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Abstract

Over a thousand different transcription factors (TFs) bind with varying occupancy across the

human genome. Chromatin immunoprecipitation (ChIP) can assay occupancy genome-wide,

but only one TF at a time, limiting our ability to comprehensively observe the TF occupancy

landscape, let alone quantify how it changes across conditions. We developed TOP, a Bayesian

hierarchical regression framework, to profile genome-wide quantitative occupancy of numerous

TFs using data from a single DNase-seq experiment. TOP is supervised, and its hierarchical

structure allows it to predict the occupancy of any sequence-specific TF, even those never as-

sayed with ChIP. We used TOP to profile the quantitative occupancy of nearly 1500 human TF

motifs, and examined how their occupancy changes genome-wide in multiple contexts: across

178 cell types, over 12 hours of exposure to different hormones, and across the genetic back-

grounds of 70 individuals. TOP enables cost-effective exploration of quantitative changes in the

landscape of TF binding.
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Introduction1

Genes are expressed differently in different types of cells and under different conditions. This2

response of a cell’s gene expression to its internal and external context is enacted in large part3

through the tuned occupancy of transcription factors (TFs) across the genome. To understand4

how TFs regulate gene expression, it is critical to determine how likely they are to be present at5

each location in the genome over time, and how that likelihood changes across varying genetic6

backgrounds, different cell types, and dynamic environmental conditions. We can measure the7

quantitative occupancy of one TF along the genome using chromatin immunoprecipitation fol-8

lowed by high-throughput sequencing (ChIP-seq), provided that a selective antibody exists for9

the TF. While the ENCODE consortium has generated such data for more than 100 human TFs,10

the data are typically from only a small number of cell types because of a major limitation of11

ChIP-seq: a separate experiment is required for each TF in each cell type under each condition.12

Profiling the time-varying genome-wide occupancy of a large set of TFs across a broad range of13

cell types and conditions is currently impractical since it would require thousands of antibodies14

and millions of separate ChIP experiments.15

An alternative strategy for profiling genome-wide TF occupancy is to exploit DNase-seq or16

ATAC-seq data, which many groups and consortia have generated for a large number of cell17

types and experimental conditions1–4. The primary advantage of this strategy is that a single18

DNase-seq or ATAC-seq experiment can be used to profile the occupancy of many different19

TFs at once, and a number of methods employing this strategy have been proposed in recent20

years5–16.21

Although multiple methods have been developed to predict TF binding (see Supp. Table22

S1 for an overview of the modeling frameworks used by a number of these methods), many of23

them require data types beyond DNase13–16, making them less efficient at profiling TF occu-24

3

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted June 29, 2020. ; https://doi.org/10.1101/2020.06.28.171587doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.28.171587


pancy across multiple cell types, conditions, or individuals with different genetic backgrounds25

than methods requiring only one data type. Furthermore, most existing methods model TF oc-26

cupancy in a binary fashion—each TF is simply considered present or absent at each location in27

the genome—ignoring the wealth of quantitative information available in the data17. While this28

modeling assumption is consistent with the pervasive practice of binary peak-calling in high-29

throughput sequencing data, it is inconsistent with our knowledge that at different genomic30

locations, TFs exhibit different levels of occupancy (likelihood of being bound at that location31

across the cells in a population) in accordance with prevailing thermodynamic and energetic32

conditions2,18–20. It is also inconsistent with growing evidence that quantitative levels of TF33

occupancy can play a significant role in regulating gene expression21–24. Therefore, it is impor-34

tant that statistical models be developed with a quantitative perspective, allowing us to monitor35

subtle changes in TF occupancy over time across different genetic backgrounds, cell types, and36

conditions.37

Here, we describe a novel method called TF Occupancy Profiler (TOP) that integrates38

DNase-seq data with information about TF binding specificity (in our case, PWM motifs) to39

predict the quantitative occupancy of multiple TFs genome-wide. In contrast to earlier methods40

like CENTIPEDE 5, PIQ7, and msCentipede9, TOP is supervised, meaning we can use available41

ChIP-seq data to train it to high accuracy. Importantly, and in contrast to earlier methods like42

MILLIPEDE 6 and BinDNase11, TOP employs a Bayesian hierarchical regression framework,43

which allows it to obtain both TF-specific and TF-generic model parameters by borrowing in-44

formation across the full spectrum of training TFs and cell types. The hierarchical nature of45

TOP is significant because it enables us to predict the occupancy of TFs for which we lack46

training data, including ones that have never before been profiled with ChIP.47

We used TOP to predict the genome-wide quantitative occupancy of ∼1500 TF motifs across48

178 human cell types, increasing our cell-type–specific view of TF occupancy in human cells49
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over 200-fold relative to the ENCODE ChIP-seq data used to train the model. We have made50

these predicted TF occupancy profiles freely available for the community. We used them to51

construct a cell-type specificity map for different TFs, and identified TFs with selective binding52

and differential occupancy across cell types. To demonstrate TOP’s ability to elucidate the53

dynamics of TF occupancy, we collected DNase-seq data from A549 cells at 12 time points54

over 12 hours of glucocorticoid exposure25 and used TOP to efficiently screen nearly 150055

TF motifs for increased or decreased occupancy throughout the genome following treatment;56

we did follow-up ChIP experiments for six of those factors to validate our predictions. We57

show similar results in separate cells stimulated with androgen or estrogen, two other steroid58

hormones that act through closely related mechanisms. In another application, we predicted59

quantitative TF occupancy for the same ∼1500 TF motifs across 70 Yoruba lymphoblastoid60

cell lines (LCLs), and mapped thousands of genetic variants associated with quantitative TF61

occupancy across individuals (which we term ‘topQTLs’). These topQTLs suggest specific62

mechanistic explanations for the functional impact of genetic variants within regulatory regions.63

In summary, TOP offers a cost-effective strategy for profiling the occupancy of multiple TFs in64

a single experiment, markedly enhancing our ability to explore subtle quantitative changes in65

TF occupancy across cell types, conditions, and genetic variants.66

Results67

Bayesian hierarchical regression accurately predicts quantitative TF occu-68

pancy from DNase-seq data69

Training TOP entailed two basic steps, as illustrated in Fig. 1. First, we used motif matches to70

enumerate candidate binding sites, and extracted DNase and ChIP data centered on each site71

for training. Second, we used MCMC to fit our Bayesian hierarchical regression model on72

spatially-binned DNase data. Owing to its hierarchical nature, once TOP is trained, we can use73
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it to predict occupancy for any TF in any cell type or condition for which we have DNase-seq74

data, regardless of whether any ChIP-seq data have ever been collected for that TF.75

We predicted the quantitative number of ChIP-seq reads around candidate TF binding sites76

using a site-centric approach, as employed by CENTIPEDE 5 and its successors. Specifically,77

for each TF, we first identified candidate binding sites by motif scanning with a permissive78

threshold (using FIMO with P-value < 10−5)26. Then, for each cell type, we considered DNase79

cleavage events occurring within 100 bp of the candidate binding site. Similarly, when training80

TOP, we counted the number of ChIP-seq reads within 100 bp of the candidate binding site81

to serve as the target of our regression. Both DNase and ChIP-seq counts were normalized82

by library size to account for differences in sequencing depth. We simplified the DNase data83

into five predictive features using bins that aggregate the number of cleavage events occurring84

within the motif itself, as well as within two non-overlapping flanking regions upstream and85

downstream; this is the same binning scheme used in the MILLIPEDE model6, and markedly86

reduces the potential impact of DNase digestion bias6,9,10,27.87

As an alternative, we tried extracting DNase features using wavelet-transformed multi-scale88

signals from coarse to fine spatial resolution. However, after variable selection using LASSO,89

we found only the coarsest resolutions yielded significant features for predicting TF occupancy,90

while fine resolution features were essentially irrelevant (Supp. Fig. S1). Moreover, the simpler91

MILLIPEDE binning scheme achieved comparable or better prediction accuracy than optimally92

selected wavelet features (Supp. Fig. S2). As an added benefit, when fitting TOP to a large93

number of different TFs across many diverse cell types, the five-bin scheme demonstrated su-94

perior computational efficiency and better generality in capturing common features across TFs95

and cell types. Thus, the results that follow are all based on DNase data aggregated into five96

bins.97

We chose to use a Bayesian hierarchical model because it allows statistical information to98
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be borrowed across TFs and cell types. TOP’s hierarchical structure has three levels (Supp.99

Fig. S3). The bottom level of the hierarchy contains model parameters specific for each TF ×100

cell-type combination for which ChIP-seq training data is available. In the middle level, one set101

of TF-specific but cell-type–generic model parameters is shared across all training cell types for102

each TF. Finally, the top level has one set of TF-generic parameters jointly learned from all TFs.103

In other words, we obtain more general model parameters as we move to higher levels of the104

hierarchy. Once TOP’s parameters have been trained, we can predict occupancy for any TF in105

any cell type in which we have collected DNase-seq data by using a model from the appropriate106

level of the hierarchy.107

We evaluated TOP’s performance in terms of its fit to quantitative TF occupancy as mea-108

sured experimentally by ChIP (Fig. 2). TOP predicted quantitative occupancy with varying109

degrees of accuracy across different TFs (Figs. 2A and 3). In light of technical differences and110

possible batch effects between DNase-seq data generated in different ENCODE labs, we trained111

two separate hierarchical models for data from Duke and from Washington (UW), achieving112

comparable performance between them (Figs. 2B and 3). In general, while bottom level mod-113

els achieved the highest prediction accuracy (median correlation of 0.70 for Duke and 0.75114

for UW), middle level models performed equally well (0.70 and 0.75), and top level models115

performed nearly as well (0.68 and 0.74) (Fig. 2B). This indicates that for a TF that has been116

profiled with ChIP in some cell type, we can use the TF’s middle level model to predict its occu-117

pancy in any other cell type with available DNase data. In addition, for TFs that have never been118

profiled with ChIP, the top level TF-generic model will still tend to provide good predictions119

of quantitative occupancy. Our predicted occupancy accurately matched quantitative ChIP-seq120

occupancy in various cell types, and allowed us to explore TF occupancy in cell types like the121

embryonic stem cell line H9ES in which no TF ChIP data have been reported (Fig. 2C). The122

quantitative predictions produce composite landscapes that sensitively reflect cell-type–specific123
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changes in TF occupancy.124

To compare with alternative existing methods, since our goal is to efficiently and accurately125

predict quantitative TF occupancy for candidate binding sites using only a single DNase exper-126

iment, we focused our comparisons on CENTIPEDE5 and msCentipede9 (see Methods for a127

discussion of why these were chosen). These predict TF binding in a site-centric framework128

but generate only predicted TF binding probabilities rather than ChIP-seq read counts. How-129

ever, since the CENTIPEDE paper showed a substantial correlation between its TF binding130

predictions (posterior log odds) and ChIP-seq read counts (sqrt transformed), we could use the131

posterior log odds of TF binding as a proxy for quantitative ChIP-seq predictions. Our results132

indicate TOP achieves significantly greater accuracy than both CENTIPEDE and msCentipede133

for both Duke and UW DNase data (Fig. 2B).134

TOP reveals a spectrum of predictability across TFs and cell types135

Across TFs, we observed a spectrum of predictability of TF occupancy, as indicated by the blue136

squares in Fig. 3. Predictability was correlated with the degree of DNase depletion at the motif137

(Supp. Fig. S4). For TFs with higher prediction accuracy, like NRF1 and ATF1, we observed138

clear profiles of depletion within motif regions and elevation at nearby flanking regions (Supp.139

Fig. S5), suggesting direct TF–DNA contact. Many of these TFs have previously been classified140

as pioneer factors7. In contrast, TFs with lower prediction accuracy in the ENCODE data, like141

STATs and SREBPs, showed less marked elevation at nearby flanking regions, and weak or142

no depletion at motif regions (Supp. Fig. S5). Weaker DNase depletion profiles may result143

from transient binding with short residence time—known to occur with nuclear receptors and144

the AP-1 complex20,27–29—or from ChIP data that include many indirect binding events. For145

some TFs, we observed a high prediction accuracy in most cell types, but a lower prediction146

accuracy in just one or two cell types. DNase profiles in the latter cases exhibited markedly147
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weaker depletion (Supp. Fig. S6).148

TOP uses PWM scores to provide information about which sites are more or less likely to149

be bound in any cell type or condition. However, in the absence of genetic variation, the PWM150

score of a particular site does not change across cell types or conditions, so TOP’s ability to151

quantify changes in TF occupancy in such situations depends entirely on changes in the DNase152

data. As expected, when we compared them as single features, the overall level of DNase153

cleavage was almost always more correlated with ChIP-seq occupancy across cell types than154

was the PWM score (Supp. Fig. S7).155

Having established the reliability of TOP’s predictions, we applied it to data from differ-156

ent contexts to illustrate the biological insights that arise from its ability to efficiently compare157

quantitative occupancy for myriad TFs across conditions; each of the remaining three subsec-158

tions explores one of these applications: changes in TF occupancy across different cell types,159

in response to dynamic environmental conditions, and in the context of genetic variation.160

TOP maps out the cell-type specificity of TF occupancy161

TFs regulate gene expression in a cell-type–specific manner. To assess TF occupancy differ-162

ences across cell types, we constructed a cell-type differential occupancy map for multiple163

TFs to reveal distinct patterns in how TFs direct the gene regulation programs of different cell164

types. For each TF, we calculated the percentage of candidate sites in each cell type show-165

ing occupancy significantly higher or lower than the mean across cell types (FDR < 10%);166

we then clustered TFs on the basis of this measure of cell-type specificity (Fig. 4A). Some167

TFs—including TAL1, GATA1, and NRF1—displayed large differences in occupancy among168

cell types, whereas the occupancy of other TFs—like the SPs—was quite cell-type–invariant169

(Fig. 4B). Lending credence to these results, we successfully recovered TFs known to be specif-170

ically or differentially expressed in certain cell types. For instance, as expected, we saw that171
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POU5F1 (also known as Oct4) occupancy was significantly higher in stem cells, HNFs (hepa-172

tocyte nuclear factors) were higher in liver cells, GATAs were higher in K562, REST was lower173

in medulloblastoma, etc.174

To explore the relationship between a TF’s concentration (here approximated by its gene175

expression level) and its occupancy, we computed the correlation between each TF’s average176

level of occupancy in each cell type with its gene expression level in that same cell type, and177

observed several categories of TFs with different relationships (Fig. 4C). Many TFs showed178

significant positive correlations between their gene expression level and average occupancy,179

most of which are known to be cell-type–specific TFs, such as FOSL2, HNF4A, FOXA1, and180

POU5F1 (Supp. Fig. S8A). Surprisingly, three TFs (BATF, BHLHE40, and ZEB1, all known181

repressors) showed significant negative correlations (Supp. Fig. S8B). Since changes in pre-182

dicted occupancy reflect changes in the DNase-seq data, we suspect that these repressors, upon183

binding to the DNA, cause the local chromatin state to become inaccessible to other factors.184

BATF is active in the immune system and known to interact with IRF4. Interestingly, IRF4 and185

BATF both had high expression in lymphoblastoid cells, yet we predicted high IRF4 occupancy186

and low BATF occupancy in those cells (Supp. Fig. S8). Thus, certain sets of cofactors may187

be utilized to up- or down-modulate the occupancy of related TFs in a cell-type- or condition-188

specific manner.189

TOP monitors the dynamics of TF occupancy during hormone response190

Nuclear hormone receptors are TFs specifically activated in response to hormone exposure.191

Once activated, they bind to specific hormone response elements (HREs) where they regulate192

gene expression, often in conjunction with the binding of cofactors and remodeling of the chro-193

matin structure. Glucocorticoid receptor (GR), androgen receptor (AR), and estrogen receptor194

(ER) are type I nuclear receptors, playing critical roles in immune response or reproductive195
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system development, and are heavily involved in many types of cancer. To investigate TF occu-196

pancy dynamics in response to glucocorticoid, androgen, or estrogen stimulation, we predicted197

TF occupancy using DNase-seq data collected under each of these treatment conditions. For198

glucocorticoid (GC) treatment, we conducted DNase-seq experiments in A549 cells (human199

alveolar adenocarcinoma cell line) over 12 time points from 0 to 12 hours of GC exposure25.200

For androgen treatment, we collected DNase-seq data in LNCaP cells (human prostate adeno-201

carcinoma cell line) over 4 time points from 0 to 12 hours following androgen induction22. For202

estrogen treatment, we used published DNase-seq data before and after estrogen induction in203

two kinds of cells: Ishikawa (human endometrial adenocarcinoma cell line) and T-47D (human204

ductal carcinoma cell line)30.205

We identified sites with significantly differential TF occupancy before and after estrogen206

induction, as well as over the full time courses for GC and androgen treatment. We then ranked207

TFs based on the percentage of sites showing significantly increased or decreased occupancy in208

response to treatment. We grouped TFs with similar motifs together using RSAT clusters31 and209

present results for all significant clusters in Fig. 5 (results for individual TFs in Supp. Fig. S9).210

We observed different sets of TFs enriched in response to GC, androgen, and estrogen. In the211

list of most dynamic clusters for GC response (Fig. 5A), GR was ranked at the top—consistent212

with recent results showing that motif-driven GR binding is the most predictive feature of GC-213

inducible enhancers25,32—followed closely by C/EBP25. FOX and GATA clusters appeared214

next, and in both cases, while we identified more sites whose occupancy increased over the215

time course, we also detected a significant number that decreased.216

Among TFs whose occupancy was predicted to be significantly responsive to androgen treat-217

ment (Fig. 5B), AR was at the top of the list, followed by the FOX cluster. Clusters exhibited218

very few sites with decreasing occupancy along the time course. These observations are consis-219

tent with our previous findings that androgen induction mainly leads to an increase in chromatin220
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accessibility, and that AR and FOXA1 are key TFs with increased occupancy22. The fact that221

the occupancy of many AR and FOXA1 sites increased gradually over the duration of the time222

course (Supp. Fig. S10A) highlights the importance of a quantitative perspective of TF occu-223

pancy.224

In the case of estrogen induction (Fig. 5C), ER was ranked at the top, followed closely by225

the NFY cluster. Intriguingly, the DNase digestion profiles flanking NFYA binding sites showed226

striking oscillation patterns similar to those observed within nucleosomes33 (Supp. Fig. S11).227

This is consistent with previous reports that NFYA has nucleosome-like properties, and plays228

an important role in maintaining chromatin structure7,34.229

That different TFs were enriched in these lists may be partly due to cell type differences,230

but also suggests different utilization of cofactors for GR, AR, and ER binding in response to231

hormone stimulation. Interestingly, we observed that PWM scores were significantly higher in232

sites with increased occupancy than sites of unchanged occupancy for GR, AR, and ER, but not233

for CEBPB, FOXA1, or NFYA (Supp. Fig. S10B), indicating that motif strength for GR, AR,234

and ER may play a role in prioritizing the selection of binding sites in response to hormone235

stimulation. This accords with recent results indicating that GR motif strength is predictive of236

GC-induced enhancer function32.237

To independently validate our occupancy predictions with data not seen during training, we238

compared our predictions throughout the GC time course with ChIP-seq data collected in the239

same experiment25 (Fig. 5D). We computed the correlation between measured and predicted240

occupancies for CTCF, JunB, FOSL2, cJun, CEBPB, and GR. Across all six TFs and 12 time241

points, average correlation was 0.70. Over the time course, it was lowest before treatment242

(0.63) but otherwise consistent (between 0.68 and 0.72). Among TFs, predictions were the243

most accurate for CTCF (0.91)—not surprising given how predictable we observed it to be244

(Fig. 3)—and least for GR (0.52). Two reasons for the lower accuracy of GR are that we used245
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a top level model because GR was not profiled as part of ENCODE, and that GR is known to246

have a weak DNase footprint29. The correlation is particularly low before treatment (time point247

0), consistent with observations that many GR binding sites occur at regions of the genome that248

are already open prior to GC exposure35.249

TOP identifies genetic variants associated with predicted TF occupancy250

(topQTLs) and provides mechanistic interpretations for dsQTLs251

A large majority of genetic variants associated with complex traits are located in non-coding252

genomic regions36, suggesting roles in transcriptional regulation. To elucidate this, it is im-253

perative that we continue to identify genetic variants affecting TF occupancy and chromatin254

dynamics. To examine whether TOP is capable of sensitively distinguishing quantitatively dif-255

ferential TF occupancy across individuals or genetic variants, we predicted CTCF occupancy in256

lymphoblastoid cell lines (LCLs) from two trio studies, one from a CEU (CEPH Utah) family257

and one from a YRI (Yoruba from Ibadan) family21,37. TOP successfully identified differential258

CTCF occupancy between individuals across CEU and YRI families (Fig. 6A), and was sensi-259

tive enough to capture quantitative differences in CTCF occupancy between allele genotypes at260

allele-specific sites within CEU and YRI families (Fig. 6B).261

Encouraged by this result, we extended our predictions of genome-wide quantitative oc-262

cupancy to nearly 1500 TF motifs across 70 Yoruba LCLs using TOP applied to previously263

published genotype and DNase-seq data38. With the resulting TF occupancy profiles across264

70 individuals, we applied a QTL mapping strategy to identify genetic variants whose geno-265

types were significantly associated with changes in predicted TF occupancy, which we called266

‘topQTLs’. Since genetic variants that change TF motifs often affect TF binding occupancy267

by changing DNA binding affinity39, we mapped three versions of topQTLs: within 2 kb and268

200 bp cis testing regions around motif matches, as well as SNPs that lie strictly within those269
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motif matches. We sought to compare our topQTLs with previously reported DNase I sensitivity270

quantitative trait loci (dsQTLs)38. We estimated the heritability and enrichment of heritability271

for topQTLs and dsQTLs using stratified LD score regression (S-LDSC) on publicly available272

GWAS summary statistics of multiple human diseases and complex traits. As shown in Fig. 6C273

and Supp. Fig. S12, the heritability and enrichment estimates for topQTLs are similar among274

different window sizes, with slightly higher enrichment for topQTLs near motif locations, con-275

sistent with our understanding of TF binding mechanisms. Heritability estimates are similar276

between topQTLs and dsQTLs across traits, though dsQTLs tend to show higher enrichment.277

We then focused our attention on SNPs within TF motif matches because these have the278

highest potential for causal interpretation. We compared topQTLs within motif matches to a279

subset of dsQTLs that we call ‘localizable dsQTLs’, dsQTLs that fall inside the 100 bp windows280

with which they are linked and also lie within TF motif matches. Of the 1230 reported dsQTLs281

that were localizable, 943 of them were topQTLs (this number increased to 1000 when using282

FDR < 20%, while 1141 (93%) were associated with a significant change in predicted TF283

occupancy under a less stringent threshold of P-value < 0.05). Thus, topQTLs provide a direct284

mechanistic interpretation for nearly all localizable dsQTLs by revealing the identity of TFs285

likely to drive the observed changes in chromatin accessibility. Moreover, and importantly,286

we identified more than six thousand additional topQTLs that were not reported as dsQTLs.287

Among RSAT-clustered motifs, CTCF, STAT, SP, PU, AP-1, POU and NF-κB, and RREB1288

motifs had the greatest number (more than 200) of topQTLs (Fig. 6D); most of these factors are289

known to be active in LCLs and critical for immune cell development38,40. Fig. 6E shows three290

sample topQTLs, one for NF-κB that is a non-localizable dsQTL, another for NF-κB that is a291

localizable dsQTL, and one for CTCF that is not reported as a dsQTL.292

That CTCF had the largest number of topQTLs, over 1300, is noteworthy because CTCF293

plays a key role in chromosomal looping and commonly demarcates the boundaries of topologi-294
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cally associating domains (TADs)41. A genetic variant that disrupts a CTCF motif not only may295

have a significant impact on occupancy at loop anchor sites, but also could disrupt TAD bound-296

aries. Such disruption has been demonstrated experimentally and pathologically to dysregulate297

the chromatin landscape and the expression of genes within the affected TAD42.298

Discussion299

We introduce TOP to accurately predict quantitative ChIP-seq occupancy using DNase-seq300

data. TOP effectively learns both TF-specific and TF-generic model parameters among TFs and301

across cell types using a Bayesian hierarchical regression framework. TOP employs a super-302

vised learning strategy, trained with existing TF binding specificity, DNase-seq, and ChIP-seq303

data, yet can accurately predict TF occupancy for new conditions, cell types, or TFs due to304

its hierarchical structure. In contrast to traditional ways of analyzing ChIP-seq data through305

peak-calling to label genomic regions as bound or unbound, TOP adopts a quantitative per-306

spective, allowing us to predict the level of TF occupancy along a continuum. This opens up a307

new way to investigate quantitative changes in TF occupancy across cell types, treatment con-308

ditions, and developmental time courses. TOP is general in that it can predict occupancy for309

any sequence-specific TF of interest with any new DNase-seq data in any cell type or condition310

without requiring a new ChIP-seq experiment. TOP’s ability to use time-course DNase data311

over 12 hours of GC treatment served as a cost-effective strategy to study the temporal dynam-312

ics of TF occupancy. By doing one DNase-seq experiment at each time point, we obtained313

occupancy predictions for 1500 TF motifs, allowing us to screen for TFs showing significant314

changes in occupancy. For example, TOP results suggest a significant role for FOX and GATA315

factors in GC-induced transcriptional response (Fig. 5A). Although developed for DNase-seq316

data, TOP can easily be extended to ATAC-seq data, and though it was trained on human data,317

it is equally applicable in other organisms. As an example demonstration, we showed that it can318
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successfully predict quantitative Reb1 occupancy across the yeast genome (Supp. Fig. S13).319

As a resource for the community, we provide genome browser tracks of predicted occupancy320

for nearly 1500 motifs across 178 cell types, throughout a 12-hour time course of GC exposure,321

and across 70 LCLs. The occupancy map of TF × cell-type combinations alone expands the322

total output of ENCODE TF ChIP-seq efforts over 200-fold.323

Recently, methods have emerged for the imputation of missing epigenomic data (histone324

modifications, chromatin accessibility, etc.) using the many other types of available data gen-325

erated by the ENCODE consortium43–45. Our approach shares a similar goal with these impu-326

tation methods in trying to predict unmeasured data using models trained on existing datasets327

across multiple cell types. However, we note some major distinctions between our approach and328

these recent imputation strategies. First, our approach requires only DNase-seq (or ATAC-seq)329

and TF ChIP-seq data for training, and requires only DNase-seq (or ATAC-seq) data to make330

predictions. In contrast, existing imputation methods often require a large variety of existing331

assays (DNase-seq, RNA-seq, histone modification ChIP-seq, etc.), which may not be readily332

available, especially in studies to profile new cell types or treatment conditions. Second, our333

strategy predicts TF occupancy only at candidate binding sites (based on low stringency motif334

matches), whereas existing imputation approaches attempt to impute a TF’s ChIP-seq signal335

across the entire genome, devoting statistical power and computational effort to genomic lo-336

cations where a given TF is not likely to bind, which is the vast majority. Third, TOP uses a337

Bayesian hierarchical regression framework to model DNase digestion features, which allows338

for easier interpretation than more complex methods, especially those involving deep neural339

networks. Last but not least, our hierarchical model is able to predict the binding of TFs that340

have never been measured by ChIP-seq, a significant advantage over imputation methods that341

require ChIP-seq training data for TFs of interest.342

The fact that TOP predicts TF occupancy only at candidate binding sites is also a limitation343
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because it has been observed that for many TFs, a large number of their ChIP-seq peaks do not344

have motif matches39. On the other hand, this does have some benefits, since distinguishing345

direct from indirect binding can be difficult using ChIP assays. By focusing only on motif346

matches, our results can be viewed as predictions of TF occupancy that are explainable by347

direct binding. Indeed, TOP could be used to suggest direct-binding TFs that may be mediating348

the indirect binding of other TFs in ChIP experiments. As a last observation, since motif quality349

directly affects which genomic locations we select as candidate binding sites, and since PWM350

scores also factor into TOP predictions, better TF binding affinity models are important, and351

should improve TOP’s predictions in the future.352

Our approach can be viewed as complementary to ChIP-based exploration of TF occupancy.353

Instead of doing one ChIP-seq experiment for every TF in a particular cell type or condition,354

TOP needs only one DNase-seq experiment to predict the genome-wide occupancy of many355

TFs. TOP can therefore be used to screen and identify TFs showing significant changes in oc-356

cupancy, enabling the prioritization of future ChIP experiments for a small number of key TFs.357

The modeling strategy we present here offers a foundational and cost-effective approach for pro-358

filing the quantitative occupancy of myriad TFs across diverse cell types, dynamic conditions,359

and genetic variants.360
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Methods361

Candidate binding site selection362

We defined candidate TF binding sites by PWM scanning across the genome using FIMO26.363

When training or applying our model, we included as candidate sites all motif matches with364

P-value < 10−5. Similar to CENTIPEDE 5 and MILLIPEDE 6, we filtered out candidate sites if365

more than 10% of the nucleotides in the surrounding window (100 bp flanking each side of the366

motif) were unmappable.367

When training the regression model, if the training TF had more than one motif, we manu-368

ally selected one based on which was the most representative motif for that TF in the Factorbook369

database46. After training, we used the model parameters estimated at various levels of the TOP370

hierarchy to make occupancy predictions for 1496 motifs, including both JASPAR core motifs371

(2014 version) and those used by Sherwood and colleagues7. The motifs selected for training372

the model, along with the full list of all motifs used for prediction in this paper, are provided in373

Supp. Tables S2 and S3.374

Normalization and data preprocessing375

To account for differences in sequencing depth across experiments in different cell types or376

conditions, DNase-seq and ChIP-seq data were normalized by library size (scaled to library377

sizes of 100 million mapped reads for DNase-seq and 10 million mapped reads for ChIP-seq378

data). This simple library size normalization is flexible for downstream analysis. We considered379

other types of normalization methods, including quantile normalization, trimmed mean of M-380

values (TMM), etc. However, these methods usually assume the same distribution of reads381

across all the peaks (or a subset of common peaks) among all the experiments, which is too382

strong an assumption in our case—especially, for example, when comparing hormone receptor383

binding before and after hormone induction—and leads to a high number of false negatives in384
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the GR, AR, and ER analyses.385

DNase feature extraction using binning vs. wavelet coefficients386

We systematically evaluated different features of the cleavage events (‘cuts’) arising from DNase387

digestion, in an attempt to avoid overfitting9 and any possible influence of DNase digestion388

bias. First, we tried to extract multi-resolution features of DNase digestion data using wavelet389

multi-resolution decomposition. Wavelet methods provide a natural approach to extract the390

multi-resolution information contained in both DNase cut magnitude and detail profiles. Here,391

we decomposed DNase-seq data using Haar wavelets with the wavethresh package in R.392

The detail signals were extracted at different resolution levels through the mother wavelet co-393

efficients while the scales of cuts at different resolution levels were represented by the father394

wavelet coefficients. We started with windows of size 128 bp around the motif center, but later395

focused on 64 bp windows around the motif centers, because that was where the majority of the396

largest mother wavelet coefficients were located. Then we fit regression models with mother397

wavelet coefficients and log-transformed father wavelet coefficients at multiple resolution lev-398

els as predictors, together with PWM score, and conducted variable selection with LASSO.399

Interestingly, variable selection results suggested the scale of DNase cuts (represented by the400

father wavelet coefficients) was the most significant feature for predicting TF occupancy (Supp.401

Fig. S1), consistent with previous findings6,10,47. In contrast, very few spiky DNase signals402

(represented by the mother wavelet coefficients) were selected. Worse, some of the fine details403

in the DNase signal in the motif region might arise from sequence-specific DNase digestion404

bias6,10,27,47.405

Based on these empirical observations of DNase digestion profiles around motifs, we sim-406

plified the process of DNase feature extraction by using a more flexible binning scheme in place407

of the rigid dyadic splitting of the wavelet framework. In previous work, we developed a model408
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called MILLIPEDE that divides the motif region and its flanking regions upstream and down-409

stream into various distinct bins6 (Fig. S2A). Following the binning scheme of MILLIPEDE, we410

compared different binning models from the most complicated M12 model to the simplest M1411

model, and evaluated their performance in comparison to an optimally-selected wavelet model.412

Fig. S2B shows the prediction performance of all these models for four TFs in K562 cells using413

5-fold cross-validation. In summary, different binning models led to roughly similar predic-414

tion performances and were generally comparable to a model using optimally-selected wavelet415

features. In agreement with our earlier results6, M5 binning—which effectively summarizes416

the number of DNase cleavage events in the motif region, nearby flanking regions, and distal417

flanking regions on both sides of the motif—is complex enough to capture the DNase digestion418

features sufficient to predict TF occupancy at high accuracy, but is also simple enough to fit into419

the Bayesian hierarchical regression framework and still yield easily interpretable TF-specific420

and TF-generic signatures. Fig. 2 shows the prediction performance of the TOP model using421

M5 binning on the training data. We observed very close agreement in prediction performance422

using training data vs. test results from cross-validation for the TFs listed in Fig. S2B.423

Bayesian hierarchical regression model424

We designed the hierarchical model to have three levels, with cell types nested within TF425

branches. (In principle, we could expand the hierarchical model to have an additional branch426

with parameters for each cell type, i.e., a cell-type–specific but TF-generic model. However,427

we expect a TF to have similar model parameters in different cell types. Also, in most of the428

ENCODE tier 3 cell types, very few TFs have been profiled with ChIP-seq, so we would likely429

have insufficient data to estimate cell-type–specific parameters for most cell types.)430

ChIP-seq count data are typically fit using a negative binomial distribution, which uses an431

extra parameter to model the overdispersion in ChIP-seq data better than a Poisson distribution.432
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However, we found a simpler Gaussian linear model on asinh-transformed ChIP-seq data to be433

a better choice for fitting our Bayesian hierarchical model (asinh transformation is similar to log434

transformation but handles zero values more gracefully; we used it successfully in our recent435

NucID model33). This choice has the added benefit of applying to non-integer data, which436

arise whenever we average counts over replicate experiments or conduct data normalization.437

We compared the prediction accuracy of our Gaussian linear model on asinh-transformed data438

against the alternative of negative binomial regression on integer-rounded data, and observed439

very close agreement. We ultimately decided to use the Gaussian distribution because it has a440

nice conjugacy property, allowing posteriors to be estimated through Gibbs sampling, thereby441

providing a computational advantage over a negative binomial distribution.442

The basic regression model for modeling the asinh-transformed ChIP-seq occupancy yt, c, i

that is observed when TF t occupies its candidate binding site i in cell type c can be briefly

summarized as:

yt, c, i ∼ Normal(µt, c, i, vt, c)

where

µt, c, i = β
(0)
t, c +

J∑
j=1

β
( j)
t, c × Di, j + β

J+1
t, c × PWMi

The Di, j variable represents DNase feature j for site i, while J is the number of DNase features443

in the model (in our final model, we use M5 binning so J = 5).444
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The Bayesian hierarchical model is specified as follows:

β
( j)
t, c ∼ Normal(b( j)t , 1) ∀ j ∈ {0, 1, . . . , J + 1}

b( j)t ∼ Normal(B j, 1) ∀ j ∈ {0, 1, . . . , J + 1}

B j ∼ Normal(0, 1) ∀ j ∈ {0, 1, . . . , J + 1}
1
vt, c
∼ Gamma(τ2

t , τt)

τt ∼ Gamma(T2,T)

T ∼ Gamma(1, 1)

We used the consensus Monte Carlo algorithm48, a parallel technique to reduce the running445

time of the Gibbs sampler while maintaining predictive performance. Briefly, we split all data446

randomly into ten equal parts. Gibbs samplers were run on each part separately in parallel for447

106 iterations. Posterior samples from the first 8 × 105 iterations were discarded for burn-in.448

Each of the remaining 2 × 105 posterior samples from the ten Gibbs samplers were averaged to449

get the final posterior samples for each model’s parameters.450

Comparison of prediction accuracy with existing methods451

Both CENTIPEDE and msCentipede predict TF binding probabilities using an unsupervised452

generative framework to model the DNase digestion profiles around candidate sites (motif453

matches) without ChIP-seq training data. msCentipede improves on CENTIPEDE by using454

a multi-scale model framework to better model heterogeneity across sites and replicates. We455

ran CENTIPEDE and msCentipede on DNase cuts data in each TF-cell type combination under456

default parameter settings. CENTIPEDE was run on DNase data after pooling the replicate457

samples. msCentipede was run on individual DNase replicates to better capture heterogeneity458

(its authors demonstrated how beneficial replicates are to msCentipede accuracy). Because the459

CENTIPEDE paper showed a substantial correlation between its TF binding predictions (poste-460
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rior log odds) and ChIP-seq read counts (sqrt transformed), we computed Pearson correlations461

between measured ChIP-seq counts (library size normalized and sqrt transformed) and posterior462

log odds from CENTIPEDE and msCentipede, as well as to the quantitative predictions made463

by TOP models at each level of the hierarchy.464

We did not include PIQ7 in our comparison, as msCentipede has already been shown to465

significantly outperform PIQ when it has access to DNase replicates9. GERV12 is a statistical466

method that learns a k-mer based model to predict TF binding using ChIP-seq and DNase-seq467

data and scores genetic variants by quantifying the changes of predicted ChIP-seq reads between468

the reference and alternative allele. Like TOP, it tries to predict quantitative TF occupancy, but469

its main goal is to score genetic variants that affect TF binding, and it treats DNase signals as a470

binary feature (open vs. closed), which would not be effective in capturing quantitative changes471

in DNase signals across dynamic conditions. Also, as a k-mer based method, it does not adopt472

the motif-centric framework that we and the other methods do. For these reasons, we did not473

include GERV in our comparison.474

Differential occupancy comparison across cell types475

We used the edgeR package49 to identify sites with significantly differential occupancy across476

cell types. For each TF at each candidate binding site, we tested the cell-type effect by con-477

trasting the predicted occupancy in each cell type (using DNase replicate samples) against the478

cell-type mean. Sites with predicted occupancy less than 1 read per million were filtered out479

from the test, and then sites with a significant cell-type effect (FDR < 10%) were selected.480

When comparing predicted occupancy across cell types, potential influences from copy481

number variation (CNV) could lead to false positives. However, since our method predicts482

TF occupancy using DNase data, and since CNV affects both DNase-seq and ChIP-seq counts483

in a consistent manner (CNV would lead to higher occupancy in both measured and predicted484
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ChIP-seq in a higher copy number region), our predictions should still agree with measured485

occupancy. To deal with CNV influences while comparing across cell types, instead of directly486

correcting CNV on both DNase-seq and ChIP-seq data within the regression model, it is easier487

to do CNV adjustment as a post-processing procedure on the predicted occupancy using input488

ChIP-seq data. However, since not all these cell types have input ChIP-seq data available, we489

did not perform CNV corrections in this study (input correction could be performed in those490

cell types for which input ChIP-seq data are available).491

DNase-seq data across hormone treatment conditions492

DNase-seq data from LNCaP cells exposed to androgen were collected in our labs. Data from493

before induction (time point 0) and after 12 hours were already previously published22 and are494

available from the Gene Expression Omnibus (GEO) under accession GSE34780. DNase-seq495

data from the 45 minute and 4 hour treatments, along with more samples from before induction,496

were generated for this study and will be deposited at GEO prior to publication. LNCaP cells497

were obtained from ATCC. Cells were maintained using the protocol described at http://498

genome.ucsc.edu/ENCODE/protocols/cell/human/LNCaP_Crawford_protocol.499

pdf. Prior to stimulation with either androgen (R1881, methyltrienolone) or vehicle (ethanol)500

for varying time durations, cells were grown in RPMI-1640 medium with 10% charcoal:dextran501

stripped medium for 60 hours. Androgen was added to culture medium for final concentra-502

tion of 1 nM in all experiments. Isolation of total DNA, cleavage with DNase I (henceforth,503

DNase), and subsequent preparation of sequencing libraries were carried out as previously de-504

scribed (Song and Crawford, Cold Spring Harbor Protocol 2010). Replicates from 12 hours of505

androgen exposure were previously sequenced on the Illumina GAIIx platform, whereas repli-506

cates from the 45 minute and 4 hour time points were sequenced for this study on the Illumina507

HiSeq2000 platform. Sequenced reads were aligned to the genome and further processed as508
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previously described22,50,51.509

DNase-seq data from A549 cells exposed to the glucocorticoid hormone dexamethasone510

were collected in our labs. Detailed methods are provided in our paper25.511

DNase-seq data from Ishikawa and T-47D cells before and after estrogen exposure were512

collected by others and previously published30; we downloaded their published data.513

Differential occupancy comparison across hormone treatment conditions514

In the androgen treatment analysis, we combined DNase-seq data from an earlier study22 with515

three replicates of uninduced samples and two replicates of 12 hour androgen induced samples516

(using the Illumina GAIIx sequencing platform), and DNase-seq data generated in this study517

with two replicates of uninduced samples, two replicates of 45 minute induced samples, and two518

replicates of 4 hour induced samples (using the Illumina HiSeq2000 sequencing platform). AR519

ChIP-seq data collected in an earlier study with 4 hour androgen induction in LNCaP cells52
520

matched with our DNase-seq data of 4 hour androgen induction were included in the training521

dataset for AR in the hierarchical model. For each TF, we used edgeR to test linear, quadratic,522

and cubic trends of TF occupancy changes over the time course of uninduced, 45 minute, 4523

hour, and 12 hour induced conditions, adjusting for the batch effect from different sequencing524

platforms (GAIIx vs. HiSeq sequencing). Sites with predicted occupancy less than 10 were525

filtered out from the test, and then sites with significant linear, quadratic, or cubic trend of TF526

occupancy over the time course (FDR < 10%) were selected. Very few sites were found to have527

a significant quadratic or cubic trend, so we focused on sites with a significant linear trend.528

In the estrogen treatment analysis, we used previously published DNase-seq and ChIP-seq529

data generated in Ishikawa (endometrial cancer cell line; previously mislabeled as ECC-1) and530

T-47D (breast cancer cell line) cells before and after estrogen induction30. ER ChIP-seq data531

from estrogen induced conditions were matched with the corresponding DNase data and in-532
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cluded in the training dataset for ER in the hierarchical model. Occupancy predictions were533

made for each TF using its middle level parameters in DNase-seq replicate samples in Ishikawa534

and T-47D, before and after estrogen stimulation. For each TF, we used edgeR to test for535

differential occupancy, where we considered both cell-type effect (Ishikawa vs. T-47D) and536

treatment effect (estrogen induced vs. uninduced). Sites with predicted occupancy less than 10537

were filtered out from the test, and then sites with treatment effect significantly higher or lower538

than zero (FDR < 10%) were selected.539

In the glucocorticoid (GC) treatment analysis, we used DNase-seq data collected in our labs540

from A549 cells (human alveolar adenocarcinoma cell line) over 12 time points from 0 to 12541

hours following exposure to the glucocorticoid hormone dexamethasone25. For each TF, we542

used edgeR to test linear, quadratic, and cubic trends of TF occupancy changes over the 12543

time points of GC treatment. Sites with predicted occupancy less than 10 were filtered out from544

the test, and then sites with significant linear, quadratic, or cubic trend of TF occupancy over545

the time course (FDR < 10%) were selected. Very few sites were found to have a significant546

quadratic or cubic trend, so we focused on sites with a significant linear trend.547

After selecting sites with significant differential occupancy, we ranked TFs based on the548

percentage of sites showing significantly increased or decreased occupancy in response to treat-549

ment. TFs with similar motifs were grouped together using RSAT clusters31 to simplify down-550

stream interpretation and visualization.551

topQTL mapping552

We predicted genome wide TF occupancy for 1496 motifs using previously published genotype553

information and DNase data generated from LCLs from 70 individuals38. For each motif, we554

focused on those motif matches that had a SNP inside. When making predictions across the 70555

LCLs using both PWM scores and DNase data, we fixed the PWM scores for candidate sites to556
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be the average of the PWM scores calculated from the two homozygous genotypes for that SNP,557

in order to avoid using PWM scores twice: in both occupancy predictions and QTL association558

testing. We mapped topQTLs by testing the associations between genotypes and predicted TF559

occupancy across the 70 individuals using a linear model (with R package MatrixEQTL). For560

each TF motif, we selected the 10% of candidate sites with the highest predicted occupancy561

for QTL mapping and downstream analysis (we tested top 10%, 20%, . . ., 100% sites, and562

found the top 10% sites tended to maximize the number of QTLs detected after multiple test-563

ing correction). To facilitate comparison with dsQTLs, we followed the same data processing564

procedures as described by the authors38, including z-score standardization, quantile normaliza-565

tion, and regressing out 4 PCs to remove unidentified confounders. Following Degner et al.38,566

we corrected the effect of GC content by first partitioning candidate windows (motif matches567

plus 100 bp flanking windows on both sides) into bins according to their GC content and then568

normalizing each sample by subtracting each bin median from all the windows belonging to the569

partition of the corresponding bin. We mapped three versions of cis topQTLs by testing SNPs570

in 200 bp and 2 kb windows around candidate sites, as well as SNPs within motif matches. For571

each of the TF motifs, genetic variants with significant associations to predicted TF occupancy572

(FDR < 10%) were identified as topQTLs for that TF motif, and were the basis of all subse-573

quent analysis in Fig. 6 of the manuscript. TFs with similar motifs were grouped together using574

RSAT clusters31 to simplify downstream interpretation and visualization.575

Heritability and enrichment analysis of GWAS summary statistics using576

S-LDSC577

We partitioned the heritability of complex traits and estimated heritability enrichment of top-578

QTLs and dsQTLs using S-LDSC53. S-LDSC partitions the heritability of genomic annotations579

using GWAS summary statistics and estimates the enrichment as a ratio of the proportion of her-580
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itability explained by an annotation divided by the proportion of SNPs in that annotation. We581

constructed binary annotations containing lead SNPs of topQTLs (using 200 bp and 2 kb cis-582

testing regions around motif matches, as well as SNPs within motifs) and lead SNPs of dsQTLs583

downloaded from Degner et al.38 (using 2 kb and 40 kb cis-testing regions around the 5% of584

100 bp DNase windows with the highest DNase I sensitivity). An FDR threshold of 10% was585

used for both topQTLs and dsQTLs. We applied S-LDSC to our QTL-based annotations using586

separate models for each QTL annotation. In our S-LDSC analysis, we adjusted for various587

baseline annotations of SNPs using a baselineLD model54, including gene annotations (cod-588

ing, UTRs, intron, promoter), minor allele frequency, and LD-related annotations. We did not589

include functional annotations such as enhancer marks in our baseline model, since these anno-590

tations are likely correlated with the QTL features of interest, and including them may bias our591

estimates. The GWAS traits and corresponding references are listed in Supp. Table. S4.592

Data and code access593

TOP is implemented in R, and all code will be made available on GitHub upon publication. Pre-594

computed genome-wide tracks of quantitative TF occupancy and links to all code resources will595

also be made available from a single location upon publication at http://www.cs.duke.596

edu/˜amink/software/.597
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Fig. 1. Schematic outline of the TF Occupancy Profiler (TOP) workflow. (Left) Collect training
data. For a sequence-specific TF with a known PWM, compute its candidate binding sites throughout the
genome. Then, around each of those sites, collect ChIP-seq and DNase-seq data from the same cell type.
(Center) Extract DNase features using MILLIPEDE binning and fit a Bayesian hierarchical regression
model to the training data. Bottom level models in the hierarchy make predictions in a TF × cell-type–
specific manner, middle level models extend prediction in a TF-specific manner to new cell types, and
the top level model extends prediction in a TF-generic manner to new TFs. (Right) Predict occupancy
for TFs across cell types. Blue columns indicate a cell type where ChIP-seq measurements are available,
allowing us to evaluate the predictive accuracy of our bottom level models. Orange columns indicate
a cell type in which we make novel predictions of TF occupancy using middle level parameters of the
hierarchical model.
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Fig. 2. Evaluation of TOP results. (A) Scatter plots show predicted vs. measured occupancy of a spe-
cific TF in a specific cell type, with each dot representing one candidate binding site. The four examples
are chosen to represent a range of model performance, from better to worse. (B) Left: Separately for
Duke and UW DNase data, violin plots show distribution of Pearson correlations between predicted and
measured TF occupancy (sqrt transformed) across TFs and cell types. Predictions were made with TOP
models at each level of the hierarchy, as well as CENTIPEDE and msCentipede (using posterior log
odds as quantitative measurements of TF occupancy). Right: For many TFs, GABPA being one, all three
levels exhibited similar correlation across various cell types. In contrast, for a few TFs, REST being
one, the top level model performed markedly worse than bottom and middle level models, suggesting
that TF-specific parameters enable more accurate prediction in such cases. (C) Predicted TF occupancy
landscapes for two genomic regions in K562 and H9ES cell types. For K562, ChIP-seq data for these
TFs are available and are displayed for comparison; for H9ES, no ChIP-seq data are available so TOP
provides a novel view of TF occupancy in this embryonic stem cell line. Left: an example genomic
region where the occupancy landscape did not change markedly between K562 and H9ES. Right: an
example genomic region near the HMBS gene (involved in heme biosynthesis) where GATA1, TAL1,
and NFE2 exhibited clear cell-type–specific occupancy.
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Fig. 3. TOP provides quantitative TF occupancy profiles for nearly 1500 TF motifs in 178 cell types.
(Top left) Blue squares represent the TF × cell-type combinations profiled with ChIP-seq as part of the
ENCODE project. For each of these TFs, we used a middle level (TF-specific, cell-type–generic) TOP
model to generate new occupancy predictions across the rest of the 178 cell types (orange squares). We
then used a top level (TF-generic) model to generate new occupancy predictions for the remainder of the
1496 TFs (red squares). (Zoomed inset) In the case of TF × cell-type combinations with ChIP-seq data,
we computed the accuracy of TOP predictions; shades of blue indicate the correlation between predicted
and measured occupancy. In this submatrix, columns (TFs) and rows within each block (cell types) were
sorted by average accuracy, revealing a spectrum of predictability. TFs toward the left were on average
more predictable, while TFs to the right were less. Row order is less informative because, except in the
top block, it was mainly driven by trivial fluctuations in the predictability of CTCF (in most cell types,
CTCF is the only factor whose occupancy was profiled by ENCODE).
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Fig. 4. Cell-type specificity matrix of TFs. (A) Percentage of sites with cell-type occupancy signifi-
cantly above or below cell-type mean occupancy (FDR < 10%). Cell types were first grouped by lineage
(ordered alphabetically)55, and within each lineage group were ordered by hierarchical clustering. TFs
were ordered by hierarchical clustering (with optimal leaf ordering56). (B) Violin plots show for each TF
the distribution across cell types of the percentage of sites exhibiting significantly differential occupancy.
Colored dots highlight cell types with at least 3% of sites exhibiting significantly differential occupancy
(color reflects lineage of cell type; for instance, liver and brain exhibit frequent differential occupancy).
(C) Pearson correlation across cell types between average predicted occupancy and gene expression of
each TF (in this plot, we used only Duke DNase data because corresponding gene expression was mea-
sured in each of the cell types).
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Fig. 5. TF occupancy dynamics in response to hormone stimulation. (A) Motif clusters were ranked
by the percentage of candidate sites whose predicted occupancy exhibited either a linear increasing or
decreasing trend along the 12 time points of glucocorticoid treatment. Only significant dynamic motif
clusters (P-value < 0.05) are listed. (B) Similar to (A), but along the four time points of androgen
treatment. (C) Similar to (A) and (B), but before and after estrogen treatment. Because DNase data was
collected at 12 time points during treatment with GC, at four time points with androgen, and at only two
time points with estrogen, numbers are not necessarily comparable between different experiments in (A),
(B), and (C). (D) Prediction accuracy for six TFs was evaluated afterwards using subsequently generated
ChIP-seq data25. Shades of blue indicate the correlation between predicted and measured occupancy
for each of the six TFs at each time point. Columns (TFs) were sorted by average accuracy across the
12 time points. (E) Measured and predicted TF occupancy landscapes of CTCF, CEBPB, FOSL2, and
GR in an example genomic region on human chromosome 9. Predicted occupancy corresponded well
with measured occupancy across time, for example revealing in the highlighted region where CEBPB
occupancy increased following GC treatment.
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Fig. 6. TF occupancy profile QTLs (topQTLs). (A) Predicting individual-specific occupancy of CTCF.
(B) Predicting quantitative allele-specific occupancy of CTCF. (C) Heritability and log2(enrichment)
estimates for topQTLs and dsQTLs in different diseases and traits using S-LDSC. Lead SNPs for both
topQTLs and dsQTLs were used as binary annotations. Bars represent topQTLs from SNPs within motif
matches, topQTLs within 2 kb around motif matches, and dsQTLs within 2 kb of the 100 bp DNase
window. Error bars represent 95% confidence intervals and were truncated at 15% in the heritability
figure. (D) Intersections of topQTLs with localizable dsQTLs (those within their own 100 bp windows
and also within motif matches). topQTLs were defined with FDR < 10% (* with FDR < 20%, the
number localizable dsQTLs that are also topQTLs is 1000). (Right) Largest motif clusters for topQTLs
are displayed in the matrix; each row represents one topQTL which can be explained by one or more
motif clusters in the columns. (E) Examples of topQTLs showing normalized allele-specific predicted
occupancy; average DNase digestion profiles within 50 bp of the motif for each allele (significant dsQTL
windows shaded in gray); and SNP locations within motifs. The CTCF topQTL overlapped a measured
CTCF ChIP-seq peak in multiple LCLs, but was not identified as a dsQTL.
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