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Abstract 
 
Background: Immunofluorescent confocal microscopy uses labeled antibodies as probes 
against specific macromolecules to discriminate between multiple cell types. For images of the 
developmental mouse lung, these cells are themselves organized into densely packed higher-
level anatomical structures. These types of images can be challenging to segment automatically 
for several reasons, including the relevance of biomedical context, dependence on the specific 
set of probes used, prohibitive cost of generating labeled training data, as well as the complexity 
and dense packing of anatomical structures in the image. The use of an application ontology 
surmounts these challenges by combining image data with its metadata to provide a meaningful 
biological context, and hence constraining and simplifying the process of segmentation and 
object identification. 
 
Results: We propose an innovative approach for the automated analysis of complex and 
densely packed anatomical structures from immunofluorescent images that utilizes an 
application ontology to provide a simplified context for image segmentation and object 
identification. We describe how the logical organization of biological facts in the form of an 
ontology can provide useful constraints that enhance automatic processing of complex images. 
We demonstrate the results of ontology-guided segmentation and object identification in mouse 
developmental lung images from the Bioinformatics REsource ATlas for the Healthy lung 
(BREATH) database of the Molecular Atlas of Lung Development (LungMAP1) program. 
 
Conclusion: The microscopy analysis pipeline library (micap) is available at 
https://github.com/duke-lungmap-team/microscopy-analysis-pipeline. Code to reproduce our 
analysis of LungMAP images is also available at https://github.com/duke-lungmap-
team/lungmap-pipeline. Finally, the application ontology is available at https://github.com/duke-
lungmap-team/lung_ontology and includes example SPARQL queries.  
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Background 

 

We describe the development of ontology-guided segmentation and object identification for 
immunofluorescent images from the Molecular Atlas of Lung Development Program (LungMAP) 
consortium1. LungMAP seeks to advance research in lung development and disease by 
creating, integrating and disseminating genomic and imaging data sets.  The immunofluorescent 
confocal microscopy data set includes hundreds of diverse images spanning multiple stages of 
development and stained with distinct probe combinations. At an early embryonic stage, the 
developing lung parenchyma is a densely packed tissue, whereas the mature lung exhibits an 
open, filamentous alveolar structure. Some structures are present only during specific 
developmental stages, while other structures undergo drastic anatomical and physiological 
changes over time. The combination of antibody probes in a subset of images is chosen to 
target particular cells within an anatomical structure to study these changes and their relevance 
to the developing lung. Consequently, images acquired at different developmental stages and 
with different probe combinations display significant visual differences. The limited number of 
images sharing the same visual appearance for a given anatomical structure poses significant 
challenges to their segmentation and identification, particularly in the prohibitive cost of 
generating labeled training data. We use an application ontology to incorporate the metadata 
representing the varations in image acquisition to provide a meaningful biological context, 
making the process of segmentation and object identification more manageable. 
 

To identify specific structures in immunofluorescent microscopy images of the developing lung, 

a human observer would make use of experimental, imaging and anatomical contextual 

information. The experimental context includes information such as species and developmental 

stage. The imaging information includes the magnification and labeled probes used. Finally, the 

anatomical context includes the list of structures typically found in the appropriate developing 

stage of the lung that are identifiable using a particular set of probes, as well as the hierarchical 

nesting of substructures within structures and spatial relationships between structures. Our 

application ontology captures the types of contextual data a human observer would use, in a 

way that can be incorporated into the image processing workflow.  

 

An ontology is a controlled, structured vocabulary that provides logical definitions of terms 

representing distinct categories and their relationships in a particular domain. With strict control 

of unique term identifiers and logical consistency, ontologies enable the interoperability of 

heterogeneous data and are widely used as a tool to facilitate the sharing of knowledge. For 

example, the Gene Ontology2, 3 (http://geneontology.org/) has been used to annotate large 

collections of literature and data, facilitating data integration and discovery. In turn, this has led 

to the development of software that can query diverse sets of experimental data curated by 

different groups of experts and stored in independent databases. In the biomedical disciplines, 

ontologies provide rigorous, unambiguous descriptions of biological entities and the 

relationships among them using standardized and well understood formats 

(http://ontology.buffalo.edu/biomedical.htm). The Open Biomedical Ontology (OBO) Foundry 

(http://obofoundry.org) ontologies are designed to describe orthogonal biological features, 

utilizing a common standard to ensure interoperability. The OBO Foundry consists of 

foundational ontologies that define the terms of interest in a domain. Application ontologies 

combine and take advantage of the terms defined in the foundational ontologies for use in a 

specific application.  
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Several methods have been proposed for segmentation of fluorescence microscopy images 

based on computer vision algorithms4-12 . We propose the creation of an application ontology to 

provide biomedical context in a machine-readable way to increase the power of computer vision 

algorithms for the identification of complex objects within microscopy images. While ontologies 

have been previously utilized for providing automatic image annotation13, our novel approach 

utilizes an ontology to dynamically create segmentation parameters targeting structures likely to 

be found in a particular image. Our approach combines image metadata, including the probes 

used, with a newly developed ontology to dynamically define constraints allowing the targeted 

segmentation of candidate regions. These candidate regions are then processed to calculate a 

series of feature metrics used to classify the regions into distinct anatomical structures, which 

can be further segmented to identify individual cells within each structure. The ontology defines 

the possible structures identifiable at each developmental stage and provides precise labels 

allowing for interoperability with other ontologies. 

 

An alternative to classical computer vision is the use of deep learning with convolutional neural 

networks (CNN)14-17. Examples of well-known CNNs include Fast R-CNN18 and Mask R-CNN19. 

For biomedical image segmentation, U-NET20 is a popular architecture. However, U-NET only 

provides semantic segmentation into connected pixels, whereas our application calls for 

instance segmentation into distinct objects. To prevent overfitting, these methods require a large 

number of labeled training images, which are difficult to achieve in many practical contexts. For 

example, CNNs for image classification and object detection often use training databases with 

thousands or even millions of images. Several strategies exist to address the lack of adequate 

training data in microscopy experiments, including attempts to restore lower quality images for 

inclusion in training data21 and data augmentation. The immunofluorescent images produced by 

the LungMAP consortium are generated as part of specific experiments and hence 

heterogeneous. For a given probe set (i.e., a fluorescent antibody, or antibodies, used to 

recognize a specific molecule(s) associated with a distinct cell type), only a small number of 

images are available, and we encountered no images that required excluding due to image 

quality issues. When evaluating various neural networks, we attempted various data 

augmentation techniques as well as transfer learning using the COCO dataset22, but were 

unable to coax standard CNN models, such as Mask R-CNN, to perform competitively with 

careful feature engineering using classical image analysis methods. Even if more images were 

available, the burden of constructing a large training set would be prohibitive since the images 

require experts in developmental lung anatomy for accurate labeling.  

 

Results 

 
Image Selection. The immunofluorescent images within the LungMAP project are 

heterogeneous, including variation in species, developmental age, magnification and labeled 

probe combination used. We first used the ontology categories to group images into image sets 

with the same species, development age, magnification, and probe combination. This process is 

automated using the LungMAP SPARQL API, which returns this grouping metadata in the 

Resource Description Framework (RDF) labeled graph format for each queried image. The 
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grouping simplifies image segmentation, since images within a set are now homogeneous with 

respect to extrinsic variables.  

 
Creation of training data. Manual segmentation of training data is time-consuming and prone 

to subjective contour boundaries. Most manual segmentation tools also require the user to 

provide the region labels, potentially requiring review and modification of the labels to match the 

those in the classification pipeline. To address these issues, we developed a Graphical User 

Interface (GUI) utility to create training data (Figure 6). Since the pipeline's segmentation and 

classification processes are independent, the segmentation routine, including image pre-

processing, can be used to create regions. Additionally, the ontology allows us to filter the list of 

possible anatomical structures for a given development age and the combination of probes 

present in the image set.   

 

The tool provides an interface for an expert to visualize the segmented structure candidates 

generated and accept or reject them. Labels from an ontology-constrained label set can be 

easily applied to the accepted regions. Regions covering more than one structure can 

automatically be split using a recursive binary segmentation routine. Finally, any structure 

missed by the automatic segmentation can be manually drawn as polygons, allowing images to 

be comprehensively segmented. This is an important feature as our training process is designed 

to automatically create a “background” class from non-segmented regions in these 

comprehensively segmented images.  

 

Targeted segmentation of structures. For a given image set, we use a SPARQL Protocol and 

RDF Query Language (SPARQL) traversal of the probe-protein-cell-tissue-structure graph of the 

application ontology to limit the classes of structures that are identifiable given a specific probe 

combination. In the LungMAP data sets, a particular set of probes (usually 3) is used to target a 

particular anatomical structure. The ontology allows ranking anatomical structures by the 

number of probes used in the image set that can label a candidate structure. The anatomical 

structures targeted by the greatest number of probes are prioritized as the primary object(s) to 

identify. In addition, the pipeline attempts to identify any other structures that have at least one 

targeting probe. For example, in an image of the lung from a mouse at the developmental stage 

E16.5 with the probe set ACTA2, SOX-9, and SFTPC, the target structure is the distal acinar 

tubule bud with 2 matching probes (SOX-9 and SFTPC), and the remaining identifiable 

anatomical structure classes with a single probe are the bronchiole, the proximal acinar tubule, 

the pulmonary artery, and the pulmonary vein. The application ontology also plays an important 

role in providing contextual information regarding the location of probes within structures, 

indicating whether a probe color is on the periphery of a structure or found within it 

(Supplemental Table 2). 

 

The customizable color profile and the configurable segmentation stages provide flexible 

strategies for the analysis of a large range of immunofluorescent microscopic data sets. 

However, we found certain strategies more effective for the LungMAP application, and this 

drove the development of the ontology to automate the creation of segmentation configurations. 

For example, the first stage should target the most prominent visual structures found in the 
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image set. These structures correspond to those that are targeted by the greatest number of 

probes. Querying the ontology provides this information.  

 

We also found that knowing whether a probe targets the periphery, or the interior of a structure 

could further improve the segmentation results, and this information was then added to the 

ontology. Structures targeted by a probe that is found in the periphery of a structure are best 

placed at the end of the segmentation stage sequence. The rationale for this is that if placed at 

an earlier position of the segmentation sequence, then the more visually subtle structures in the 

image could be partially segmented. Using saturation-based segmentation for the intermediate 

stages proved more effective at completely segmenting these more concealed structures, with 

the priority towards larger structures. Larger structures are targeted with more aggressive 

(larger) blur kernels. 

 

To label the candidate ROIs, a labeled training set is necessary, and the use of classical 

machine learning requires only a modest number of training examples for each structure class. 

The ROIs in the training data are labeled, the feature matrix is calculated for each ROI, and the 

resulting feature metric data is used to train an XG-Boost23 classifier. The trained classifier is 

then used to assign labels to new candidate regions. To evaluate accuracy, an image set of four 

images was selected to build four separate models in a leave-one-out approach. Next, using the 

held-out image and a trained model, we derived candidate regions and probabilities for each 

anatomical structure identified from the ontology. These candidate regions and their predicted 

anatomical structures were paired with the “ground truth” labeled by a histopathologist with 

expertise in developmental lung anatomy. These results are presented as ROC curves shown in 

Figure 5. 

 

Discussion 

 

An application ontology can improve image segmentation and labeling by providing contextual 

information that is implicit when a human expert evaluates the image. We use the application 

ontology to construct flexible semantic queries using the SPARQL protocol to generate relevant 

contextual information for the image analysis pipeline. For immunofluorescent images of the 

developing lung, the context provided includes general information about the different 

developmental stages, the hierarchical organization of anatomical lung structures down to the 

cellular and molecular level, image metadata such as the magnification level, and the 

experiment-specific information of which fluorescent dyes are mapped to specific antibody 

probes. This contextual information constrains possibilities and simplifies inference. An 

additional benefit is that the application ontology guarantees that all terms are unique and 

derived from more foundational ontologies. This means that all labeled entities provide their own 

definitions and can be related to other entities. Using a standard vocabulary ensures consistent 

naming of structures following well-defined standards and also ensures that our labels can be 

unambiguously linked to other data sets and reference databases. For example, single cells 

identified in an image can be linked with other data for that cell type (e.g. scRNA-seq) in the 

BREATH databases, providing spatial resolution to other assay data. The ontology was 

developed collaboratively by an ontologist and a software developer, using an iterative process 
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to ensure that each addition or modification to the ontology was driven by the intended use of 

the image analysis pipeline and could be queried programmatically. 

 

There are limitations to using an ontology-driven approach for image segmentation and object 

classification. First, the construction of an application ontology is an iterative process and 

requires someone with expertise in biomedical ontologies collaborating closely with 

bioinformaticians who know how to use tools such as SPARQL for querying the ontology. 

Second, application ontologies are, by nature, constructed for a particular purpose, unlike more 

general domain (foundational) ontologies. Hence, elements of the application ontology must be 

adapted for new applications, for example, by adding new antibody specificities for a different 

probe set, or new anatomical relations for different organ systems. While the particular image 

processing routines described are specific to the lung development context, the framework of 

logical relationships established by this application ontology is generalizable to object 

identification in other biomedical imaging experiments. By providing context information in a 

machine-accessible format, application ontologies increase the feasibility of automatic image 

segmentation and object identification. Ontologies are commonly used in a static way for linkage 

and knowledge sharing, but image segmentation and object identification open new 

opportunities for ontologies to be used in a dynamic way for machine inference. 

 

Conclusion 

 

In summary, application ontologies can be powerful tools to pair with immunofluorescent image 

processing, segmentation and object identification. In addition to their traditional virtues of 

providing a standard vocabulary and term definitions, logical inference over ontologies can 

make use of biomedical contextual information to constrain and simplify machine learning. We 

have demonstrated this approach for developmental lung studies, but believe that it is widely 

applicable, for example, to study cancer-immune interactions in the tumor microenvironment. 

 

Data Sharing 

 
The microscopy analysis pipeline library (micap) is available on Github (https://github.com/duke-

lungmap-team/microscopy-analysis-pipeline), and includes a basic example of usage using a 

trivial shapes data set. Code to reproduce our analysis of LungMAP images is also available on 

Github (https://github.com/duke-lungmap-team/lungmap-pipeline). Finally, the application 

ontology is available on Github (https://github.com/duke-lungmap-team/lung_ontology) and 

includes example SPARQL queries via the Python library “ontospy”. 

 
 

 

Methods 
 

Development of the ontology. The application ontology was developed following the Basic 

Formal Ontology (BFO, https://basic-formal-ontology.org/) formalism, and conforms to the 

requirements of OBO Foundry ontologies. The ontology was specified in the Web Ontology 
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Language and developed using the Protégé (version 4.5) ontology editor. We searched 

OntoBee (http://www.ontobee.org/) and BioPortal (http://bioportal.bioontology.org/) for 

equivalent concepts in existing ontologies. To avoid duplication, we imported and used these 

equivalent terms. If no equivalent term was found, we created new terms and definitions and 

submitted them to an appropriate OBO Foundry ontology to consider for inclusion. We relied on 

Uberon24 for anatomical structures, Cell Ontology25-27 for cell types, Protein Ontology28 for 

proteins, Information Artifact Ontology29 for experimental protocol metadata, and the Relation 

Ontology30 for relations between entities. In addition, we ensured that every anatomical term in 

the application ontology mapped to a corresponding term in the LungMAP ontology31, which 

provides a comprehensive anatomical ontology of the developing lung.  

 

Queries to the ontology are made using SPARQL. The application ontology contains the set of 

anatomical structures related to a specific antibody probe, including descriptions of the 

intermediate tissue and cell types that make up those structures. The ontology also contains 

common variations, or aliases, of the various probes commonly used in immunofluorescent 

microscopy and provides a standard unambiguous label for each probe.  

 

All the relevant data elements were collected from the Bioinformatics REsource ATlas for the 

Healthy lung (BREATH) database and transformed into terms and relational expressions, mostly 

reused from other ontologies (Supplemental Table 1). The most critical metadata about the 

images are the fluorescent-labeled probes, which are antibodies against specific biological 

proteins. For this reason, we used a general class of Antibody Reagent from the Reagent 

Ontology (REO, http://www.ontobee.org/ontology/REO), and connected it to the targeted protein 

by the use of the relation recognizes adopted from REO and AntiO32. We then linked a specific 

cell type to the protein (recognized by the antibody reagent) via a has_part relation. For 

example, cell X has_part some protein Y and Antibody Reagent Z recognizes some protein Y. In 

turn, tissues link to cells, and higher-order anatomical structures link to tissues via the same 

relationship. The graph illustrating these relationships is shown in Figure 1a.  

 

To capture the temporal nature of the development process, the ontology also includes age 

information. We used an existence_starts_at_point relation to capture the relationship between 

visible entities and age. This relation links an anatomical structure with the specific age at which 

that structure is developed and is visible within an image. As the images are from samples at 

only a few specific ages (e.g. E16.5), we used discrete categories for age. For other 

applications where a continuous time model is desirable, we would define overlapping intervals 

at which each entity can be found in the development process.  

 

The ontology is used in the process of labeling training data, image segmentation, and mapping 

of image segments to named anatomical entities.  When labeling training data, the ontology 

provides the list of possible anatomical structures for a given development age. For 

segmentation, the ontology provides contextual information regarding the location of probes, 

such as whether a probe is located on the periphery of a structure or found within it. For 

classification, the ontology constrains the anatomical entity candidate labels allowed given the 

inferred knowledge about the image and specific segment.  
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The inference over the ontology requires chained SPARQL queries between a set of probes and 

their related structures that can be time intensive. Hence, relationships between probes and 

structures are first determined using a set of SPARQL queries and then saved as a look-up 

table (LUT) for quicker access in the image analysis application. These LUTs can be re-

generated programmatically when the ontology is updated. The integration of the ontology into 

the image processing pipeline is illustrated in Figure 1b. 

 

Development of image analysis pipeline. The image analysis pipeline we developed is 

tailored to the unique properties of immunofluorescent microscopy images, particularly targeting 

cases where regions of interest are densely packed and numerous. We chose to target these 

types of images as they are difficult to segment accurately using current computer vision 

pipelines and highly laborious to segment manually. The pipeline was developed in the Python 

programming language and is available as an open-source package named micap (microscopy 

analysis pipeline). 

 

Our pipeline makes use of metadata associated with each image sample, including species, 

development age, image magnification, names of the antibody probes, and the colors 

associated with those probes. Together, this information defines distinct image sets that are 

analyzed in separate runs of the pipeline. Training data for a single entity consists of an 

ontology-defined label and a list of vertices given as x-y coordinates that defines the boundary 

of a polygonal region. 

 

Development of feature metrics. Classical machine learning approaches require the reduction 

of pixel-level data to image feature vectors. The limited colors and gradients in 

immunofluorescent images can be usefully exploited to generate a limited set of quantitative 

feature metrics useful for distinguishing between biologically relevant segmentation classes. 

These features are based on color composition and distribution, region and sub-region shape 

statistics such as eccentricity and convexity, and simple texture statistics like hole area ratio 

(HAR). 

 

We began the development of features using manually segmented regions and then extracted 

these regions into groups based on their labels. The extracted regions were visually inspected 

and analyzed using histograms of their HSV channels. The colors present in all of the images in 

the LungMAP database are blue: representing the nuclei stained with DAPI, black: representing 

non-cellular empty space, or "background" due to dark-field microscopy, and red, green, and 

white: typically used as fluorescent colors in immunofluorescent microscopy. Additionally, we 

observed that for small areas where a targeted antibody was expressed, the fluorescent color 

would interact with the blue DAPI stain to produce composite colors. 

 

Based on these observations and the histograms of the hue channel in the regions we manually 

segmented, we partitioned the hue range into 3 main sections we term "major" colors, targeting 

red, green, and blue. We also binned the value channel into 3 monochromatic colors of black, 

gray, and white. Finally, we defined "minor" colors as the composite colors of violet, cyan, and 
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yellow. With these 9 color categories established, the entire HSV space was partitioned such 

that any combination of hue, saturation, and value belongs to a unique color class. The 

complete definition of HSV ranges for the color classes are shown in Supplementary Table 3. 

 

In total, there are 179 feature metrics calculated for each region, consisting of 19 metrics 

repeated for each of the 9 color classes and 8 global contour features. While the LungMAP data 

sets employ 3 fluorescence colors, more colors can be used in immunofluorescent 

microscopy33. With this in mind, we designed the analysis pipeline library to calculate feature 

metrics dynamically based on a configurable set of color definitions. By default, the library will 

use the 9 color definitions described above. 

 

Image pre-processing. Once an image set is selected for analysis, its images are 

preprocessed to be homogeneous with regard to intrinsic variables, such as illumination and 

color. In microscopy images, illumination inhomogeneity effects occur both within an image and 

between images. Intra-image variation in light intensity results from a focal light source and 

manifests as a non-uniform intensity across the field of view (FOV), with higher intensities near 

the center of the image and trailing out toward the edges. Intra-image FOV variation can be 

significant, with up to 30% variation in intensity from the center to the darkest edge34. Inter-

image variation can occur in each of the hue, saturation and value channels. Differences in the 

placement and brightness of the focal light source, variations in the staining process, and 

photobleaching are among the sources contributing to intra-image variations of color and 

intensity. These effects are responsible for images that appear “washed-out” (low saturation 

values) or images where the DAPI (4′,6-diamidino-2-phenylindole) stained nuclei appear 

greenish-blue (variation in hue).  

 

Correcting both inter- and intra-image variation is critical for both the segmentation and 

classification of ROIs. Regions of a particular structure class may be under- or over-segmented 

due to their location within the FOV of an image and the image to which they belong. The 

number of pixels in a region due to the quality of segmentation, coupled with the differences in 

hue, saturation, and value of pixels within a region can greatly affect the feature metric 

calculations. The feature metric variance for regions within a class can, in turn, then affect the 

performance of the classification results. Figure 2 shows the effect of these preprocessing steps 

on homogenizing images in an image set. 

 

To correct the intra-image variation due to the single light source, we create a mask from all the 

blue pixels in the image. Blue pixels represent the DAPI-stained cell nuclei and are the most 

common and evenly distributed color in the microscopy images we analyzed. The blue mask is 

applied to the value channel of the image and the masked value data is fitted using a bivariate 

Gaussian. The Gaussian fit is then inverted and sampled at each pixel coordinate of the image, 

and then summed with the original unmasked value channel. This process is repeated for every 

image in the image set. 

 

Following value gradient correction, the inter-image color variation is corrected, starting with the 

selection of a reference image from the image set. The blue mask is extracted from each 
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gradient corrected image to calculate the mean hue value of those pixels. The image with a 

mean hue closest to the "true blue" of 120 (on a 180-value hue scale) is chosen as the 

reference image. The images are converted to International Commission on Illumination (CIE) 

L*a*b space to transfer the color profile from the reference image to the other images in the 

image set35. 

 

Generation of the signal mask. The homogenized images are processed to enhance visual 

contrast of the structures targeted by the probes. In the LungMAP images, blue indicates DAPI 

staining of nucleated cells and is not utilized as a fluorescent probe color. By clipping the blue 

channel in RGB color-space to the maximum of the red and green channels, areas of high blue 

intensity are suppressed. This reduces the saturation and value of regions not targeted by any 

fluorescent probes, thus increasing visual contrast of the borders in adjacent anatomical 

structures. 

 

Each contrast enhanced image is then converted to a hue, saturation, and value (HSV) color 

space, where the value channel is used as input to a difference of Gaussians routine to 

generate a binary signal mask that highlights boundaries in visually contrasting areas. The 

boundaries of neighboring structures within the signal mask are often connected, and single 

structures may be incomplete, preventing the use of the signal mask to segment regions 

directly. Instead, the HSV image is used for segmentation of candidate regions of interest 

(ROI) based on color and saturation, and those regions are dilated and compared to the signal 

mask to infer the boundaries of the final ROIs (Figure 3). 

 

Customizable segmentation pipeline. The segmentation pipeline uses a customizable 

sequence of segmentation stages. Regions generated in each stage are removed from 

subsequent stages, i.e. the residual is used as the input for the next stage ensuring that there 

are no overlapping regions generated (Figure 4). There are two types of segmentation stages, 

one based on color and the other based on saturation. The type and number of segmentation 

stages is configurable in the micap Python library by a list of dictionaries, where each dictionary 

defines a segmentation stage, and each stage is executed in the order it appears in the list. 

Configurable parameters for each stage are used to target structures of a particular size range, 

and include a 2-D blur kernel size, a minimum ROI size, and a maximum ROI size. Color stages 

require an additional parameter, listing the color names to use for targeting specific structures 

containing a combination of fluorescent probes in addition to the targeted size range. The colors 

listed in a single-color stage correspond to the color definitions described previously, and their 

HSV ranges are combined to create masks targeting structures using that particular 

combination of probe colors. 

 

Post-processing of segmented regions. The contours found at each segmentation stage are 

accepted or rejected by iteratively dilating them against the signal mask. This is necessary as 

the individual segmentation stages target probes, which are generally bound to sub-cellular 

components, and the resulting regions may be under-segmented with respect to the complete 

cellular and structural boundaries. As described previously, the signal mask provides more 

accurate boundaries for regions of visual contrast but cannot be used to directly generate 
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regions of interest due to its inter-connection with adjacent structures and broken borders of 

single structures. The final size for the ROI is determined by calculating the percentage of “on” 

pixels from the signal mask and choosing the iteration where the signal percentage falls off 

rapidly (Figure 3).  

 

The contours generated by the automated segmentation stages often contain more detail than 

is necessary for quantitative analysis. This is manifested by an excessive number of vertices 

defining the perimeter of the region, resulting in a significant increase in the storage size of the 

arrays defining the regions and a less appealing visual appearance. Thus, the region 

boundaries are smoothed using the Douglas-Peucker algorithm36 as implemented in OpenCV37 

to reduce the number of vertices, reducing storage volumes and increasing visual appeal while 

having an insignificant effect on the generated feature metrics passed on to the classification 

routine. 

 

 

Region classification. The pixel data in the post-processed regions is extracted and utilized to 

calculate the feature metrics described previously. The feature matrix is then scaled and passed 

to a classical machine learning pipeline for classification. After evaluating multiple classification 

strategies, including several deep learning neural networks, as well as more traditional machine 

learning techniques such as SVM, the most performant classifier was XG-Boost (XGB)23.  

 

The classification pipeline returns the predicted label along with the probabilities for each 

structure class. The probabilities can then be used to optionally accept or reject regions, for 

example, by choosing the class with maximum posterior probability. As noted above, if any of 

the images in the training data were comprehensively segmented, the prediction results will also 

include the probability of belonging to the image 'background'. Since all classified regions will 

likely have a category where the probability is highest (probability ties are rare), the inclusion of 

a background class reduces the occurrence of false positives due to partial segmentation or 

gross over-segmentation of structures, as well as ROIs that were generated in regions where no 

structure exists. Regions classified as “background” are then easily filtered from the final results.  

 

Cell segmentation. Once regions are classified, an optional final step in the pipeline is to sub-

segment the structure into its component cells. Here, the ontology also plays a role in 

determining how to segment the structure into cells. The ontology provides the list of tissues 

and cell types found within a structure as well as whether the probes present in the structure are 

on the periphery or in the interior of the structure. Together with the intracellular DAPI staining 

and the fact that black represents non-cellular areas, the non-peripheral probe colors are used 

to segment areas most likely to contain cells. We developed a recursive binary segmentation 

procedure to identify nested structures within a region, where each region is recursively 

partitioned into two sections using spectral clustering, stopping at a configurable minimum size 

(Figure 4b). The cell contours are then returned from this recursive binary spectral clustering for 

display or further analysis. 
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Figure 1: a) Structure of application ontology for determining the relationships between 
antibodies and anatomical entities (cells, tissues, etc.) in fluorescence microscopy images. b) 
Integration of ontology queries and application ontology into workflow of image segmentation 
and classification. 
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Figure 2: Image pre-processing. a) Reference image chosen from an image set for color 
correction. b) Original appearance from a non-reference image in the image set. c) Non-
reference image after gradient correction. d) Non-reference image after color correction (and 
gradient correction). 
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Figure 3: a) Illustration of dilating a candidate region using the signal mask. The yellow region 
represents the signal mask, an area likely to contain an anatomical structure. The signal mask 
for a single anatomical entity is often disconnected, illustrating the infeasibility of using it directly. 
The solid black line outlines the original candidate boundary. The dashed grey lines represent 
successive dilations. The green ring represents the dilation iteration with the maximum signal 
percentage. Signal values from each ring are fitted with a Gaussian and the final boundary 
(black, dashed line) is determined at 1.5 standard deviations. b) Plot of signal percentages from 
successive dilations of a real candidate region. The green dashed line is the Gaussian fit. The 
solid black line marks the iteration for the final contour size. 
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Figure 4: a) Stages in automated structure segmentation. First row shows signal mask 
progression: top-middle after color segmentation stage, top-right is the residual signal mask 
after all stages. Second row: left shows original image, middle image shows candidate regions 
found in color segmentation stage, right shows all final candidates. The red box highlights a 
single region to demonstrate cell segmentation b) Segmentation of cells within structure with 
recursive spectral cluttering. From left to right: original structure from structure segmentation 
algorithm, order of segmentation of cells into structures in 3 recursive stages, cell segments 
within structure segment. 
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Figure 5: ROC curves for labels generated by XGBoost as compared with ground truth labels 
assigned by a histopathologist. The probe set in the selected images targeted the distal acinar 
tubule bud. The three curves show results based on different acceptance criteria for whether a 
region correctly identifies the structure. A) Only a single region with >50% overlap of a whole 
structure as labeled by the pathologist is accepted as correct. All other sub-regions, regardless 
of label, are marked incorrect. B) When the histopathologist-labeled structure includes more 
than one region, these regions are manually merged, and the single merged region is accepted 
as correct. C) When the histopathologist-labeled structure includes more than one region, the 
individual regions are all accepted as correct. 
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Figure 6: Screenshot of application for labeling segmented structures which integrates the 
application ontology and image analysis pipeline. The application has multiple modes 
accessible via drop-down box, including modes for labeling, deleting, splitting, and new regions.  
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Supplemental Table 1: Examples of terms from foundational ontologies found in the application 
ontology. 
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Supplemental Table 2: Ontology query results for the probes present in an image, 
demonstrating the linkage between probes and anatomical structures, as well as their 
contextual information regarding location where they are present in the structure. 
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Supplemental Table 3: Color definitions utilized in the image analysis pipeline. Colors are 
defined by partitioning the complete HSV color space such that each HSV value occurs in only a 
single color label. The hue range spans 180 values, saturation spans 256 values, and value 
(intensity) spans 256 values. Color labels are classified into 3 groups: major colors spanning 40 
hue values, minor colors spanning 20 hue values, and monochrome colors. 
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