations 
 
We annotated the lead SNPs (and SNPs in strong LD; r2 > 0.8) marking the four loci not previously 
identified for any of the four cancers and the 23 new lead SNP-cancer associations using several 
genomics resources to identify gene targets with functional support (Methods)21–28.  This included 
expression quantitative trait loci (eQTLs) identified at false discovery rate (FDR) < 0.05 by the 
Genotype-Tissue Expression (GTEx) consortium22 in breast, prostate, ovary, and uterus (cis-eQTLs; 
Supplementary Table 10) and by the eQTLGen consortium23 in blood (cis- and trans-eQTLs; 
Supplementary Table 11); and Combined Annotation Dependent Depletion (CADD) scores24 
(Supplementary Table 12).  Among the protein coding genes nearest to the 27 lead SNPs, the GTEx 
database supported COL23A1, HLA-B, HAUS6, RHOD, and GABPB1 as targets (Supplementary 
Table 10) while the eQTLGen database supported COL23A1, HAUS6, RHOD, EPHB3, CCDC170, 
EEFSEC, HSPA4, MAP2K1, PACSIN2, RNLS, SPI1, TP53, and ZC3H11A as targets (Supplementary 
Table 11).  Lead SNP rs35383942 in an exon of PHLDA3 had a CADD score of 24.  This SNP is a 
missense variant (p.Arg28Gln) known to be associated with increased breast cancer risk7 that we 
found associates with decreased ovarian cancer risk (OR = 0.88, 95% CI: 0.82—0.95; PHGSOC = 5.3 x 
10-4). 
 
Direction of allelic association across pairs of cancers 
 
Next, we examined the 441 genome-wide significant lead SNPs from the main analysis and the 393 
genome-wide significant lead SNPs from the subtype-focused analysis to characterize the direction of 
allelic association across cancers with an emphasis on SNPs that were strongly associated with at least 
two cancers individually (P < 10-3).  We considered every possible pairwise combination of cancers in 
the main and subtype-focused analyses (except the pairing of ER-positive breast cancer with ER-
negative breast cancer).  We observed that for 94 of the 441 main lead SNPs (Supplementary Table 
3) and 89 of the 393 subtype-focused lead SNPs (Supplementary Table 4), the lead SNP was 
associated with each cancer out of at least two cancers at P < 10-3 in the corresponding single-cancer 
data set.  We focused further analyses presented in this section of the results on these subsets of lead 
SNPs.  For 29/94 main lead SNPs and 33/89 subtype lead SNPs, the allele that conferred risk of 
developing one of the two cancers had a protective association with the other cancer (Supplementary 
Table 13). 
 
We explored the biological basis of these alleles that have opposite effects across cancers by 
analyzing over-representation29 of pathways from the Kyoto Encyclopedia of Genes and Genomes 
(KEGG)30 among the combined set of genes nearest to the lead SNPs that showed opposite effects 
across cancer pairs in the main and subtype-focused analysis.  The strongest enrichment observed was 
for genes in the KEGG p53 signaling pathway (FDR = 4.4 x 10-5; Supplementary Table 14).  This 
p53 pathway enrichment was underpinned by five genes: ATM, CASP8, CHEK2, MDM4, and TP53.  
We visualized single-cancer associations at lead SNPs/alleles in or nearest to these five genes using a 
forest plot (Fig. 3).  In contrast, we observed a distinct pattern of pathway over-representation 
(Supplementary Table 14) among the combined set of genes nearest to the lead SNPs that showed 
same direction associations (single-cancer P < 10-3) across cancer pairs in the main analysis (65/94 
lead SNPs; Supplementary Tables 3 and 13) and subtype-focused analysis (56/89 lead SNPs; 
Supplementary Tables 4 and 13).  The KEGG apoptosis pathway was the highest-ranked pathway 
shared between the opposite and same direction analyses (Supplementary Table 14). 
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Fig. 3: Forest plots showing odds ratios (OR) and 95% confidence intervals (CI) for the lead SNPs/effect alleles in or nearest 
to the five genes in the TP53 signalling pathway that underlie the enrichment for this pathway.  All cancer- or subtype-
specific associations at P < 0.05 are shown in the forest plot.  Abbreviations: ER, estrogen receptor; HGSOC, high-grade serous 
ovarian cancer. 
 
Gene-level association analysis 
 
We mapped all SNPs along with their association P-values from the main and subtype-focused 
genome-wide association meta-analyses to 19,100 protein-coding genes across the genome and 
performed gene-level association testing using Multi-marker Analysis of Genomic Annotation 
(MAGMA31).  MAGMA collapses multiple SNP-level associations in a gene while taking into 
account LD between the SNPs and offers a gene-level association test that complements conventional 
single-SNP association analyses. 
 
Before proceeding further, we evaluated the biological meaningfulness of the gene-level MAGMA 
associations using gene expression levels in 54 tissue types from the GTEx database22.  Expression 
levels of genes in the breast, prostate, fallopian tube, and uterine tissue are predictors of the gene-level 
multi-cancer MAGMA association signals (P < 1.7 x 10-5; Supplementary Tables 15 and 16).  This 
finding is consistent with these tissues being relevant to the etiology of the multi-cancer phenotype.  
A much weaker association was observed between gene expression in ovarian tissue and the gene-
level MAGMA signal (P = 0.03).  We also applied MAGMA to the breast, prostate, ovarian, and 
endometrial cancer genome-wide SNP association data sets individually.  The corresponding single 
cancer gene-level signals were less strongly associated with tissue-specific gene expression levels 
than the multi-cancer gene-level signals for breast (Psingle = 1.7 x 10-5 and Pmulti = 1.5 x 10-7), fallopian 
tube (Psingle = 0.01 and Pmulti = 1.3 x 10-6), ovary (Psingle = 0.06 and Pmulti = 0.04), and uterus (Psingle = 
0.03 and Pmulti = 2.6 x 10-6), but not in the prostate (Psingle = 3.9 x 10-18 and Pmulti = 5.6 x 10-15).  This 
indicates that the gain in power obtained by combining data across cancers was, in general, improving 
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the association signal for genes more likely to be expressed in the relevant tissue types compared to 
single cancer analyses and suggests the presence of shared mechanisms underlying inherited cross-
cancer risk acting across multiple anatomically separate tissue sites. 
 
The multi-cancer gene-based association analysis identified 13 genes in as many regions (Table 3) at 
genome-wide significance (PMAGMA < 2.62 x 10-6 after accounting for testing 19,100 genes) that were 
> 1 Mb away from any previously identified breast, prostate, ovarian, and/or endometrial cancer lead 
risk SNP and > 1 Mb away from any lead SNP identified in SNP-based analysis in this study. 
 

Table 3 The 13 new cancer susceptibility loci identified by gene-based association (MAGMA) analysis.a  

Gene Chr Startb Stopb Single-cancer PMAGMA (if < 0.05) 4-cancer PMAGMA 

BSN 3 49591922 49708978 BrCa (2.5 x 10-5), PrCa (4.3 x 10-7) 8.5 x 10-8 

SIK2 11 111473115 111601577 BrCa (1.3 x 10-6), PrCa (8.1 x 10-6), EnCa (7.2 x 10-3) 9.6 x 10-8 

INTS10 8 19674651 19709594 BrCa (2.1 x 10-7), EnCa (3.3 x 10-3) 3.6 x 10-7 

CDKN1A 6 36644305 36655116 BrCa (2.0 x 10-7) 3.8 x 10-7 

UQCC1 20 33890369 33999944 PrCa (6.2 x 10-8), EnCa (1.3 x 10-4) 5.5 x 10-7 

CLIC6 21 36041688 36090525 BrCa (2.2 x 10-4), Prostate (1.1 x 10-3), Ovarian (3.9 x 10-5) 5.9 x 10-7 

ATP5B 12 57031959 57039798 BrCa (3.6 x 10-3), Prostate (1.7 x 10-3), Ovarian (1.4 x 10-3) 7.8 x 10-7 

IKZF2 2 213864429 214017151 BrCa (3.7 x 10-2), Prostate (1.6 x 10-8) 8.2 x 10-7 

PYGB 20 25228705 25278650 BrCa (1.4 x 10-3), Prostate (5.9 x 10-5) 9.1 x 10-7 

TIAL1 10 121334199 121356541 BrCa (4.6 x 10-7) 1.7 x 10-6 

PRDM5 4 121606074 121844025 BrCa (6.6 x 10-3), PrCa (1.8 x 10-4), EnCa (2.3 x 10-2) 1.9 x 10-6 

LAMC1c 1 182992595 183114727 ER-pos BrCa (2.0 x 10-3), PrCa (6.1 x 10-7), EnCa (3.4 x 10-2) 7.8 x 10-7 

GLIS1c 1 53971910 54199877 ER-pos BrCa (8.3 x 10-5), ER-neg BrCa (4.3 x 10-4), PrCa (2.0 x 10-6) 1.1 x 10-6 
a> 1 Mb away from any previously reported breast, prostate, ovarian, and/or endometrial cancer lead risk SNP and > 1 Mb away from any lead 
risk SNP identified in this study. 
bBuild 37 position. 
cIdentified in the application of MAGMA to the subtype-focused meta-analysis results. 
Abbreviations: MAGMA, Multi-marker Analysis of GenoMic Annotation; ER-pos BrCa, Estrogen Receptor-positive breast cancer; ER-neg BrCa, 
Estrogen Receptor-negative breast cancer; BrCa, breast cancer; PrCa, prostate cancer; OvCa, ovarian cancer; EnCa, endometrial cancer.  

 
Pathway analysis based on gene-level associations 
 
We performed pathway analysis on the set of genes with gene-level association PMAGMA < 2.6 x 10-6 
from the main meta-analysis or from the subtype-focussed meta-analysis and in the top 5% of the 
ranked gene-level associations for at least two cancers from the single-cancer analyses.  Three 
hundred and thirteen genes met these criteria from which we excluded five HLA genes 
(Supplementary Tables 17).  The final set of 308 genes was enriched for twelve pathways from 
KEGG at FDR < 0.05 with over five-fold enrichment in two pathways: p53 signalling and endocrine 
resistance (Supplementary Tables 18).  The enrichment in the p53 signalling pathway was driven by 
CCND1, CDKN2A, SIVA1, CCNE1, CASP8, CHEK2, and MDM4 and was more modest than the 
enrichment for the same pathway observed in the 37 genes nearest to the set of SNPs with opposite 
effects on at least two cancers, which was driven by TP53, ATM, CASP8, CHEK2, and MDM4.  
Performing the pathway analysis retaining the five HLA genes (i.e., using all 313 genes) implicated 
several immune-related pathways where the signal was largely driven by these genes 
(Supplementary Tables 19). 
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DISCUSSION 
 
We performed the largest genome-wide association meta-analysis for shared susceptibility to four 
hormone-related cancers – breast, prostate, ovarian, and endometrial cancer – to date.  This identified 
four new risk loci that were over a megabase away from previously identified risk loci for the four 
cancers and 21 new risk loci incorporating 23 new lead SNP-cancer type associations that were over a 
megabase away from previously identified risk loci for at least one of the cancers.  Gene-based 
association analysis identified an additional 13 novel risk loci.  Beyond locus discovery, we found 
evidence for pleiotropic cross-cancer effects at ~48% (222/465) of the genome-wide significant lead 
SNPs in our study.  The strongest association model at these SNPs included contributions from at 
least two of the four cancers.  We identified several risk loci where the lead SNP had strong 
associations with at least two of the cancers but opposite effects (for the same effect allele) on these 
cancers.  We demonstrated enrichment of the multi-cancer association signal in breast, prostate, 
fallopian tube, and uterine tissues, conducted a phenome-wide association scan of cross-cancer lead 
SNPs revealing profound overlap with blood cell trait loci, and observed enrichment of pivotal pan-
cancer pathways in our combined data set. 
 
The 8q24.1 region, a “gene desert” with a paucity of protein coding genes other than MYC was one of 
the first regions to be recognized as one that contains SNPs associated with multiple cancer types32.  
Here we report a novel cancer susceptibility locus in a similar gene desert, 2p24.3 with lead SNP 
rs7586503 and nearest coding gene MYCN, which shows evidence for association with breast, 
prostate, and endometrial cancers (Table 1).  The proto-oncogene MYCN is known for its ability to 
drive the development of multiple tumor types that arise from a common cellular lineage33.  The lead 
SNP rs5819638 in the 17p11.2 region is an intronic insertion and deletion variant in TOM1L2 (Table 
1).  This SNP is correlated (r2 = 0.62) with rs8070624, a known genome-wide significant lead SNP 
for bone mineral density (BMD)34, an estrogen-regulated trait in both men and women35.  The T allele 
deletion of rs5819638 is protective for breast, prostate, and endometrial cancer.  The deletion 
corresponds to the G allele of rs8070624 that is associated with reduced BMD, which is consistent 
with the observed relationship between lower BMD and decreased breast, prostate, and endometrial 
cancer risks36–38.  The A allele of the new breast cancer risk lead SNP rs71475909 increases breast 
cancer risk but decreases prostate cancer risk (Table 2 and Supplementary Table 3).  The SNP lies 
in an intron of SPI1, which encodes a transcription factor that co-binds with TP53 to TP53 target 
genes and is crucial for the maintenance of pro-apoptotic transcriptional repression by TP5339,40.  
Expression QTL analyses in breast, prostate, ovarian, uterine, and whole blood tissue types supported 
several genes as candidate targets at the new risk loci.  Lead SNP rs58876856 was associated with 
breast (P = 4.3 x 10-5; Table 2) and prostate (P = 4.9 x 10-4; Supplementary Table 3) cancer risk and 
with RHOD expression in breast (P = 6.4 x 10-25) and prostate (P = 1.3 x 10-16) tissues.  RHOD 
encodes a member of the Rac subfamily of the Rho family of GTPases that has an established 
oncogenic role41.  We also identified a novel association for HGSOC risk at rs35383942, a known 
genome-wide significant lead SNP for breast cancer risk7 and male-pattern baldness42.  The T allele of 
rs35383942 is associated with increased susceptibility to breast cancer but decreased susceptibility to 
HGSOC.  SNP rs35383942 is a missense variant (CADD score 24; Supplementary Table 12) in 
PHLDA3, a tumor supressor gene that sits at the intersection of two key cancer pathways: PHLDA3 is 
directly regulated by TP53 and is a repressor of AKT1 signaling, contributing to TP53-dependent 
apoptosis43.  The new endometrial cancer risk SNP rs2811476 (Table 2; at a known prostate cancer 
risk locus – Supplementary Table 3), in an intron of EEFSEC, was strongly correlated with 
rs2955117 (r2 = 0.95) and rs2687729 (r2 = 0.99), which are genome-wide significant lead SNPs for 
the hormone-related traits maternal effect on gestational age at birth44 and age at menarche45, 
respectively.  The alleles associated with longer gestational duration and later menarche were 
protective for endometrial cancer and these findings are consistent with the “unopposed oestrogen 
hypothesis” for endometrial cancer46.  The gene-based MAGMA approach identified 13 new 
candidate cancer susceptibility genes in 13 loci not detected by SNP-level single- and cross-cancer 
genome-wide association meta-analyses.  Each of these genes is discussed in detail in 
Supplementary Note 1. 
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We identified 18 lead SNPs in 16 regions where a Bayesian evaluation of the data suggested that the 
combination of cancers with greatest evidence for association involved all four cancers.  Some of 
these lead SNPs marked known multi-cancer susceptibility loci near TERT47, CDKN2B-AS148, 
INCENP6, and BCL2L116.  Other regions (out of the 16) have not been recognized before for such 
extensive cross-cancer pleiotropic effects.  For example, lead SNP rs5868034 is located ~7kb from 
SETD9 which encodes a lysine methyltransferase that methylates TP53, increasing its stability and 
promoting the expression of its targets CDKN1A, BAX, and MDM249. While rs5868034 is ~144kb 
from rs62355902, a known breast cancer risk lead SNP that regulates MAP3K1 in the same region50, 
the two SNPs are independent (r2 = 0.03).  Further, a GTEx look-up for rs5868034 shows that it is 
associated with the expression of SETD9 in breast (P = 1.9 x 10-32), prostate (P = 8.5 x 10-18), ovarian 
(P = 9.6 x 10-12), and uterine (P = 1.6 x 10-11) tissues22.  Lead SNP rs140936696 is ~3kb from CEP55, 
which encodes a centrosome- and midbody-associated protein that is a major regulator of abscission 
or the final stage of cytokinesis51 and of the PI3K/AKT pathway52.  CEP55 is a member of several 
common gene expression signatures (such as the “CIN70”) that serve as indices of chromosomal 
instability, cell cycle progression, proliferation, and metastatic potential across multiple cancer 
types53.  Lead SNP rs796945 near RNLS is associated with breast, prostate, ovarian, and endometrial 
cancers and has been recently identified as a lead SNP for the hormone-related gynecologic disorder 
endometriosis54, all with the same direction of allelic effect. 
 
We observed a substantial overlap between the cross-cancer genetic associations from this study and 
variants known to be associated with a range of blood cell phenotypes.  Some loci associated with 
blood cell traits, in particular blood cell counts, likely represent cell-type agnostic biomarkers of 
cellular turnover and proliferative potential – biological processes that, in turn, may link them to solid 
tumor risk.  Indeed, common genetic variants at SH2B3, ATM, TERT, TET2, and CHEK2 are 
associated with multiple blood cell traits55 and with myeloproliferative neoplasms56,57, and were the 
genes nearest to five cross-cancer lead SNPs identified in the current study.  For example, our lead 
SNP rs7310615 that maps to SH2B3 (Pbreast = 3 x 10-7 and Pendometrial = 1.3 x 10-10) is a genome-wide 
significant lead SNP associated with white blood cell, red blood cell and platelet counts and other 
blood cell traits55, and with myeloproliferative neoplasms56,57.  Rare germline missense variants in 
SH2B3 and ATM are also associated with the blood cell (somatic) acquisition of loss-of-
heterozygosity (LOH) in the chromosomal arms where these genes reside, which may result in the 
aberrant clonal expansion of the blood cells acquiring these LOH events or clonal hematopoeisis58.  
Genes nearest to cross-cancer risk lead SNPs in this study – BCL2L11, SMC2, CTSK, USP28, 
CDKN1B, MAP2K1, TP53, ATM, and CHEK2 – also mark loci predisposing to mosaic Y 
chromosome loss in blood, the most common form of clonal hematopoeisis59.  Overall, these genetic 
overlaps with blood cell traits add to a growing body of evidence which suggests that clonal 
hematopoiesis may be a proxy for genomic instability in the body that is associated with non-
hematological cancer risk59. 
 
Pathway analysis of our 2016 breast-prostate-ovarian cancer shared susceptibility GWAS meta-
analysis findings had identified a central role for induction of apoptosis through death receptor 
signaling6.  In our current substantially expanded data set that also includes endometrial cancer we not 
only continue to detect a signal for the apoptosis pathway but also highlight roles for endocrine 
resistance and TP53 signaling.  We specifically note a pattern involving cross-cancer susceptibility 
alleles at the TP53 signaling genes CASP8, MDM4, CHEK2, ATM and TP53 wherein, in general, lead 
SNP alleles conferring risk of ovarian cancer/HGSOC and ER-negative breast cancer show protective 
associations with overall/ER-positive breast cancer and prostate cancer.  This pattern likely reflects 
the differential prevalence of loss of tumor suppressor function versus dominant negative or gain-of-
function (GOF) oncogenic TP53 somatic mutations that is seen in these tumor types60,61.  For 
example, the G allele of lead SNP rs78378222 is associated with lower expression of TP53 (P = 6 x 
10-21 in eQTLGen23; Supplementary Table 11).  This SNP is known to alter the polyadenylation 
signal and impair the 3′-end processing of TP53 mRNA62.  The G allele is protective for HGSOC and 
ER-negative breast cancer (Fig. 3), where dominant negative or GOF TP53 somatic mutations are 
more common, potentially because the lower germline-regulated expression attenuates the oncogenic 
effects of TP53 when such a mutation is somatically acquired.  However, the same allele confers 
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susceptibility to ER-positive breast and prostate cancer (Fig. 3), where loss-of-function (LOF) TP53 
somatic mutations predominate, potentially because the lower background expression accentuates the 
loss of TP53 tumor suppressor function when the LOF mutation is somatically acquired.  Thus, our 
findings hint at a potential germline-somatic interaction that strongly warrants further investigation.  
Antagonistic effects across cancer types at the same allele also has important implications for the use 
of such alleles in the development and application of polygenic risk scores that have so far been 
confined to a consideration of allelic associations with a single cancer.  The identification of alleles 
with opposite effects across the cancers was helped by that fact that the Han and Eskin model11,12 used 
in this study can detect effects under heterogeneity in contrast to the standard fixed-effects model 
used in the 2016 meta-analysis6.  Opposite associations across related diseases at the same allele are 
also seen in autoimmune63 and psychiatric64 disease groups.  While a direct comparison between 
cancer, autoimmune, and psychiatric studies is challenging due to differences in sample size (the 
cancer data set here is larger by case numbers) and design, the prevalence of such associations in 
cancer appears to be higher. 
 
It is worth noting that 187 of the 465 lead SNPs highlighted in this study were within 1 Mb of known 
breast, prostate, ovarian, and/or endometrial cancer risk loci but not linked (r2 < 0.05) to the published 
lead SNPs at these loci.  This finding is consistent with a recent combined GWAS of multiple blood 
lipid traits65 that identified several independent (in terms of LD) associations at known lipid-
associated loci.  These associations were not reported in the corresponding single lipid GWAS.  This 
suggests that for related traits (groups of cancers or groups of lipids), the multi-trait genetic 
architecture may, at least in part, be distinct from the single-trait genetic architecture.  That is, the 
same genomic regions may harbor distinct SNPs that have disease-specific and cross-disorder 
associations.  This is best illustrated with an example: rs58058861 is a known genome-wide 
significant lead SNP for breast cancer risk7 and our meta-analysis identifies an independent (r2 = 0.01; 
distance between SNPs = 60kb) lead SNP rs3819772 in the same region and ~16kb from TNFSF10 
that is associated with breast cancer risk albeit less strongly (P = 2.8 x 10-4: Supplementary Table 3).  
However, rs3819772 from our meta-analysis is pleiotropic (Table 2) and also associates with prostate 
(P = 2.3 x 10-5) and ovarian (P = 6 x 10-4) cancer risk.  TNFSF10 encodes TRAIL, a cytokine of the 
tumor necrosis factor ligand superfamily that is expressed in most normal tissues and selectively 
induces apoptosis in transformed and tumor cells by binding to death receptors66.  Subsequent studies 
should aim to validate the complex multi-trait genetic architecture in such regions by orthogonal 
approaches such as evaluating SNP interactions with tissue-specific and cross-tissue gene regulatory 
mechanisms. 
 
In our investigation of the relationship between gene-level associations and tissue-specific gene 
expression we found that tissue-specific gene expression in the ovary and fallopian tube are similarly 
and weakly associated with gene-level associations based solely on the ovarian cancer data set used 
here.  However, gene-level associations derived from the four-cancer meta-analysis are much more 
strongly associated with tissue-specific gene expression in the fallopian tube than in the ovary.  This 
result is consistent with emerging evidence that the cell of origin of HGSOCs, the most common and 
aggressive histotype of ovarian cancer, is in the fallopian tube67,68, and suggests that combining data 
from other cancers improves the ranking of genes associated with ovarian cancer risk that are also 
fallopian tube-specific.  We identified nine lead SNP-breast cancer associations in our study that were 
new in the context of the breast cancer data set used here but have recently been identified in two 
larger breast cancer GWAS13,15.  These breast and ovarian cancer findings, in particular, demonstrate 
that cross-cancer GWAS meta-analysis can be a powerful approach to the identification of new cancer 
susceptibility loci.  The approach can be comparable, for pleiotropic regions, to the addition of cases 
and controls from the same cancer type and boost the discovery of gene-level signals that are 
expressed in the most relevant tissues.  This is of particular relevance for elucidating the genetic 
architecture of rarer cancer types where larger GWAS studies may not be feasible. 
 
In summary, this large-scale meta-analysis combining GWAS data for breast, prostate, ovarian, and 
endometrial cancers identified four shared susceptibility loci not previously reported for any of the 
four cancer types and 23 lead SNP-cancer associations in 21 shared susceptibility loci that were new 
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for at least one of the four cancer types.  Examining these data under a gene-level lens demonstrated 
that multi-cancer gene-level associations were strongly enriched in the relevant tissues and yielded an 
additional 13 loci containing candidate breast, prostate, ovarian, and/or endometrial cancer 
susceptibility genes.  Bayesian analysis generated the first comprehensive genome-wide catalog of 
lead SNPs where the association was likely to be driven by at least two of these cancers.  We obtained 
fresh insights into the biology of the shared susceptibility loci, particularly those alleles that displayed 
opposite associations across cancers.  Potential target genes and other phenotypic associations at the 
shared susceptibility loci suggest a complex interplay between inherited hormone-related cancer risk 
and major molecular mechanisms acting across cancer sites.  These cross-cancer risk loci provide a 
rich substrate for the future development of laboratory-based functional studies imperative for the 
translation of discoveries from this GWAS into clinical and public health impact across cancer types. 
 
METHODS 
 
GWAS data, data harmonization, and meta-analysis 
 
SNP genotype and sample quality control, ancestry inference, imputation, genome-wide association 
and meta-analysis procedures for the breast, prostate, ovarian, and endometrial cancer GWAS meta-
analysis data sets have been described previously7–10.  All analyses were based on individuals of 
European ancestry and used 1000 Genomes Phase 3 (Version 5)-imputed or genotyped SNPs69.  We 
harmonized effect and non-effect alleles and effect size estimate (beta coefficient) signs across the 
GWAS meta-analysis summary statistics data sets included in this study so that beta coefficients were 
signed based on the same effect allele in all data sets.  We focused all analyses on 9,530,997 variants 
with minor allele frequency > 1% and imputation quality > 0.4 in the largest data set (breast cancer). 
 
Meta-analysis was carried out using the Han and Eskin11 “RE2”model that has been shown to offer 
greater power to detect associations with heterogenous effects across traits in the context of GWAS as 
compared to the conventional DerSimonian and Laird70 random-effects model which was originally 
developed for the meta-analysis of clinical trials.  The “2” in “RE2” refers to the fact that the RE2 test 
statistic has two parts, a part to detect heterogeneity (random effects) and a mean effect part that is 
equal to the square of the fixed-effects meta-analysis test statistic11.  The latter enables RE2 to detect 
associations where the effect size estimates are homogeneous across studies.  We specifically used a 
recently developed extension of the RE2 model that was able to take into account correlation between 
GWAS summary statistics due to overlapping controls.  This extension is referred to as “RE2C*” and 
was implemented using the RE2C version 1.04 software12.   
 
Correlation between GWAS summary statistics due to overlapping controls was estimated using the 
tetrachoric correlation between binary-transformed GWAS summary z-scores (z ≥ 0 classified as 1 
and z < 0 classified as 0)71,72.  The tetrachoric correlation was computed using the Digby 
approximation (implemented in Stata 14.0) as recommended by Southam et al71.  Southam et al. have 
previously demonstrated the accuracy of the tetrachoric correlation for estimating the correlation 
between GWAS summary statistics due to overlapping controls71.  RE2C* uses the correlation 
between GWAS summary statistics due to overlapping controls to inflate the standard errors of, and 
“decouple”73, the GWAS summary statistics included in a meta-analysis.  Thus, the effective sample 
size of the RE2C* meta-analysis is the sample size obtained by simply adding up all the contributing 
GWAS data set sample sizes.  The RE2C* model does not report a combined effect size estimate and 
confidence interval and only provides a P-value. 
 
Independent lead SNPs, genomic regions, and known cancer susceptibility loci 
 
The random-effects meta-analysis results were processed using the FUMA integrative platform21.  To 
define independent lead SNPs, the relevant FUMA SNP2GENE tool parameters were set as (1) 
Minimum P-value of lead SNPs < 5 x 10-8, (2) r2 threshold to define lead SNPs ≥ 0.05, (3) Reference 
panel population of 1000G Phase3 EUR, and (4) maximum distance between independent lead SNPs 
to merge into a region set as < 1000kb (i.e., lead SNPs closer than this distance were merged into a 
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single genomic region).  We also used FUMA SNP2GENE to assess the relationship between 463 
lead SNPs previously reported for breast, prostate, ovarian, and/or endometrial cancer risk and the 
461 lead SNPs within 1 Mb of these SNPs identified in the main and subtype-focused analyses (same 
parameters used as above except the maximum distance parameter that was set to 0kb).  Only variants 
that had either been genotyped or imputed with a quality score > 0.8 were used to define lead SNPs.  
A comprehensive list of previously reported cancer susceptibility loci for breast, prostate, ovarian, and 
endometrial cancers (including susceptibility loci known to be shared by at least two of these cancers) 
was drawn up based on lead SNPs reported in 11 publications6–10,13,15,48,74–76. 
 
Bayesian meta-analysis 
 
The exhaustive subset search function in the MetABF R package16 was used to perform the Bayesian 
re-evaluation of the combined association at each lead SNP identified in the main- and subtype-
focused Han and Eskin RE2C* model-based meta-analyses.  The exhaustive subset search function 
was used to evaluate the evidence for all 16 possible combinations at each lead SNP from the main 
meta-analysis (four non-pleiotropic combinations involving one cancer type only, six involving pairs 
and four involving triplets of cancers, one with all four cancers, and one where none of the cancers are 
associated) and, similarly, all 32 possible combinations at each lead SNP from the subtype-focused 
meta-analysis.  MetABF, like RE2C*, takes into account the correlation in GWAS summary statistics 
due to overlapping controls.  This is referred to as “cryptic correlation” in the MetABF tool and the 
same tetrachoric correlation matrix applied to the RE2C* meta-analysis was used for the MetABF 
meta-analysis.  Further, MetABF allows the specification of a prior expected correlation.  This was set 
to 0 to parallel the ability of RE2C* to detect heterogeneous or random effects and set to 1 to parallel 
the ability of RE2C* to detect homogeneous or fixed effects and the results were averaged for the two 
prior correlations specified.  MetABF also allows for the specification of a prior expected upper 
bound on the effect size estimate (odds ratio) for each study (in this case, each cancer type-specific 
GWAS).  For example, if this prior odds ratio is set to 1.5, it reflects a belief that the prior probability 
that the odds ratio is larger than 1.5 is 2.5%.  We used each cancer-specific summary genetic 
association data set to determine this prior by filtering the data set to retain only the SNPs achieving P 
< 5 x 10-8 and calculating the 97.5th percentile of the odds ratios.  Thus, this reflected the odds ratios 
for SNPs associated with each cancer detectable given the sample size available for the cancer.  The 
approximate Bayes factors (ABFs) calculated by MetABF were converted into posterior probabilities 
of association (PPAs) using the formula, PPA = (ABF x 10-5)/(ABF x 10-5 + 1), assuming a prior 
probability of association at each SNP of 1 in 100,000 or 10-5. 
 
Associations between lead SNPs and other diseases and traits 
 
The PhenoScanner version 2 bulk search tool (search date 29 May 2020) was used with query set to 
SNP, catalogue to diseases and traits, p-value to 5E-8, proxies to EUR, r2 to 0.8, and build to 37.  
Only associations reported in publications with a PubMed identifier (PMID) were retained in the 
output. 
 
Lists of genetic associations with blood cell traits and height were obtained:  the Yengo et al.20 
Genetic Investigation of Anthropometric Traits (GIANT) consortium file “Meta-analysis Wood et al + 
UKBiobank 2018 top 3290 Height SNPs from COJO analysis GZIP” was downloaded (link in the 
URLs section) for height and Supplementary Table 3 from Vuckovic et al.19 was downloaded for 
blood cell traits.  The FUMA pipeline (with settings as described above) was used to define 
independent (in terms of LD) SNPs from these genetic association files.  Association P-values from 
the main four cancer and each of the cancer-specific meta-analyses at the resultant SNP positions and 
the CMplot R package (version 3.6.0) were used to generate the quantile-quantile plots in Fig. 2.  
Blood cell trait-associated SNP position and blood cell index class and count information from 
Supplementary Table 3 from Vuckovic et al.19 and association P-values from the main four-cancer 
meta-analysis were used to generate the Manhattan plots in Fig. 2. 
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Pathway analyses, functional and nearest gene annotation 
 
All pathway analyses were conducted using the over-representation analysis function in WebGestalt 
(web-based gene set analysis toolkit)29 and pathways from the Kyoto Encyclopedia of Genes and 
Genomes release 88.2, 11/01/201830.  Functional annotation and nearest gene identification were also 
undertaken using the FUMA pipeline and included expression quantitative trait loci (eQTLs) 
identified at false discovery rate (FDR) < 0.05 by the Genotype-Tissue Expression (GTEx) 
consortium (version 8 data set; cis-eQTLs)22 in breast (n = 396), prostate (n = 221), ovary (n = 167), 
and uterus (n = 129; uterine but not specifically endometrial tissue) and by the eQTLGen consortium23 
in blood (cis- and trans-eQTLs; n = 31,684), Combined Annotation Dependent Depletion (CADD) 
scores24, RegulomeDB scores25, ANNOVAR categories26, and ChromHMM states27,28.  LDlink was 
used for all r2 calculations presented in the Discussion section and these were based on 1000 
Genomes Project Phase 3 (Version 5) European ancestry populations77. 
 
Gene-level association analysis and tissue-specific enrichment 
 
Gene-level association analysis was performed using the MAGMA (multi-marker analysis of genomic 
annotation)31 tool implemented in FUMA that takes into account multiple SNP-level summary genetic 
associations and LD between SNPs.  SNPs were mapped to a gene if they were located between the 
start and end sites of the gene based on build 37 SNP and gene positions. 
 
MAGMA “gene-property analysis” was performed to test for associations between gene-level signals 
and tissue-specific gene expression profiles.  Gene-property analysis uses a multi-variable regression 
model that includes gene expression in a specific tissue type and the average gene expression across 
54 tissue types to evaluate the relationship between tissue specificity and gene-level association.  
Tissue specific gene expression data were from GTEx version 8.  GTEx eQTL results are only 
available for tissues with > 70 matched germline genotype-gene expression samples and the fallopian 
tube tissue samples in GTEx did not reach this sample size threshold.  Therefore, fallopian tube was 
not included in the eQTL annotation but was available for the MAGMA gene-property analysis. 
 
URLs 
 
Links to download data sets and analytic tools used in the study: 
 
All genome-wide summary association statistics linked to this paper 
(input single-cancer data, matrices, priors, and output multi-cancer data): 
https://doi.org/10.5281/zenodo.3911767 
 
RE2C: http://software.buhmhan.com/RE2C/index.php 
 
FUMA and MAGMA: https://fuma.ctglab.nl/ 
 
MetABF: https://github.com/trochet/metabf 
 
PhenoScanner: http://www.phenoscanner.medschl.cam.ac.uk/ 
 
GIANT consortium data: 
https://portals.broadinstitute.org/collaboration/giant/index.php/GIANT_consortium_data_files 
 
WebGestalt: http://www.webgestalt.org/ 
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