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Abstract  
Idiopathic pulmonary fibrosis (IPF) is a fatal disorder characterised by progressive, destructive 

lung scarring. Despite significant progress, the genetic determinants of this disease remain 

incompletely defined. Using next generation sequencing data from 752 individuals with 

sporadic IPF and 119,055 controls, we performed both variant- and gene-level analyses to 

identify novel IPF genetic risk factors. Our variant-level analysis revealed a novel rare 5 

missense variant in SPDL1 (NM_017785.5 p.Arg20Gln; p = 2.4 x 10-7, odds ratio = 2.87). This 

signal was independently replicated in the FinnGen cohort (combined p = 2.2 x 10-20), firmly 

associating this variant as a novel IPF risk allele. SPDL1 encodes Spindly, a protein involved 

in mitotic checkpoint signalling during cell division that has not been previously described in 

fibrosis. Our results highlight a novel mechanism underlying IPF, providing the potential for 10 

new therapeutic discoveries in a disease of great unmet need. 
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Main  
Idiopathic pulmonary fibrosis (IPF) is a progressive scarring disorder of the lung that 

preferentially affects individuals over the age of 701. In the absence of a lung transplant, 

individuals with IPF have an average life expectancy of three to five years after diagnosis2. 

Approved drugs are not curative and are associated with considerable side effects making 15 

them poorly tolerated3. Identifying genetic risk factors of IPF helps elucidate disease aetiology, 

which is crucial to the development of more precise therapies. Furthermore, an improved 

understanding of genetic risk factors associated with IPF may enable stratification of patients 

in clinical trials3. Genome-wide association studies (GWAS) have implicated common variants 

at several loci4, with the strongest signal mapping to the promoter region of MUC5B5. 20 

Nonetheless, common variants seem to explain a small proportion of IPF heritability compared 

to rare deleterious variants in the protein-coding region of the genome6. Sequencing-based 

case-control studies have consistently identified three definitive IPF risk genes in both familial 

and sporadic forms of IPF: TERT, RTEL1, and PARN, all involved in telomerase biology6,7. 

Rare variants in the telomerase RNA component, TERC, have also been implicated in 25 

sporadic IPF7. Despite the significant progress in identifying both rare and common variant 

signals, the underlying genetic predisposition remains unknown for the majority of IPF 

patients.  

 
 

Figure 1. Idiopathic pulmonary fibrosis genetic discovery and replication study 
design. We combined whole-exome sequence (WES) and whole-genome sequence 
(WGS) data from a total of 804 cases enrolled in either the PROFILE study or the UK 
Biobank. Controls comprised of 219,627 UK Biobank participants. We harmonized the 

Cases (n=804) 
534 PROFILE participants (WGS) 

+ 
270 UK Biobank participants (WES)

Controls (n=219,627) 
UK Biobank participants screened for 

non-respiratory disease (WES)

Case-Control harmonization 
European ancestry only 

Cryptic relatedness pruning 
Gender match cases and controls 

CCDS coverage harmonization 

Final: 752 cases, 119,055 controls

Rare Variant Collapsing Analyses 
11 models  

Varying gnomAD MAF cutoffs  
~20,000 genes

ExWAS 
Case-control MAF > 0.005% 

564,159 variants

FinnGen cohort 
1,028 cases  

196,986 controls

D
at

a
Q

ua
lit

y 
C

on
tr

ol
An

al
ys

is
R

ep
lic

at
io

n/
 

ex
te

ns
io

n Petrovski et al. (2017) 
6 models  
262 cases 

4,141 controls

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 29, 2020. ; https://doi.org/10.1101/2020.06.29.178079doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.29.178079
http://creativecommons.org/licenses/by-nc-nd/4.0/


case-control cohort based on ancestry, relatedness, and gender, resulting in a total of 
752 cases and 119,055 controls screened for non-respiratory disease. Furthermore, 
we filtered out sites that were differentially covered between cases and controls. We 
then performed two analyses: an exome-wide variant-level association test (ExWAS) 
and rare variant collapsing analysis. Suggestive variants from the ExWAS were then 
replicated in the FinnGen cohort. Collapsing analyses were also combined with 
previously published results from an independent case-control study6.    

 

We performed variant- and gene-level analyses to identify novel IPF risk factors using 

genetic sequencing data from 752 European cases with IPF and 119,055 European controls 30 

(Extended Data Fig. 1a,b). These 752 cases specifically comprised 507 individuals enrolled 

in PROFILE (Prospective Study of Fibrosis In the Lung Endpoints) and 245 UK Biobank 

participants with IPF (ICD10 code J84*) registered as the primary (Field 40001) or secondary 

(Field 40002) cause of death (Fig. 1). The median age of diagnosis for the cases was 71 years 

of age with a median survival of 39.4 months. The control cohort consisted of UK Biobank 35 

participants screened for non-respiratory disease (Table S1). Whole-genome sequencing was 

performed on PROFILE participants and whole-exome sequencing was performed on UK 

Biobank participants. We therefore limited our association analyses to pruned protein-coding 

sequence sites with minimum variability in coverage between cases and controls (Table S2). 

Variant-level associations were replicated in the FinnGen cohort, which includes genotype 40 

data for individuals of Finnish descent, including 1,028 individuals with IPF and 196,986 

controls (FinnGen release 5) (Fig. 1). We also performed a combined gene-level collapsing 

analysis using data from a previously published whole-exome sequencing study that included 

262 cases and 4,141 controls (Fig. 1).  

In an exome-wide variant-level association study (exWAS), we assessed 564,159 protein-45 

coding variants for association with IPF risk. We identified five genome-wide-significant 

variants (p < 5 x 10-8), all in the vicinity of the well-established MUC5B risk allele (rs35705950). 

The next strongest independent signal emerged from a missense variant in the gene SPDL1 

(NM_017785.5 p.Arg20Gln [rs116483731]; p = 2.35 x 10-7), with an allele frequency of 2.2% 

in cases compared to 0.78% in controls (odds ratio [OR], 2.87). This same variant reached 50 

genome-wide significance in the FinnGen replication cohort (Extended Data Fig. 2), with a 

case frequency of 6.9% and a control frequency of 3.0% (p = 9.97 x 10-16; OR, 3.13). Taking 

the combined evidence from both cohorts, this variant achieves a Stouffer Z-test p-value of 2.2 

x 10-20, unequivocally associating it with IPF risk.  
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Figure 2. Association of single-nucleotide variants with IPF. (a) Manhattan plot depicting 
p-values of the 564,159 exonic variants tested for association with IPF status. The long-dash 
line indicates the genome-wide significance threshold (p < 5 x 10-8). Relevant to the MUC5B 
locus, the Y-axis is capped at 1x10-10. (b) Quantile-quantile plot of observed versus expected 
p-values.  
 

Despite its relatively strong effect size, the SPDL1 locus has not been previously reported 55 

in IPF through prior GWAS with larger sample sizes (Table S3)4. Because of known Mendelian 

genetics contribution to IPF genetic architecture, we tested whether the SPDL1 missense 

variant may have independently arisen multiple times in Europeans or whether it resides on a 

common haplotype. We examined the haplotypes in the 10kb window of the SPDL1 index 

variant and found that all SPDL1 rs116483731 risk allele observations among the PROFILE 60 

cohort occurred on a single common ancestral haplotype that accounted for 16.5% of all 

haplotypes identified among the 1,014 PROFILE chromosomes (Extended Data Fig. 3). This 

indicates a common ancestral origin for this variant. 

We next performed gene-based collapsing analyses to identify genes carrying an 

aggregated excess of rare deleterious variants among the case sample. Despite this being 65 

the largest gene-based collapsing test performed in IPF to date, no new genes reached study-

wide significance (p < 2.4 x 10-7) across 11 different rare-variant genetic architectures 

(Extended Data Fig. 4; Table S5). We then combined our results with data reported in a 

previously published study of 262 IPF cases and 4,141 controls6, which also did not yield novel 

study-wide significant findings (Extended Data Fig. 5 and Table S6). In addition, we explored 70 

whether the top-ranked genes that did not meet study-wide significance were enriched for 

novel, putative disease-associated genes. Using mantis-ml8, we found that case-enriched 

genes (p < 0.05) in our collapsing models that focused on variants in regions intolerant to 

missense variation9 were significantly enriched for genes predicted to be associated with 

pulmonary fibrosis (Extended Data Fig. 6). This result suggests that there are additional IPF 75 

risk genes to be discovered in larger case sample sizes.  
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Our primary collapsing model focused on rare (MAF < 0.1%) protein-truncating venric 

ariants (PTVs). Under this model, the top three genes were the previously reported RTEL1 (p 

= 3.0 x 10-7; OR, 13.6), PARN (p = 2.1 x 10-5; OR, 28.9), and TERT (p = 8.5 x 10-5; OR, 43.3) 

signals. Given the rarity of this extreme class of variants among these genes in the general 80 

population, the effect size of carrying a PTV in these genes came with larger effect sizes than 

the more common variants implicated in IPF (Fig. 3a). Notably, the MUC5B and SPDL1 SNPs 

represented the next strongest risk factors (Fig. 3a).  

 

 
Figure 3. Loci associated with IPF. (a) Scatter plot depicting the odds ratios versus control 
frequencies of protein-truncating variants (PTVs) in TERT, PARN, and RTEL1, rare damaging 
missense variants in TERT based on PROFILE collapsing analyses, the novel missense variant 
in SPDL1, and the sentinel SNPs from the largest IPF GWAS, to date. Control frequencies for 
TERT, PARN, and SPDL1 missense reflect the carrier frequencies in the UK Biobank controls 
used for our association studies. Control frequencies for the remaining alleles were derived 
from gnomAD non-Finnish European allele frequencies. (b) Allele frequency of the MUC5B 
promoter allele among non-Finnish European gnomAD samples and PROFILE IPF cases 
stratified by genotype. “Other” refers to IPF cases who do not carry a rare variant in RTEL1, 
PARN, TERC, TERT, and do not carry the SPDL1 missense variant (i.e. noncarriers).   

 

It is well-established that the MUC5B promoter risk allele frequency is significantly 85 

enriched in cases carrying rare variants in RTEL1, TERT, and PARN compared to controls, 

albeit at a lower rate than among noncarrier cases6,10. Using the WGS data available for the 

cases in the PROFILE cohort, we found that the MUC5B allele frequency in carriers of rare 

variants in RTEL1, PARN, TERT, and TERC (21%) was significantly higher than the allele 

frequency in non-Finnish European controls (11%; OR = 2.13, p = 0.02), but lower than IPF 90 
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cases without an identified rare genetic risk factor in a telomere-related gene (33%; p = 0.02) 

(Fig. 3b). As previously suggested6, these results underscore the contribution of an oligogenic 

architecture contributing to IPF risk. 

Both the presence of mutations in telomerase genes such as TERT, TERC, RTEL1 and 

PARN and quantifiably shorter telomere lengths have been associated with poorer prognosis 95 

in individuals with IPF11. Given this, we used TelSeq12 to infer the telomere lengths from the 

WGS data for the 507 cases included in the PROFILE cohort. We then tested whether different 

genetic risk factors were associated with telomere length using a logistic-regression model 

that included sex and age as covariates. Indeed, the telomeres of PROFILE IPF cases 

carrying rare putatively pathogenic variants in RTEL1, PARN, TERC or TERT were 10-15% 100 

shorter than the telomeres of the remaining cases in the PROFILE cohort (p = 0.004) (Fig. 4; 
Table S7, S8). In keeping with prior reports, individuals with these variants were gender 

balanced (in contrast to the wider PROFILE cohort, which was three quarters male), younger, 

and had worse survival rates than that seen for the cohort as a whole (Table S7 and Extended 
Data Fig. 7a-c). Individuals carrying the minor allele for MUC5B or SPDL1 did not exhibit 105 

statistically significant differences in their telomere lengths compared to the remainder of the 

PROFILE cohort (Fig. 4) nor did they exhibit significant differences in demographic or clinical 

characteristics (Table S7). There was no significant enrichment of family history among 

individuals carrying rare variants in the telomerase genes, the SPDL1 risk allele, or the 

MUC5B risk allele (Table S7). 110 

  
Figure 4. Telomere lengths in individuals with IPF. TelSeq-inferred12 telomere lengths for 
the 507 IPF cases included in the PROFILE cohort stratified by genetic risk factors.   
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The differences in telomere lengths may be partially explained by gene function. RTEL1, 

PARN, and TERC, and TERT are all directly involved in the telomerase pathway, whereas 

SPDL1 encodes spindly, a coiled-coil domain containing protein that has a critical role in 

mitosis. This protein regulates chromosome alignment as well as microtubule attachment to 

kinetochores during prometaphase13–15. It also regulates the spindle assembly checkpoint 115 

(SAC) and enables kinetochore compaction by recruiting the microtubule motor dynein to 

kinetochores, facilitating the removal of outer kinetochore components and SAC proteins. 

Following the formation of stable microtubule attachments, these processes allow cells to 

progress from metaphase into anaphase and to complete mitosis. Mechanistically, Spindly 

functions as an adaptor protein, linking the RZZ complex (Rod, Zw10 and Zwilch) with 120 

dynein/dynactin. Spindly binds dynein and dynactin via two C-terminal domains termed the 

CC1 box and the Spindly Motif respectively. Importantly, cells carrying mutant forms of Spindly 

lacking these domains have been shown to display aberrant spindle morphology and 

chromosome segregation errors14,15. In addition to its role in mitosis, Spindly has also been 

reported to localise to the leading edge of migrating cells16. Cells either knocked down for 125 

Spindly or expressing a mutant version that is deficient in dynactin binding showed reduced 

migration in a wound scratch assay. This mechanism has been suggested to be involved in 

the spread of colorectal cancer cells17. Recently, two other genes also linked to kinetochore 

function, MAD1L1 and KIF15, were implicated in an IPF GWAS study4, suggesting that 

dysfunction of this pathway may underlie a novel non-telomeric mechanism in IPF. Individuals 130 

with the SPDL1 minor allele, at least superficially, resemble the wider cohort of IPF subjects 

(Table S7). Deeper phenotyping of PROFILE and other IPF cohorts may uncover unique 

features of disease related to impaired kinetochore function. It will also be important to explore 

whether genetic mechanisms influence response to anti-fibrotic therapy—a finding which 

would influence future trial design and precision medicine strategies. Notably, only one 135 

individual in the case cohort carried both the SPDL1 minor allele and a qualifying variation in 

either RTEL1, PARN, TERC, or TERT, further suggesting that these are two independent 

mechanisms of IPF pathogenesis, and that mitotic spindle dysfunction pathway underlies a 

novel non-telomeric mechanism in IPF.  

In conclusion, our work unveiled a novel genetic risk factor for IPF. Our results also 140 

underscore the advantage of sequencing-based variant-association tests in capturing signals 

across the allele frequency spectrum. Furthermore, the higher frequency of this variant in the 

Finnish population highlights the value of performing genetic analyses in bottleneck 

populations. Although one might speculate of a role for Spindly in cell senescence or fibroblast 

migration in pulmonary fibrosis, this finding necessitates further experimental follow-up. 145 
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Importantly, the evidence of multiple pathways for this devastating disorder also emphasizes 

the need for more targeted treatments.  
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Methods  
Sequencing, alignment, and variant calling 
For the PROFILE cohort, genomic DNA from IPF cases was extracted and underwent paired-

end 150bp WGS at Human Longevity Inc using the NovaSeq6000 platform. For IPF cases, 150 

>98% of consensus coding sequence release 22 (CCDS) has at least 10x coverage and 

average coverage of the CCDS achieved 42-fold read-depth. Genomic DNA from UK Biobank 

controls underwent paired-end 75bp whole exome sequencing (WES) at Regeneron 

Pharmaceuticals using the IDT xGen v1 capture kit on the NovaSeq6000 machines. For UK 

Biobank controls, >95% of CCDS has at least 10x coverage and average CCDS read-depth 155 

of 59X. All case and control sequences were processed through the same bioinformatics 

pipeline, this included re-processing all the UK Biobank exomes from their unaligned FASTQ 

state. A custom-built Amazon Web Services (AWS) cloud compute platform running Illumina 

DRAGEN Bio-IT Platform Germline Pipeline v3.0.7 was adopted to align the reads to the 

GRCh38 genome reference and perform small variant SNV and indel calling. SNVs and indels 160 

were annotated using SnpEFF v4.3 against Ensembl Build 38.92. 

 

Ethics statement:  
For the PROFILE cohort written informed consent was obtained from all subjects and the study 

was approved by the local research ethics committee (reference numbers 10/H0720/12). 165 

Patients and control subjects in FinnGen provided informed consent for biobank 

research, based on the Finnish Biobank Act. Alternatively, older research cohorts, collected 

prior the start of FinnGen (in August 2017), were collected based on study-specific consents 

and later transferred to the Finnish biobanks after approval by Fimea, the National Supervisory 

Authority for Welfare and Health. Recruitment protocols followed the biobank protocols 170 

approved by Fimea. The Coordinating Ethics Committee of the Hospital District of Helsinki 

and Uusimaa (HUS) approved the FinnGen study protocol Nr HUS/990/2017.  

The FinnGen study is approved by Finnish Institute for Health and Welfare (THL), 

approval number THL/2031/6.02.00/2017, amendments THL/1101/5.05.00/2017, 

THL/341/6.02.00/2018, THL/2222/6.02.00/2018, THL/283/6.02.00/2019, 175 

THL/1721/5.05.00/2019, Digital and population data service agency VRK43431/2017-3, 

VRK/6909/2018-3, VRK/4415/2019-3 the Social Insurance Institution (KELA) KELA 

58/522/2017, KELA 131/522/2018, KELA 70/522/2019, KELA 98/522/2019, and Statistics 

Finland TK-53-1041-17.  

The Biobank Access Decisions for FinnGen samples and data utilized in FinnGen Data 180 

Freeze 5 include: THL Biobank BB2017_55, BB2017_111, BB2018_19, BB_2018_34, 

BB_2018_67, BB2018_71, BB2019_7, BB2019_8, BB2019_26, Finnish Red Cross Blood 
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Service Biobank 7.12.2017, Helsinki Biobank HUS/359/2017, Auria Biobank AB17-5154, 

Biobank Borealis of Northern Finland_2017_1013,  Biobank of Eastern Finland 1186/2018, 

Finnish Clinical Biobank Tampere MH0004, Central Finland Biobank 1-2017, and Terveystalo 185 

Biobank STB 2018001. 

 

Cohort pruning 
The initial sample consisted of 541 PROFILE cases, 272 UK Biobank cases, and 302,081 UK 

Biobank controls (Table S2). We removed samples where there was a discordance between 190 

self-reported and X:Y coverage ratios, as well as samples with > 4% contamination according 

to VerifyBamID. The cohort was screened with KING to ensure that only unrelated (up to third-

degree) individuals were included in the test. To reduce variation due to population 

stratification, we only included individuals with a probability of European Ancestry ≥ 0.98 based 

on PEDDY predictions and individuals within four standard deviations of principal components 195 

1-4 (Extended Data Fig. 1). Further, samples were required to have greater than 95% of 

CCDS (release 22) bases covered with at least 10-fold coverage.  

 The control cohort was further restricted to include only individuals without a history of 

respiratory disease (Table S1). Using random sampling of the controls, we gender matched 

the control cohort to the case cohort (75% male). The final cohort consisted of 752 cases and 200 

119,055 controls.  

 

Exome-wide association study (exWAS) 
We tested 564,159 protein-coding variants association with IPF status. We specifically 

included all variants that were present in at least 12 individuals in the case-control cohort and 205 

passed the following QC criteria: minimum coverage 10X; percent of alternate reads in 

heterozygous variants ≥ 0.3 and ≤ 0.8;  binomial test of alternate allele proportion departure 

from 50% in heterozygous state p > 10-6;  genotype quality score (GQ) ≥ 30;  Fisher’s strand 

bias score (FS) ≤ 200 (indels) ≤ 60 (SNVs);  mapping quality score (MQ) ≥ 40;  quality score 

(QUAL) ≥ 30;  read position rank sum score (RPRS) ≥ -2;  mapping quality rank sum score 210 

(MQRS) ≥ -8;  DRAGEN variant status = PASS;  Binomial test of difference in missingness 

between cases and controls p < 10-6;  variant did not achieve Hardy-Weinberg Equilibrium 

Exact p < 10-5 ;  variant site is not missing (i.e., <10X coverage) in ≥ 1% of cases or controls; 

variant did not fail above QC in ≥ 0.5% of cases or controls;   variant site achieved 10-fold 

coverage in ≥ 50% of GnomAD exomes, and if variant was observed in GnomAD the variant 215 

calls in GnomAD achieved exome z-score ≥ -0.2 and exome MQ ≥ 30. 

P-values were generated via Fisher’s exact test. The signal emerging from a novel 

SPDL1 missense variant (p.Arg20Gln [rs116483731]) was confirmed in the FinnGen dataset 
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(release 5), which includes 1,028 cases and 196,986 controls. We generated a combined p-

value via Stouffer’s Z-test and defined genome-wide significance as the conventional p < 5 x 220 

10-8. 

 

Collapsing analysis 
To perform collapsing analyses, we aggregate variants within each gene that fit a given set of 

criteria, identified as “qualifying variants” (QVs)6. We performed 10 non-synonymous 225 

collapsing analyses, including 9 dominant and one recessive model, plus an additional 

synonymous variant model as a negative control. In each model, for each gene, the proportion 

of cases is compared to the proportion of controls carrying one or more qualifying variants in 

that gene. The exception is the recessive model, where a subject must have two qualifying 

alleles. The criteria for qualifying variants in each collapsing analysis model are in Table S4.  230 

P-values were generated via Fisher’s exact test.  

For all models (Table S4) we applied the following QC filters: minimum coverage 10X;  

annotation in CCDS transcripts (release 22; ~34Mb);  percent alternate reads in homozygous 

genotypes ≥ 0.8;  percent of alternate reads in heterozygous variants ≥ 0.3 and ≤ 0.8;  binomial 

test of alternate allele proportion departure from 50% in heterozygous state p > 10-6;  genotype 235 

quality score (GQ) ≥ 30;  Fisher’s strand bias score (FS) ≤ 200 (indels) ≤ 60 (SNVs);  mapping 

quality score (MQ) ≥ 40;  quality score (QUAL) ≥ 30;  read position rank sum score (RPRS) ≥ 

-2;  mapping quality rank sum score (MQRS) ≥ -8;  DRAGEN variant status = PASS;  Binomial 

test of difference in missingness between cases and controls p < 10-6;  variant is not missing 

(i.e., <10X coverage) in ≥ 1% of cases or controls;  variant site achieved 10-fold coverage in 240 

≥ 25% of GnomAD samples, and if variant was observed in GnomAD the variant calls in 

GnomAD achieved exome z-score ≥ -2.0 and exome MQ ≥ 30. 

 
SPDL1 haplotype analysis 
We constructed haplotypes for the SPDL1 locus in the PROFILE cohort (N=507) and in a 245 

random subset of 25,000 unrelated European individuals from the UK Biobank. This was done 

by phasing a total of 76 variants (MAF > 1%) that were located within a 10kb window of 

rs116483731. The genotype phasing was performed using MACH18, implementing the 

following parameters: --states 1000 and --rounds 60. Following the genotype phasing, we 

estimated the number of distinct haplotypes and their corresponding frequencies in each 250 

dataset. Next, in each dataset, we identified the SPDL1 risk haplotypes i.e. haplotypes that 

contained the risk allele ‘A’ for rs116483731. Then, for each SPDL1 risk haplotype that was 

identified, we determined the corresponding ancestral haplotype (having the reference allele 
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‘G’ in place of the risk allele ‘A’ for rs116483731) and estimated the percentage of those with 

that ancestral haplotype background who carried the rs116483731 mutation. 255 

 
Putatively Pathogenic RTEL1, PARN, TERC and TERT variants 
To identify PROFILE subjects with putatively pathogenic variants in RTEL1, PARN, TERT or 

TERC we adopted the following criteria: 

1) Variants were required to fulfil the following QC thresholds:  260 
a. Percentage of variant allele reads ≥ 0.3 
b. Binomial exact test of the departure from heterozygous expectation of 0.5 for 

variant allele read ratio p>0.001 
c. GQ ≥ 30 
d. QUAL ≥ 30 265 
e. Variant affects a CCDS transcript 

2) For putative protein-truncating variants (PTVs) in RTEL1, PARN and TERT the 
gnomAD minor allele frequency ≤ 0.05% (gnomAD popmax) 

3) For missense variants in TERT and PARN the gnomAD minor allele frequency = 0 
(ultra-rare) 270 

4) For TERC noncoding RNA variants they were annotated by ClinVar as “Pathogenic” 
or the same TERC nucleotide was recurring affected by multiple variants. 

 

All putatively pathogenic variants are included in Table S9.  

 275 

Effect size comparisons 
We compared the effect sizes for different classes of variants implicated in IPF: PTVs in TERT, 

RTEL1, and PARN; putatively damaging missense variants in TERT, and GWAS loci that 

reached genome-wide significance in the largest IPF GWAS performed to date4. We used the 

UCSC Genome Browser LiftOver tool to convert the reported GRCh37 coordinates to GRCh38 280 

coordinates, requiring 100% of bases to remap. We excluded the MAPT risk allele 

(rs2077551), as this allele failed the gnomAD random forest filter. For coding variants in TERT, 

RTEL1, and PARN, we used the case versus control odds ratios calculated in our collapsing 

analysis. For the GWAS loci, we used the PROFILE WGS data to calculate the frequency in 

cases, and we used the GnomAD non-Finnish European allele frequencies to derive the 285 

frequency in controls.  

 

Clinical characteristics 
We compared clinical features for individuals in the PROFILE cohort who carried the MUC5B 

risk allele, the SPDL1 risk allele, or putatively pathogenic variants in RTEL1, TERC, TERT, 290 

and PARN (Table S6). For each genotype, carriers were compared to all other individuals in 

the PROFILE cohort (i.e. non-carriers for the given risk allele). We specifically assessed 

differences in gender, survival months, sample age, height, weight, forced vital capacity (FVC), 
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and diffusing capacity for carbon monoxide (DLCO). We performed median data-imputation 

to account for missing data. The p-values for comparing gender imbalances were generated 295 

via Fisher’s exact test, whereas p-values for all other clinical characteristics were generated 

via the Mann Whitney U test. Mortality rates were compared among carriers of rare variants 

in TERT, TERC, PARN, and RTEL1, carriers of the SPDL1 risk allele, and carriers of the 

MUC5B risk allele versus non-carriers using the Kaplain-Meier method and p-values were 

generated using a log-rank test.  300 

 
Telomere length comparisons 
For 96% of the samples the read lengths ranged between 148 to 150 bp. These BAM files 

were put through computational telomere length prediction method Telseq v0.0.112 using a 

repeat number of 10. WGS sequences in this cohort did not use a PCR-free DNA sequencing 305 

protocol. Logistic regression was used to determine differences in telomere lengths between 

carriers of the SPDL1 risk allele, carriers of the MUC5B risk allele, and carriers of rare variants 

in TERT, TERC, RTEL1, or PARN, adjusted for age and sex.  

 
Mantis-ml 310 

Known pulmonary fibrosis-associated genes were automatically extracted from the Human 

Phenotype Ontology (HPO) by specifying the following term in the input configuration file of 

mantis-ml8: “Disease/Phenotype terms: pulmonary fibrosis”. This resulted in the following 38 

HPO-defined seed genes: ABCA3, SFTPA2, AP3B1, CAV1, DPP9, CFTR, CCR6, CCN2, 

CTLA4, PTPN22, TINF2, DKC1, DSP, FAM13A, DCTN4, RTEL1, HLA-DPA1, HLA-DPB1, 315 

HLA-DRB1, HPS1, IRF5, PARN, PRTN3, FAM111B, RCBTB1, STN1, SFTPA1, NOP10, 

CLCA4, SFTPC, NHP2, STX1A, ATP11A, MUC5B, TERC, TERT, TGFB1 and HPS4. 
Automatic feature compilation on mantis-ml was performed by providing the following 

“Additional associated terms” in the input configuration file: “pulmonary, respirat and lung.” 

Mantis-ml was trained using six different classifiers: Extra Trees, XGBoost, Random Forest, 320 

Gradient Boosting, Support Vector Classifier and feed-forward Deep Neural Net. 
Once the mantis-ml genome-wide probabilities of being an IPF gene were generated, 

we performed a hypergeometric test to determine whether the top-ranked collapsing analysis 

genes (i.e. genes achieving a p < 0.05 in the collapsing analyses) were significantly enriched 

for the top 5% of mantis-ml IPF-predicted genes. A statistically significant result from the 325 

hypergeometric test suggests that there are disease-ascertained genes among the top hits of 

the collapsing results. We then tested for this enrichment after excluding known IPF genes 

from our collapsing results to determine whether the signal was independent of genes already 
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associated with IPF. In parallel, we also performed the hypergeometric enrichment test using 

the synonymous collapsing model to define our empirical null distribution. Among all six 330 

mantis-ml integrated classifiers used for training, Gradient Boosting achieved the highest 

enrichment signal against the collapsing analysis results from IPF.  
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