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ABSTRACT17

Motivated by previous research suggesting that mesoscopic collective activity has the de in‑18
ing characteristics of a turbulent system, we postulate a thermodynamic model based on the19
fundamental assumption that the activity of a neuron is characterized by two distinct stages:20
a sub‑threshold stage, described by the value of meanmembrane potential, and a transitional21
stage, corresponding to the iring event. We therefore distinguish between two types of en‑22
ergy: the potential energy released during a spike, and the internal kinetic energy that trig‑23
gers a spike. Formalizing these assumptions produces a system of integro‑differential equa‑24
tions that generalizes existing models [Wilson and Cowan, 1973, Amari, 1977], with the ad‑25
vantage of providing explicit equations for the evolution of state variables. The linear analysis26
of the system shows that it supports single‑ or triple‑point equilibria, with the refractoriness27
property playing a crucial role in the generation of oscillatory behavior. In single‑type (excita‑28
tory) systems this derives from the natural refractory state of a neuron, producing “refractory29
oscillations” with periods on the order of the neuron refractory period. In dual‑type systems,30
the inhibitory component can provide this functionality even if neuron refractory period is ig‑31
nored, supporting mesoscopic‑scale oscillations at much lower activity levels. Assuming that32
the model has any relevance for the interpretation of LFP measurements, it provides insight33
intomesocale dynamics. As an external forcing, thetamay play amajor role inmodulating key34
parameters of the system: internal energy and excitability (refractoriness) levels, and thus35
in maintaining equilibrium states, and providing the increased activity necessary to sustain36
mesoscopic collective action. Linear analysis suggest that gamma oscillations are associated37
with the theta trough because it corresponds to higher levels of forced activity that decreases38
the stability of the equilibrium state, facilitating mesoscopic oscillations.39
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1. INTRODUCTION68

A persistent challenge in understanding the neurobiological basis of higher‑cognition is un‑69
covering themechanismbywhich neural activity across different scales of the brain is coordi‑70
nated [Allen and Collins, 2013, Lashley, 1958]. At cell scale, action potentials (~103 Hz) pro‑71
vide the “atomic” constituents of activity [Buzsáki, 2006, Buzsáki and Draguhn, 2004, Eichen‑72
baum,2017,Hasselmo, 2015,McNaughtonet al., 1996]. At global‑brain scale, the large‑amplitude73
theta rhythm, with a frequency three orders of magnitude lower (6‑9 Hz), is believed to pro‑74
vide a temporal structure around which smaller scale oscillations organize [Buzsáki, 2002,75
Green and Arduini, 1954, Green and Machne, 1955, Lisman and Idiart, 1995, Vanderwolf,76
1969]. However, neither spikes nor theta in isolation can represent cognition, which suggests77
that neural dynamics fundamental for higher cognition reside in collective activity occupying78
a scale intermediate (meso‑) between theta and action potentials. Following previous work79
[e.g., Freeman, 2000b, Muller et al., 2018b] we de ine here the mesoscale as spanning tempo‑80
ral scales between, say, 8ms and 20ms (e.g., LFP oscillations between 50Hz and 120Hz), and81
spatial scales in the order of mm to cm). These intervals correspond to the gamma activity82
[Bragin et al., 1995], prominent in the hippocampus.83

At mesoscopic scales, the spatial organization of neurons within a neocortex layer shows a84
relative homogeneity. The mesoscopic neural activity supported by these layers involves a85
large number (e.g., ∼ 104 − 108, e.g., Deco et al., 2008) of synchronized action potentials that86
assemble into spatio‑temporal patterns [Hebb, 1949, Lashley et al., 1951]. Should neurons87
be organized in a manner that favors local connectivity over long‑distance projections, the88
spatio‑temporal pattern of activity may manifest as propagating waves [Lubenov and Siapas,89
2009, Patel et al., 2012, 2013, Petsche and Stumpf, 1960, Muller et al., 2018b]. Recent stud‑90
ies correlating hippocampal LFP to active exploration shows that neural activity develops as91
perturbations, spanning a wide frequency range, of a largely scale‑free (∝ 𝑓 −𝛼) background92
state [Sheremet et al., 2016b, 2019b]. Following Freeman [2000a,b], we will refer to these93
perturbative patterns of neural activity as “mesoscopic collective activity”2.94

The nonlinear, stochastic character of mesoscopic collective action suggests that the turbu‑95
lence theory might provide an adequate framework for studying mesoscopic activity dynam‑96
ics [Sheremet et al., 2019b]. In broad terms, turbulence may be described as a theory of the97
internal energy balance in nonlinear, systems with a large number of components whose dy‑98
namics spans a wide a continuum of scales. Nonlinearity implies interaction across scales,99
allowing for a cross‑scale lux of energy. In cases where the cross‑scale lux has a domi‑100
nant, well‑de ined direction, it is often called “turbulent cascade” (e.g., igure 1). Turbulence101
was originally formulated as a general hydrodynamic theory, but has evolved to become the102
theoretical foundation of disciplines ranging from plasma physics, nonlinear optics, Bose‑103
Einstein condensation, water waves, aggregation‑fragmentation processes, and many oth‑104
ers [Kolmogorov, 1941, Richardson, 1922, Zakharov et al., 1992a, Frisch, 1995, Nazarenko,105
2011]. A key inding of the weak turbulence theory is the existence of equilibrium states of106
the multi‑scale system, characterized by a self‑similar distribution of energy across scales107
(the Kolmogorov‑Zakharov spectra, Zakharov et al. 1992a, Zakharov 1999). In the research108
into brain activity, a concept that has some similarities is the “self organized criticality” hy‑109
pothesis [e.g., Bak et al., 1988, Beggs and Plenz, 2003].110

2The “mesooscopic collective activity” concept is identical to Freeman’s [1975b] “mass action”. We prefer
“collective action ” because the word “mass” has a reserved meaning in physics.
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Becausemesoscopic collective action is macroscopic with respect to cell scale processes, pre‑111
vious research into mesoscopic brain activity has approached the problem either using the112
statistical‑physics formalism [e.g., NykampandTranchina, 2000, Cai et al., 2004, Ly andTranchina,113
2007, Rangan et al., 2008, Bressloff, 2011] or thermodynamics/hydrodynamic formulations114
(e.g., Wilson‑Cowan class of fundamental equations, Wilson and Cowan, 1972b, 1973, Cowan115
et al., 2016, Amari, 1975, 1977, Deco et al., 2008) The statistical‑physics approach character‑116
izesmacroscopic states by probability densities (con igurations) ofmicroscopic stats, and de‑117
rives macroscopic equations applying averaging operators to microscopic physics. The ther‑118
modynamic approach de ines the macroscopic state in terms of observable (macroscopic)119
state variables and postulates their balance equations. The statistical description founded120
on microscopic dynamics. It can capture in principle the full statistical details; in practice,121
however, it inherits from microscopic dynamics a very large number of degrees of freedom.122
The resulting equationsmay be very complicated and give rise to closure problems. The ther‑123
modynamic approach is simpler, effective, and is easy to construct, but at least in principle124
in principle to more limited than the statistical physics approach, due to fundamental quasi‑125
equilibrium assumption and its postulated foundation.126

This study is motivated by long‑term goal of understanding mesoscopic collective activity in127
the framework of the turbulence theory. Here, we introduce a new thermodynamic formula‑128
tion of mesoscopic collective activity, and discuss its basic linear properties.129

We adopt the thermodynamic formulation, both because its relative simplicity and its well‑130
established history. The key equationswere derived byWilson and Cowan [1972b, 1973] and131
further re ined by Amari, 1975, 1977, Wright and Liley, 1995b, Jirsa and Haken, 1996, 1997,132
Robinson et al., 1997, Cowan et al., 2016 and many others (see, e.g., reviews by Deco et al.133
e.g., 2008, Coombes et al. e.g., 2014, Cowan et al. e.g., 2016; because of their common funda‑134
mental principles, we refer below to models that are based on the Wilson‑Cowan and Amari135
formalism as WC/A models). The model presented here, which belongs irmly to the WC/A136
class of models, was derived in response to the realization that all models of this class con‑137
tain a curious de iciency. While the de iciency not detract from the value and success of the138
WC/Amodels, it doesmake current formulations ill suited for investigating turbulent aspects139
of mesoscopic brain activity. Indeed, the Wilson‑Cowan (WC) class of models generally are140
formulated as a relationship between the local iring rate and incoming pulses in the element141
of area. In thermodynamics, this is largely equivalent to describing the evolution of a phys‑142
ical system only in terms of its exchanges with the external systems, i.e., in term of process143
variable. Because no state variables are de ined, therefore the state of the system remains144
unknown. Amari’s [1975, 1977] approach corrected the issue to a degree, however, one may145
argue that the use of an “averagedmembrane potential” as state variable may lead to dif icul‑146
ties because the quantity is ill de ined during the explosive depolarization of a spike (Amari147
did not, in fact elaborate on the de inition of this quantity). However, an explicit and accurate148
characterization of the state of the system is essential for investigating a turbulent system,149
because the distribution of the state variable over the internal scales of the system is related150
to the distribution of energy, which drives the energy cascade, i.e., the evolution of the system151
itself.152

It is possible that this de iciency is the result of an original lack of interest in a rigid ther‑153
modynamic formalism, maybe too fastidious for many practical purposes. While correcting154
this de iciency is in itself a relatively small point, a consistent thermodynamic formalism has,155
however, a number of advantages: it provides a clear statement about the physical postulates156
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underpinning the model; it de ines state and process variables; it allows for an explicit de‑157
scription of the energy redistribution over scale in the collective activity system. The process158
also requires some changes in the formulation of standard functions such as the activation159
function. The resulting model is different enough from its “parent” WC/A class to warrant a160
closer examination of its basic properties.161

Section 2 discusses LFP measurements that form the basis of the turbulence hypothesis. We162
provide a short review of the WC/A class of models in section 3. In section 4 we discuss163
what has arguably become the standard dynamical‑kinetic‑thermo/hydrodynamic modeling164
framework used for the representation of physical systems; we introduce the powder‑keg165
paradigm, andwe derive the governing equations of the thermodynamicmodel. The powder‑166
keg model is compared to the standard Wilson and Cowan [1972b, 1973] and Amari [1975,167
1977]models in section5. Elementary simpli ications that bring the equations to ananalytically‑168
tractable form are discussed section 6, and some rudiments of linear analysis are presented169
in sections 7 and 8 single‑ and dual‑type neural ields. We conclude with a discussion of the170
results (section 9). Details of the formulation of the new activation function, the positive‑171
de inite character of the state variables (internal “kinetic” energy and excitability), and alge‑172
braic details of the growth rate and dispersion relation derivation for dual‑type neural ields,173
are given in the appendices.174

2. MOTIVATION175

Recent investigations of hippocampal LFP in rats showa strong relationbetweenenergy input176
into the hippocampus (as inferred based on rat speed) and the nonlinear character of neural177
activity [Sheremet et al., 2016b,a, 2019b,a]. Both spectra and bispectra are well ordered with178
input power, as parameterizedby rat speed. The redistributionof increasedpowerover scales179
(frequencies) shows remarkable organization, as sketched in igure 1. In summary:180

• At low frequencies, the power increase is highly localized to theta and its harmonics. Theta181
power increases by a factor of 4 and becomes strongly nonlinear (highly skewed and asym‑182
metric; up to 5 harmonics can be clearly identi ied, Sheremet et al., 2016b). Frequency bands183
adjacent to theta and harmonics (e.g., 𝑓 < 6 Hz, or 10 < 𝑓 < 14 ) show a marked depletion of184
power.185
• At high frequencies, gamma power increases by a factor of 2, but its power increase dis‑186
tributes through a process that may be described as a front moving across scales: gamma187
modes grow and plateau sequentially, starting at the lower frequencies (𝑓 ≃ 60 Hz) and pro‑188
gressing toward higher frequencies.189
• As power grows, gamma develops signi icant nonlinear coupling with theta.190
• The process of redistribution of power over scales process is reversible: if power levels191
retreat to initial values, the initial scale‑distribution of power (spectrum) is recovered.192
• At the lowest levels of power observable, the scale‑distribution of power is nearly self‑193
similar (power spectrum of the form 𝑓 −𝛼, with 𝛼 > 0). We refer to this as the background194
spectrum (state). The background spectrum may be identi ied with a dynamic equilibrium195
point, i.e., a state that may be maintained indeterminately, but requires energy input.196

If one identi ies mesoscopic collective action with the gamma band, our observations suggest197
that these processes are perturbations of a dynamical equilibrium state (background state),198
and that increased power input in the theta band triggers a scale redistribution of gamma199
power. This evolution is tantalizingly similar to the energy cascade in a turbulent system.200
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FIGURE 1. A cartoon of the typical evolution of the power spectrum of the hippocampal LFP
with rat speed, that summarizes observations discussed in Sheremet et al. [2019b]. The evo‑
lution of the spectrum shows remarkable ordering by speed (e.g., from 5 cm/s to 50 cm/s,
violet to red). Power increases by a factor of 4 in the theta band (blue rectangle), with theta
and harmonics becoming prominent, while the gamma band exhibits a transformation that
could be described as a spectral front shifting toward higher frequencies, up to the upper
bound of the gamma band (black circle, crossover point), beyond which the spectrum no
longer responds to forcing. This evolution suggests that nonlinear interactions between dif‑
ferent frequency components result in a behavior similar to a turbulent cascade: the power
received from external forcing in the theta band generates a net spectral power lux from low
frequencies (theta) toward high frequencies. The crossover point (black circle at about 130
Hz) signals a signi icant shift the dominant physics. On the left side of it, in the gamma fre‑
quency band, nonlinear interactions dominate; on the right side physics are dominated by
dissipation. The fundamental difference between the gamma activity and higher‑frequency
(cell‑scale) activity supports the hypothesis that collective activity is macroscopic with re‑
spect to cell‑scale processes. The spectral evolution is associated with a change in the overall
slope of the spectrum (𝛼1 corresponds to low speeds; 𝛼2 to high speeds).

3. SHORT REVIEW OF NEURAL POPULATION MODELS201

The beginning of the development of neural populationmodeling can be traced back to Beurle202
and Matthews [1956], who proposed an “update” equation to describe the propagation of203
large scale brain activity in networks composed of excitatory neurons, with applications to204
problems ranging from understanding the generation of LFP rhythms to visual hallucinations205
[Nunez, 1974, Milton et al., 1993, Ermentrout, 1998, Larter et al., 1999, Curtu and Ermen‑206
trout, 2001, Robinson, 2006, Pinto and Ermentrout, 2001a, Amari, 1977, Freeman, 1975b,207
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Huang et al., 2004, Deco et al., 2009, Coombes et al., 2014, Muller et al., 2014], and with ap‑208
proaches ranging from detailed descriptions of randomly connected neurons transmitting209
all‑or‑nothing signals to hierarchically structured networks whose dynamics involve multi‑210
ply spatial and temporal scales [Amari, 1975, Jirsa and Haken, 1997, Robinson et al., 2002,211
Breakspear et al., 2003, 2004, Breakspear and Stam, 2005, Nunez and Srinivasan, 2006, Deco212
et al., 2008, Mejias et al., 2016, Breakspear, 2017].213

The mass action description [Wilson and Cowan, 1972b, Da Silva et al., 1974, Jansen and Rit,214
1995, Marreiros et al., 2008] may be the simplest approach to population modeling, actively215
used since the 1970s to understand LFP rhythms, and deriving naturally from the concept of216
activity synchronization (e.g., Kuramoto, 1975, Strogatz, 2000). The key assumption is that217
at some local scale the activity of individual neurons is strongly synchronized and coherent,218
and thus one may describe it as the mean activity of the local neural mass, with interacting219
“masses” of neurons, such as excitatory and inhibitory neurons in different layers of cortex,220
modeled by a small number of equations, each describing the mean activity of a distinct neu‑221
ral “mass”. Theoretical treatments with empirical synaptic and input‑response functions are222
possible (e.g., Freeman, 1979, Jansen and Rit, 1995, Miller et al., 2003, Stefanescu, 2011, Jirsa,223
2011). The “mass” approach provides the building blocks for brain network models (e.g.,224
Freeman 1975b, Breakspear et al. 2004, Breakspear and Stam 2005, Wong 2006, Honey et al.225
2007, Deco et al. 2009, Jirsa et al. 2010, Woolrich and Stephan 2013), which treat the cortex226
as a discrete network of dynamical nodes (the neural “masses”) coupled through the connec‑227
tome, essentially incorporating neural “masses” into a larger system that helps to understand228
topological signi icance of connections in organizing cognition, and functional correlations229
across brain regions. It should be clear, however, that this approach is in its essence a large230
scale model that lumps laminar neuronal tissues into discrete mass points, and thus does not231
resolve smaller‑scale details such asmesoscale spatio‑temporal patterns. The approach is not232
universally accepted and may lead to contradictory conclusions regarding large‑scale brain233
dynamics [Breakspear, 2017]. Neural “mass” models may be developed into more compli‑234
cated representations. For example, instead of using the spatial mean, the state of the neural235
population, one could follow a statistical mechanics approach and describe the neural “mass”236
using the probability distribution of neuron states. Under the assumption that the diffusion237
approximation holds true, one may derive Fokker‑Plank‑type stochastic equations (e.g., Kar‑238
dar, 2007b,a; for applications to neural masses see e.g., Friston, 2010, Omurtag et al., 2000,239
Fourcaud andBrunel, 2002, Harrison et al., 2005,Ma et al., 2006, Deco et al., 2008, El Boustani240
and Destexhe, 2009; or fractional versions, Linkenkaer‑Hansen et al., 2001, Lundstrom et al.,241
2008), useful for describing the evolution of network synchrony.242

A next step toward a more lexible description of collective neural activity is to discard the243
concept of a “mass” of synchronized neurons and treat the cortex as a continuum, with the244
properties of the local neural population changing continuously in space and time. This class245
of models are referred to as neural‑ ield models (see e.g., Ermentrout, 1998, Coombes, 2003,246
Deco et al., 2008, Cowan et al., 2016, Breakspear, 2017, Muller et al., 2018b, as well Gerstner247
et al., 2014, Coombes et al., 2014, Troy, 2008, Hoyle and Hoyle., 2006, Winfree, 2001).Their248
distinguishing characteristic is the elimination of the “individual neuron” concept. Instead,249
the dynamics of collective neural activity is described by a small number of ields, say𝜑𝑗(𝑥, 𝑡),250
where 𝜑𝑗, with 𝑗 = 1, ⋯ , 𝑁 are 𝑁 variables that characterize completely (in the sense of clos‑251
ing the system of equations) the neural ield. The irst such model was introduced by Beurle252
and Matthews [1956], who proposed an “update” equation to describe the propagation of253
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large scale brain activity in networks composed of excitatory neurons. The model was re‑254
visited and extended by Wilson and Cowan [1972a, 1973], Nunez [1974], and Amari [1977].255
A major limitation of the early Beurle and Matthews [1956] neural ield model was its ne‑256
glect of refractoriness or any process tomimic themetabolic restrictions placed onmaintain‑257
ing repetitive activity. Wilson and Cowan [1972a, 1973] The landmark model of Wilson and258
Cowan [1972a, 1973] coupled excitatory and inhibitory populations corrected this issue, and259
was successfully used to understand pattern dynamics such as oscillations and hysteresis,260
that shed light on real biology. The model proposed by Nunez [1974] links synaptic action261
to action potential irings, which allowed for periodic‑wave solutions and sustained oscilla‑262
tions. The novelty of the model proposed by Amari [1977] was the inclusion of the “average263
membrane potential” as a state variable, coupled with iring rate. By assuming Heaviside264
activation function, Amari successfully derived solitary wave solutions for the model which265
opened a world of theoretical approximation on integral type of neural ield equations.266

Toward thebeginningof this century, ieldmodels gained increasingpopularity,whichbrought267
increased, systematic scrutiny of their properties, and additional re inements. Ermentrout268
andMcLeod [1993], Ermentrout [1998], Osan and Ermentrout [2001] proposed amodel that269
introduced a state variable similar to the membrane potential in Amari’s model, by integrat‑270
ing the iring rate (incoming energy lux, a process variable), and conducted an analysis of271
the existence and stability of solutions, including wave fronts and traveling pulses. Jirsa and272
Haken [1996, 1997] modi ied the Wilson and Cowan [1972a, 1973] models to account for273
axonal‑delay effects proportional to the span of connections, and thus allowed wave solu‑274
tions that arise as result of axonal propagation. Interested in electrocortical waves, Wright275
et al. [1994], Wright and Liley [1995a, 1996], Robinson et al. [1997], Freeman [1991] intro‑276
duced another population model of coupled excitatory and inhibitory neurons following ear‑277
lier work by Freeman [1991], Their model could be in fact regarded as a variant of the modi‑278
ied theWilson and Cowan [1972a, 1973]model accounting for axonal delay (similar to [Jirsa279
and Haken, 1996, 1997]), but including no refractory period, and with a speci ic temporal280
weighting function comprising effect of synaptic delay and depolarization decay.281

Wave propagation, and in general, the evolution of spatio‑temporal patters in the cortex, ar‑282
guably plays a central role in understanding collective activity dynamics. One of the earliest283
systematical derivations of traveling wave front solutions (arguably a simplest wave‑like pat‑284
tern) is due to Ermentrout and McLeod [1993], Ermentrout [1998]; although derived in a285
highly restricted formulation, their results, such as estimated velocity of activity propagation,286
shed light on biological information transfer. The role of inhibitory neurons in the forma‑287
tion and propagation of collective activity waves in a neural ield is one of the fundamen‑288
tal results of recent studies (although the mechanism is not fully understood; see e.g., Wulff289
et al. [2009], Castro and Aguiar [2012], Stark et al. [2013], Amilhon et al. [2015], Neske et al.290
[2015], Hattori et al. [2017]). The interactions between excitatory and inhibitory neurons291
are believed to play an essential role in the dynamics and information processing of neural292
populations. TheWilson and Cowan [1972a, 1973]model and derivatives and known to have293
a rich set of spatio‑temporal patterns, including oscillatory solutions in dual‑type networks294
(including excitatory and inhibitory neurons; Wilson and Cowan, 1972a, 1973, Nunez, 1974,295
Larter et al., 1999, Robinson et al., 2002, Breakspear et al., 2003, Robinson, 2006); traveling296
wave fronts [Amari, 1977, Ermentrout, 1998, Pinto and Ermentrout, 2001a]; periodic pro‑297
gressive waves [Nunez, 1974, Amari, 1977, Robinson et al., 1997]; standing pulse solutions298
[Ermentrout, 1998, Amari, 1977, Pinto and Ermentrout, 2001a]; spiral waves [Milton et al.,299

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 29, 2020. ; https://doi.org/10.1101/2020.06.25.172288doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.25.172288
http://creativecommons.org/licenses/by-nd/4.0/


A THERMODYNAMIC MODEL OF MESOSCALE NEURAL FIELD DYNAMICS: DERIVATION AND LINEAR ANALYSIS 9

1993, Osan and Ermentrout, 2001, Huang et al., 2004]; and maybe others. These patterns300
have formed the basis for experimental observations regarding the generation of sustained301
and propagating activity patterns in several brain regions Pinto and Ermentrout [2001a], Er‑302
mentrout and Kleinfeld [2001], Wu et al. [2008], Muller et al. [2018a]. It is important to note303
that excitatory‑inhibitory neuron interaction is not the onlymechanism of pattern formation.304
Purely excitatory networks support oscillatory solutions and traveling pulses [Curtu and Er‑305
mentrout, 2001, Pinto and Ermentrout, 2001b] as well as periodic traveling waves [Meijer306
and Coombes, 2014]. While inhibition (inhibitory neurons, spike frequency adaptation and307
and refractoriness; Ermentrout andMcLeod, 1993, Pinto andErmentrout, 2001a, Huang et al.,308
2004 ) plays an essential role in the formation and propagation of these patterns, its source309
is not well understood: models tend to produce patterns that agree qualitatively with obser‑310
vations, but with large quantitative deviations from observations that are still unexplained.311
Curtu and Ermentrout [2001] showed that the ratio of absolute refractory period over time312
constant should be >5, resulting a oscillatory period derived is between 1.4 and 4 in refrac‑313
tory period units. Likewise, propagating pulses and periodic waves discussed in the works of314
Pinto and Ermentrout [2001b] and Meijer and Coombes [2014] have time scales of the same315
order of magnitude as absolute refractory periods, which does not agree with large ratio of316
absolute refractory period to membrane reaction time necessary for sustained propagating317
patterns (in the Wilson‑Cowan model the absolute refractory period needed for propagating318
waves is in the order of 10 time‑constant units (at least 40ms, whilemembrane reaction time,319
or time constant, is ≈10 ms).320

While this brief review of collective activity models does not even come close to doing full321
justice to all the research effort dedicated to the problem, it should highlight some of the pe‑322
culiarities of its history: the brilliant and rather ad‑hoc ideas, the late intersection of their323
evolution with other well‑developed, mature branches of physics such thermodynamics, sta‑324
tistical mechanics, and kinetics. This is re lected in the peculiar usage of state and process325
variables, the lack of a systematic approach to the study of the dynamics of spatio‑temporal326
patterns. Interestingly, this is not for the lack of enthusiasm (e.g., Freeman, 2000a,b, 2006,327
1975a, Freeman and Vitiello, 2010, 2006 to cite one of the most enthusiastic investigator of328
collective activity). Still, the remarkable persistence of the Wilson and Cowan [1972a, 1973]329
model as a key, fundamental formulation for neural‑ ield activity is re lected in that all sub‑330
sequent models are closely related to the original delayed form ofWilson and Cowan [1972a,331
1973] equation, either directly deriving from it, or reduce to it through time coarse‑graining.332
This implies that themechanisms and capability of ieldmodels have changed little over a long333
history, and suggests that their rich reservoir of solutions met most expectations in terms of334
reproducing occasionally observed patterns in recordings. This may also, however, be the335
result of rather intermittent, occasional interest in collective activity (stemming mostly from336
practical computation interests), perhaps obscured by the dominance of the philosophical337
view known as “multiplexing”, that postulates that neurons function in a way similar to elec‑338
tronic components hardwired on a circuit board in a computer. If the latter were true, then339
collective activity would be indeed at most of a secondary concern. However, as observations340
and hypotheses accumulate that contradict the “multiplexing” model, such as the degeneracy341
and role of turbulence and self‑organized criticality in collective neural activity (e.g., Edelman,342
1987, Edelman and Gally, 2001, Beggs and Plenz, 2003, Shew et al., 2011, Beggs and Timma,343

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 29, 2020. ; https://doi.org/10.1101/2020.06.25.172288doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.25.172288
http://creativecommons.org/licenses/by-nd/4.0/


A THERMODYNAMIC MODEL OF MESOSCALE NEURAL FIELD DYNAMICS: DERIVATION AND LINEAR ANALYSIS 10

2012, Sheremet et al., 2018a, 2019b and others), or perhaps simply due to the growing in‑344
terest in mesoscale processes, the capabilities of theWilson and Cowan [1972a, 1973] model345
are bound to undergo further scrutiny.346

So far, collective activity patterns have been studied from a perspective reminiscent of the347
theory of pattern formation in dynamical systems, in the sense that particular patters have348
been identi ied and studied in isolation. Solutions in a givenmodel with physiological param‑349
eters determined are con ined by and large to a single scale. However, waves generated in a350
single brain region are never con ined in a single scale, but always corresponds to a spectrum351
spanning at least the domain from 1 Hz – 300 Hz. The dynamics of the spectral distribution352
of energy in a hippocampus LFP raises a number of questions (e.g., Sheremet et al., 2017,353
2018a, 2019b) that cannot be addressed directly using the current formulations. While the354
value of the Wilson and Cowan [1972a, 1973] formulation is beyond dispute, a number of355
small changes are needed to address the problem of the spectral evolution. The rest of this356
paper is dedicated to the discussion of these modi ications.357

4. A THERMODYNAMIC MESOSCOPIC MODEL FOR NEURAL FIELDS: THE POWDER‑KEG PARADIGM358

4.1. Microscopic vs macroscopic3. The words “macroscopic” and “microscopic” are used359
here as a non‑dissociable pair of relative terms, that de ine two fundamental scales coexist‑360
ing in the system, governed by fundamentally different physical laws. The microscopic scale361
refers to processes that involve some atomic (in the etymological sense of “not further divis‑362
ible”) elements of the system. If the system has a large‑enough number of atomic elements,363
collective behavior might emerge, in which the contributions of individual atom are indis‑364
tinguishable (e.g., atoms may conceptually be interchanged without altering the collective365
behavior). Such processes aremacroscopic, and are governed by physical laws effectively dif‑366
ferent that atom‑scale processes4. The de inition of the dual micro/macro scales is arbitrary,367
determined by the processes of interest. Micro‑ and macro‑ dynamics coexist: for example,368
while individuals participating in a stadium wave may eat, read a newspaper, chat in pairs,369
etc, to create a stadium wave all they are asked to do is stand and sit in synchrony with the370
rest of the group.371

The word “scale” is used below with two additional meanings. As common in physics, the372
generic term “scales” is used to refer to wave numbers or frequencies in the Fourier repre‑373
sentation. Neuroscience also de ines two absolute scales: the “brain (or global) scale”, and374
the “cell scale”. The global scale refers to processes that span a signi icant part of the entire375
brain. The cell scale refers to processes that involve individual neurons, the natural “atoms”376
of the cortex, whose physics are described, say, by the Hodgkin and Huxley [1952] model.377

Therefore, ignoring sub‑cell processes, we will de ine here the cell‑scale as microscopic.378

The de inition of the dualmacroscopic scale deservesmore discussion. Following the reason‑379
ing discussed above, the macroscopic scale is the scale where collective behavior emerges.380
The existence of a spectral crossover point in the neighborhood of 130 Hz ( igure 1), suggests381

3The ideas below are elementary. We discuss them here only because they re lect a certain choice of terms,
and for bene it of readers less familiar with statistical physics.

4A classical example of macroscopic behavior qualitatively distinct from microscopic physics is Boltzmann’s
H‑theorem for the idea gas. The (microscopic) dynamics of the gas particles is Hamiltonian, conservative and
reversible; the (macroscopic) dynamics of the entire system is irreversible toward equilibrium (e.g., Boltzmann,
1872, 2003, Alexeev, 2004, Pathria and Beale, 2011).

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 29, 2020. ; https://doi.org/10.1101/2020.06.25.172288doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.25.172288
http://creativecommons.org/licenses/by-nd/4.0/


A THERMODYNAMIC MODEL OF MESOSCALE NEURAL FIELD DYNAMICS: DERIVATION AND LINEAR ANALYSIS 11

that gamma oscillations are governed by different physics than the cell (microscopic) scale,382
implying thatmesoscopic activity ismacroscopic in relation to cell scale. If the number of neu‑383
rons entrained in these processes, say, in the order of 𝑂 (104) seems small, it is important to384
note that order of magnitude of the number of atomic constituents needed for macroscopic385
behavior is not an a priori given number, but depends on the system under consideration.386
moreover, the emergence of macroscopic behavior also depends on microscopic mixing, i.e.,387
strength of interaction between atomic components. Strong microscopic mixing promotes388
macroscopic behavior. In his sense, micro‑macro duality is the expression of the dynamics of389
the system, and not of some absolute number of components. This observation has impor‑390
tant consequences for brain activity. If neurons are hardwired like ixed electronic circuits, in391
unique patterns that assign neurons unique speci ic functions, there can be nomixing, nomi‑392
croscopic randomization, and therefore the “macroscopic” behavior is trivial (and irrelevant).393
However, evidence suggests that this is not the case. Synapses have a limited life‑span, lasting394
only a few weeks [Attardo et al., 2015, Holtmaat et al., 2005, Xu et al., 2009, Xiao et al., 2009].395
Mossy ibers from a granule neuron have up to 200 different synaptic inputs onto a wide va‑396
riety of neurons [Amaral et al., 2007] and a single pyramidal neuron has over 30,000 synaptic397
inputs (e.g., Megias et al., 2001). These observations indicate that circuit model descriptions398
are not suitable for the cortexMaley [2018], and that the cortex structure is consistent strong399
nonlinearmixing [Buzsaki, 2006] and degeneracy [Edelman, 1987, Edelman and Gally, 2001].400
We hypothesize that mesoscopic processes are macroscopic with respect to cell scale.401

The distinction between macroscopic and microscopic descriptions (models) is particularly402
useful for systems whose exact microscopic state is impossible to measure. Although macro‑403
scopic dynamics should arguably be the direct result of microscopic dynamics, an explicit404
and formal derivation of macroscopic laws starting frommicroscopic physics is in general ex‑405
tremely dif icult to construct. There are only a handful of very simple physical systems for406
which this connection is well understood (e.g., Alexeev, 2004, Kardar, 2007b). For practical407
purposes such a derivation is also in general not needed (see also the discussion below).408

4.2. Dynamical, kinetic, and thermodynamic/hydrodynamic descriptions. Historically,409
the dynamical, kinetic and hydrodynamic/thermodynamic approaches for modeling physi‑410
cal systems with a large number of components were developed to explain howmacroscopic411
physics emerges from microscopic dynamics. Statistical mechanics and kinetic theory are412
well understood for particle systems, and have been later generalized to other ields (e.g.,413
magnetization) with various degrees of detail. The ideas below are elementary and may414
be found in any textbook of statistical mechanics textbook, (e.g., Gibbs 1902, Tolman 1938,415
Khinchin 1949, Kittel 1958, Pathria and Beale 2011 andmany others) and kinetic theory (e.g.,416
Boltzmann, 1872, 2003, Alexeev, 2004, Pathria and Beale, 2011, Kardar, 2007b,a, Tong, 2012417
and many others).418

Because the goal of this study is to formulate a thermodynamic model of collective (meso‑419
scopic) activity, we provide here a sketch of these stages of modeling. Consistent with the420
fundamental work of Wilson, Cowan, and Amari, we follow what we believe is a consistent421
line of reasoning that allows for formulating the macroscopic laws governing collective activ‑422
ity.423

4.2.1. The dynamical model. A dynamical model is the collection of the evolution equations424
that describe the dynamics of each microscopic atomic component. In the case of an ideal425
gas made of a large number of identical particles, the fundamental law of mechanics Arnold426
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[1974] states states that the mechanical state of a particle is completely de ined by 6 degrees427
of freedom (three position components and three velocity components). For the brain, the428
number of equations included in the dynamical description equals the number of neurons429
described, times the number of degrees of freedom that describe the cell in, for example, the430
Hodgkin and Huxley [1952] model. Note that the dynamical model is fundamentally “phe‑431
nomenological”, i.e., assembled together based on its capability of describingwhat is assumed432
to be the most relevant features of cell dynamics (in this case, the action potential). Its privi‑433
leged status of fundamental model comes for the decision to ignore the sub‑atomic (i.e., sub‑434
cell in the case of the brain) physics. The dynamical equations are “deterministic” in the sense435
that if the initial conditions were known for each molecule, the equations of motion could, at436
least in principle, be integrated exactly. However, for practical applications the dynamical437
system is largely useless, for at least two reasons: the system of equations is too large to be438
solved directly in any practical application, and the exact initial conditions are not known.439

For simplicity, we postulate that all neurons of a given type (e.g., excitatory) are physiologi‑440

cally identical5. Because this prototypical neuron may be de ined through some averaging, it441
will be referred to as “mean neuron”. We assume that the key dynamics of the mean neuron442
are described by the standard “leaky integrate and ire” model of the action potential ( igure443
2.a). For example, the mean neuron is excitable if its membrane polarization is subthreshold444
(≲ −50mV, state (A) in igure 2.a). In this state the average potential luctuates approximately445
between−70mV and−50mV6, due to small post‑synaptic potentials, ion currents associated446
with membrane channels, etc. In state, the neuron is “excitable”, i.e., ready to ire. We refer to447
this state as the “background” state. If synaptic input is zero, the potential of themean neuron448
decays to the resting state (≃ −70mV). If the input stimulus is large enough (state B in igure449
2.a), it can trigger a spike (state C). After the spike, the neuron enters the hyperpolarization450
stage and slowly depolarizes (state D), returning to the original mean state (A). State (B) may451
be seen as a perturbation of the mean state (A), that triggers iring. During the spike (C) the452
neuron is “unavailable”, it does not respond to stimuli (absolute refractory state). In the hy‑453
perpolarization/recovery stage (D) the neuron is in relative refractory state: it is excitable,454
but it requires more energy input, relative to the background state (A), to trigger an action455
potential.456

4.2.2. The kinetic model. The kinetic theory is the irst step toward a macroscopic descrip‑457
tion. Themacroscopic state hasbyde inition amuch smaller numberof dimensions, therefore458
onemacroscopic statemust correspond to a large number ofmicroscopic con igurations (e.g.,459
Kardar, 2007b). Because the exact microscopic con iguration is not accessible the macro‑460
scopic level, themacroscopic state of the system is described by 𝑛‑component, joint probabil‑461
ity density functions (PDF). A statistical description of the system amounts to a set of equa‑462
tions that describe the evolution of these distributions. The number of unknown functionals463
remains still dauntingly large, but some progress may be made is one restricts the effort to464
describing the PDF of a single component (e.g., macroscopic observations are local averaging465
operators based on the 1‑component PDF). However, the evolution of 1‑component distri‑466
bution depends on the 2‑particle distributions, which in turn depends on 3‑particle one etc.467

5This should be interpreted in the same sense as the statement “All cars on the road are Camrys”. The cars
the all have the same mechanical characteristics, but can travel at different speeds, accelerations, etc.

6These values are given for illustration purposes only; in actuality they depend on the type of neuron
considered.

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 29, 2020. ; https://doi.org/10.1101/2020.06.25.172288doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.25.172288
http://creativecommons.org/licenses/by-nd/4.0/


A THERMODYNAMIC MODEL OF MESOSCALE NEURAL FIELD DYNAMICS: DERIVATION AND LINEAR ANALYSIS 13

This hierarchy of dependencies is known as the BBGKY hierarchy (Bogoliubov‑Born‑Green‑468
Kirkwood‑Yvon e.g., Alexeev, 2004, Kardar, 2007a, Tong, 2012). The system of equations is in‑469
inite and unsolvable unless a closure exists. The celebrated Boltzmann equation, also known470
as the kinetic equation, is an example of quasi‑Gaussian closure, where the higher‑order joint471
PDFs may be factorized into products of the 1‑particle PDF. The kinetic description is sto‑472
chastic, in the sense that twomacroscopic states (characterized by he same density function)473
represent many distinct realizations of microscopic con igurations. This approach may be474
characterized as neither entirely microscopic nor entirely macroscopic: while the exact mi‑475
croscopic state is not speci ied, some information about the microscopic states is preserved476
in the probability density functions.477

Accepting for now the conventional description of membrane‑potential evolution shown ig‑478
ure 2, the kinetic state of the neural population is characterized by the PDF of membrane479
potential ( igure 3). At any time 𝑡 and position 𝑥 the fraction of the neural populationwith the480
potential below the threshold is excitable in various degrees and may be triggered to spike;481
the rest of the population is iring (absolute refractory time). A fraction of the energy of the482
spike is passed along to other neurons through network connections; the rest is lost through483
various processes, such as electromagnetic radiation and ineffective connections. The back‑484
ground state could be interpreted as a steady, spatially uniform state in which the energy re‑485
captured from spikes matches exactly the loss of internal energy to maintain its global mean486
energy level (dark green line in igure 3). In this representation, mesoscopic action processes487
are perturbations of the background state that locally change themembrane potential (bright488
green line). For example, a local increase in the internal energy shifts the distribution of neu‑489
ron trigger energy toward the threshold, increasing the iring rate, and, as a consequence, the490
amount of recaptured energy and the internal energy of the system.491

4.2.3. The thermodynamic limit. If the system is atmacroscopic equilibriumor if its evolution492
is not too fast, thekinetic equationmaybe recast in the regular thermodynamic/hydrodynamic493
conservation laws (e.g., Alexeev, 2004, Tong, 2012). These equations are truly macroscopic,494
in the sense that all information about the existence of a microscopic structure is lost and re‑495
placed entirely with a macroscopic description. For example, the low of luid is completely496
describedby the ields of pressure and lowvelocity. This description is again deterministic: if497
themacroscopic state is known accurately, the futuremacroscopic state is exactly predictable.498
It is important to note that thermodynamic models have been (and still are) developed with‑499
out the need of an explicit representation of, and derivation from, the underlyingmicroscopic500
physics. This is in fact the whole point of the “macroscopic” concept: the governing laws are501
formulated for the observable (macroscopic) reality; themicroscopicworld is not observable.502
In this sense, any physical model is phenomenological.503

The full modeling cycle starting from the dynamical description and ending in the thermo‑504
dynamic limit has been examined is detail only for a handful of systems (e.g., Alexeev 2004).505
The vastmajority of physics is based on phenomenologicalmodelswhose connection to some506
underlying microscopic structure either is not well understood, or is inconsequential for the507
macroscopic description. In the brain duality of microscopic (cell‑scale) to macroscopic (col‑508
lective activity) scales, the WC/A class of models belong to the thermodynamic limit.509

4.2.4. Collective‑activity turbulence. If collective activity is macroscopic with respect to cell510
scale, then the WC/A class of models (or generalizations, see below) should provide an ade‑511
quate modeling platform for testing the mesoscopic turbulence hypothesis. The turbulence512
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FIGURE 2. A cartoon of the standard “leaky integrate‑and‑ ire” neuron model. a) Typical rep‑
resentation of the mean potential evolution including a potential spike (purple) and the def‑
inition of “trigger” kinetic energy (blue, see also text for a discussion of the meaning of “ki‑
netic”). The evolution of membrane potential as a succession of states that may be described
as “background” state (A); perturbations of the background state that bring the membrane
potential to the threshold value (dashed gray), triggering a spike; action‑potential spike (A);
and post‑spike state (D) in which the membrane potential goes into the hyperpolarization
state and slowly depolarizes back to the background state (A). Refractory states are repre‑
sented as colored vertical bands: in the absolute refractory state (blue) the neuron does not
respond to stimuli; in relative refractory state (pink) the neuron is increasingly responsive,
but the energy input required to ire is higher than in the background state (the excess in‑
put needed recedes as the neuron depolarizes). In reality, the average membrane potential
is ill de ined during the spike, therefore it cannot be used to describe the state of the neuron.
The kinetic (trigger) energy of the neuron (blue line), is roughly proportional with the aver‑
age membrane potential, it is bounded between zero (resting state) and the threshold value
(𝑈). As a thermodynamic quantity, the kinetic energy is de ined in relation to the neural ield,
therefore it has nomeaning when the neuron is not responsive to stimuli, therefore it is set to
zero during the absolute refractory period. b) Stronger and longer‑lasting stimuli may force
the neuron into a spike train. Spike trains are represented here as rapid successions of single
spikes. A single spike is produced by a short‑lived perturbation (B) of the background state
that brings the kinetic energy to the threshold and then disappears. If the perturbation is
longer than a spike and strong enough, it can trigger a sequence of spikes in rapid succession.
c) different representations of the refractoriness 𝑟 of the mean neuron for a single spike and
a spike train. The refractoriness 𝑟 is a real number between 0 and 1 that re lects both the ab‑
solute and relative refractory states (see text for a discussion). The values of the membrane
potential given here are for illustration purposes only; in actuality they depend on the type of
neuron considered.
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formalism is a ield theory (e.g., Goldstein et al. 2014, Kardar 2007b,a, Tong 2012; many oth‑513
ers) that describes the internal redistribution of energy (and other conserved quantities)514
over the Fourier scales spanned by the system. The equations governing both hydrodynamic515
[Richardson, 1922, Kolmogorov, 1941, Frisch, 1995] and wave turbulence [Zakharov et al.,516
1992a, Newell et al., 2001, Nazarenko, 2011] belong to the hydrodynamic class of equations,517
in the terminology discussed above. Applied to mesoscopic activity, turbulence describes the518
dynamics of multi‑scale patterns of collective activity (not individual‑cell activity). A brief in‑519
troduction and references may be found in Sheremet et al. [2019b]. The Fourier components520
are the atomic components of the physical system. Because these components are macro‑521
scopic with respect to cell scale, WC/A models play the role of the dynamical model. The522
WC/Amodel could be solved directly for the evolution of each Fourier mode, but just as with523
the microscopic con igurations of molecules in an ideal gas, we do not know the exact initial524
conditions (in this case, say, the initial phases). Spectral densities represent the distribution525
of power over patterns of different scales. This is a kinetic description, stochastic because the526
exact microscopic con igurations (e.g., initial phases of the patterns) are not resolved. This527
description is implied inmost of the data analysis techniques used to describe LFP character‑528
istics; for example, the spectral density is an ensemble averaged quantity. A Boltzmann‑type529
kinetic equation [Alexeev, 2004]may be derived following the blueprint of the BBGKY hierar‑530
chy and closuremechanism [Zakharov et al., 1992b, Nazarenko, 2011]. For gravitywaves, this531
equation is known as the Hasselmann equation [Hasselmann, 1962]; for wave (weak) turbu‑532
lence theory known as the Zakharov equation (Zakharov et al. 1992b, Zakharov 1999, Newell533
2002, Nazarenko 2011 and others). One of the fundamental results of the wave‑turbulence534
theory is the existence of self‑similar spectra, called the Kolmogorov‑Zakharov spectra. We535
hypothesize that this frameworkmay help shed some light on the formation and the physical536
meaning of LFP spectra.537

4.3. The powder‑keg paradigm. The conventional representation of the action potential538
shown in igure 2 does not translate well into a quantity whose value can be used for ther‑539
modynamic purposes to describing the state of the neuron. The goal of such a state variable540
would be to characterize the state of a neuron as a whole by a single value, e.g., similar to the541
meankinetic energy of amolecule in a gas. Themeanmembranepotential is a good candidate,542
because it ismeaningful anddescriptive for themicroscopic sub‑threshold equilibriumstates,543
when the charge may be thought of as relatively uniformly distributed across the neuronal544
membrane. However, a spiking neuron is in a transitional (far from equilibrium)microscopic545
state, with charges highly localized as the electrical pulse propagates along membrane. In546
such a state, while a value for the mean membrane potential could still be de ined, it is much547
less representative of the microscopic process.548

Because a single‑value characterization of themembrane potential of a neuron is not possible549
during a spike, for thermodynamic purposes, the sub‑threshold state and the spiking process550
should be treated as two distinct processes. This suggests the thermodynamics of a powder551
keg. The term “powder keg” is used here to designate a thermodynamic device character‑552
ized by two distinct types of energy: a “potential”7 energy that is released as a spike (equiva‑553
lent to the potential energy achieved bymaintaining different concentrations of separation of554

7The term “potential” is used here in its literal sense, describing energy that is available, but not “realized”,
or released.
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sodium and potassium ions inside and outside the cell); and a “trigger” internal energy, pro‑555
portional to the keg temperature (equivalent to themean subthresholdmembrane potential).556
When the temperature reaches a threshold level, it triggers the release of the potential energy557
(trigger voltage‑gated ion channels). The powder keg thermodynamics is virtually identical558
to the conventional evolution of the membrane potential shown in igure 2: the background559
state of the neuronmay be seen as the ambient temperature; when it reaches a certain thresh‑560
old, the keg explodes, analogous to the neuron spike. The refractory state of a neuronmay be561
simulated by replacing the exploded keg immediately after the explosion with an identical562
one whose temperature is initially zero and increases slowly to the ambient value through563
heat exchanges due to nearby explosions.564

If the dynamics of the mean neuron is equated with that of a powder keg, a neural network565
may be represented as a large warehouse of powder kegs. The internal energy of the ware‑566
house is de ined as tho sum of the trigger energy of the kegs, and it is a variable independent567
of the potential energy released by explosions. Assume that the global mean temperature568
in the warehouse is somewhere between zero (no kegs explode) and the critical threshold569
temperature (all kegs explode). Local temperature luctuations may cause spatially scattered570
explosions. A fraction of the energy released by explosions is recaptured by the system and571
increases the ambient temperature; the rest is lost to a variety of other processes such as light,572
sound, radiated heat, etc. In the absence of external energy input, explosions provide the only573
source of energy that can contribute to the ambient temperature. If no explosions occur, the574
temperature of the system naturally decays to a reference value (zero) below the threshold.575
An equilibrium state of the system is achieved if the energy recaptured from explosion bal‑576
ances the natural energy decay and other energy losses.577

The distinction between internal (trigger) and potential energy in the powder‑keg represen‑578
tation suggests adopting the simplifying assumption that the neuron spike (state C in igure579
2.a) and non‑ iring states represent distinct processes, drawing from distinct pools of energy:580
1) the potential energy released by a keg explosion, uses an accumulated source of energy,581
that is exhausted in a spike and needs to be replenished, and 2) the internal kinetic energy582
of the mean neuron, controlled by ambient network activity. The internal “kinetic” energy of583
the mean neuron is roughly proportional to average membrane potential (similar to Amari,584
1975). We refer to this quantity as internal “kinetic energy” (as opposed to potential energy)585
because it is a direct expression of activity. For example, in an hypothetical “inactive” (but586
not dead) system, the mean neuron would be at resting state, i.e., its “kinetic” internal energy587
would be zero. Note that we adopt here the convention the internal kinetic energy is zero588
in the absolute refractory state, consistent with both the evolution of the neuron during the589
relative refractive state, and with the thermodynamic meaning of the internal kinetic energy590
as state variable of the system: if the neuron does not participate in the system dynamics, it591
does not contribute to the internal kinetic energy of the system. The powder‑keg paradigm592
is a simpli ied thermodynamic (macroscopic) representation of a system of identical “leaky593
integrate‑and‑ ire” neurons.594

4.4. Governing equations. Below, the space 𝑥 and time 𝑡 are independent variables, mea‑595
sured in mesoscopic units, i.e., macroscopic with respect to cell scale. As a consequence, the596
duration of a spike is considered in initesimal. If the neural ield comprises several types of597
neurons, we denote the neuron type by superscript symbols, e.g., 𝐸 for excitatory and 𝐼 for598
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FIGURE 3. A cartoon of the probability distribution of the meanmembrane potential over the
neuron population in the element of volume. Although the mean membrane potential is ill
de ined during a spike (see igure 2), we use this representation for convenience. Using for
this the correct state variable (trigger energy) is complicated due to being reset to zero af‑
ter a spike. Main panel: Spatial structure of the distribution of internal energy over neuron
population. The global mean energy is represented by a blue dashed line. The mean energy
is represented by a continuous blue line. Continuous deviations of the mean energy from the
global mean represent collective activity. Inset: Sketch of possible shapes of the distribution
of average membrane potential over the neuron population for the equilibrium state (A) in
igure 2.a (purple) and perturbed state (mesoscopic collective action, B in igure 2.a, yellow).
The high value tails of both distributions exceed the threshold, implying that an number of
neurons ire in both cases. The number of iring events is much larger for the perturbed dis‑
tributions. In general, the shape of the distribution changes as the mean shifts, therefore the
population exceeding the threshold ( iring rate) depends not only on themean but also on the
distribution shape (higher moments). A fraction of energy released by spikes (blue arrows)
is recaptured by the neural ield, and the rest is lost to a host of physical processes.

inhibitory neurons. All neurons of a given type are assumed to have identical physiological599
properties.600

Modeled in the powder‑keg paradigm, the state of the neural ield is completely de ined by601
two independent state variables: 1) the internal kinetic energy 𝑢; and 2) the “excitability” of602
the neural population, that is the fraction of the population that is excitable. Because the en‑603
ergy exchangewithin the neural ield is achieved through explosions (spikes and spike trains),604
the relevant process variable is a measure of the energy released by the fraction of the neu‑605
ron population that is iring. In thermodynamics, state variables are extensive quantities. For606
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convenience, we normalize here extensive variables by the number of neurons 𝜌(𝑥) in the607
element of volume (intensive quantities).608

The quantity 𝑢 is de ined as the internal kinetic energy in the element of volume at 𝑥8, normal‑609
ized by the number of neurons. This is an intensive quantity that may be interpreted as the610
“temperature” (normalized kinetic energy) of the system (not to be confused with the stan‑611
dard temperature, measured by a thermometer; e.g., Callen, 1960). Therefore, 0 ≤ 𝑢(𝑥, 𝑡) ≤612
𝑈 (𝑈 is the threshold value). Neurons that have non‑zero kinetic energy may be triggered613
and will be referred to as “excitable”.614

Excitability is a property dual to refractoriness. The refractoriness of a mean neuron is mea‑615
sured by the fraction 𝑟 of the incoming neurotransmitter lux that is ineffective, satisfying the616
conditions: 𝑟 = 1 in absolute refractory state, 0 < 𝑟 < 1 in relative refractory state, and617
𝑟 = 0 otherwise (e.g., igure 2.c). The dual parameter 1 − 𝑟 may be used as a measure of618
“excitability” of a neuron. Let 𝑁(𝑥, 𝑡) be the number of spikes per unit of time and volume,619
(it has the dimension of 𝑡−1)normalized by 𝜌 (spike trains induced by strong and longer last‑620
ing stimuli are treated here as single spikes; e.g., igure 2.b). We will refer to this quantity621
simply as “ iring rate”. Then, the refractoriness of the neural population may be written as622

∫𝑡
−∞ 𝑁(𝑥, 𝑠)𝑟(𝑡 − 𝑠)𝑑𝑠, therefore the population excitability 𝑎(𝑥, 𝑡), the fraction of neuron pop‑623
ulation not in the absolute refractory state, is624

𝑎(𝑥, 𝑡) = 1 − ∫
𝑡

−∞
𝑁(𝑥, 𝑇)𝑟(𝑡 − 𝑇)𝑑𝑇. (1)

If the average energy captured by the neural ield 𝜖 from a single spike is known, then 𝑁 fully625
characterizes the internal kinetic energy exchange of the neural ield.626

Therefore, aside from variables that characterize the physiological properties of the network,627
the dynamical variables that describe the evolution of the neural ield activity are the internal628
kinetic energy 𝑢(𝑥, 𝑡), the population excitability 𝑎(𝑥, 𝑡) (state variables), and the iring rate629
𝑁(𝑥, 𝑡) (process variable).630

The processes governing the rate of change of the internal kinetic energy 𝑢 are: 1) the incom‑631
ing lux of depolarizing inputs coming through synapses; 2) the post‑spike collapse of kinetic632
energy of the activated neurons, and 3) the natural tendency of the internal kinetic energy633
to decay due to microscopic dissipative processes (sodium‑potassium ion pumping that re‑634
stores the electrochemical gradient). The energy balance equation for the 𝛼‑type neurons is635
therefore636

𝜕𝑢𝛼

𝜕𝑡 = 𝑎𝛼𝐹𝛼

𝜌𝛼 − 𝑁𝛼𝑈𝛼 − 𝑐𝛼𝑢𝛼. (2)

The irst term in the right‑hand side of equation 2 states that the contribution of the mean637
lux of energy 𝐹/𝜌 incoming through synapses to a neuron depends on the mean neuron ex‑638
citability (e.g., if 𝑎 = 1 all neurons 𝜌 in the element of volume are excitable, the entire lux639
is absorbed). The input lux comes from connected neurons, and depends on the connection640
con iguration, therefore it may be written in the general form641

𝐹𝛼(𝑥, 𝑡) = ∑
𝛽

𝜖𝛽→𝛼 ∫
𝑡
𝑑𝑇 ∫ 𝑑𝑋 𝜌𝛽(𝑋)𝑁𝛽(𝑋, 𝑇)𝑤𝛽→𝛼(𝑋, 𝑥, 𝑡 − 𝑇) + 𝑄𝛼(𝑥, 𝑡), (3)

8The term volume is used in the general sense of measure, e.g., area for a two‑dimensional network.

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 29, 2020. ; https://doi.org/10.1101/2020.06.25.172288doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.25.172288
http://creativecommons.org/licenses/by-nd/4.0/


A THERMODYNAMIC MODEL OF MESOSCALE NEURAL FIELD DYNAMICS: DERIVATION AND LINEAR ANALYSIS 19

where 𝜖𝛽→𝛼 is the average amount of energy released by a single spike from type‑𝛽 neurons,642
as received by type‑𝛼 neurons; 𝑄𝛼 is the energy lux arriving at 𝛼‑type neurons; and 𝛽 should643
be regarded as a variable that covers all neuron types, such that ∑𝛽 is a summation over all644

types of neurons, including 𝛼‑type ones. The spatial integration is carried over the spatial645
domain directly connected to the element of volume at 𝑥. The function 𝑤𝛽→𝛼 is a weighting646
function that depends on the distribution of connections and axonal delays (see the appendix647
for the discussion).648

The second term represents the post‑spike loss of internal kinetic energy ( igure 2). As dis‑649
cussed above, in the powder‑keg paradigm the internal energy of a spiking neuron is set to650
zero, therefore, the process of releasing the potential energy𝑁 spikes annihilates𝑁(𝑥, 𝑡)𝑈 of651
the mean internal kinetic energy.652

The third term describes the natural tendency of the kinetic energy to collapse to the zero‑653
energy resting level in the absence of stimulus. Here, again we ignore the possible complexi‑654
ties of the decay‑rate relation to mean energy, and assume that a constant decay rate 𝑐 (per‑655
haps to be re ined at a later time) captures the essential character of the dynamics.656

As discussed in more details in appendix A, we expect the probability of spiking to increase657
with higher depolarization (higher temperature). Therefore, the iring rate 𝑁 should depend658
on the details of the internal‑energy distribution over the neural population, i.e., on themean659
internal kinetic energy 𝑢 and highermoments therefore on all themoments of internal kinetic660
energy distribution), i.e.,661

𝑁 = 𝐺(𝑢, luctuations of 𝑢). (4)
Because we are interested in this study in the leading order behavior of the system, in the ab‑662
sence of further guidance, and pending future re inements, wemake the simplifying assump‑663
tion that the distribution characterized primarily by its mean, and that the contributions of664
the luctuations of the mean are not signi icant and may be neglected. Therefore, we replace665
for now equation 4 with the simple form666

𝑁 = 𝐺(𝑢). (5)
Collecting all above equations, one obtains the system667

𝜕𝑢𝛼

𝜕𝑡 = 𝑎𝛼

𝜌𝛼 𝐹𝛼 − 𝑁𝛼𝑈 − 𝑐𝑢𝛼, (6a)

𝐹𝛼 = ∑
𝛽

𝜖𝛽→𝛼 ∫
𝑡
𝑑𝑇 ∫ 𝑑𝑋 𝜌𝛽(𝑋)𝑁𝛽(𝑋, 𝑇)𝑤𝛽→𝛼(𝑋, 𝑥, 𝑡 − 𝑇)𝑑𝑋𝑑𝑇 + 𝑄𝛼(𝑥, 𝑡), (6b)

𝑎𝛼 = 1 − ∫
𝑡

−∞
𝑁𝛼(𝑥, 𝑇)𝑟𝛼(𝑡 − 𝑇)𝑑𝑇, (6c)

𝑁𝛼 = 𝐺(𝑢𝛼). (6d)
Equations 6 are the governing equations for the powder‑keg thermodynamic paradigm of a668
neural‑ ield continuum comprising several types of neurons. These equations are general,669
both in the sense that contain expression and parameters yet to be speci ied (e.g., equation670
6d) and in the sense that described a wide variety of processes other than collective action671
de ined as a perturbation of the background state. Equations 6 are complicated nonlinear672
integro‑differential equations that are extremely dif icult to interpret and solve in original673
form. They involve both a number of parameters (e.g., the decay rate 𝑐) and functional de‑674
pendencies (e.g., the activation function 𝐺) whose values and forms are not entirely clear or675
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known, and complicated nonlinear terms (𝐹𝑎 and𝐺(𝑢)) that affect signi icantly the evolution676
of the system. The discussion below focuses on the investigation of the linear properties of677
the system.678

5. THE RELATIONSHIP BETWEEN THE POWDER‑KEG MODEL 6A‑6D AND THEWC/A CLASS OF679
MODELS680

We discuss below the relationship between the powder‑keg model given by equations 6 and681
current key thermodynamic models: the class of models based on the Wilson and Cowan682
[1972b] formulation (theWC class), and themodels based on the Amari [1977]model. These683
models are fundamental in the sense that, while signi icant efforts have been dedicated to im‑684
proving the models, more recent work [e.g., Jirsa and Haken, 1996, Wright and Liley, 1995b,685
Jirsa and Haken, 1997, Robinson et al., 1997] is largely focused on re ining the equations and686
may be viewed as variations of these two fundamental formulations, rather than a reexamin‑687
ing their foundation.688

The Wilson and Cowan [1972b] class. The thermodynamic model 6 represents a general‑689
ization of the WC class of models, similar in functionality, if not carrying exactly the same in690
meaning. The recipe for deriving the WC equations from system 6 is simple enough: pick a691
suitable form for the window𝑤𝛽→𝛼, integrate in time the lux 𝐹 (equation 6b), substitute into692
the kinetic energy balance equation 6a and integrate it to obtain 𝑢(𝐹), and inally, substituting693
into equation 6d, obtain the iring rate as a function of the incoming energy lux.694

We summarize this procedure following the choices of Wilson and Cowan [1972b], Cowan695
et al. [2016]. For simplicity, we assume the ield comprises a single type of neurons, therefore696
we omit the type superscripts.697

The obstacles in carrying it out re lect the differences between the two formulations. If one698
assumes that delays are constants and independent of axonal range, then the weighting func‑699
tion 𝑤 can be factorized into spatial and temporal components700

𝑤(𝑋 − 𝑥, 𝑡 − 𝑇) = 𝑤(𝑋 − 𝑥)𝛿(𝑡 − 𝑇 − 𝜏𝑊𝐶), (7)
where 𝜏𝑊𝐶 is the time increment used in the discreteWilson‑Cowan equation. Equations 6a‑701
6b become702

𝜕𝑢
𝜕𝑡 = 𝑎

𝜌𝐹 − 𝑁𝑈 − 𝑐𝑢, (8)

𝐹(𝑥, 𝑡) = 𝜖 ∫
𝑡
𝑑𝑇𝛿(𝑡 − 𝑇 − 𝜏𝑊𝐶) ∫ 𝑑𝑋 𝜌(𝑋)𝑁(𝑋, 𝑇)𝑤(𝑋 − 𝑥) + 𝑄(𝑥, 𝑡). (9)

The time integration may be carried out in equation 9 to yield703

𝐹(𝑡) = 𝜖 ∫ 𝑑𝑋 𝜌(𝑋)𝑁(𝑋, 𝑡 − 𝜏𝑊𝐶)𝑤(𝑋 − 𝑥)𝑑𝑋 + 𝑄(𝑥, 𝑡). (10)

The main obstacle in this procedure becomes apparent when attempting to integrate in time704
equation 8. The WC formulation has no term equivalent to the 𝑁𝑈 term in equation 8; in705
general, the evolution equations for 𝑢 and 𝑎 obviously depend on 𝑁 (see also equation 1)706
and will create a recursive algebraic dependency between 𝑁 and 𝑢 when substituting 𝑢 in707
the equation 6d. Obviously, the evolution equations for 𝑢 and 𝑁 are coupled (see discussion708
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below). We will therefore ignore the 𝑁𝑈 term and set 𝑎 = 1 for now. Doing this allows for709
integrating the balance equation of the kinetic energy 8 to710

𝑢(𝑥, 𝑡) = 1
𝜌(𝑥) ∫

𝑡

−∞
𝑑𝑇𝑒𝑐(𝑇−𝑡)𝜖 ∫ 𝜌(𝑋)𝑁(𝑋, 𝑇 − 𝜏𝑊𝐶)𝑤(𝑋 − 𝑥)𝑑𝑋 (11)

or, equivalently711

𝑢(𝑥, 𝑡 + 𝜏𝑊𝐶) = 1
𝜌(𝑥) ∫

𝑡

−∞
𝑑𝑇𝑒𝑐(𝑇−𝑡)𝜖 ∫ 𝜌(𝑋)𝑁(𝑋, 𝑇)𝑤(𝑋 − 𝑥). (12)

Substituting into equation 6d retrieves the functional form of the WC model, e.g., equations712
7‑9 in Cowan et al. [2016] (if the factors involving refractoriness and decay are ignored)713

𝑁(𝑥, 𝑡 + 𝜏𝑊𝐶) = 𝐺 ( 1
𝜌(𝑥) ∫

𝑡

−∞
𝑑𝑇𝑒𝑐(𝑇−𝑡)𝜖 ∫

𝐷(𝑥)
𝜌(𝑋)𝑁(𝑋, 𝑇)𝑤(𝑋 − 𝑥)𝑑𝑋) . (13)

This brief derivation highlights the similarities and the differences between the model pre‑714
sented here and the basicWilson‑Cowen equations. Leaving aside details such as the discrete715
form of the latter, which of course sacri ices subgrid (cell) scales, the central difference is the716
description of the state of the neural ield. WC models are based on the assumption that the717
output energy lux ( iring rate) may be expressed directly as a function of the input luxes.718
This assumption holds only if the lux balance does not depend on the state of the system.719
It is easy to see, however, that for a given ixed input lux may result in evolution trends as720
different as stable equilibrium (constant temperature and iring rate), catastrophic growth,721
or decay to zero, depending on the initial temperature of the system. One could heuristically722
argue that this might be the case of systems whose internal “physics” are invariant to evolu‑723
tion. It should be clear, however, (see igure 3) that this cannot apply to physical systems in724
the vicinity of a threshold‑type phase transition point, and therefore to “hot” (high internal725
kinetic energy) neural ields, where iring depends signi icantly the luctuations of the system726
energy. This suggests that the applicability of WC class of models is by and large limited to727
“cold” neural ields whose mean internal kinetic energy (temperature) is far from the iring728
threshold.729

The absence of a state description the WC class of models may be corrected , but corrections730
are also limited in scope and lead to awkward behavior. For example, because the natural731
decay of the system toward zero temperature (term −𝑐𝑢 equation 6a) cannot be introduced732
in a natural way, it has to be parameterized by a decay rate in the relationship between luxes.733

Amari [1977] model. An alternative fundamental formulation that attempts to correct for734
the lack of a state variable is due to Amari [e.g., Amari, 1977]. The model is very similar to735
our equations 6, with a few signi icant differences. Amari introduced two new parameters,736
the averaged membrane potential and an excitability, and de ined activation as a Heaviside737
function (see igure 2). The averaged membrane potential plays the role of the state variable,738
while excitability is assumed to be constant in time. Retrieving Amari’s model from equa‑739
tions 6 is straightforward. If the term 𝑁𝑈is ignored and excitability parameter is constant,740
inserting the lux term 𝐹 into the balance equation for 𝑢 yields equation 1 in Amari [1977]741

𝜕𝑢
𝜕𝑡 = 𝜖

𝜌(𝑥) ∫
𝑡
𝑑𝑇 ∫

𝐷(𝑥)
𝑑𝑋𝜌(𝑋)𝑁(𝑋, 𝑇)𝑤(𝑋, 𝑥, 𝑡 − 𝑇)𝑑𝑋𝑑𝑇 − 𝑐𝑢 + 1

𝜌(𝑥)𝑄(𝑥, 𝑡) (14)
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This is exactly a same functional form as given in Amari [1977], equation (1), but with a dif‑742
ferent resting state. Treating the excitability as a constant means that Amari’s model is in fact743
a variant of the WC class of model. This suggests that the Amari [1977] model has some (but744
not all) of the same limitations as the WC models. The “mean membrane potential” is not745
de ined in the paper, and in general is hard to de ine when the neuron spikes. The absence746
of the 𝑁𝑈 term implies that the Amari [1977] model does not take into account the fact that747
spikes reset the internal kinetic energy of the neuron to zero, thus it overestimates growth748
and underestimates decay. A complete description of the state of the neural ield requires749
two state variables: internal kinetic energy 𝑢 and excitability 𝑎. Ignoring the time evolution750
of one of them (𝑎) is a strong dynamical restriction. This is a drawback similar to the WC751
representation, albeit only partial, since 𝑢 is used. However, the dimensionality of the phase752
space of the system is essentially halved.753

6. SIMPLIFICATIONS754

The full model in Equation 6 is originally in form of integral differential equations, which is755
convenient for numerical simulations but poses dif iculties on theoretical analysis. Under756
some general simpli ications, we want to ind a set of coupled differential equations that rep‑757
resent the dynamics of the original model.758

For simplicity, we assume the neural ield is one‑dimensional and homogeneous, with neg‑759
ligible biological (axonal and synaptic) delays. We use the mean axonal range and the mean760
equivalent refractory time as units of space and time.761

Then, theweighting function𝑤 in equation6b is only a functionof distance,𝑤(𝑋, 𝑥) = 𝑤(|𝑥 − 𝑋|),762
and substituting into equation 6b and expanding the integral formally into a Taylor series ob‑763
tains764

𝐹𝛼 = 𝑄𝛼 + ∑
𝛽

𝜖𝛽→𝛼𝜌𝛽
∞
∑
𝑗=0

𝑏2𝑗
𝜕2𝑗𝑁𝛽

𝜕𝑥2𝑗 , (15)

where we assume that the series is either summable, or should be interpreted as an asymp‑765
totic series, and the coef icients766

𝑏2𝑗 = 1
(2𝑗)! ∫

+∞

−∞
𝑤 (|𝑋|) 𝑋2𝑗𝑑𝑋, (16)

are evenmoments of thewindow𝑤. In connections are uniformly distributed, i.e., the number767
of connections to point 𝑥 is given by a rectangular distribution 𝑤(𝑋, 𝑥) = 0.5 if |𝑋 − 𝑥| ≤ 1,768

and zero otherwise, the constants acquire the simple form 𝑏2𝑗 = 1
(2𝑗+1)! . Qualitatively, higher769

order terms in 15 are smaller, but, as discussed in section 7, whether they are signi icant or770
not depends on the physical context.771

An accurate representation of the mesoscopic refractoriness parameter is not available, but772
some possible simple forms are straightforward. If we assume that the mean neuron is ex‑773
cluded from the energy exchange process in the absolute refractory period and opens slowly774
post‑spike, the evolution of refractoriness resemble the blue line in igure 2, bottom panel.775

The standard historical convention [Cowan et al., 2016] ignores the relative refractory period776
and models the absolute refractory period as a rectangular distribution. The relative refrac‑777
tory state, however, represents a smooth transition between absolute refractoriness and full778
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excitability: ignoring it completely is not realistic, but neither is treating it in its entirety as779
an absolute refractory state. It is then convenient to de ine the refractoriness function 𝑟(𝑡)780
as an (arbitrary) decaying function with a characteristic time constant, the equivalent refrac‑781
tory time 𝜏 . Setting 𝑡 = 0 at the beginning of the spike, the equivalent refractory time can782

be de ined as 𝜏 = − ∫+∞
0 𝑡𝑑𝑟 (because 0 ≤ 𝑟 ≤ 1, the “excitability” measure 1 − 𝑟 can be in‑783

terpreted as a cumulative distribution function with mean refractory time 𝜏 as de ined). The784
exact value of 𝜏 is somewhat arbitrary and should be determined from observational data.785
Throughout the discussion below we use the equivalent refractory time 𝜏 as the unit of time.786

TheHeavisidede initionof refractoriness is then 𝑟 = 𝐻(𝜏−𝑡), where𝐻 is theHeavisidedistri‑787
bution (yellow curve in igure 2, bottom panel). Substituting into equation 6c and expanding788
in Taylor series on the integral over refractoriness obtains for the excitability parameter 𝑎 the789
formal equation790

1 − 𝑎 =
∞
∑
𝑗=0

𝑑𝑗
𝜕𝑗𝑁(𝑥, 𝑡)

𝜕𝑡𝑗 . (17)

where, as above, we assume that the series symbol makes sense in somemathematical inter‑791
pretation, and the integration constants 𝑑𝑗 are792

𝑑𝑗 = (−1)𝑗+1

(𝑗 + 1)! 𝜏𝑗. (18)

For reasons thatwill be discussed in detail in section 7, we propose here an alternative formu‑793
lation, thatmodels both the absolute and the relative period as an exponential decay 𝑟(𝑇, 𝑡) =794

𝑒− (𝑡−𝑇)
𝜏 (red line in igure 2, bottom panel). Substituting into equation 6c and differentiating795

to time obtains for 𝑎 the equation796

𝜕𝑎
𝜕𝑡 = 1 − 𝑎

𝜏 − 𝑁. (19)

Below, we use use this form as a substitute for equation 6c.797

In order to begin solving the governing equations, the functional dependency of the iring rate798
on the internal energy 𝑁(𝑢), also called the “activation function”, needs to be stated explic‑799
itly. However, obtaining an physiologically accurate form of the activation function is dif icult800
and beyond the scope of this study. The general concept of activation function dates back to801
Beurle andMatthews [1956] andwas improved byWilson and Cowan [1972b], who reasoned802
that, if all neurons in the element of area have the same mean depolarization, the iring rate803
is proportional the the cumulative distribution function of threshold values. Therefore, the804
functional form of the activation function is similar to a sigmoid. The sigmoid shape, how‑805
ever, is not adequate in our model for several reasons. In a randomly connected neural ield806
the instantaneous value of the internal kinetic energy of individual neurons (blue curve in807
igure 2) is random (randomness of microscopic activity is a basic assumption of mesoscopic808
activity). While the sigmoid could be remapped to cover only the domain of our de inition809
of the internal kinetic energy (0 ≤ 𝑢 ≤ 𝑈), the goal of our model is to resolve mesoscopic810
time scales. The state of a neuron continuously bounces around in the interval [0, 𝑈], i.e., any811
neuronmay enter refractory states and refuse to irewhile accumulating the potential energy812
necessary for iring again. Using the sigmoid functional form in this description would imply813
that the neuron sub‑population with zero internal energy never ires, while sub‑population814
with 𝑢 = 𝑈 ires continuously.815
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To proceed, some assumptions need to bemade (see appendix A for a discussion of the activa‑816
tion function). One can argue that if 𝑢 = 𝑈, the iring rate is in inite; in the extreme opposite817
case, if 𝑢 = 0, most (read all but a zero measure) neurons are at resting level, thus the ir‑818
ing rate is 0. Assuming that the activation function is monotonically increasing, a plausible819
functional form consistent with these constraints is820

𝑁(𝑢) = 𝐴 ( 1
𝑈 − 𝑢 − 1) (20)

where the constant 𝐴 is a measure of the intensity of endogenous membrane potential luc‑821
tuations (“ luctuation strength” for short). Equation 20 may be readily inverted to give822

𝑢(𝑁) = 𝑈 − 𝐴
𝑁 + 𝐴. (21)

Finally, we will assume that the neural ield is isotropic. This assumption implies that all823
odd spatial derivatives cancel, which simpli ies the equations considerably, but also imposes824
a strong constraint that has at least two signi icant consequences: it enhances the diffusive825
character of the system, and it restricts the class of admissible solutions of equations 6, af‑826
fecting in particular the wave type of solutions. Despite these drawbacks, we consider this827
simpli ication relevant for mesoscopic scales small enough to not be strongly affected, say, by828
boundary conditions (which are not discussed here). Nonetheless, we caution the reader that829
the discussion below should be regarded as relevant only for the subset of solutions satisfying830
this constraint, and not for the full family of solutions of the system of governing equations.831

7. LINEAR ANALYSIS: SINGLE‑TYPE (EXCITATORY) NEURAL FIELDS832

The irst step in pursuing the idea that mesoscopic collective action represents perturbative833
states is an investigation into equilibrium states and their stability. In this sectionwe examine834
the linear properties of neural ields composed of a single neuron type (say, pyramidal cells).835

Below, the neural ield is assumed to be under a steady, spatially uniform input, i..e., 𝜕𝑄
𝜕𝑡 = 0836

and ∇𝑄 = 0. Under these conditions, the governing equations 6, written for a single‑type837
neural ield, are838

𝜕𝑢
𝜕𝑡 = 𝐹

𝜌𝑎 − 𝑁𝑈 − 𝑐𝑢, (22a)

𝜕𝑎
𝜕𝑡 = 1 − 𝑎

𝜏 − 𝑁, (22b)

𝐹 = 𝑄 + 𝜖𝜌 ⎛⎜⎜
⎝

𝑁 +
∞
∑
𝑗=1

𝑏2𝑗
𝜕2𝑗𝑁𝛽

𝜕𝑥2𝑗
⎞⎟⎟
⎠

(22c)

. To describe perturbations around stable equilibrium states that that may vary in space, in839
equation 22c the energy lux was expressed the form 15. Note that, in agreements with the840
isotropy assumptions, only even orders of the spatial expansion are retained. In the discus‑841
sion of the dispersion relation below we will prefer using for 𝑎 equation 17, but the resulting842
equilibrium states are the same for both approaches.843

Let 𝛿 ≪ 1 be a small parameter that measures the magnitude of the departure from equilib‑844
rium states, and expand the state variables in the asymptotic series845

𝑢 = 𝑢0 + 𝛿𝑢1 + 𝑂 (𝛿2) ; 𝑎 = 𝑎0 + 𝛿𝑎1 + 𝑂 (𝛿2) , (23)
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where the zero‑subscripts denote the equilibrium states. For consistency, process variables846
𝑁(𝑢, 𝑎) and 𝐹(𝑢, 𝑎) are are also expanded in asymptotic series, for example,847

𝑁 = 𝑁0 + 𝛿𝑁1 + 𝑂 (𝛿2) ; 𝑁0 = 𝑁(𝑢0); 𝑁1 = 𝜕𝑁
𝜕𝑢 𝑢1, (24)

𝐹 = 𝐹0 + 𝛿𝐹1 + 𝑂 (𝛿2) ; 𝐹0 = 𝐹(𝑁0); 𝐹1 = 𝑑𝐹
𝑑𝑁 𝑁1, (25)

where 𝐹 is a functional of 𝑁, and 𝑑𝐹
𝑑𝑁 is the variational derivative.848

Equilibrium states are de ined here by the condition that the internal kinetic energy of the849

system is stationary and constant in space, 𝜕
𝜕𝑡(𝑢, 𝑎) = (0, 0) and ∇(𝑢, 𝑎) = (0, 0), therefore,850

the energy lux and iring rate at equilibrium are homogeneous, e.g., 𝜕2𝑗𝑁0
𝜕𝑥2𝑗 = 0. Substituting851

expansions into the governing equations 23‑ 25 into the governing equations 7 and separating852
the powers of 𝛿 obtains the standard hierarchy of systems for each power of 𝛿.853

7.1. Equilibrium states. At 𝑂 (𝛿0), the equations for the equilibrium state are854

1 − 𝜏𝑁0
𝜌 (𝑄 + 𝜖𝜌𝑁0) = 𝑁0𝑈 + 𝑐𝑢0, or ℱin = ℱout (26a)

where855

ℱin = (𝑄
𝜌 + 𝜖𝑁0) (1 − 𝑁0𝜏) , (26b)

ℱout = 𝑁0𝑈 + 𝑐𝑢0. (26c)
withℱin andℱout the internal kinetic energy gains and losses, respectively. Equation 26 states856
that equilibrium states are achieved for iring rates 𝑁0such that ℱin(𝑁0) = ℱout(𝑁0). Sub‑857
stituting the expressions 26b‑26c into 26a obtains the cubic algebraic equation858

𝑝3𝑁3 + 𝑝2𝑁2 + 𝑝1𝑁 + 𝑝0 = 0, (27)
with the coef icients859

𝑝0 = 𝐴 (𝑄
𝜌 − 𝑐𝑈 + 𝑐) , 𝑝1 = 𝑄

𝜌 (1 − 𝐴) 𝜏 + 𝜖𝐴 − 𝑈𝐴 − 𝑐𝑈

𝑝2 = 𝜖 − 𝑄
𝜌 𝜏 − 𝜖𝐴𝜏 − 𝑈, 𝑝3 = −𝜖𝜏. (28)

Equilibrium states correspond to the roots of equation 27. Equation 27may have one or three860
real solutions corresponding to iring rates at equilibrium points, that depend on the con ig‑861
uration of the network. To illustrate the behavior of the system, we distinguish between two862
types of parameters: static parameters that characterize the physiological properties of the863
ields (neuron density 𝜌, decay rate 𝑐, threshold internal kinetic energy 𝑈, equivalent refrac‑864
tory time 𝜏) and parameters that control the dynamics: connection strength (energy recap‑865
tured from a single spike) 𝜖, and the endogenous luctuation constant 𝐴. The description of866
equilibrium types shown in igure 4 is given for static parameters 𝑄/𝜌 = 0.1 and 𝑐 = 0.5.867

Single equilibrium‑point con igurationsmay correspond todifferent levels of iring rates𝑁, as868
shown in igure 4.a. The dependency of the energy losses and gains (equation 26) is shown in869
igure 4.c. For single equilibrium points, low values of 𝐴 and 𝜖 induce low iring rates (lower‑870
left corner of igure 4.a), with ield dynamics controlled by the external stimulation, and level871
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of iring rate roughly proportional to the external‑input level 𝑄
𝜌 . At higher values of 𝐴 and 𝜖872

, the equilibrium state is still stable, but is achieved at increasing iring rates 𝑁0 igure 4.a,873
(upper‑right corner). As 𝑁0 increases, higher order terms in equations 26 play and increas‑874
ingly important role, the relationship between 𝑁0 and external input 𝑄 weakens, and the875
stability of the equilibrium point decreases. Qualitatively speaking, as local dynamics around876
the ixed point gradually become unstable as𝑁0 increases, but the nonlinearity introduced by877
refractory period (term 𝑁𝜏 in equation 26b) insures that the ixed points are globally stable.878

Triple equilibrium states are realized for low membrane luctuations 𝐴 and strong connec‑879
tivity 𝜖 ( igure 4.a). A typical con iguration of the balance of ℱin/out as a function of the iring880
rate 𝑁 is shown in igure 4.d, with two stable points separated by a unstable one. Low val‑881
ues of 𝐴 insure that low iring rates do not induce large excitability through by endogenous882
activity; strong connectivity insures that excitability is self‑sustained at high iring rates. If883
stimulation or inhibition force large‑enough changes in the iring rate, switching between the884
two stable states is possible. Because of the extreme values (low for 𝐴, and high for 𝜖) we885
expect these cases to be rare and perhaps unrealistic, although we could not ind any clear886
guidance in the literature about this.887

Our analysis suggests that collective activity of neural populations is naturally bounded, with888
deviations from equilibrium state having the tendency to diffuse and average toward equilib‑889
rium. In fact, one might say that that “most” solutions are just exponential decay. Previous890
studies of single‑type neural ields largely report only exponential decay under homogeneous891
perturbations, as a result, previous derivations of ield equations treated the decay property892
as fundamental [Wilson and Cowan, 1972b, Amari, 1977]. Figure 4.b provides a qualitative893
representation of the extent oscillatory domain. In the (𝑁, 𝐴)plane the oscillatory behavior is894
con ined to relatively small domain, the white area in the neighborhood of zero‑growth curve895
(purple). To the left (low connection strength 𝜖) dissipation dominates (equals the frequency896
along the blue curve), and to the left perturbations become increasingly unstable. In a densely897
iring networks [e.g., Pinto et al., 2005, Trevelyan et al., 2007], refractoriness begins to play a898

role: if 𝑁 is large, 𝑎 deviates from 1 to a smaller value, which activates the nonlinear term 𝐹
𝜌𝑎899

in equations 7. Because refractoriness is cumulative over time (see integral in equation 6c)900
it introduces in the dynamics a hysteresis effect [Cowan et al., 2016]. Due to the hysteresis,901
a population reaches its equilibrium point form a deviated state would not just stop at the902
equilibrium, but the delayed effect of refractoriness changes excitability of the population so903
that the static equilibrium point is not dynamically stable. As a consequence, iring rate 𝑁 is904
coupled to the population excitability 𝑎 with some phase lag and the interplay between the905
two quantities generates a oscillatory behavior. Our model provides a mathematical formu‑906
lation of this mechanism. It is worth noting that the refractory oscillatory patterns only exist907
in densely iring network in which refractoriness matters, that is, exist only around upper908
equilibrium states ( igure 4.b). In comparison, dynamical patterns around lower equilibrium909
states only show rapid collapse because modulation from refractoriness is negligible during910
low iring rate.911
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FIGURE 4. Equilibrium states under homogeneous forcing. a) Firing rate 𝑁 at equilibrium
states for cases with only 1 equilibrium state. b) The dependency of the ratio 𝜗/𝜔 at equi‑
librium (for states with one equilibrium point) on connection strength 𝜖 and luctuation
strengths 𝐴. Counterclockwise around the cusp of the domain of three equilibrium points:
the frequency growth from zero to its maximum values, while the “growth” rate increases
from negative values (dissipation, stable equilibrium) to positive values (true growth, unsta‑
ble equilibrium). The dissipation rate equals the frequency along the blue curve, and is zero
along the purple curve. c‑d) Dependency of energy gains and losses (ℱin and ℱout) on the
iring rate 𝑁. Equilibrium states (with iring rates 𝑁0) are realized at the intersection of the
curves, i.e., ℱin (𝑁0) = ℱout(𝑁0). In both equilibrium cases shown (dots on panel a) param‑
eters 𝑄/𝜌 = 0.1 and 𝑐 = 1.0, while the strength of endogenous membrane luctuations 𝐴 and
connectivity 𝜖 are varied. c) 𝐴 = 0.4, 𝜖 = 3.5; d) 𝐴 = 0.05, 𝜖 = 3.5.

7.2. Perturbations of equilibrium. At𝑂 (𝛿1), the system of equations for the leading order912
perturbation are913

𝜕𝑢1
𝜕𝑡 = 𝑎1

𝜌 (𝑄 + 𝜖𝜌𝑁0) + 𝑎0𝜖
∞
∑
𝑗=0

𝑏2𝑗
𝜕2𝑗𝑁𝛽

1
𝜕𝑥2𝑗 − 𝑁1𝑈 − 𝑐𝑢1, (29a)

𝜕𝑎1
𝜕𝑡 = −𝑎1

𝜏 − 𝑁1, or, alternatively, 𝑎1 = −
∞
∑
𝑗=0

𝑑𝑗
𝜕𝑗𝑁1
𝜕𝑡𝑗 . (29b)
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where the alternative form for 𝑎1 derives from equation 17. Equations 29 may be used to914
examine the stability of equilibrium states under homogeneous perturbations, or to study915
the dynamics of inhomogeneous perturbations (collective action).916

7.2.1. Homogeneous perturbations. Forhomogeneousperturbations 𝜕2𝑗𝑁𝛽
1

𝜕𝑥2𝑗 = 0, and equation917

29 becomes918

1
𝑠0

𝑑𝑁1
𝑑𝑡 = 𝑎1

𝜌 (𝑄 + 𝜖𝜌𝑁0) + 𝑎0𝜖𝑏0𝑁1 − 𝑁1𝑈 − 𝑐
𝑠0

𝑁1, (30a)

𝜕𝑎1
𝜕𝑡 = −𝑎1

𝜏 − 𝑁1 (30b)

where 𝑠0 = (𝑑𝑁
𝑑𝑢 )

0
. Substituting into equation30 the standard solution 𝑎 = 𝑒𝜎𝑡, where𝜎 ∈ ℂ,919

with the real part 𝜗 = ℜ{𝜎} representing the growth (decay) rate, and the imaginary part920
𝜔 = ℑ{𝜎} representing the frequency of oscillation, obtains921

𝜎 = 1
2 (−𝑏 ± √Δ) , Δ = 𝑏2 − 4 𝑑

𝑑𝑁0
(ℱin − ℱout) , (31a)

𝑏 = 1
𝜏 + 𝑠0𝑈 + 𝑐 − 1

𝜏 𝑠0𝑎0𝜖, (31b)
𝑑

𝑑𝑁0
(ℱin − ℱout) = 𝑠0

𝐹0
𝜌 + 1

𝜏 𝑠0𝑈 + 1
𝜏 𝑐 − 1

𝜏 𝑠0𝑎0𝜖. (31c)

Pure growth(decay) behavior occurs if Δ ≥ 0 in equation 31a. Oscillatory perturbations may922
occur if Δ < 0 , i.e.923

𝑑
𝑑𝑁0

(ℱin − ℱout) > 1
4𝑏2, (32)

(near unstable equilibrium points ‑ igure 4) in other words, if energy gains grow with 𝑁0924

faster than losses by amargin larger than 1
4𝑏2. Oscillatorybehaviormay showgrowthordecay925

trends depending on the sign of 𝑏. If 𝑏 > 0, the oscillation decays as shown in igure 5.a‑b for a926
case corresponding to igure 4.c). If the decay rate 𝑏 is large enough so that the inequality 32927
is not possible, the dynamics is a monotonic collapse towards equilibrium ( igure 5.e‑f). The928
growth shown in igure 5.c‑d corresponds to conditions near an unstable equilibrium point929
( igure 4.d), such that 𝑏 < 0 and energy gains are larger than losses. As the system goes away930
from the equilibrium point growth rate decreases, and the trajectory of the system stabilizes931
along a limit cycle.932

It is important to observe that refractoriness is the fundamental mechanism that allows for933
oscillatory patterns shown in the phase portraits of igure 5 arise: ignoring refractoriness is934
equivalent to setting 𝑎 ≡ 1 (see equation 1) in which case equation 29 becomes a irst order935
differential equationwith no oscillatory solutions. Wewill therefore call these “refractory os‑936
cillations”. Refractory oscillations have periods in order 𝑂(𝜏), i.e., several refractory periods937
(e.g., igure 5), corresponding to frequency in the range of 100Hz ‑ 150Hz (close to ripple fre‑938
quency). When getting into spatially in‑homogeneous cases, we will see spatial contribution939
increases slightly on the frequencies.940
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FIGURE 5. Typical oscillatory patterns of excitatory populations, resulting from integrating
the full system of equations. Left column contains phase portraits of temporal evolution. A
trace starting from an arbitrary state is shown for each case, one epoch of color map denotes
one equivalent refractory period. a,c,e) Numerically integrated oscillatory patterns of iring
rate. b,d,f) Time series of iring rate corresponding the right panels. a,b) Stable spiral, 𝑏 > 0,
with 𝜖 = 3.5, 𝑄/𝜌 = 0.1, 𝑐 = 0.5, 𝐴 = 0.4; c,d) Unstable spiral, 𝑏 > 0, with 𝜖 = 2.5, 𝑄/𝜌 = 0.1,
𝑐 = 1.0, 𝐴 = 0.4; e,f) Stable node, 𝑏 < 0, with 𝜖 = 4.0, 𝑄/𝜌 = 0.1, 𝑐 = 1.0, 𝐴 = 0.4.

7.3. Inhomogeneousperturbations (collectiveaction). Theanalysis presentedhere is dif‑941
ferent if the perturbations have a non‑trivial spatial structure, the spatial gradients have to942
be taken into account. For the sake of simplicity, it is convenient to return to Amari’s [1977]943
Heaviside formulation for activity (equation 17). We start, therefore, from the alternative944
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form for the 𝑂 (𝛿) perturbation equation 29, i.e.,945

𝜕𝑢1
𝜕𝑡 = 𝑎1

𝜌 (𝑄 + 𝜖𝜌𝑁0) + 𝑎0𝜖
∞
∑
𝑗=0

𝑏2𝑗
𝜕2𝑗𝑁𝛽

1
𝜕𝑥2𝑗 − 𝑁1𝑈 − 𝑐𝑢1, (33a)

𝑎1 = −
∞
∑
𝑗=0

𝑑𝑗
𝜕𝑗𝑁1
𝜕𝑡𝑗 . (33b)

Equations 33may be simpli ied to retain the internal kinetic energy𝑢 as the only independent946
variable, which obtains a single partial differential equation947

[(1 − 𝜏𝑁0) 𝜖𝑠0 − (𝑄
𝜌 + 𝜖𝑁0) 𝑑0𝑠 − 𝑈𝑠0 − 𝑐] 𝑢1

+ (1 − 𝑁0) 𝜖𝑠0
∞
∑
𝑗=1

𝑏2𝑗
𝜕2𝑗𝑢1
𝜕𝑥2𝑗 − (𝑄

𝜌 + 𝜖𝑁0) 𝑠0
∞
∑
𝑗=1

𝑑𝑗
𝜕𝑗𝑢1
𝜕𝑡𝑗 − 𝜕𝑢1

𝜕𝑡 = 0. (34)

In contrast to the stability analysis in the previous section, we are interested here in identify‑948
ing conditions favorable to propagating perturbations (waves). Therefore, we seek a solution949
in the form 𝑢1 ∝ 𝑒𝑖(𝑘𝑥+𝜎𝑡), where here 𝜔 = ℜ{𝜎} is the frequency and ℜ{𝑘} is the wave950
number, and 𝜗 = ℑ{𝜎} and ℑ{𝑘} are temporal and spatial growth (decay) rates. With the951

derivatives given by the simple rules 𝜕𝑛

𝜕𝑡𝑛 = (𝑖𝜎)𝑛 and 𝜕𝑛

𝜕𝑥𝑛 = (𝑖𝑘)𝑛 one obtains the algebraic952
equation953

𝒢(𝑘) = ℋ(𝜎) (35a)
where the functions 𝒢 and ℋ are given by954

𝒢(𝑘) = [(1 − 𝜏𝑁0) 𝜖𝑠0 − (𝑄
𝜌 + 𝜖𝑁0) 𝑑0𝑠0 − 𝑈𝑠0 − 𝑐]

+ (1 − 𝑁0) 𝜖𝑠0
∞
∑
𝑗=1

𝑏2𝑗(𝑖𝑘)2𝑗 (35b)

ℋ(𝜎) = (𝑄
𝜌 + 𝜖𝑁0) 𝑠0

∞
∑
𝑗=1

𝑑𝑗(𝑖𝜎)𝑗 + (𝑖𝜎) (35c)

. For propagating perturbations, equation 35 represents the dispersion relation [Whitham,955
2011]. As a consequence of theTaylor expansions (equations 17 and15) equation35 contains956
an in inite number of termswhose signi icance over given temporal and spatial scales should957
decrease with decreasing orders of magnitude. The signi icance of the expansion terms for958
wave processes may be gauged by evaluating their contribution to the dispersion relation959
35 ( igure 6). While the overall trend is a monotonic decay with order in the expansion, the960
decay rate of terms in the temporal Taylor expansion much slower than that of the spatial961
terms. Keeping only the leading order approximation in equation 17, e.g., 𝑎 ≈ (1 − 𝜏𝑁)962
is too crude to resolve wave patterns. This problem was circumvented here by introducing963
the exponential form of the refractoriness based on the equivalent refractory period which964
yielded for excitability the form in equation 19. The analysis of orders of magnitude shown965
in igure 6 also suggests that, because the spatial terms decay very fast, spatial coupling may966
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FIGURE 6. Contribution of Taylor expansion terms in the dispersion relation (equations 34
and 35): a) spatial terms (due to the isotropy assumption, only even terms are retained in the
spatial expansion); b) temporal terms. This analysis provides a measure of the importance
of different order approximations for the dynamics. While spatial terms decay relatively fast,
the decay of temporal terms is slow and higher order terms cannot be neglected on anymean‑
ingful mesoscopic temporal scales.

be regarded as a small modulation of the temporal dynamics of homogeneous perturbations967
(the neural ield may be approximated as a network of weakly coupled oscillators.968

To represent progressive waves, choose 𝑘 ∈ ℝ, which implies that 𝒢(𝑘) ∈ ℝ (𝑖𝑘 appears at969

even powers), therefore ℋ(𝜎) should also be real. A graphic representation of the solutions970
of equations 35 is shown in igure 7a‑c. The resulting dispersion relation, plotted in igure971

7.d, covers relatively small scales. If the wave number is 𝑘 = 2𝜋
𝜆 , with 𝜆 the wave length in972

units of mean axonal range, the range plotted is between approximately 6 and 100 units. The973
dispersion relation 𝜔(𝑘) is not monotonic, but it increases overall, in a pattern similar with974
the decay rate, with the phase speed decreasing with 𝑘.975

Due to their intimate relation with refractory oscillations discussed above for homogeneous976
perturbations, the wave patterns satisfying the dispersion relation 35 should be called “re‑977
fractory waves”. The dynamics underlying refractory waves are similar, with propagation978
emerging simply as an effect of spatial coupling. The dispersion relation is monotonically979
increasing at lowwaves numbers (large wave lengths), and includes as a limiting case homo‑980
geneousoscillations (the zerowavenumberhas anon‑zero frequency). This indicates that the981
lower bound of refractory‑wave frequency is the frequency of refractory oscillations, which982
puts the frequency domain of refractory waves above the range of cortical and hippocampal983
ripple frequencies [Buzsáki, 2015]. The practice of detecting cortex regionswith high activity984
by the LFP power in frequency bands associatedwith ripples [Ray andMaunsell, 2011] seems985
to support our assumption that these kind of oscillations are associated with high iring rates986
𝑁. The behavior of the dispersion relation in the short‑wave domain shown in igure 7.d also987
suggests that 1) the frequency band of refractory waves has an upper bound at 𝜔 ≈ 3; and988
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FIGURE 7. Graphic representation of the solution of equations 35 for progressive waves, for
𝜖 = 4.0, 𝑄/𝜌 = 0.1, 𝑐 = 1.0, 𝐴 = 0.4. a) ℑ {ℋ}, the imaginary part of ℋ(𝜎) in the complex
plane 𝜎 = 𝜔 + 𝑖𝜗. The white domain (curve) in panel (a) is provides the set of all values
𝜎𝑤 (magenta curve) such that ℑ {ℋ(𝜎𝑤)} = 0. This set corresponds to waves (hence the
subscript). b) ℜ {ℋ}, the real part of ℋ(𝜎) in the 𝜎 complex plane (the green curve is the set
𝜎𝑤). c) Graphs of 𝒢(𝑘) and ℋ(𝜔),where 𝜔 = ℜ{𝜎𝑤}. To ind the frequency corresponding
to a given value of 𝑘, i.e., satisfying the dispersion relation 𝒢(𝑘) = ℋ(𝜔), move horizontally
to ind 𝐻(𝜔) = 𝒢(𝑘), and vertically to ind the corresponding 𝜔 (dashed purple line). d)
Frequency𝜔(𝑘) = ℜ {𝜎𝑤(𝑘)} and decay rate𝜛 = ℑ {𝜎𝑤(𝑘)} as functions of thewave number
𝑘.

that 2) the role of dissipation increases at small scales (the ratio of dissipation rate to fre‑989
quency grows from approximately 0.25 near 𝑘 ≈ 0 to 0.5 near 𝑘 ≈ 4). While the plots in990
igure 7 are constructed for a particular set of constants, we expect them to re lect a general991
behavior.992

The dispersion problem for excitatory networkswas examined before byMeijer and Coombes993
[2014], who used the Wilson and Cowan [1972b, 1973] model to investigate Turing instabil‑994
ities for populations with large enough refractory periods (several times of membrane time995
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constant), looking for evidence of stationary standing or traveling solitary‑wave solutions996
(wave “bumps”). Because the interest of their studywas solitarywaves, they used a numerical997
scheme “co‑moving frame” to construct stationary solitary‑wave solutions for both an equiva‑998
lent delay differential model, and the original delay integro‑differential model. The approach999
produced a dispersion‑like relation between the wave speed and spatial scale, but because1000
it refers to solitary waves, it is not a dispersion relation in the proper sense (e.g., Whitham,1001
2011). The proper dispersion relation was also derived by assuming a slow change of 𝑢 over1002
refractory period; however, the result is somewhat self‑contradictory, because the solution1003
varies on the same refractory‑time scale. Because periodic waves were not the goal of the1004
study, the dispersion relation is not discussed at length. The major contribution of Meijer1005
and Coombes [2014] study is arguably in highlighting the essential role of refractoriness in1006
propagating patterns of collective activity.1007

8. LINEAR ANALYSIS: DUAL‑TYPE (EXCITATORY‑INHIBITORY) NEURAL FIELDS1008

A dual‑type neural ield is of much higher interest than a single‑type one, as a more realis‑1009
tic description of the mesoscopic dynamics of coupled excitatory‑inhibitory (EI) neural ields1010
the neocortex [Desimone and Duncan, 1995, Luck et al., 1997, Reynolds et al., 1999, Fries,1011
2005, Bosman et al., 2012] and hippocampus [Traub et al., 1998, Kopell et al., 2000, Bartos1012
et al., 2007, Aton et al., 2013]. Previous studies point to inhibitory mechanisms as the main1013
process driving rhythms in both inhibitory and excitatory‑inhibitory networks. For single‑1014
type inhibitory ields the most well known mechanism is the Interneuron Network Gamma1015
(ING; White et al., 1998, Kopell et al., 2010, Whittington et al., 2000, Wang, 2010). However,1016
as described by [Buzsáki, 2006], a mixed population of interneurons and pyramidal cells of‑1017
fers complex dynamics that are capable of supporting multiple spatio‑temporal patterns (for1018
a recent review, see [Berg et al., 2019]). Recurrent connectivity between inhibitory and exci‑1019
tatory neurons provides the the mechanism by which a rhythmic, evolving pattern of activity1020
can develop. The putativemonosynaptic communication tends to be low latency or even syn‑1021
chronous [English et al., 2017, Diba et al., 2014]. Through this, it is possible to marginalize1022
the refractory time associated with neuron to neuron communication.1023

Following previous studies [e.g., Amari, 1977, Jirsa andHaken, 1997,Wright and Liley, 1995b,1024
Jirsa and Haken, 1996, Amari, 2014], we neglect for now the effects of refractory time; while1025
weare interested in anaccuratedescriptionof refractory effects, lowrefractoriness is adopted1026
here as a simpli ication reduces the complexity of equations (population excitability becomes1027
𝑎 = 1). Below, the inhibition effect is re lected by the sign of the energy recaptured by the1028
ield from irings by inhibitory neurons: we assume 𝜖𝐸→𝐸 > and 𝜖𝐸→𝐼 > 0, but 𝜖𝐼→𝐼 < 0 and1029

𝜖𝐼→𝐸 < 0.1030

The linear analysis of the equations for dual‑type neural ields follows the same steps as used1031
in section 7. Starting from the governing equations 6, we apply the simpli ications introduced1032
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in section 6, and neglecting the refractory terms, the governing equation may be written as1033

𝜕𝑢𝛼

𝜕𝑡 = 𝐹𝛼

𝜌𝛼 − 𝑁𝛼𝑈 − 𝑐𝑢𝛼, (36a)

𝐹𝛼 = 𝑄𝛼 + ∑
𝛽

𝜖𝛽→𝛼𝜌𝛽
∞
∑
𝑗=0

𝑏2𝑗
𝜕2𝑗𝑁𝛽

𝜕𝑥2𝑗 (36b)

𝑁𝛼 = 𝐺(𝑢𝛼). (36c)
where 𝛼 = 𝐸, 𝐼 for excitatory and inhibitory neurons, respectively. The governing equations1034
were simpli ied further by assuming that parameters 𝑐, 𝑏2𝑗, and 𝑈 do not depend on neuron1035
type. Expanding as before the variables in the asymptotic series1036

𝑢𝛼 = 𝑢𝛼
0 + 𝛿𝑢𝛼

1 + 𝑂 (𝛿2) ; 𝑁𝛼 = 𝑁𝛼
0 + 𝛿𝑁𝛼

1 + 𝑂 (𝛿2)

and substituting into the governing equations produces the two systems of equations for the1037
equilibrium states and for the leading order perturbations.1038

8.1. Equilibrium states. At 𝑂 (𝛿0), the equations for the equilibrium state are:1039

𝜕𝑢𝛼
0

𝜕𝑡 =
𝐹𝛼

0
𝜌𝛼 − 𝑁𝛼

0 𝑈𝛼 − 𝑐𝑢𝛼(𝑁𝛼
0 ) = 0, 𝛼 = 𝐸, 𝐼 (37a)

𝐹𝛼
0 = 𝑄𝛼 + ∑

𝛽
𝜖𝛽→𝛼𝜌𝛽𝑁𝛽

0 (37b)

Taking the iring rates𝑁𝛼 as free parameters, the solutions of equations 37amay be obtained1040
graphically by examining the intersections surfaces 𝜕𝑢𝛼/𝜕𝑡 as functions of 𝑁𝛼 with the zero1041
plane ( igure 8, left panels). A visualization of the equilibrium states as the intersection of the1042
two curves obtained this way is shown in igure 8. As before, coupled dynamics of excitatory1043
and inhibitory neural ields problemdepends on parameters 𝑐,𝐴,𝜖, 𝜌 and𝑄 but the number of1044
parameters doubles. Because an exhaustive exploration of the parameter space is beyond the1045
scope of this discussion, we assume again that the important dynamical parameters are𝐴 and1046
𝜖𝐼→𝐸 or 𝜖𝐸→𝐼 . As suggested by the analysis of a single‑type neural ield, 𝐴 plays an important1047
role in equilibrium bifurcation, and parameters 𝜖𝐼→𝐸 or 𝜖𝐸→𝐼 (connection strengths between1048
inhibitory and excitatory neurons) describe the effect of inhibition, which is the interesting1049
point in dual types of neurons: if either 𝜖𝐼→𝐸 or 𝜖𝐸→𝐼 cancel, the ield defaults to the single‑1050
typeneural ield, discussed in section7. The rest of the parameters are assumedkept constant1051
at the (arbitrary) values 𝜖𝐸→𝐸 = 4, 𝜖𝐼→𝐼 = 0, 𝑄𝐸/𝜌𝐸 = 0.1, 𝑄𝐼/𝜌𝐼 = 0 𝑐 = 0.5, 𝐴 = 0.4.1052

8.2. Perturbations of equilibrium. At 𝑂 (𝛿1), replacing 𝑢𝛼
1 in leading order by 𝑁𝛼

1 , the per‑1053
turbation the equations are,1054

1
𝑠𝛼
0

𝜕𝑁𝛼
1

𝜕𝑡 =
𝐹𝛼

1
𝜌𝛼 − 𝛿𝑁𝛼

1 𝑈 − 𝑐 1
𝑠𝛼
0

𝑁𝛼
1 , (38a)

𝐹𝛼
1 = ∑

𝛽
𝜖𝛽→𝛼𝜌𝛽

∞
∑
𝑗=0

𝑏2𝑗
𝜕2𝑗𝑁𝛽

1
𝜕𝑥2𝑗 (38b)
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where 𝑠𝛼
0 = (𝑑𝑁𝛼

𝑑𝑢𝛼 )
0
, and 𝑠𝛼

0𝑢𝛼
1 = 𝑁𝛼

1 if 𝛿2 terms are ignored. For homogeneous perturbations,1055

equation 38 reduces to1056

1
𝑠𝛼
0

𝜕𝑁𝛼
1

𝜕𝑡 =
𝐹𝛼

1
𝜌𝛼 − 𝛿𝑁𝛼

1 𝑈 − 𝑐 1
𝑠𝛼
0

𝑁𝛼
1 , (39)

𝐹𝛼
1 = ∑

𝛽
𝜖𝛽→𝛼𝜌𝛽𝑏0𝑁𝛽

1 . (40)

8.2.1. Homogeneous perturbations. As before, for stability analysis, solutions are sought in1057
the form𝑁𝛼 = 𝐶𝛼𝑒𝜎𝑡, where𝜎 ∈ ℂ, with the real part𝜗 = ℜ{𝜎} representing the growth(decay)1058
rate, and the imaginary part 𝜔 = ℑ{𝜎} representing the frequency of oscillation. We assume1059
that the two neuron populations have the same type of dynamics (growth rate, frequency),1060
but allow for different amplitudes and phases, represented by 𝐶𝛼 ∈ ℂ. Therefore, the phase1061
lag between the two populations is de ined as1062

𝜙 = arg( 𝐶𝐼

𝐶𝐸 ) . (41)

With these notations, straightforward algebra (see details in appendix, section B) obtains1063

𝜎 = 1
2 (−𝑏 ± √Δ) , Δ = 𝑏2 + 4Λ, (42a)

where1064

𝑏 = 𝑠 (𝑠𝐸
0 𝜖𝐸→𝐸 − 𝑈𝑠𝐸

0 − 𝑐) + (𝑠𝐼
0𝜖𝐼→𝐼 − 𝑈𝑠𝐼

0 − 𝑐) = 𝑠𝐸
0

𝜕 (𝑑𝑢𝐸/𝑑𝑡)
𝜕𝑁𝐸 + 𝑠𝐼

0
𝜕 (𝑑𝑢𝐼/𝑑𝑡)

𝜕𝑁𝐼 , (42b)

Λ = (𝜖𝐼→𝐸 𝜌𝐼

𝜌𝐸 ) (𝜖𝐸→𝐼 𝜌𝐸

𝜌𝐼 ) 𝑠𝐼
0𝑠𝐸

0 , (42c)

and the phase lag is1065

𝜙 = arg
⎛⎜⎜⎜⎜
⎝

1
𝑠𝐸

0
𝑠 + 𝑈 + 𝑐 1

𝑠𝐸
0

− 𝜖𝐸→𝐸

𝜖𝐼→𝐸 𝜌𝐼

𝜌𝐸

⎞⎟⎟⎟⎟
⎠

. (42d)

As before, oscillatory patterns correspond to Δ < 0 in equation 42a. In contrast with the case1066

single‑type ield, forEI ields the termΛ = (𝜖𝐼→𝐸 𝜌𝐼

𝜌𝐸 ) (𝜖𝐸→𝐼 𝜌𝐸

𝜌𝐼 ) 𝑠𝐼
0𝑠𝐸

0 alwaysnegativebecause1067

of the inhibitory effect (𝜖𝐼→𝐸 < 0), therefore oscillations are naturally available. The relation1068
42b between 𝑏 and the partial derivatives of the rate of change of the internal kinetic energy1069
provides a useful tool to understand the stability of the equilibrium states. From igure 8, the1070

slope 𝜕(𝑑𝑢𝐸/𝑑𝑡)
𝜕𝑁𝐸 of the blue surface along the 𝑁𝐸 axis) can be either positive or negative, while1071

the slope 𝜕(𝑑𝑢𝐼/𝑑𝑡)
𝜕𝑁𝐼 of 𝑑𝑢𝐼/𝑑𝑡 in the𝑁𝐼 direction is naturally negative (because 𝑠𝐼

0𝜖𝐼→𝐼 is always1072

negative thus 𝑠𝐼
0𝜖𝐼→𝐼−𝑈𝑠𝐼

0−𝑐
𝑠𝐼

0
< 0 as well). Therefore, 𝑏 can be either either positive or negative,1073

implying that growth and decay are both mechanistically supported around the equilibrium1074
states. The phase portraits sketched in igure 8.a‑b, have the geometric constraints that the1075

vector ield has to be vertical along the curve 𝑑𝑁𝐸

𝑑𝑡 = 0 (blue), and nowhere else, and and1076

horizontal along the curve 𝑑𝑁𝐸

𝑑𝑡 = 0 (red), and nowhere else. However, because the actual1077
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(a) (b)

FIGURE 8. Typical equilibrium states of coupled excitatory and inhibitory populations. a‑b)
Possible con igurations of curves 𝑑𝑁𝐸

𝑑𝑡 = 0 (blue), and 𝑑𝑁𝐸

𝑑𝑡 = 0 (red). The angle between the
direction of the associated the vector ield and the 𝑁𝐸 axis is 90 degrees along the blue curve
and 0 degrees along the red curve, and ≠ 0,90 degrees everywhere else. c,e) An illustration
of equilibrium points as intersections of the surfaces 𝑢𝐸

𝑡 (𝑁𝐸, 𝑁𝐼) (blue) and 𝑢𝐼
𝑡(𝑁𝐸, 𝑁𝐼) (red)

and the zero surface (gray). d,f) Illustration of the equilibrium points as intersections of the
curves 𝑢𝐸

𝑡 (𝑁𝐸, 𝑁𝐼) = 0 and 𝑢𝐼
𝑡(𝑁𝐸, 𝑁𝐼) = 0 (curves representing the intersection of the blue

and red surfaces with the gray one). Panels (c‑d) correspond to a single equilibrium ixed
point (𝜖𝐸→𝐸 = 4, 𝜖𝐸→𝐼 = 2.5, 𝜖𝐼→𝐸 = −2.5, 𝜖𝐼→𝐼 = 0, 𝑄𝐸/𝜌𝐸 = 0.1, 𝑄𝐼/𝜌𝐼 = 0 𝑐𝐸 = 𝑐𝐼 = 0.5,
𝐴𝐸 = 𝐴𝐼 = 0.4). Panels (e‑f) correspond to a case with three equilibrium points (𝜖𝐸→𝐸 = 4,
𝜖𝐸→𝐼 = 2, 𝜖𝐼→𝐸 = −3, 𝜖𝐼→𝐼 = 0, 𝑄𝐸/𝜌𝐸 = 0.1, 𝑄𝐼/𝜌𝐼 = 0 𝑐𝐸 = 𝑐𝐼 = 0.5, 𝐴𝐸 = 𝐴𝐼 = 0.05)

direction of the low is not speci ied, if the slope of the blue curve is larger than the slope of1078
the red curve, the equilibrium point is an unstable saddle point; if slope of the blue curve is1079
less than slope of red curve ( igure 8.b) the equilibriumpoint can be either a center, or a stable1080
spiral, or an unstable spiral.1081
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Figure 9 includes several visualizations of dynamical patterns in the phase portraits. In the1082
neighborhood of stable equilibrium states, ifΔ < 0 and the connectivity 𝜖𝐸→𝐸 isweak enough,1083
the interaction between excitatory neuronsmay not be enough tomaintain oscillatory ampli‑1084
tudes (𝑏 is not likely to be a positive value), and a decaying oscillatory pattern arises ( igure1085
9.a‑b). Specially when the decay rate 𝑏 is small enough, almost no oscillatory pattern will1086
be seen and the dynamics is a nearly monotonic collapse towards equilibrium ( igure 9.e‑f).1087
Near unstable equilibrium states ( igure 9.c‑d), if Δ < 0 and 𝑏 > 0, the interaction between1088
excitatory and inhibitory neurons ampli ies oscillatory amplitudes.1089

In contrast to single‑type excitatory neural ields, which support refractory oscillations only1090
at high iring rates, oscillatory patterns exist in EI ields even when iring rate is low. This in‑1091
dicates that the generating mechanism of the homogeneous oscillations of EI ields shown in1092
igure 9 relies on interaction between the two types of neurons. These oscillations will be re‑1093
ferred to as “interactive oscillations”. While refractory oscillations may exist only in densely1094
iring networks (high 𝜖), EI‑type of interactive oscillations may be generated at low iring1095
rates, i.e., near lower‑activity equilibrium states. Qualitatively, increased activity of excitatory1096
neurons increases the internal kinetic energy of connected inhibitory population. Cumulative1097
hysteresis effects on the inhibitory internal kinetic energy triggers delayed activation rates of1098
inhibitory neurons, which, in turn inhibit excitatory activity. The iring rate of excitatory pop‑1099
ulation drops below equilibrium, but, as the kinetic energy of the inhibitory population also1100
drops below equilibrium, the excitatory population recovers the ability of high iring rates.1101
Our model provides a mathematical description of this mechanism, in contrast with other1102
models, that rely on structural delays to generatewaves (e.g., axonal delays in Jirsa andHaken,1103
1996, 1997 andWright and Liley, 1995b; update delay in Cowan et al., 2016). In fact, our sim‑1104
pli ied model is able to treat delays as negligible and still resolve oscillations.1105

Theexamples shown in igure9 suggest that the time scales (periods) of interactiveoscillatory1106
patterns (decided by the discriminant in equation 42a), are similar inmagnitude to refractory1107
oscillations (several refractory periods, i.e., frequencies between 80 Hz to 130 Hz). When we1108
get into spatially in‑homogeneous cases, wewill see spatial contribution decreases slightly on1109
the frequencies. The observation that interactive oscillationsmaybe generated at lower iring1110
rate is consistent with in‑vivo observations of gamma waves [Ray and Maunsell, 2011]. This1111
suggests that the EI interactive oscillations generated by coupled excitatory and inhibitory1112
ields in sparsely iring networks might provide a mathematical basis for understanding the1113
fundamental oscillatory frequency identi ied as gamma.1114

8.3. Inhomogeneousperturbations (collective action). As before, following the “progres‑1115
sive wave” convention, we look for solutions in the form 𝑁𝛼 = 𝐶𝛼𝑒𝑖(𝑘𝑥+𝜎𝑡), 𝛼 = 𝐸, 𝐼, where1116
real values represent oscillations and imaginary values represent decay of growth. We also1117
assume that the mesoscopic activity of both excitatory and inhibitory populations is charac‑1118
terized by the same spatial and temporal structure. Substituting into equation 38 obtains the1119
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FIGURE 9. Typical oscillatory patterns of coupled excitatory and inhibitory populations. Left
column contains phase portraits of temporal evolution. A trace starting from an arbitrary
state is shown for each case, one epoch of color map denotes one equivalent refractory pe‑
riod. Right column contains numerically integrated oscillatory patterns of iring rate for both
excitatory and inhibitory population. The upper and lower rows correspond to illustrative
cases with 𝑏 < 0, parameters are and respectively 𝜖𝐸→𝐸 = 4, 𝜖𝐸→𝐼 = 3, 𝜖𝐼→𝐸 = −3, 𝜖𝐼→𝐼 = 0,
𝑄𝐸/𝜌𝐸 = 0.1, 𝑄𝐼/𝜌𝐼 = 0 𝑐𝐸 = 𝑐𝐼 = 0.5, 𝐴𝐸 = 𝐴𝐼 = 0.4 and 𝜖𝐸→𝐸 = 4, 𝜖𝐸→𝐼 = 3, 𝜖𝐼→𝐸 = −3,
𝜖𝐼→𝐼 = 0, 𝑄𝐸/𝜌𝐸 = 0.1, 𝑄𝐼/𝜌𝐼 = 0 𝑐𝐸 = 𝑐𝐼 = 1.0, 𝐴𝐸 = 𝐴𝐼 = 0.2; The medial row corre‑
spond to an illustrative case with 𝑏 > 0, parameters are 𝜖𝐸→𝐸 = 4, 𝜖𝐸→𝐼 = 2.5, 𝜖𝐼→𝐸 = −2.5,
𝜖𝐼→𝐼 = 0, 𝑄𝐸/𝜌𝐸 = 0.1, 𝑄𝐼/𝜌𝐼 = 0 𝑐𝐸 = 𝑐𝐼 = 0.5, 𝐴𝐸 = 𝐴𝐼 = 0.4.

algebraic equation (dispersion relation for waves; see details of the algebra in appendix C)1120
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FIGURE 10. Left panel: A typical dispersion relation and phase lag of coupled excitatory &
inhibitory neurons. Parameters for this case are:𝜖𝐸→𝐸 = 4, 𝜖𝐸→𝐼 = 3, 𝜖𝐼→𝐸 = −3, 𝜖𝐼→𝐼 = 0,
𝑄𝐸/𝜌𝐸 = 0.1, 𝑄𝐼/𝜌𝐼 = 0 𝑐𝐸 = 𝑐𝐼 = 0.5, 𝐴𝐸 = 𝐴𝐼 = 0.4; Right panel: Schematic wave form of
linear interactive waves.

Similar as our interest in temporal dynamics of excitatory neurons, dynamical patterns of1121
temporal interactions between excitatory and inhibitory neurons are also studied. The wave1122
frequency 𝜔 and growth rate 𝛼 as a function of real wave number 𝑘 are plotted in Figure 101123
for an illustrative case.1124

This sort of waves shown in the dispersion relation are called interactive waves analogous to1125
interactive oscillations in the homogeneous case. Interactive waves ( igure 10.a) show crests1126
of inhibitory activity lagging behind excitatory activity (in the case shown, the phase lag is1127
approximately 𝜋/4). Qualitatively, the wave pattern may be described as a hysteresis‑driven1128
alternation of highs and lows of excitatory activity, which triggers a delayed increase of inter‑1129
nal kinetic energy in locally connected inhibitory population. Thus, lagging inhibitory activity1130
suppresses local excitatory population, and the cycle repeats itself.1131

The parameters characterizing the dispersion relation of interactive waves are shown in ig‑1132
ure 10. Remarkably, the frequency is monotonically decreasing with increasing amplitudes,1133
but thewave character of these patterns also depends on the dissipation rate, which increases1134
with the wave number. The domain of interactive waves is effectively cut off in the neighbor‑1135
hood of 𝑘 ≈ 1; above this value, the dissipation rate becomes comparable, implying that the1136
perturbations decay too fast to qualify as oscillations in time. Following the same reason‑1137
ing as for single‑type neural ields, this suggests that interactive oscillations (which could be1138
identi ied as zerowave‑number interactivewaves) provide an upper bound for the frequency1139
range of interactive waves, consistent with gamma frequencies in sparsely‑ iring networks.1140

9. DISCUSSION1141

Our prior interpretation of spectra and bispectra of hippocampal LFP suggests that meso‑1142
scopic collective activity is a perturbation of an background (equilibrium) state that displays1143
the fundamental features of a turbulent system: weak nonlinearity [Sheremet et al., 2019b],1144
stochastic behavior [Freeman, 2000b,a, Sheremet et al., 2018b, Zhou et al., 2019], and weak1145
dissipation. To investigate further this hypothesis requires theoretical and numerical models1146
capable of describing activity of a large populations of neurons. Althoughmesoscopic activity1147
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has been the focus of considerable research, the key thermodynamic models, due to Wilson1148
and Cowan [1972b, 1973], Cowan et al. [2016] and Amari [1977], have drawbacks signi icant1149
enough to consider revisiting the formulation of the governing equations.1150

Here, we present the derivation of a thermodynamic model for mesoscale collective action1151
based on the fundamental assumption that themean neuron in a neural ield is characterized1152
by two different stages of evolution: 1) a sub‑threshold stage, in which the neuron is at “mi‑1153
croscopic” equilibrium, well described by the potential averaged over the surface of the cell1154
membrane; and2) a transitional stage, corresponding to thepotential spiking, inwhich a large1155
electric pulse propagates along neural membrane. The latter stage has the remarkable prop‑1156
erty that the neuron is for a short period of time essentially unresponsive to stimuli (absolute1157
refractory state). From a thermodynamic perspective, the former stage is characterized by1158
an internal kinetic energy which could be de ined as proportional to the averagedmembrane1159
potential. However, the averaged membrane potential is not well de ined during the iring1160
process, and the state of the neuron is ill de ined. This suggests distinguishing between two1161
types of energy: a potential energy, released during a spike, and the internal, sub‑threshold1162
kinetic energy, that serves as the trigger for a spike. From a thermodynamics perspective, in‑1163
ternal kinetic energy is a state variable, i.e., characterizing the state of the neuron. In contrast,1164
the energy captured from the potential energy released by a iring is a process variable, e.g.,1165
similar to heat luxes in classical thermodynamics.1166

The thermodynamic formulation based on these considerations on the dynamics of the “leaky1167
integrate‑and‑ ire” neuronmodel is essentially the powder‑keg paradigm. The “temperature”1168
of a keg plays the role of internal kinetic energy: if it exceeds a threshold, it triggers the ex‑1169
plosion of the keg, i.e., the release of the potential energy. Some of the energy released is1170
recaptured by the system, increasing locally the temperature, as well as providing temporal1171
(oscillatory) organization. From a thermodynamic perspective, a large collection of powder1172
kegs is described by two state variables: the excitability and the internal kinetic energy of the1173
element of volume of the neural ield. The process of neurons iring is treated as a process1174
variable involved in the energy exchange of the system with its environment. The formaliza‑1175
tion of this concept leads to a system of integro‑differential equations that may be seen as a1176
generalization of the Wilson and Cowan [1972b, 1973] and Amari [1977] models, with the1177
main advantage being the explicit evolution equations for the two state variables.1178

We examined linear approximations of the governing equations for single‑type (excitatory)1179
and dual‑type (excitatory‑inhibitory) neural ields. Both cases exhibit states with internal1180
kinetic energy balance that translate into single‑ or triple‑point equilibrium states. Our anal‑1181
ysis agreeswith previous observations (e.g., Meijer and Coombes, 2014, Coombes et al., 2014,1182
Muller et al., 2018a) that the refractoriness property of the system, i.e., the existence at any1183
time of a fraction of neural population that is “disabled” and cannot ire, is a crucial element in1184
the generation of oscillatory behavior. In single‑type neural systems, this ability is provided1185
by the natural refractory state of a neuron, with the direct consequence that temporal scale of1186
both homogeneous and inhomogeneous oscillations is of the order of the refractory period.1187
We call these “refractory oscillations/waves”. In dual‑type systems, the inhibitory compo‑1188
nent can take over this function and the system can support oscillations even if the refractory1189
period of individual neurons is ignored. We call these “interactive oscillations/waves”. This1190
property is at the root of the major difference in the linear behavior of the two types of sys‑1191
tems. The dynamics of single‑type excitatory neural ields are naturally decaying, with all1192
equilibrium states globally stable, and with oscillations occupying a “small” domain in the1193
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phase space ( igure 4.b), typically corresponding to high iring rate. In contrast, dual‑type1194
(excitatory‑inhibitory) neural ields support oscillations at much lower activity levels, and1195
are intrinsically more unstable, with globally unstable states possible.1196

In interpreting the results of the linear analysis it is important to note that 1) the discussion1197
refers to the linear analysis of a simpli ied version of the governing equations 6 and not of1198
the full equations (this is particularly relevant for wave solutions, given the strong isotropy1199
constraint imposed); and 2) that, although the analysis of the linear system is essential for1200
understanding the nonlinear behavior of the system, it does not provide an interpretation of1201
the spectral shapes observed (any spectral shape may correspond to a solution of the linear1202
system). Nonetheless, isotropic results should be relevant at least for small enough meso‑1203
scopic scales (e.g., gamma oscillations and ripples); and linear considerations do provide an1204
interpretation of the local dynamics at different scales.1205

Withe these reservations, and assuming that the model presented here has any relevance for1206
the interpretation of LFP measurements, several suggestions seem to emerge:1207

(1) The linear analysis shown provides a representation of processes that occupy the rip‑1208
ple and gamma frequency bands. Singe‑type neural ields support refractory oscillations and1209
waves only at high iring rates (𝑁), consistent with observations of “replay during ripples”1210
[Kudrimoti et al., 1999].1211
(2) The theta rhythm does not satisfy the dispersion relation 10 (dissipation of interactive1212
waves is too strong at theta scale), implying that theta cannot propagate as a free wave in the1213
hippocampus, hence it has to be an externally forced oscillation. While this is consistent with1214
the global nature of theta, observations [e.g., Lubenov and Siapas, 2009] do show that theta1215
has awell de ined direction of propagation in the hippocampus, and therefore does not satisfy1216
our isotropy constraint. It is therefore possible that theta simply does not belong to the family1217
of isotropic solutions discussed here. Either way, the analysis presented here suggests that1218
global theta forcingmay play amajor role in modulating key parameters of the system: inter‑1219
nal kinetic energy and excitability (refractoriness) levels, and thus inmaintaining equilibrium1220
states, and providing the increased activity necessary to sustainmesoscopic collective action.1221
(3) Previous nonlinear analysis [Sheremet et al., 2019b] suggests that gamma oscillations1222
reside preferentially in the theta trough (e.g., theta‑gamma biphase ≈ 180 degrees). This is1223
consistent with the “linear” analysis: the trough of theta corresponds to locally higher forced1224
activity levels (higher external input 𝑄 in our model). In the linear model, increased energy1225
input decreases the stability of the equilibrium state, facilitating mesoscopic oscillations.1226
(4) Revisiting the schematic spectra in igure 1, our analysis suggests that the gamma fre‑1227
quency band is occupied by interactive processes, possibly waves, bounded above by nearly‑1228
homogeneous oscillations (see the dispersion relation in igure 10). In the upper frequency1229
bands, probably dominated by refractory processes, the role of waves and oscillations re‑1230
verts, with oscillations having lower frequencies than waves. If theta is considered strictly as1231
a forcing term, the increase of gamma power with theta is consistent with the increase of the1232
oscillation amplitude with the forcing.1233

The model presented here comes with the overall implicit ‑ and parsimonious ‑ assumption1234
that brain activity may be described within the framework of thermodynamics, providing a1235
background to understand the physics by which the brain organizes behavior. The ubiquity1236
across species and brain regions of isotropic and homogeneous mesoscale neuronal struc‑1237
tures [Lorente de No, 1938, Parent and Hazrati, 1995, Marder and Bucher, 2001, Garamszegi1238
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and Eens, 2004, Apps and Garwicz, 2005, Mante et al., 2013] suggests the existence of a “uni‑1239
versal computational principle”. Freeman and Vitiello [2010] hypothesize (citing Lashley,1240
1942), that mesoscale processes are the essential cognition step of abstraction and gener‑1241
alization of a particular stimulus to a category of equivalent inputs, “because they require1242
the formation of nonlocal, very large‑scale statistical ensembles (our emphasis)”. As often1243
argued [e.g., Freeman, 2000a, Frisch, 2014, Edelman and Gally, 2001], physical processes un‑1244
derlying cognition are expected to resemble biological processes, with no design and no a1245
priori function [Edelman and Gally, 2001]. Frisch [2014] notes that “biological systems have1246
an intrinsic ability to maintain functions in the course of structural changes”, such that “spe‑1247
ci ic functions can obviously be constituted on the basis of structurally different elements, a1248
biological property that is referred to under the term degeneracy [Edelman and Gally, 2001]”.1249
It is possible that mesoscopic collective action is the basis of the “universal computational1250
principle”. As computational support, mesoscopic collective action has signi icant recon ig‑1251
uration potential, especially under a priori unknown conditions [Sussillo and Abbott, 2009].1252
Understandingmesoscopic activity dynamics may be the irst step toward understanding the1253
elusive process of brain integration.1254
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APPENDIX A. THE ACTIVATION FUNCTION AND THE POSITIVE‑DEFINITE CHARACTER OF THE 𝑢1255
AND 𝑎1256

Here, we discuss the hypotheses and approximations used in the derivation of the activation1257
function used in this study. Although the powder‑kegmodel belongs to theWilson and Cowan1258
[1972b, 1973] and Amari [1977] class of models, the de inition of essential variables such as1259
the iring rate𝑁 and the state variables 𝑢 (mean internal kinetic energy) and 𝑎 (excitability) is1260
different enough to require a re‑examination of the activation function. Because the focus of1261
this study is to construct the model and examine its basic properties, much of the derivation1262
presented below is driven by the need to simplify. At this stage, we leave it to future efforts to1263
implement more complicated formulations.1264

The powder‑keg governing equations 6a‑6d describe the activity of a neural ield in the limit1265
of a very large number of neurons per unit volume. For a inite number of neurons, the de‑1266
terministic representation given by equation 6d may be interpreted as an ensemble average,1267
i.e., an average over many repetitions of the same experiment. It is easy to argue, however,1268
that a realistic representation of the iring rate (even in a deterministic form) should include1269
some information of other elements of the stochastic nature of the iring process: for exam‑1270
ple, the variance of membrane luctuations should play a major role in the effective values of1271
threshold levels for iring.1272

it seems reasonable to assume that the iring rate depends crucially on two elements: 1) on1273
the probability of a neuron to ire (related to the proximity of the state of a given neuron to1274
the threshold, which involves, say the variance of the membrane luctuations, but possibly1275
other/all moments of the probability density); and 2) the distribution of internal kinetic en‑1276
ergy over the neural population.1277

Denote by 𝔲(𝑡) the subthreshold, meanmembrane depolarization. Invoking an ergodicity ar‑1278
gument, the internal kinetic energy 𝑢 de ined above may be regarded as a time average of1279
𝔲(𝑡). Assuming that the subthreshold 𝔲(𝑡) is a time‑integral of the activity of ion channels,1280
and that ion channels open and close randomly, 𝔲(𝑡) as a stochastic process may be modeled1281
as a random walk. Even if the mean internal kinetic energy 𝑢 is ixed, neurons may ire as1282
a response to the random walk 𝔲(𝑡). Moreover, qualitatively speaking, neurons with higher1283
depolarization are more likely to ire. Let 𝑃(𝔲) be the iring probability of a neuron with in‑1284
ternal kinetic energy 𝔲. The observations above imply that𝑃(𝔲) is amonotonically increasing1285
function, with 𝑃(0) = 0 and 𝑃(𝑈) = 1. Denote by 𝑝(𝔲) the probability of a neuron to ire in1286
the unit of time. Because a neuron ires instantaneously when it reaches the threshold level1287
𝑈, 𝑝(𝑈) = ∞.1288

As discussed in section 4, the distribution of 𝔲 over the population of neurons in an element1289
of volume is characterized by a probability density function 𝑓𝔲(𝔲), which may be written as1290

𝑓𝔲(𝔲) = (1 − 𝑎)𝛿(𝔲) + 𝑎𝑓𝔲,𝑎(𝔲, 𝑥, 𝑡), (44)

where the irst term denotes the sub‑population that is in refractory state (kinetic energy 𝔲 =1291
0, where 𝛿 is the Dirac delta function), and 𝑓𝔲,𝑎(𝔲, 𝑥, 𝑡) is the PDF component corresponding to1292
active neurons. Taking into account the excitability 𝑎(𝑥, 𝑡), the mean kinetic energy is1293

0 ≤ 𝑢 = ∫
𝑈

0
𝔲𝑓𝔲(𝔲)𝑑𝔲 ≤ 𝑎𝑈. (45)
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Because the iring rate as de ined here is the number of iring events in the unit of time, the1294
relationship between the iring rate of the population and its PDF 𝑓𝔲(𝔲) is given by the “acti‑1295
vation functional”1296

𝑁 = ∫
𝑈

0
𝑓𝔲(𝔲)𝑝(𝔲)𝑑𝔲. (46)

In the extreme case that 𝑢 = 𝑎𝑈, we have 𝑓𝔲,𝑎(𝔲, 𝑥, 𝑡) = 𝛿(𝔲 − 𝑈), thus iring rate 𝑁 = ∞. As1297
shown by equation 46, an accurate description of the time‑evolution of the iring rate based1298
on on the statistical state of the system involves fully detailed knowledge of the PDF 𝑓𝔲(𝔲).1299
Alternatively, assuming that the moments of 𝑓𝔲(𝔲) completely characterize it, one could write1300

𝑁 = 𝑁(𝑢, 𝑎, 𝜇2, 𝜇3, ⋯ , 𝜇𝑛, ⋯), (47)
where 𝜇𝑛 is the 𝑛‑th moment of 𝑓𝔲, where we assumed that the iring rate does not depend1301
explicitly on time (note that the functional form 𝒩 is different from the function 𝐺 appearing1302
in equation 5).1303

A.1. Simpli icationof theactivation function. Without further guidance about the the shape1304
of 𝑝(𝔲) and 𝑓𝔲(𝔲) (or all its moments), the only way to progress from equations 46 or 47 fol‑1305
lows the beaten path of putting our hopes in assuming that themoments of 𝑓𝔲 arewell ordered1306
at all times, i.e., 𝜇𝑛+1 ≪ 𝜇𝑛, and basically ignore all moments but the zeroth order (mean),1307
i.e., write1308

𝑁 = 𝑁(𝑢, 𝑎), (48)
instead of equation 47. The simpli ied activation function should be a monotonically increas‑1309
ing function of 𝑢 ∈ [0, 𝑈], with the end‑point values 𝑁 (𝑢 = 0, 𝑎) = 0 and 𝑁 (𝑢 = 𝑈, 𝑎) = ∞.1310
A plausible functional form consistent with these constraints is1311

𝑁(𝑢, 𝑎) = 𝐴 ( 𝑎
𝑎𝑈 − 𝑢 − 𝑎) = 𝐴𝑎 ( 1

𝑈 − 𝑎𝑢 − 1) (49)

where the constant 𝐴 is a measure of the intensity of endogenous membrane potential luc‑1312
tuations. To further simplify the activation function, we may ignore the effect of 𝑎 by setting1313
for this calculation 𝑎 ≈ 1 and effectively keeping only 𝑢 as the controlling factor of the iring1314
rate, which yields the expression given in equation 20, i.e.,1315

𝑁(𝑢) = 𝐴 ( 1
𝑈 − 𝑢 − 1) . (50)

Equation 50 is arguably a “simplest” form of the activation function that describes the iring1316
rate only as a functionof themeankinetic energy𝑢. While this relation satis ies the leading or‑1317
der conditions stated above, it underestimates the iring rate in comparison with expression1318
49 but hopefully the difference is small unless 𝑎 → 0, when a very large proportion of neurons1319
are in absolute refractory state and 𝑓𝔲,𝑎(𝔲, 𝑥, 𝑡) → 𝛿 (𝔲 − 𝑈). However, this condition implies1320
that 𝑓𝔲(𝔲) is a U‑shaped function, with large proportion of neurons in absolute refractory pe‑1321
riod, while the rest have a near threshold kinetic energy. This means the variance of 𝑓𝔲(𝔲)1322
is relatively large. However, this cannot be a not a common condition of a network, because1323
membrane depolarization in a network tends to be synchronized rather than the opposite1324
(e.g., Wilson and Cowan, 1972a).1325
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Therefore, we adopt for the activation function in this preliminary study the simple form 50,1326
which is readily inverted to yield1327

𝑢(𝑁) = 𝑈 − 𝐴
𝑁 + 𝐴. (51)

A.2. The bounds of state variables 𝑎 and 𝑢. A heuristic argument is as follows. From the1328
de initions given in section 4, neurons in their absolute refractory period correspond to𝑢 = 0.1329
Because 𝑎 is the fraction of neuron population not in the absolute refractory state, and 𝑈 is1330
the maximum value of kinetic energy of individual neurons, the maximum value of 𝑢 is 𝑈𝑎,1331
hence 𝑢 < 𝑈𝑎. The energy 𝑢 cannot exceed 𝑈𝑎 because the activation function 46 has the1332
property that 𝑁 → ∞ as 𝑢 → 𝑎𝑈, and in this case a large number of neurons drop to the level1333
𝑢 = 0. This logic is also true for the simpli ied version of the activation function 49 that rely𝑁1334
on both 𝑢 and 𝑎. However, whether the mathematical form of the model obeys this reasoning1335
depends on the form of the activation function. From equations 71336

𝜕
𝜕𝑡 (𝑢 − 𝑈𝑎) = 𝐹

𝜌𝑎 − 𝑁𝑈 − 𝑐𝑢 − 𝑈 (1 − 𝑎
𝜏 − 𝑁) ,

and using equation 1 obtains1337

𝜕
𝜕𝑡 (𝑢 − 𝑈𝑎) = 𝐹

𝜌𝑎 − 𝑐𝑢 + 𝑈 ∫
𝑡

−∞
𝑁(𝑡1)𝑟′(𝑡 − 𝑡1)𝑑𝑡1,

where 𝑟′(𝜉) = 𝑑𝑟
𝑑𝜉 ≤ 0, with input 𝐹

𝜌𝑎 > 0, and the “inertial” terms −𝑐𝑢 + 𝑈 ∫𝑡
−∞ 𝑁(𝑡1)𝑟′(𝑡 −1338

𝑡1)𝑑𝑡1 < 0. In the limit 𝑁 → ∞ ( equivalent to 𝑢 → 𝑈𝑎), 𝜕
𝜕𝑡 (𝑢 − 𝑈𝑎) remains inite; in1339

contrast, 𝜕2

𝜕𝑡2 (𝑢 − 𝑈𝑎) → −∞, thuswould not allow 𝑢 to exceed𝑈𝑎. The derivative is negative1340

if the forcing term 𝐹
𝜌𝑎 is negligible, but may become positive if the value of external input1341

overwhelms the inertial (negative) part, which implies that 𝑢 could exceed 𝑈𝑎 (𝑎 decays as1342

𝑁 → ∞, and so does the contribution of the incoming of the forcing term 𝐹
𝜌𝑎). For the second1343

derivative after some algebra, one obtains1344

𝜕2 (𝑢 − 𝑈𝑎)
𝜕𝑡2 = − (𝐹

𝜌𝑎 − 𝑐𝑈𝑎 − 𝑈𝑎 𝜕𝑟(𝑡)
𝜕𝑡 ∣

0
) 𝑁

𝑎 + terms that are inite.

If 𝜕
𝜕𝑡 (𝑢 − 𝑈𝑎) > 0 when 𝑢 → 𝑈𝑎, i.e., if 𝐹

𝜌𝑎 > 𝑐𝑢 → 𝑐𝑈𝑎, then 𝜕2

𝜕𝑡2 (𝑢 − 𝑈𝑎) → −∞, and1345

consequently 𝑢 would not exceed 𝑈𝑎. The activation function tells us that 𝑁 approaches 01346
when 𝑢 approaches 0. The 𝑢 < 𝑈𝑎 argument thus implies that 𝑢 → 0 as 𝑎 → 0. Moreover,1347
𝑁 → 0 as 𝑢 → 0, thus, from equation 6c 𝜕𝑎/𝜕𝑡 > 0, which insures that 𝑎 cannot become1348
negative.1349

Because the simplest form of the activation function 50 underestimates the iring rate, it is1350
possible that it would indeed allow 𝑢 to exceed the upper boundary 𝑈𝑎 in extreme condi‑1351
tions when the external input 𝑞 is very strong and the undervalued bursting rate is not large1352
enough to cool down the system. However, assuming that the neural ield operates far from1353
this limiting case, the simple form 50 should provide a good approximation.1354
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APPENDIX B. GROWTH RATE AND PHASE LAG FOR DUAL‑TYPE NEURAL FIELDS AT EQUILIBRIUM1355

Take 𝑁𝐸 = 𝐶𝐸𝑒𝜎𝑡; 𝑑𝑁𝐸

𝑑𝑡 = 𝐶𝐸𝜎𝑁𝐸 into Equation 39 with 𝛼 = 𝐸 we have1356

𝑁𝐼 =
( 1

𝑠𝐸
0
𝑠 + 𝑈 + 𝑐 1

𝑠𝐸
0

− 𝜖𝐸→𝐸)

(𝜖𝐼→𝐸 𝜌𝐼

𝜌𝐸 )
𝑁𝐸 (52)

In which, the ratio of 𝑁𝐼 over 𝑁𝐸 is a complex number, phase of the ratio is the phase lag1357
between inhibitory and excitatory populations.1358

𝜙 = arg
⎛⎜⎜⎜⎜⎜
⎝

( 1
𝑠𝐸

0
𝜎 + 𝑈 + 𝑐 1

𝑠𝐸
0

− 𝜖𝐸→𝐸)

(𝜖𝐼→𝐸 𝜌𝐼

𝜌𝐸 )

⎞⎟⎟⎟⎟⎟
⎠

Take 𝑁𝐼 = 𝐶𝐼𝑒𝜎𝑡; 𝑑𝑁𝐼

𝑑𝑡 = 𝐶𝐼𝜎𝑁𝐼 into Equation 39 with 𝛼 = 𝐼 we have1359

𝑁𝐸 =
( 1

𝑠𝐼
0
𝜎 + 𝑈 + 𝑐 1

𝑠𝐼
0

− 𝜖𝐼→𝐼)

(𝜖𝐸→𝐼 𝜌𝐸

𝜌𝐼 )
𝑁𝐼 (53)

Combining Equation 52 with Equation 53 we know that.1360

( 1
𝑠𝐸

0
𝜎 + 𝑈 + 𝑐 1

𝑠𝐸
0

− 𝜖𝐸→𝐸)

(𝜖𝐼→𝐸 𝜌𝐼

𝜌𝐸 )

( 1
𝑠𝐼

0
𝜎 + 𝑈 + 𝑐 1

𝑠𝐼
0

− 𝜖𝐼→𝐼)

(𝜖𝐸→𝐼 𝜌𝐸

𝜌𝐼 )
= 1

Then the complex oscillation frequency 𝜎 satisfy a quadratic equation1361

𝜎2 + [(𝑈𝑠𝐸
0 + 𝑐 − 𝑠𝐸

0 𝜖𝐸→𝐸) + (𝑈𝑠𝐼
0 + 𝑐 − 𝑠𝐼

0𝜖𝐼→𝐼)] 𝜎

+ (𝑈𝑠𝐸
0 + 𝑐 − 𝑠𝐸

0 𝜖𝐸→𝐸) (𝑈𝑠𝐼
0 + 𝑐 − 𝑠𝐼

0𝜖𝐼→𝐼) − (𝜖𝐼→𝐸 𝜌𝐼

𝜌𝐸 ) (𝜖𝐸→𝐼 𝜌𝐸

𝜌𝐼 ) 𝑠𝐼
0𝑠𝐸

0 = 0

Thus the solutions of 𝜎 are1362

2𝜎 = [(𝑠𝐸
0 𝜖𝐸→𝐸 − 𝑈𝑠𝐸

0 − 𝑐) + (𝑠𝐼
0𝜖𝐼→𝐼 − 𝑈𝑠𝐼

0 − 𝑐)]

± √[(𝑠𝐸
0 𝜖𝐸→𝐸 − 𝑈𝑠𝐸

0 − 𝑐) − (𝑠𝐼
0𝜖𝐼→𝐼 − 𝑈𝑠𝐼

0 − 𝑐)]2 + 4 (𝜖𝐼→𝐸 𝜌𝐼

𝜌𝐸 ) (𝜖𝐸→𝐼 𝜌𝐸

𝜌𝐼 ) 𝑠𝐼
0𝑠𝐸

0

APPENDIX C. DISPERSION RELATION FOR DUAL‑TYPE NEURAL FIELDS1363

Take𝑁𝐸 = 𝐶𝐸𝑒𝑖(𝑘𝑥+𝜎𝑡); 𝜕2𝑁𝐸

𝜕𝑥2 = 𝐶𝐸 (𝑖𝑘)2 𝑁𝐸; 𝜕𝑁𝐸

𝜕𝑡 = 𝐶𝐸 (𝑖𝜎) 𝑁𝐸 intoEquation38awith𝛼 = 𝐸1364

we have.1365

𝑁𝐼 =
1
𝑠𝐸

0
(𝑖𝜎) + 𝑈 + 𝑐 1

𝑠𝐸
0

− 𝜖𝐸→𝐸 (1 + ∑∞
𝑗=1 𝑏2𝑗(𝑖𝑘)2𝑗)

𝜖𝐼→𝐸 𝜌𝐼

𝜌𝐸 (1 + ∑∞
𝑗=1 𝑏2𝑗(𝑖𝑘)2𝑗)

𝑁𝐸 (54)
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In which, the ratio of 𝑁𝐼 over 𝑁𝐸 is a complex number, phase of the ratio is the phase lag1366
between inhibitory and excitatory populations.1367

𝜙 = arg
⎛⎜⎜⎜⎜
⎝

1
𝑠𝐸

0
(𝑖𝜎) + 𝑈 + 𝑐 1

𝑠𝐸
0

− 𝜖𝐸→𝐸 (1 + ∑∞
𝑗=1 𝑏2𝑗(𝑖𝑘)2𝑗)

𝜖𝐼→𝐸 𝜌𝐼

𝜌𝐸 (1 + ∑∞
𝑗=1 𝑏2𝑗(𝑖𝑘)2𝑗)

⎞⎟⎟⎟⎟
⎠

Take𝑁𝐼 = 𝐶𝐼𝑒𝑖(𝑘𝑥+𝜎𝑡); 𝜕2𝑁𝐼

𝜕𝑥2 = (𝑖𝑘)2 𝑁𝐼; 𝜕𝑁𝐼

𝜕𝑡 = (𝑖𝜎) 𝑁𝐼 into Equation 38a with 𝛼 = 𝐼 we have.1368

𝑁𝐸 =
1
𝑠𝐼

0
(𝑖𝜎) + 𝑈 + 𝑐 1

𝑠𝐼
0

− 𝜖𝐼→𝐼 (1 + ∑∞
𝑗=1 𝑏2𝑗(𝑖𝑘)2𝑗)

𝜖𝐸→𝐼 𝜌𝐸

𝜌𝐼 (1 + ∑∞
𝑗=1 𝑏2𝑗(𝑖𝑘)2𝑗)

𝑁𝐼 (55)

Combining Equation 54 with Equation 55 we know that.1369

[ 1
𝑠𝐸

0
(𝑖𝜎) + 𝑈 + 𝑐 1

𝑠𝐸
0

− 𝜖𝐸→𝐸 (1 + ∑∞
𝑗=1 𝑏2𝑗(𝑖𝑘)2𝑗)]

𝜖𝐼→𝐸 𝜌𝐼

𝜌𝐸 (1 + ∑∞
𝑗=1 𝑏2𝑗(𝑖𝑘)2𝑗)

[ 1
𝑠𝐼

0
(𝑖𝜎) + 𝑈 + 𝑐 1

𝑠𝐼
0

− 𝜖𝐼→𝐼 (1 + ∑∞
𝑗=1 𝑏2𝑗(𝑖𝑘)2𝑗)]

𝜖𝐸→𝐼 𝜌𝐸

𝜌𝐼 (1 + ∑∞
𝑗=1 𝑏2𝑗(𝑖𝑘)2𝑗)

= 1

Then the complex oscillation frequency 𝜎 as a function of 𝑘 satisfy a quadratic equation that1370

−𝜎2 + ⎡⎢
⎣

⎛⎜⎜
⎝

𝑈𝑠𝐸
0 + 𝑐 − 𝑠𝐸

0 𝜖𝐸→𝐸 ⎛⎜⎜
⎝

1 +
∞
∑
𝑗=1

𝑏2𝑗(𝑖𝑘)2𝑗⎞⎟⎟
⎠

⎞⎟⎟
⎠

+ ⎛⎜⎜
⎝

𝑈𝑠𝐼
0 + 𝑐 − 𝑠𝐼

0𝜖𝐼→𝐼 ⎛⎜⎜
⎝

1 +
∞
∑
𝑗=1

𝑏2𝑗(𝑖𝑘)2𝑗⎞⎟⎟
⎠

⎞⎟⎟
⎠

⎤⎥
⎦

(𝑖𝜎)

+ ⎛⎜⎜
⎝

𝑈𝑠𝐸
0 + 𝑐 − 𝑠𝐸

0 𝜖𝐸→𝐸 ⎛⎜⎜
⎝

1 +
∞
∑
𝑗=1

𝑏2𝑗(𝑖𝑘)2𝑗⎞⎟⎟
⎠

⎞⎟⎟
⎠

⎛⎜⎜
⎝

𝑈𝑠𝐼
0 + 𝑐 − 𝑠𝐼

0𝜖𝐼→𝐼 ⎛⎜⎜
⎝

1 +
∞
∑
𝑗=1

𝑏2𝑗(𝑖𝑘)2𝑗⎞⎟⎟
⎠

⎞⎟⎟
⎠

− ⎡⎢
⎣
𝜖𝐼→𝐸 𝜌𝐼

𝜌𝐸
⎛⎜⎜
⎝

1 +
∞
∑
𝑗=1

𝑏2𝑗(𝑖𝑘)2𝑗⎞⎟⎟
⎠

⎤⎥
⎦

⎡⎢
⎣
𝜖𝐸→𝐼 𝜌𝐸

𝜌𝐼
⎛⎜⎜
⎝

1 +
∞
∑
𝑗=1

𝑏2𝑗(𝑖𝑘)2𝑗⎞⎟⎟
⎠

⎤⎥
⎦

𝑠𝐼
0𝑠𝐸

0 = 0

Thus the solutions of 𝜎 are1371

2𝑖𝜎 = 𝑠𝐸
0 𝜖𝐸→𝐸 ⎛⎜⎜

⎝
1 +

∞
∑
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