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Abstract 
Circulating cell-free DNA (cfDNA) from blood plasma of cancer patients can be used to 
interrogate somatic tumor alterations non-invasively or when adequate tissue is 
unavailable. We have developed and clinically implemented MSK-ACCESS (Analysis of 
Circulating cfDNA to Evaluate Somatic Status), an NGS assay for detection of very low 
frequency somatic alterations in select exons and introns of 129 genes. Analytical 
validation demonstrated 92% sensitivity in de-novo mutation calling down to 0.5% allele 
frequency and 98% for a priori mutation profiling. To evaluate the performance and utility 
of MSK-ACCESS, we report results from the first 681 prospective blood samples (617 
patients) that underwent clinical analysis to guide patient management. Somatic 
mutations, copy number, and/or structural variants were detected in 73% of the samples, 
and 56% of these circulating-tumor DNA (ctDNA) positive samples had clinically 
actionable alterations. The utilization of matched white blood cell sequencing allowed 
retention of somatic alterations while filtering out over 10,000 germline and clonal 
hematopoiesis variants, thereby greatly enhancing the specificity of the assay. Taken 
together, our experience illustrates the importance of analyzing a matched normal 
sample when interpreting cfDNA results and highlights the potential of cfDNA profiling to 
guide treatment selection, monitor treatment response, and identify mechanisms of 
treatment resistance.   
 

Advances in molecular profiling have led to a rapid expansion in the number of predictive 

molecular biomarkers and associated targeted therapies, heightening the need for large-scale, 

prospective tumor profiling assays across all cancer types. The majority of comprehensive next-

generation sequencing (NGS)-based profiling methods utilize tumor tissue as the primary 

specimen of choice for biomarker detection. Although widely used, obtaining an adequate tissue 

sample can be challenging in some cases due to the need for invasive biopsies that may pose 

an excessive risk to the patient. Additionally, based on our clinical experience, 8.8% of the 

tissue submitted for molecular analysis is inadequate for testing due to low tumor cellularity, low 

DNA yield, or quality 1. Finally, a single tissue biopsy may not capture the full genetic 

heterogeneity of a patient’s cancer, and consequently, clinically actionable biomarkers may be 

overlooked even with the most sensitive and specific genomic assay. Taken together, a sole 

tissue-based genomic profiling approach may not be comprehensive and may limit treatment 

options for cancer patients. 
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The successful detection of cancer drivers in circulating-tumor DNA (ctDNA) found within 

plasma cell-free DNA (cfDNA) 2 has provided a means to overcome the limitations of tissue 

profiling 3,4. cfDNA profiling can have a direct impact on patient care by informing treatment 

decisions 5,6, enabling the monitoring of cancer response to therapy 7,8, revealing drug 

resistance mechanisms 9,10 and detecting minimal residual disease or relapse 11-13. Additionally, 

by providing a less invasive collection procedure, cfDNA analyses also enable serial molecular 

profiling during the course of the patient’s disease 14,15. Plasma profiling can also potentially 

capture inter- and intra-tumor heterogeneity across disease sites especially in patients with 

advanced metastatic disease 16,17. In addition, recent studies have shown that ctDNA 

fragmentation profiles can better facilitate cancer screening and early diagnosis 18. 
 
The use of ctDNA as an analyte, however, has its inherent limitations. It is usually found in low 

concentrations in the plasma 19, which may be the result of low disease burden in early stage 

tumors, disease control in response to treatment, or low tumor DNA shedding in blood. 

Moreover, the vast majority of cfDNA is typically derived from normal hematopoietic cells, 

leading to low levels of ctDNA and very low mutant allele frequencies for somatic mutations. 

Highly sensitive assays that are limited to single mutation ctDNA profiling assays such as 

droplet digital PCR (ddPCR) 20 are not practical for broad clinical use given the increasing 

number of genomic alterations that are predictive of response to FDA-approved targeted 

therapies or required as inclusion criteria for clinical trial enrollment. Given the low levels of 

ctDNA in a blood sample, the development of a highly sensitive NGS assay that 

comprehensively encompasses all clinically actionable targets is crucial for the detection of 

more low frequency alterations. Advances in next generation sequencing technologies, such as 

the introduction of unique molecular identifiers (UMIs) and dual barcode indexing, have enabled 

ultra-deep sequencing of cfDNA while dramatically reducing background error rates, thereby 

allowing high-confidence mutation detection of very low allele frequencies 21. Further, technical 

improvements in sequencing library preparation methods have reduced the input DNA required 

for sequencing, allowing for the efficient generation of libraries with input DNA as low as 10 ng.  
 

Herein, we describe the design, analytical validation, and clinical implementation of MSK-

ACCESS (Memorial Sloan Kettering - Analysis of Circulating cfDNA to Examine Somatic Status) 

as a clinical test that can detect all classes of somatic genetic alterations (single nucleotide 

variants, indels, copy number alterations, and structural variants) in cfDNA specimens. This 

assay utilizes hybridization capture and deep sequencing (~20,000X raw coverage) to identify 
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genomic alterations in selected regions of 129 key cancer-associated genes. MSK-ACCESS 

was approved for clinical use by the New York State Department of Health on May 31, 2019, 

and has since been used prospectively to guide patient care. We therefore also report our 

clinical experience utilizing MSK-ACCESS to prospectively profile 681 clinical blood samples 

from 617 patients, representing a total of 31 distinct tumor types.  

 

Panel design and background error assessment  
We utilized genomic data from over 25,000 solid tumors sequenced by MSK-IMPACT to 

generate a list of 826 exons from 129 genes encompassing the most recurrent oncogenic 

mutations; variants that are targets of approved or investigational therapies based on OncoKB, 

an in-house, institutional knowledge base of variant annotations 22; frequently mutated exons; 

entire kinase domains of targetable receptor tyrosine kinases; and all coding exons of selected 

tumor suppressor genes. This MSK-IMPACT-informed design targets an average of 3 non-

synonymous mutations and at least 1 non-synonymous mutation in 84% of the 25,000 tumors 

previously sequenced using MSK-IMPACT, including 91% of breast cancers and 94% of non-

small cell lung cancers (Figure 1A). To further expand the detection capability of copy number 

alterations and structural variants in 10 genes, we additionally targeted 560 common SNPs and 

40 introns known to be involved in rearrangements. MSK-ACCESS incorporates unique 

molecular indexes (UMIs) to increase fidelity of the sequencing reads. The overall process 

(Figure 1B) involves the sequencing of plasma cfDNA and genomic DNA from white blood cells 

(WBCs) to approximately 20,000X and 1,000X raw coverage, respectively, followed by 

collapsing read pairs to duplex (both strands of the initial cfDNA molecule) or simplex (one 

strand of the initial molecule) consensus sequences based on UMIs to suppress background 

sequencing errors (Figure 1C).  

 

We first sought to characterize the error rate of MSK-ACCESS using a cohort of 47 plasma 

samples collected from healthy donors. The donor plasma samples were sequenced to a mean 

raw coverage of 18,818X. Post collapsing, the mean simplex and duplex coverage was 658X 

and 1,103X, respectively (Figure 1D, Supplemental Figure 1). When considering only the sites 

with background error across all targeted sites (i.e. positions with non-reference alleles), we 

observed a median error rate of 1.2x10-5 and 1.7x10-6 in simplex and duplex BAM files, 

respectively, compared to a median of 3.3 x10-4 in the standard BAMs (Figure 1E). Compared 

to the relatively equivalent background error rate on the HiSeq 2500 (Supplemental Figure 2), 

the standard BAMs on the NovaSeq 6000 showed a higher error rate for T>A, T>G, and C>A 
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base transversions (Figure 1E). However, following collapsing, we observed lower and more 

uniform error rates across both sequencers. Moreover, while only 1% of targeted positions in 

the standard BAM had an error rate of zero, 92% of positions in the simplex BAM and 94% in 

duplex BAMs had no observed base pair mismatches (Figure 1F).  

 

Analytical validation  
For the analytical validation of MSK-ACCESS, we assembled a cohort of 70 cfDNA samples 

with a total of 100 known SNVs and indels in AKT1, ALK, BRAF, EGFR, ERBB2, ESR1, KRAS, 

MET, PIK3CA, and TP53 identified by orthogonal cfDNA assays (ddPCR or a commercial NGS 

assay) from the same specimen to demonstrate accuracy. The range of VAF for the expected 

mutations, based on orthogonal assays, was 0.1%-73%. We detected 94% of the expected 

variants (n = 94, 95% CI: 87.4%-97.8%) based on genotyping and 81% of them (n = 81, 95% 

CI: 72%-88.1%) with de novo mutation calling (R2 = 0.98) (Figure 1G, Supplemental Table 1). 

Amongst the undetected mutations, leftover DNA was available for only one of the samples 

(orthogonal VAF = 0.16%), and ddPCR testing of this sample revealed no evidence of the 

alteration in our specimen. For mutations with VAF ≥ 0.5% from orthogonal assays (n = 83), we 

called 92% (n = 76, 95% CI: 84%-96.5%) de novo, and we detected 98% of the mutations by 

genotyping (n = 81, 95% CI: 92%-99.7%).  

 

To determine the reproducibility of the assay, we prepared and sequenced seven samples, 

harboring a total of 152 mutations, both three different times within the same sequencing run 

and also across four separate runs (Supplemental Table 3). By genotyping, we detected 99% 

(n = 151, 95% CI: 96.4%-100%) of the expected mutations with an overall median coefficient of 

variation of 0.16 (range: 0.04-1.2) for each sample and alteration. To test the limit of detection of 

the assay, we sequenced five different dilution levels (5%, 2.5%, 1%, 0.5%, 0.1%) with a 

positive control sample containing19 known mutations. In the 0.1% dilution, 11% of the 

mutations (n = 2, 95% CI: 1.3%-33.1%) were called de novo and 74% (n = 14, 95% CI: 48.8%-

90.9%) were detected by genotyping. All expected mutations were called de novo in the 0.5% 

sample.  

 

Finally, to calculate specificity, variant calling was performed on 47 healthy donor plasma 

samples in comparison to their matched WBCs, and no mutations were called. Additionally, we 

utilized the samples from the accuracy analysis with orthogonal NGS results (n = 37), and 

considered all genomic positions interrogated by these assays (n = 1,620) (Supplemental 
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Table 2). Four potential false positives not reported by the orthogonal NGS assay (TP53 

p.R253H with VAFs 0.17% and 0.24%, and PIK3CA p.H1047R with VAFs 0.05% and 0.07%) 

were detected by MSK-ACCESS using genotyping thresholds, implying a specificity of at least 

99.7% (95% CI: 99.3%-99.9%). Through de novo mutation calling, we identified only one false 

positive mutation, for a specificity of 99.9% (95% CI: 99.6%-100%). Overall, our positive 

predictive agreement (PPA) for genotyping was 94% (95% CI: 85%-98%) and for de novo 

mutation calling was 98% (95% CI: 90%-99.9%). The negative predictive agreement (NPA) was 

99.7% and 99.2% for genotyping and de novo calling, respectively.  

 

Clinical experience 
Genomic landscape  

Based on the above analytical validation results, MSK-ACCESS received approval for clinical 

use from the New York State Department of Health (NYS-DOH) on May 31, 2019 and was 

subsequently launched for routine clinical diagnostics assessment. Here, we describe the 

results from the first 617 patients prospectively sequenced in our clinical laboratory. A total of 

687 blood samples were accessioned, and 681 (99%) yielded sufficient cfDNA and passed 

quality control metrics. Median raw coverage of the plasma isolated from these blood samples 

was 18,264X and 1,273X for WBCs. Median duplex consensus coverage for plasma was 

1,497X. 

 

Of the 681 samples, 51% (n = 349) were from non-small cell lung cancer (NSCLC) patients, 

followed by prostate, bladder, pancreatic, and biliary samples as the next most common cancer 

types (28%) (Figure 2A). We assessed the clinical actionability of genomic alterations detected 

by MSK-ACCESS using OncoKB, and 41% (n = 278) of samples had at least one targetable 

alteration as defined by the presence of an OncoKB level 1-3B alteration. The highest frequency 

of level 1 OncoKB alterations were observed in bladder cancer, breast cancer, and NSCLC 

patients at 48%, 37%, and 33%, respectively. Seventy-three percent (n = 498) of all samples 

had at least one alteration detected, with a non-zero median of 3 per patient (range 1-28) 

(Figure 2B), 56% of which harbored clinically actionable alterations.    

 

Altogether, we clinically reported a total of 1697 SNVs and indels in 486 samples from 435 

patients, with a median VAF of 1.9% (range 0.02% - 99%) (Figure 2C). Of these mutation calls, 

95% (n = 1606) were called de novo without the aid of prior molecular profiling results for the 

tested patient. For the remaining 91 variants that were rescued by genotyping, the median 
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observed VAF was 0.08%. As expected, deeper coverage enabled the detection of mutations at 

lower allele fractions for both de novo and genotyping thresholds (Figure 2D). However, de 

novo calling of alterations that were independently seen previously in tumors occurred across 

the entire mathematically possible range, given minimum required alternate alleles, allele 

frequencies, and coverage depths (Figure 2C, 2D).   

 

To ensure the accurate identification of the expected alterations by our assay, we examined the 

most frequently called mutations, copy number alterations, and SVs in lung cancer and the next 

five largest disease cohorts (Figure 2E). As expected, TP53 was the most commonly altered 

gene, with variants in 144 of the 248 (58%) NSCLC samples with detectable alterations. Of 

greater therapeutic relevance, MSK-ACCESS identified oncogenic targetable driver mutations 

and amplifications in EGFR, KRAS, MET, ERBB2, and BRAF. Characteristically, lung cancer 

samples lacking known mitogenic drivers by MSK-ACCESS were found to harbor STK11 and 

KEAP1 mutations. EML4-ALK and KIF5B-RET fusions were also detected, de novo and by 

genotyping, in this cohort, along with rearrangements of ROS1 with multiple partners. 

 

Both clinically actionable and oncogenic alterations were similarly found in the next five most 

represented tumor types prospectively sequenced by MSK-ACCESS (Figure 2E). TP53 was 

again the most commonly altered gene, including both mutations and likely oncogenic deletions 

identified. FGFR2 mutations and fusions (most commonly fused to BICC1) were identified in 8 

of the 24 intrahepatic cholangiocarcinomas with detectable ctDNA, including missense 

mutations in the FGFR2 kinase domain known to confer resistance to targeted therapies. 

Targetable alterations were also identified in IDH1 and PIK3CA. Alterations in FGFR3, ERBB2, 

AR, and KRAS were recurrently detected in bladder, breast, prostate, and pancreatic cancer, 

respectively. Overall, the alteration rates in select genes and cancer types between MSK-

ACCESS and MSK-IMPACT were comparable, with some notable exceptions such as KRAS in 

pancreatic cancer or AR and TP53 mutations in prostate cancer (Figure 2F).  

 

Concordance with MSK-IMPACT 

To compare the detection sensitivity and the spectrum of mutations observed between tumor 

tissue and plasma, we sought to examine concordance of mutation calling between MSK-

IMPACT and MSK-ACCESS where available. For a consistent comparison analysis across all 

patients, we selected the first sample sequenced by MSK-ACCESS for each patient for whom 

multiple time points were analyzed. Of the 617 patients tested with MSK-ACCESS, 383 also had 
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clinical MSK-IMPACT results from tumor tissue sequencing, with an average time between 

tissue and cfDNA sampling of 48 weeks (median: 13 weeks, range: 0 - 518 weeks). A total of 

1,212 mutations were reported in the overlapping target regions across both assays, and 58% 

(n = 702) of the mutations were reported by both assays (Figure 3A). The distribution of allele 

frequencies in tissue was slightly higher for the shared mutations than for the MSK-IMPACT-

only calls (Mann-Whitney p value < 0.0001), but this effect was not observed for the MSK-

ACCESS-only calls (Figure 3B). While the VAFs of shared mutations in tissue and plasma were 

weakly correlated, we nonetheless observed high-frequency tumor mutations at extremely low 

VAF by MSK-ACCESS, and vice versa (Figure 3C). 

 

We next considered the alterations specific to one assay. Twenty-one percent of the mutations 

were reported individually by either MSK-IMPACT tumor sequencing (n =  260) or MSK-

ACCESS plasma sequencing (n = 250) (Figure 3A). Interestingly, 61 of 250 mutations reported 

by MSK-ACCESS-only were present at low sub-threshold levels in tissue by MSK-IMPACT, 

highlighting the potential for increased sensitivity obtained by utilizing ultra-high depth of 

coverage and UMIs. Additionally, 7 of 260 reported by MSK-IMPACT-only were present below 

de novo calling thresholds for MSK-ACCESS. Twenty-seven percent (n = 69) of the MSK-

IMPACT-only mutations were clinically actionable (OncoKB Level 1-3), as were 12% (n = 30) of 

the MSK-ACCESS-only detected mutations (Supplemental Figure 3), clearly demonstrating 

the importance and value of complementary tissue and cfDNA analyses. Moreover, for patients 

that did not receive MSK-IMPACT testing (n = 234), MSK-ACCESS detected 79 total clinically 

actionable mutations in 26% (n = 61) of the patients.  

 

Utility of matched WBC analysis 

Similar to MSK-IMPACT, MSK-ACCESS utilizes matched WBC sequencing to confidently 

identify and remove germline variants from cfDNA results. To quantify the benefit of matched 

WBC sequencing, we performed plasma-only variant calling in all clinical cases, resulting in 

24,561 variant calls. We then simulated filtering criteria for unmatched sequencing, removing 

14,508 variant calls (median: 14 ± 8 variants per sample), based on their presence in our 

curated plasma normal samples or in at least 0.5% of the population by gnomAD (Figure 4A, 
Supplemental Figure 4). We could further filter out 721 (7.2%) likely germline variants based 

on their VAF within the heterozygous germline variant VAF range (between 35% and 65% in 

both WBCs and cfDNA). However, using this VAF-based filtering would improperly remove a 

total of 70 verified somatic mutations from the cfDNA callset, 15 of which were clinically 
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actionable (Supplemental Table 5). Therefore, 10,053 variants with a mean VAF of 4.7% 

(median: 0.05%) still remained after database driven filtering, highlighting the utility of patient-

matched WBC profiling to filter out definitive germline mutations. 

 

Notably, we were able to use the sequenced WBC sample to correctly classify several events 

as germline that were included as somatic events by commercial providers. As an example, a 

commercial cfDNA test reported an ATM p.E522fs*43 mutation as somatic and suggested 

therapies for this alteration, but our matched analysis revealed the indel to be present at ~50% 

in both the plasma and WBC and clearly ruled it out as a germline event. We have similarly 

been able to reassign mutations in TP53, BRCA2, and ROS1 that had been previously reported 

as somatic as germline variants. Additionally, the use of WBC sequencing revealed the germline 

origin of observed copy number deletions in ATM, BRCA2, and for two patients with 

retinoblastoma, RB1, based on deletions in their matched WBC sample (Supplemental Figure 
5). 

 

As previous reports have demonstrated that tumor- and normal-derived cfDNA may be 

distinguishable from genomic DNA by fragment length 23,24, we sought to confirm this 

observation in MSK-ACCESS data and use this information to better inform the origin of variants 

detected in cfDNA. The general fragment length distribution exhibited the expected bimodal 

cfDNA peaks around 161 and 317 base pairs, when factoring the trimming of 3 bases from read 

ends by the pipeline 25 (Figure 4B). For all cfDNA fragments harboring a somatic tumor-derived 

mutation confirmed to be absent in WBCs (n = 1,558), we observed that these fragments were 

significantly shorter than those harboring the wild type allele, consistent with their tumor origin 

(Figure 4C-I) (bootstrapped p value < 0.0001). In several variants with limited supporting 

evidence in WBC DNA but significantly greater VAF in plasma cfDNA we were able to 

distinguish the origin as somatic tumor derived (ctDNA) nature based on the slight cfDNA insert 

size profile peak in the WBC sample. As demonstrated in Figure 4C-II, these reads did have a 

shortened fragment length (bootstrapped p value < 0.0001), confirming that they originated from 

the cell free compartment. In stark contrast, the variant calls from the unmatched analysis that 

were filtered out as putative germline variants by their presence in WBCs at high VAF 

demonstrated an equivalent fragment length distribution as wild-type alleles (Figure 4C-III) 
(bootstrapped p value = 0.94). As we have shown, by integrating the fragment length analysis 

into the MSK-ACCESS assay, we can confidently distinguish between tumor-derived somatic 

and normal-derived variants in cfDNA. 
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Assessing the filtering of putative clonal hematopoiesis (CH) mutations 

Several recent studies have suggested that CH mutations present a challenge for proper 

filtering in highly sensitive NGS-based liquid biopsy assays 26-28. We observed that the use of 

patient-matched normal WBC DNA in MSK-ACCESS eliminated 7,760 (77%) of variant calls 

below 10% VAF (Figure 4A-IV). We posited that the majority of these calls represent potential 

CH mutations.  Recent reports 29 have suggested that fragments supporting CH variants have 

length distributions similar to cfDNA derived from non-cancerous cells and distinct from ctDNA 
26,28,30. Indeed, the sequence reads harboring variants with plasma VAF <10% and present in 

WBCs exhibited fragment lengths indistinguishable from wild-type and germline variants (Figure 
4C-IV) (bootstrapped p value = 0.99), adding confidence to the hypothesis that these were 

properly filtered WBC-derived somatic mutations associated with clonal hematopoiesis. The 

previously described alterations in Figure 4C-II with a lower frequency of reads in the WBC 

sample than in the cfDNA sample could also have been interpreted as having a CH origin. 

Nonetheless, the shorter length distribution for fragments harboring these mutations reaffirmed 

that these were likely tumor-derived as originally postulated. 

 

Given our ability to recognize CH from WBCs, we have been able to reclassify several variant 

calls reported as somatic events by commercial vendors. While some of these calls were in 

commonly mutated CH genes such as DNMT3A, some were in less common genes. In one 

case, a patient with lung adenocarcinoma with an external report of KRAS p.G12S. However, 

we identified this alteration at equivalent frequencies (0.44% and 0.31%) in the plasma and 

WBC, suggesting that it most likely represents a CH mutation, underlying the complexities of 

assigning such alterations to different compartments when considering the clinical presentation 

of the patient.  

 
Discussion 

The identification of driver genetic alterations in key oncogenes and tumor suppressor genes 

plays an essential role in the diagnosis and treatment of many cancers. For more than a 

decade, biomarker analyses have been predominantly accomplished in solid tumors by 

sequencing tumor tissue collected at the time of surgical resection, diagnostic tumor biopsy, or 

cytology. However, in recent years, several studies have demonstrated that “liquid biopsies” 

could provide similar, and in some cases, more comprehensive information accompanied by a 

less invasive approach. Due to the significantly reduced procedure risk, they also enable for 
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longitudinal monitoring, which can substantially impact patient management. Here, we describe 

the analytical validation and clinical implementation of MSK-ACCESS, a hybridization capture-

based NGS assay comprising 129 genes and capturing multiple classes of genomic alterations 

(SNV, indels, copy number alterations, and structural variants). Because of the scarcity of 

cfDNA material in the plasma and even smaller amounts of ctDNA, the development of this 

assay was guided by two key considerations: First, the assay had to enable the detection of low 

frequency genomic alterations; and second, it had to incorporate the implementation of matched 

WBC sequencing to effectively filter out germline variants and CH mutations.  

 

Our analytical validation of MSK-ACCESS was performed using 70 cfDNA samples known to be 

positive for mutation hotspots using orthogonal methods. MSK-ACCESS has demonstrated a 

low background error rate, a 92% de novo sensitivity down to 0.5% VAF for SNVs and indels, 

and a 99% specificity. Following approval by the NYS Department of Health, we prospectively 

sequenced 681 plasma samples from 617 unique patients with non-small lung cancer, prostate, 

bladder, pancreatic, and biliary cancer most commonly. Alterations were detected in 73% of all 

prospective clinical samples, with some of the negative cases representing patients with known 

disease control or in the post-operative setting. Clinically actionable alterations were called in 

41% of all samples and 56% of samples with alterations.  Mutations were detected with VAF as 

low as 0.02%. While, we did leverage available MSK-IMPACT data to genotype prior mutations 

for higher sensitivity at lower allele frequencies, 95% of mutations were called de novo without 

the need for additional data.  

 

In our clinical cohort, 62% of patients had a patient-matched tissue specimen analyzed using 

MSK-IMPACT. A total of 260 mutations found in the tissue were not reported by MSK-ACCESS. 

This discordance could be the result of a very low tumor fraction in cfDNA, tumor heterogeneity, 

or differential shedding into the plasma by different tumor sites. Therefore, we do not believe 

that plasma cfDNA profiling can replace tissue testing in all situations. Studies are ongoing to 

better elucidate the clinical and analytic factors that may lead to lack of mutation detection in the 

cfDNA of such discordant cases. Additionally, 250 mutations were detected by MSK-ACCESS 

but not reported in the patient tissue, and 12% of those were actionable. These MSK-ACCESS 

specific alterations are likely due in part to the inherent spatial/temporal limitations of tissue 

profiling, though in some cases it represented acquired drug resistance, such as the 

identification of FGFR3 point mutations known to confer resistance to FGFR inhibitor therapy in 

the FGFR3-TACC3 bladder cancers. 
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Taken together, our clinical experience has shown the importance of deep sequencing and the 

inclusion of matched white blood cell to achieve high sensitivity and specificity to detect 

mutations in cfDNA. Additionally, it has also demonstrated that tissue and cfDNA based 

sequencing approaches are complementary in certain cases and can be used to effectively and 

comprehensively detect all classes of genomic alterations. Specifically, 91 out of the 1,697 

mutations detected by MSK-ACCESS with a median VAF of 0.08% were rescued by genotyping 

based on events called previously by MSK-IMPACT in the matched tissue. Conversely, 26% of 

patients in this cohort harbored at least one actionable mutation not previously known from 

tumor tissue profiling. 

 

As the ability to detect ctDNA in the minimal residual disease setting is proportional to the 

number of mutations interrogated, a uniform panel such as MSK-ACCESS will exhibit differential 

sensitivity across patients with variable mutation burden. In most cases, MSK-ACCESS will not 

be as sensitive as patient-specific bespoke panels customized to detect dozens or more 

mutations identified from a tumor exome or genome 31. However, the path to clinical validation 

and operationalization of a patient-specific approach is uncertain and unattainable to most 

laboratories. Moreover, the design of MSK-ACCESS incorporates the most frequently mutated 

genomic regions from a cohort of more than 25,000 solid tumors clinically profiled, thereby 

maximizing the number of mutations that may be genotyped and monitored throughout 

treatment for a standardized assay.  

 

Correctly classifying mutations associated with CH represents a major challenge for all blood-

based liquid biopsy assays. Commercially reported CH mutations could be misconstrued as 

recurrence when in fact no recurrence may be present or wrongfully considered as a tumor 

mutation and tracked across multiple blood draws for monitoring of response to therapy. By 

incorporating the sequencing of a time-matched WBC sample, we significantly decrease the 

likelihood of calling and reporting CH alterations that are frequently observed in commercial 

tests that do not include the normal DNA. CH 26,32mutations that occur at very low allele 

frequencies may be incorrectly classified as tumor-derived somatic mutations when they are 

detected in individual cfDNA molecules but not in WBC DNA. Reassuringly, our analysis 

suggests that our approach effectively eliminates a large number of CH events that exhibit 

fragment length characteristic consistent with hematopoietic cell-derived rather than tumor cell-

derived cfDNA. 
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In conclusion, MSK-ACCESS can be used to detect clinically relevant alterations through a less 

invasive mechanism than tumor biopsies, better enabling treatment decisions. The use of WBCs 

from the same blood draw limits the improper reporting of germline and CH alterations, which 

allows for more accurate reporting of somatic alterations. By automatically integrating prior 

patient-specific results into the analysis of plasma sequencing data, liquid biopsy profiling can 

provide a more sensitive and comprehensive representation of the genomic makeup of a 

patient’s cancer, enabling improved patient care.   
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Figures 

 
 

Figure 1: Design, characterization, and validation of MSK-ACCESS. (a) The MSK-ACCESS 

panel was designed using data from 25,000 tumors analyzed using MSK-IMPACT tumor 

sequencing assay to identify at least one mutation in 94% of lung cancers, 91% of breast, and 

84% of all cancers. (b) The laboratory workflow includes the extraction of cfDNA from plasma 

and genomic DNA from WBC originating from the same tube of blood. The addition of UMIs 
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during library construction enables the identification of original cfDNA molecules during analysis 

and error suppression. (c) The analysis pipeline is modified from the standard MSK-IMPACT 

pipeline to incorporate UMI clipping and the generation of simplex and duplex consensus reads. 

(d) The sequencing of healthy donors to a mean raw coverage of 18,818X yielded a mean 

duplex coverage of 1,103X across 47 samples. (e) The background error rate of non-reference 

sites demonstrates the reduction of overall and substitution specific errors via consensus read 

generation. (f) A heatmap of error rate at all positions demonstrates how effective consensus 

read generation is at decreasing the error to zero at over 92% of sites. (g) Comparison of 

orthogonal and validated testing (expected VAF) to MSK-ACCESS (observed VAF) in the 

accuracy analysis showed high concordance (R2=0.98). 
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Figure 2. Clinical experience with MSK-ACCESS. (a) Distribution of cancer types amongst 

the first 617 patients sequenced with MSK-ACCESS. Colors indicate the highest OncoKB level 

ascribed to each patient’s genomic findings. (b) Distribution of all alterations found in each 

ctDNA sample (n = 681). (c) Variant allele frequencies (VAF) of all mutations found in ctDNA 

samples from MSK-ACCESS. Samples were sorted by the median VAF and each mutation was 

colored based on whether prior evidence was found for the mutation. De novo: mutations were 

called in ctDNA and were not reported in tissue testing or tissue testing was not performed; De 

novo and prior evidence: mutations were called in ctDNA and also were present in tissue 

testing; Genotyped from prior evidence: mutations were not detected in ctDNA by genotyping 

based on tissue results. (d) Same mutations in c showing the distribution of total collapsed 

coverage and VAF. Dotted line indicates the theoretical limits of calling threshold. (e) Oncoprint 

of genomic alterations found in lung, biliary, bladder, breast, prostate and pancreatic cancer 

samples with reported alterations. Colors indicate the OncoKB levels as in a. (f) Comparison of 

cohort alteration rate of tumor types in e for genes where the alteration rate was greater than 

3% by both MSK-ACCESS and MSK-IMPACT 
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Figure 3. Comparison of mutation calls between ctDNA and tissue (a) Venn diagrams 

indicating the number of samples with concurrent cfDNA and tissue testing (n = 383) and the 

number of mutation calls identified in each (total n = 1,212). (b) VAF distribution of mutations 

identified by MSK-ACCESS-only, shared by both MSK-ACCESS and MSK-IMPACT, and by 

MSK-IMPACT only (c) Comparison of VAF distributions of mutations identified in both the 

ctDNA and tissue from both MSK-ACCESS and MSK-IMPACT.  
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Figure 4. Use of WBC sequencing data to classify variants found in cfDNA (a) VAF 

distribution of all mutations called in plasma from cfDNA and WBCs. Colors indicate the origin of 

mutations. Boxes indicate different populations of mutations: I: Variants only present in cfDNA, 

II: Variants present in both cfDNA and WBCs with VAFs  lower than 10% in both, III: Variants 

present in both cfDNA and WBCs with VAFs in the presumed germline range (35-65%), IV: 

Variants present in cfDNA at high VAF but also present in WBC at lower VAF. (b) Insert size 

distribution of sequencing reads (fragment size) in healthy donors with characteristic peaks at 

161 bp and 317 bp (c) Fragment size distribution for reads encompassing the variants 

highlighted by the boxes and labels in a for both reference and alternate alleles. Clear 

differences are observed for reads originating from ctDNA vs normal tissue.  
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METHODS 

Panel Design  
Probes (120bp long) were designed to cover the entire length of 826 exons and 40 introns of 

129 genes, targeting approximately 400 kilobases of the human genome. Probes were divided 

into 2 pools: Pool A included regions covering protein-coding exons for the detection of single 

nucleotide variants and indels, as well as 171 microsatellite regions for the detection of 

microsatellite instability (MSI).  Pool B included regions covering introns for the detection of 

gene fusion breakpoints in 10 genes and SNPs for quality control and improved detection of 

copy number alterations. Pool A and Pool B were combined in a 50:1 ratio to efficiently 

distribute sequence reads such that, in a single capture reaction, we achieved ultra-deep raw 

sequencing coverage (12,000-25,000x) for Pool A targets and standard raw sequencing 

coverage (500-1500x) for Pool B targets. For matched white blood cell (WBC) samples, a 1:1 

ratio of Pool A to Pool B was used. 

 

cfDNA extraction, library construction, and capture 
For each patient, with appropriate informed consent, both cfDNA and WBC DNA were extracted 

from plasma (MagMAX cfDNA isolation kit) and buffy coat (Chemagen magnetic bead 

technology). Whenever possible, 20ng of plasma cfDNA was used, but analyses were 

attempted for samples with as little as 3ng plasma cfDNA. Unique Molecular Indexes (UMIs) 

and xGen Duplex Seq Adapters with dual index barcodes from IDT (Integrated DNA 

Technologies) were introduced during library construction. Libraries were pooled in equimolar 

concentrations and captured using the above described custom IDT xGen Lockdown probes. 

Captured DNA fragments were then sequenced on an Illumina sequencer (HiSeq 2500 or 

NovaSeq 6000) as paired-end reads as described above for plasma cfDNA samples and to a 

target depth of approximately 1500X of raw sequencing coverage for WBCs. 

 

Analysis Pipeline 
Sequencing data were demultiplexed with BCL2FASTQv2.1.9 (Illumina), UMIs were trimmed 

with Trim Galore (v0.2.5) and Marianas (https://github.com/mskcc/Marianas), and read pairs 

underwent alignment to the human GRCh37 reference genome with further post-processing 

using BWA MEM (v0.7.5a), ABRA2 (v2.17), and GATK (v3.3) to generate a “standard” BAM file. 

All pipeline workflows were built using the common workflow language (CWL) specification 

(https://www.commonwl.org/) and toil workflow engine 33.  Aligned PCR duplicates were 

collapsed into error-suppressed consensus reads based on UMI and position by Marianas. An 
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additional 3 bases were trimmed from the ends of the collapsed reads due to increased 

sequencing errors at these positions. Collapsed and trimmed, reads were then re-aligned using 

the above standard pipeline. Collapsed BAM files include the “duplex” BAM with consensus 

reads generated from both strands of the original cfDNA template molecule, the “simplex” BAM 

with consensus reads generated from at least 3 reads of only one strand of the original template 

molecule, and the “all unique” BAM representing all sequenced template molecules: duplex 

consensus reads, simplex consensus reads, as well as sub-simplex consensus reads and 

singleton reads from 2 or 1 reads of one strand.  

 

Variant calling was performed in a matched tumor-informed manner (“genotyping”) using 

GetBaseCountsMultiSample (GBCM v.1.2.2, 

https://github.com/mskcc/GetBaseCountsMultiSample) when prior molecular profiling results 

were available for an individual. This genotyping method required at least 1 duplex or 2 simplex 

consensus reads, comprised of both Read1 and Read2, to call a single nucleotide variant (SNV) 

or indel at a site known to be mutated in a previous sample from that patient. De novo mutation 

calling by VarDict (v1.5.1) or MuTect (v1.1.5) required a minimum of 3 duplex consensus reads 

for a known cancer hotspot mutation or 5 for a non-hotspot mutation. Unless otherwise noted, 

reported variant allele depths (AD), total depth (DP), and allele frequencies (VAFs) represent 

the combined counts from simplex and duplex consensus reads. Copy number alterations were 

identified from the “all unique” BAM using a described previously method [22]. Structural 

variants (SV) were called in the “standard” BAM files using Manta (v1.5.0) [23] and required a 

minimum of 3 fusion-spanning reads for a de novo SV or 1 fusion-spanning read for an SV 

previously identified in that patient. 

 

Quality control metrics were calculated for all samples. Coverage, insert size, and background 

error rate were calculated using Waltz (https://github.com/mskcc/Waltz). Base quality metrics 

per cycle were collected by Picard (v2.8.1). Plasma – normal matches were confirmed using a 

set of fingerprint SNPs. 

 

Fragment size analysis 
Fragment size calculations were performed using the pysam module (https://github.com/pysam-

developers/pysam). Read pairs, identified using SAM flags, mapping to all ACCESS targets 

were used to determine sample level fragment size distribution. Read pairs overlapping mutated 

loci that support either reference allele or variant allele were used to determine size distribution 
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of reference DNA fragments and mutated fragments, respectively. Analysis was restricted to 

fragments of size 500bp or lower, which accounted for at least 95% of all fragments in a typical 

duplex plasma bam (supplemental figure 6). Mutations with allele frequency lower that 0.05% 

in plasma samples were also excluded. Non-parametric bootstrap hypothesis testing was used 

to test the null hypothesis that the mean fragment sizes of reference and variant alleles are 

same. 

 

H0  :  µREF = µALT 

Δ = µREF - µALT 

where, µREF, is the mean fragment size of reference allele fragments, µALT, is the mean size of 

variant allele fragments, and, Δ, is the test statistic. The null hypothesis was modelled using the 

data and the test statistic was calculated for 10,000 null datasets simulated using bootstrapping. 

Bootstrapped p-values were estimated based on the fraction of the time that the simulated 

dataset gave a statistic equal to or greater than the observed statistic in the original dataset. 

 

Performance statistic calculations 
Error assessment was calculated using plasma and matched WBCs collected from a cohort of 

47 healthy donors (median age 29, range 21-48). The mean duplex consensus coverage for the 

normal plasmas was 1,103X (sd = 181X). The error rate was calculated by averaging across all 

targeted genomic positions at non-SNP and in non-repetitive regions where the non-reference 

variant frequency was less than 2%.  

 

The reference set for the analytical validation was generated from time-matched plasma 

samples or its extracted cfDNA tested with a validated droplet digital PCR (ddPCR) test or a 

commercial NGS assay. Seventy unique cell-free DNA (cfDNA) samples from patient plasma, 

as well as SeraCare and AccuRef control samples, were used for assay validation. All 

calculations were performed for both genotyping of known variants as well as de novo calling 

thresholds. Sensitivity was calculated on patient samples as true positive (TP, called by both 

MSK-ACCESS and the orthogonal test) divided by all calls made orthogonally.  

 

To calculate specificity, positive predictive agreement (PPA), and negative predictive agreement 

(NPA), we selected the 36 samples orthogonally sequenced by a commercial NGS assay and 

considered the 45 sites that had been called positive by at least one sample orthogonally, 

yielding 1620 total sites. A true negative (TN) was one called by neither MSK-ACCESS nor the 
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orthogonal assay, a false positive (FP) was one called positive by MSK-ACCESS but negative 

by the orthogonal assay, and a false negative (FN) as negative by MSK-ACCESS but called 

orthogonally. Specificity was calculated as TN/(TN+FP). PPA was calculated as TP/(TP+FP), 

and NPA was calculated as TN/(TN+FN). For each, we also calculated Pearson exact 

confidence intervals at 95% power.  

 

To calculate precision and reproducibility, the cfDNA from 4 patient samples, AccuRef 1% 

control, SeraCare 1%, and SeraCare 2.5% control samples were tested in triplicate within the 

same library preparation and sequencing run and in triplicate across multiple days of library 

construction and sequencing runs, each with a different barcode. To assess the limit of 

detection of the assay, 19 known mutations in SeraCare control samples at 5%, 2.5%, 1%, 

0.5%, 0.1% allele frequencies and wild type were used. 

 

Clinical experience and concordance analysis 
Clinical sequencing data from patients who were enrolled in an IRB approved research protocol 

(MSKCC; NCT01775072) were used. For MSK-ACCESS/MSK-IMPACT concordance analysis, 

only the clinically reported mutation calls from first MSK-ACCESS sample per patient was used 

when multiple samples were sequenced. The union of all clinically reported mutation calls from 

MSK-IMPACT was used given that MSK-ACCESS could potentially overcome tumor 

heterogeneity. This combined mutation list was re-genotyped as fragments, or overlapping 

reads, using GBCM, and the genotyped values were used for downstream analyses. Where 

mutations were reported in multiple IMPACT samples, the maximum genotyped VAF was used. 

Calls labelled as sub-threshold had at least two supporting fragments.   

 

For comparisons of the prevalence of alterations across patients, we used mutation data from 

47,116 solid tumor samples sequenced with MSK-IMPACT and considered only mutations that 

intersected with the MSK-ACCESS target exons. Comparisons were performed for select genes 

and cancer types where the alteration rate was greater than 3% by both MSK-ACCESS and 

MSK-IMPACT. 
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