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Supplementary Figures 
 
Supplementary Figure 1. Quantile-quantile plots from the (a) main and the (b) subtype-focused 
meta-analyses.  Negative logarithm (base 10) P-values from each meta-analysis are plotted on the Y-
axis.  For (a) λ = 1.11 and λ1000 = 1.00.  For (b) λ = 1.15 and λ1000 = 1.00.  Lambda, λ, is the genomic 
control inflation statistic and λ1000 is the same statistic scaled for 1,000 cases and 1,000 controls. 
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Supplementary Figure 2. Manhattan plots of genome-wide association results from the (a) main 
and the (b) subtype-focused meta-analyses.  Negative logarithm (base 10) P-values from the meta-
analysis are plotted on the Y-axis.  The red dashed line indicates genome-wide significance (P < 5 x 
10-8). 
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Supplementary Note 1 
 
Gene-level MAGMA association analyses also revealed candidate multi-cancer susceptibility genes 
likely acting via diverse but fundamental carcinogenic processes.  SNPs in or near BSN are highly 
pleiotropic and known to be associated at genome-wide significance (P < 5 x 10-8) with circulating 
levels of the inflammatory marker, C-reactive protein1, and with multiple chronic inflammatory 
diseases2.  SIK2 encodes a centrosome kinase essential for bipolar mitotic spindle formation3.  The 
kinase positively regulates cell-cycle progression and negatively regulates the proto-oncogene CREB1 
in prostate cancer cells4.  INTS10 codes for a component of Integrator, a complex involved in the 
transcription and processing of the small nuclear RNAs U1 and U25.  Recurrent somatic mutations in 
U1, which regulates alternative splicing of cancer driver genes, have recently been identified in 
multiple tumor types6.  UQCC1 polymorphisms are associated at genome-wide significance with non-
melanoma skin cancer7.  CLIC6 encodes a chloride intracellular channel and its expression has been 
shown to differ by TP53 mutation and ER status in breast tumors8.  ATP5B encodes a subunit of 
mitochondrial ATP synthase, the core enzyme of oxidative phosphorylation.  The enzyme is 
downregulated across cancers9, a reflection of the “Warburg effect” wherein cancer cells, regardless 
of their tissue of origin, favour glycolysis over oxidative phosphorylation even under aerobic 
conditions10.  IKZF2 encodes the hematopoietic-specific transcription factor “Helios” that is involved 
in the regulation of lymphocyte development.  Helios-dependent regulation of gene expression and 
lymphocyte reprogramming is particularly observed in the tumor microenvironment11.  PYGB encodes 
brain-type glycogen phosphorylase that helps metabolize glycogen as an energy source under hypoxic 
conditions.  PYGB knockdown has been shown to reduce the wound-healing capability of MCF-7 
breast cancer cells and the invasive potential of MDA-MB-231 breast cancer cells12.  PYGB silencing 
in PC3 prostate cancer cells supresses growth and promotes apoptosis via NF-κB/Nrf2 signaling13.  
PRDM5, which encodes an epigenetic modifier that acts as a tumor suppressor, has a CpG island 
promoter that is silenced in multiple tumor types14,15.  Inherited genetic variation in LAMC1 is 
associated at genome-wide significance with colorectal cancer16 and with the hormone-related traits of 
acne17 and male-pattern baldness18.  GLIS1 was identified in our study based on its association with 
breast and prostate cancer.  GLIS1 is a hypoxia-inducible transcription factor that regulates gene 
expression related to cell migration and invasion in breast cancer cells, specifically transcriptional 
activation of the Wnt/β-catenin pathway19,20.  CDKN1A and TIAL1 were identified at gene-level 
genome-wide significance (PMAGMA < 2.62 x 10-6) for breast cancer alone and in the combined data, 
with the breast cancer association underlying the combined signal.  Variants in/near these genes are 
associated at sub-genome-wide significance levels (5 x 10-8 < Plead SNP ≤ 10-7), with breast cancer 
susceptibility in the Michailidou et al. data set.21  TIAL1 encodes nucleolysin TIAR that has roles in 
G1/S phase cell-cycle arrest and caspase-dependent apoptosis22.  CDKN1A expression is tightly 
controlled by TP53 and mediates the G1/S phase arrest in response to a range of stress stimuli23.  
These genes add to a list of candidate breast cancer susceptibility genes identified by GWAS, 
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including CCND124 and CCNE125, that collectively underscore the importance of the G1/S checkpoint 
as a major functional effector of inherited breast cancer risk. 
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