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Arnaud Messé1*, Karl J. Hollensteiner2, Céline Delettre1,3, Leigh-Anne Dell1, Florian
Pieper2, Lena J. Nentwig1, Edgar E. Galindo-Leon2, Benôıt Larrat4, Sébastien
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Abstract

Intrinsic coupling modes (ICMs) provide a framework for describing the interactions of
ongoing brain activity at multiple spatial and temporal scales. Two families of ICMs
can be distinguished: phase and envelope ICMs. The principles that shape these ICMs
remain partly elusive, in particular their relation to the underlying brain structure.
Here we explored structure-function relationships in the ferret brain between ICMs
quantified from ongoing brain activity recorded with chronically implanted ECoG
arrays and structural connectivity (SC) obtained from high-resolution diffusion MRI
tractography. Large-scale computational models as well as simple topological
ingredients of SC were used to explore the ability to predict both types of ICMs.
Importantly, all investigations were conducted with ICM measures that are sensitive
or insensitive to volume conduction effects. The results show that both types of ICMs
are strongly related to SC, except when using ICM measures removing zero-lag
synchronizations. Computational models are challenged to predict these ICM patterns
consistently, and simple predictions from SC topological features can sometimes
outperform them. Overall, the results demonstrate that patterns of cortical functional
coupling as reflected in both phase and envelope ICMs bear a substantial relation to
the underlying structural connectivity of the cerebral cortex.
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Introduction 1

Intrinsic coupling modes reflect the patterns of synchronization or functional 2

connectivity (FC) between neuronal ensembles during spontaneous brain activity [1]. 3

These coupling modes represent a widely used concept in modern neuroscience for 4

probing the connectional organization of intact or damaged brains. ICMs have been 5

associated with individual brain characteristics such as behavior and cognitive 6

abilities [2–5], and aberrant ICM patterns have been linked to a variety of brain 7

diseases [6–8]. Numerous studies in animals and humans have suggested that ICMs 8

occur across a broad range of spatial and temporal scales, involving two distinct 9

families of dynamical coupling mechanisms, namely phase ICMs (pICMs) and envelope 10

ICMs (eICMs) [1]. Phase ICMs represent ongoing oscillations of band-limited 11

dynamics, typically occurring at frequencies between about 1 to 150 Hz, which can be 12

quantified by measures of phase coupling. By contrast, envelope ICMs correspond to 13

coupled slow aperiodic fluctuations, typically on time scales of a few seconds to 14

minutes, which can be uncovered by the correlation of signal power envelopes. 15

However, the principles that shape both types of ICMs remain partly unresolved, 16

notably their relation to the underlying brain structure [9, 10]. Therefore, a careful 17

investigation of the relation of ICMs to structural connectivity is required in order to 18

advance our understanding of the network basis of cognition and behavior [10–15]. 19

The physical basis for the emergence of functional connectivity patterns is the 20

underlying brain anatomy, specifically, structural connectivity among brain 21

regions [16]. In this context, diffusion MRI has transformed the field by its ability to 22

estimate the whole brain architecture of structural connections in a non-invasive 23

way [17]. In parallel, resting-state fMRI has become a popular approach for probing 24

the functional organization of the brain at slow time scales, representing 25

eICMs [18,19]. Pioneering studies have demonstrated a tight intricate association 26

between the patterns of SC and resting-state fMRI-based FC [20–23]. Much less well 27

understood are interactions at faster time scales, that is, pICMs, and their relations to 28

the underlying anatomy. Nonetheless, a few studies have reported a positive 29

association between pICMs and SC, using electrophysiological measurements [24,25]. 30

However, a comprehensive description of the structure-function relationships including 31

both types of ICMs and across frequency ranges is lacking. 32

Despite significant progress made in the analysis of functional neuroimaging data, 33

such measurements suffer from diverse limitations. While fMRI has a good spatial 34

resolution, its temporal resolution is rather limited, while the opposite is true for 35

electrophysiological data. Furthermore, electrophysiological recordings are prone to 36

present artefactual functional connectivity between close brain areas that is caused by 37

the mixing of cortical signals at the sensors level due to volume conduction effects [26]. 38

Because volume conduction is instantaneous (zero-lag), a number of measures 39

quantifying only lagged couplings or strategies that explicitly remove zero-lag 40

couplings have been designed to tackle this issue (‘lagged ICMs’) [27]. However their 41

effects on the structure-function relationships remain poorly investigated (but see [28]). 42

Large-scale computational models have offered new mathematical tools to 43

explicitly link SC to ICMs and to highlight generative mechanisms of functional 44

coupling [29–31]. Most computational models presented in recent years have focused 45

on describing functional interactions at slow time scales (eICMs) using resting-state 46

fMRI [32]. A variety of models have been developed for this purpose that specifically 47

consider the influence of a variety of parameters such as structural weights, delays and 48

noise on neural dynamics [11,30,32]. Remarkably, substantially different 49

computational models result in similar FC predictions [33,34], in such a way that 50

simple statistical models based on the topological characteristics of SC can be used 51

with similar levels of prediction [35,36]. Few studies have extended this framework by 52
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using electrophysiological measurements [37–39]. Recent investigations suggest that 53

neuronal synchronization at faster time scales (pICMs) can also be predicted by 54

computational simulations [28,38]. Yet, the relative ability of computational models to 55

predict both types of ICMs remains unanswered, especially when using lagged ICM 56

measures. It is also unclear whether simple statistical models, based on SC topology, 57

can equally predict phase as well as envelope ICMs. Overall, the mechanisms 58

underlying the two types of ICMs are only partly resolved. 59

Against this background, we used data of ongoing activity of multiple cortical areas 60

recorded from awake ferrets using chronically implanted micro ECoG arrays [40]. Such 61

a setting offers recordings with high temporal and spatial resolution, for a substantial 62

number of cortical areas. Moreover, due to the close proximity of the electrodes to the 63

brain, volume conduction is strongly reduced, compared to non-invasive approaches 64

such as M/EEG. Additionally, we obtained structural connectivity estimates from 65

diffusion MRI tractography data for the regions underlying the ECoG array [41]. We 66

found that both types of ICMs partially reflect the underlying SC across multiple 67

frequency bands, and importantly, pICMs and eICMs show resemblance in their 68

topographies, potentially pointing to a similar relation to the underlying SC. The use 69

of lagged ICMs virtually abolishes the association with SC, since this removes zero-lag 70

couplings which substantially contribute to local FC. Also, we found that 71

computational models, independently of their complexity, can reproduce ICM patterns 72

reasonably well. Furthermore, both types of ICMs can be predicted relying solely on 73

the SC topology. Thus, the results demonstrate that patterns of cortical functional 74

coupling as reflected in both phase and envelope ICMs are substantially constrained 75

by the underlying structural connectivity of the cerebral cortex. 76

Results 77

Intrinsic coupling modes were extracted from ECoG data of ongoing brain activity 78

from awake ferrets [40]. Cortical activity was recorded in five adult female ferrets over 79

multiple sessions using a 64 electrodes array distributed over half of the left cortical 80

hemisphere. The animals’ brain states had been previously classified into slow-wave 81

sleep, rapid-eye-movement sleep and awake periods using a data-driven approach [40]. 82

The present study focused only on data from awake periods. For each animal and each 83

awake period, pICMs and eICMs were computed in a frequency resolved manner 84

(0.5–200 Hz) between all pairs of electrodes by quantifying coherence and power 85

correlation, respectively. Then electrodes were assigned to cortical areas using the 86

atlas of Bizley et al. [42] (Fig 1A), and the average ICM values between these areas 87

were computed. Subsequently, ICM matrices were averaged within canonical frequency 88

bands: 0.5-3 Hz (δ); 4-7 Hz (θ); 8-15 Hz (α); 16-30 Hz (β); 30-100 Hz (γ) (Fig 1B). 89

ICM matrices were also averaged across awake periods within each session per animal 90

(session-level), across sessions within each animal (animal-level), and also across 91

animals (group-level). Results on the animal- and group-levels are presented in the 92

main text, while results on the session-level are reported in supplementary figures. 93

The corresponding structural connections of the areas covered by the ECoG array 94

were assembled from diffusion MRI tractography data [41] (Fig 1C). Finally, in order 95

to predict empirical patterns of ICMs, we employed computational biophysical models 96

of various complexity as well as simple topological ingredients (Fig 1D). See Materials 97

and Methods section for further details. 98
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Fig 1. Multimodal processing pipeline. (A) Ferret cerebral cortex parcellated
into 13 functionally and anatomically distinct regions according to [42]. Abbreviations:
S2, S3: somatosensory cortex 2 and 3; PPr/c: rostral/caudal posterior parietal cortex;
17, 18, 19, 20, 21: occipital visual cortex areas; SSY: suprasylvian field; A1, A2:
primary and secondary auditory cortex; AAF: anterior auditory field. (B) Empirical
ECoG recording and ICMs. (From left to right) ECoG-array design and example of its
placement over the left posterior ferret brain cortex. The ECoG consists of 64
platinum electrodes distributed across three polymide fingers to enable the array to
adapt to the curved surface of the cortex. Awake periods were extracted from the
resulting brain activity, then time-frequency representations were computed using
wavelet transforms for each electrode. Phase and envelope ICMs were computed over
multiple frequencies and between all pairs of electrodes. Subsequently, ICMs were
mapped to the ferret brain parcellation and averaged within canonical frequency bands.
(C) Patterns of structural connectivity extracted from diffusion MRI tractography and
the associated fiber lengths. (D) Large-scale computational brain models and an
illustrative example of simulated phase and envelope ICMs across frequency bands.
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Structure-function relationships 99

The similarity between ICM patterns and the underlying structural connectivity was 100

quantified, for each animal and the group average, and for each frequency band, by 101

means of Spearman correlations between SC and phase and envelope ICM values. 102

Phase and envelope ICMs were both significantly positively correlated to SC in a 103

similar way for all frequency bands, except for one animal for both ICM measures 104

across all frequency bands (Fig 2A). The correlations of phase and envelope ICMs with 105

SC were not significantly different across all frequency bands for all animals and in the 106

group average. Next, we evaluated the influence of the physical distance between areas 107

in the structure-function relationships. As expected, both SC and ICMs were 108

significantly negatively correlated with distance. Similar for both, connectivity values 109

decrease with increasing inter-areal distance, except for one animal for both pICM and 110

eICM in the δ band (Fig 2A). Of note, SC is more strongly influenced by distance than 111

are ICMs. Consequently, the correlation between SC and ICMs are largely reduced 112

when controlling for distance. Two animals had no significant partial correlation of 113

pICM with SC for all frequency bands except the γ band, where pICM appeared 114

significantly negatively partially correlated with SC. One animal (resp. the group 115

average) showed no significant partial correlation of pICM with SC in the δ (resp. γ) 116

band. Regarding eICMs, one animal had no significant partial correlation with SC for 117

all frequency bands except the β and γ bands, where eICMs appeared significantly 118

negatively partially correlated with SC. One animal and the group average showed no 119

significant partial correlation with SC for all frequency bands (Fig 2A). 120

In addition, in order to deal with the potential confounds resulting from volume 121

conduction, we also computed the correlation between SC and lagged ICM measures 122

(Fig 2B). Envelope ICMs were significantly positively correlated to SC for three 123

animals and the group average for all frequency bands except the θ and α bands, two 124

animals had non significant correlations for all frequency bands (Fig 2B). Phase ICMs 125

were found to be only significantly positively correlated to SC in the γ band for three 126

animals and the average, and negatively correlated to SC for the θ band in two 127

animals (Fig 2B). The correlation of pICMs with SC was significantly lower compared 128

to eICMs for low frequency bands in few animals. We observed an increase in the 129

correlation of both types of ICMs with SC with increasing frequency. Phase (resp. 130

envelope) ICMs were significantly positively (resp. negatively) correlated with 131

distance for the low (reps. high) frequency bands (Fig 2B). Consequently, the 132

correlation between SC and pICMs remained significant only for the γ band, while the 133

correlation between SC and eICMs remained significant only for low and high 134

frequency bands in few animals when controlling for distance (Fig 2B). The partial 135

correlations of phase and envelope ICMs with SC were not significantly different. For 136

a complete description of the significant statistical tests see Fig S1 and for the results 137

at a finer level see Figs S2 and S3. 138

Phase and envelope ICMs similarity, and interfrequency, 139

interindividual consistency 140

The similarity between pICMs and eICMs was quantified, for each frequency band, 141

each animal and the group average, by means of Spearman correlation. Phase and 142

envelope ICMs were significantly positively correlated with each other in all frequency 143

bands for all animals (Fig 3A). Consistency of ICM measures across frequency bands 144

was quantified, for each pair of frequency bands, each animal and the group average, 145

by means of Spearman correlation. We observed a significant high interfrequency 146

consistency for each ICM measure which is consistent across animals (Fig 3A). Of 147

note, the similarity was higher between ICM measures within frequency bands than 148
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Fig 2. Structure-function relationships. (A) Correlation between structural
connectivity and phase and envelope ICMs across frequency bands and animals. (Left)
Patterns of SC (left triangular part) and group level phase or envelope ICMs (right
triangular part) for the α band. (Right) For each ICM measure and each frequency
band, we represented the individual correlations (bar chart representing means and
associated standard deviations), as well as the correlation for the group average (red
curve), between SC and ICMs (SC corr), between SC and ICMs when controlling for
the distance (SC pcorr), and between distance and ICMs (dist corr). The green line
represents the correlation between distance and SC. (B) Same as (A) when using
lagged ICM measures.

between frequency bands within ICM measures. We also assessed the consistency of 149

both ICM measures across animals, for each pair of animals, and each frequency band, 150

by means of Spearman correlation. Interindividual consistency was significant across 151

all animals and for both ICM measures (Fig 3A). We observed a slight increasing 152

interindividual consistency with increasing frequency. 153

When lagged measures phase and envelope ICMs were used, consistent results were 154

observed (Fig 3B). Phase and envelope ICMs were significantly positively correlated 155

with each other for most frequency bands and animals, albeit to a much lower level 156

compared to the original ICM measures, especially for the δ and γ bands (Fig 3B). 157

Interfrequency consistency was significant across most animals and pairs of frequency 158

bands, albeit at a much lower level compared to the original ICM measures (Fig 3B). 159

Interindividual consistency was significant across all pairs of animals, all frequency 160

bands, and for both ICM measures, except in the δ band for eICMs (Fig 3B). Of note, 161

the consistency of phase (resp. envelope) ICMs in the γ (resp. δ) band was largely 162
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reduced compared to the original ICM measures. For a complete description of the 163

significant statistical tests see Fig S4 and for the results at a finer level see Figs S5 164

and S6. 165

Fig 3. ICM similarity and consistency. (A) Similarity of phase and envelope
ICMs, and consistency across frequency bands and animals. (Left) Correlation
between phase and envelope ICMs across frequency bands and animals. (Top) For each
frequency band, we represented the individual correlations (bar chart representing
means and associated standard deviations), as well as the correlation for the group
average (red curve). (Bottom) Example scatter plot of phase versus envelope ICM
values for the group average in the α band. (Middle) Correlation of phase (top) and
envelope (bottom) ICM patterns between frequency bands. For each ICM measure,
each animal (1 to 5) and the group average (a), we represented all pairwise correlations
between frequency bands (bar chart representing means and associated standard
deviations). (Right) Correlation of phase (top) and envelope (bottom) ICM patterns
between animals. For each ICM measure and each frequency band, we represented all
pairwise correlations between animals (bar chart representing means and associated
standard deviations). (B) Same as (A) when using lagged ICM measures.
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Computational model predictions 166

Next, we employed computational models of various complexity for predicting ICM 167

measures: the spiking attractor network (SAN) model, a biologically realistic model of 168

a large network of spiking neurons; the Wilson-Cowan (WC) model, a popular 169

neural-mass model of coupled excitatory and inhibitory populations; and the spatial 170

autoregressive (SAR) model, a statistical model capturing the stationary behavior of a 171

diffuse process on networks. We quantitatively fit the models using different 172

optimization strategies to explore the models’ ability to predict ICM measures (see 173

Materials and Methods section for details). Model parameters were chosen to 174

minimize an objective function, defined as the distance between simulated and 175

empirical ICMs averaged over frequency bands. We either minimized the objective 176

function averaged across all ICM measures combining both original and lagged 177

measures (one parameter set; all), over only original (original) or only lagged (lagged) 178

ICM measures (two parameter sets), or for each ICM measure individually (four 179

parameter sets; individual). 180

Parameter space exploration highlights the sensitivity of the objective function to 181

model parameter values, the global coupling strength and mean delay (Fig 4). None of 182

the models possessed parameter settings which can minimize the distance of the 183

simulations to all ICM measures simultaneously. Optimizing all measures 184

simultaneously or only the original ICM measures led to a similar set of parameter 185

values, except for the SAR model. The optimization of the lagged ICM measures 186

generally led to parameter values far from the ones for the original ICM measures. 187

In general, computational models predicted phase and envelope ICMs in a similar 188

way (Fig 5). Most of the correlation between simulated and empirical ICMs were 189

significantly positive, except when using lagged ICM measures, where few correlations 190

were significant for pICM and correlations were mostly significant for high frequency 191

bands for eICM (Fig S7). Simulated ICMs were not significantly more correlated to 192

the empirical data compared to SC alone (Fig S8). Even when optimizing specifically 193

lagged ICM measures (lagged and individual), no model seemed able to predict these 194

ICM patterns accurately. We observed only positive correlations for high frequency 195

bands (β and γ). Overall, these results highlight the challenge of properly fitting 196

biophysical models to rich empirical datasets. 197

Topological prediction 198

To better understand the emergence of ICMs from SC and to circumvent the challenge 199

of properly calibrating computational models, we looked at the relationships of the 200

ICMs with the underlying SC topological architecture. The most prominent 201

topological feature that facilitates communication in networks is captured by 202

structural walks, that is the ordered sequence of links connecting areas. Using spectral 203

theory properties, we computed the total weight of all the walks of a given length 204

linking all pairs of areas (see Materials and Methods section for details). Subsequently, 205

the similarity between ICMs and structural walks was quantified, for each animal and 206

the group average, and for each frequency band, by means of Spearman correlation 207

between SC walk weights and phase and envelope ICM values. Phase and envelope 208

ICM measures were both similarly positively correlated with the weights of the walks, 209

but the correlation decreased with increasing walk length and vanished for walks of 210

length greater than 3 (Fig 6 and S9). Little variations were observed across frequency 211

bands. When looking at lagged ICM measures, the pattern of associations is almost 212

inverted. Lagged ICMs were more strongly correlated with longer walks, especially for 213

low frequency bands. Interestingly, using a weighted linear combination of the walks’ 214

weights allowed us to predict original ICM patterns well, but somewhat less for the 215
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Fig 4. Parameter space exploration of the computational models. (A)
Objective function values between simulated and empirical phase and envelope ICMs
as a function of the models’ parameters when using original ICM measures. Columns
represent the different models (left: SAR; middle: WC; and right: SAN). Parameter
values were chosen to either minimized the objective function averaged across all ICM
measures combining both original and lagged measures (blue circle, all), over only
original (red diamond, original) or only lagged (yellow square, lagged) ICM measures,
or for each ICM measure individually (purple star, individual). (B) Same as (A) when
using lagged ICM measures.

lagged ICM measures (Fig 6). While the prediction of the original ICM measures 216

reached values close to 0.7, the prediction of lagged ICM measures rarely exceeded 0.6 217

(for comparison, the models’ prediction was at best of 0.3). For a complete description 218

of the significant statistical tests see Fig S10. 219
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Fig 5. Predictive power of the computational models. (A) Correlation
between simulated and empirical phase and envelope ICMs across frequency bands
and models when using original ICM measures. Columns represent the different
optimization strategies. We either minimized the objective function averaged across all
ICM measures combining both original and lagged measures (first column, all), over
only original (second column, original) or only lagged (third column, lagged) ICM
measures, or for each ICM measure individually (last column, individual). (B) Same
as (A) when using lagged ICM measures.

Discussion 220

Overview 221

In the present study, we investigated the relationship between structural connectivity 222

and ICMs of ongoing dynamics in the ferret brain. We took advantage of the high 223

temporal resolution offered by ECoG measurements to explore these relationships 224

across multiple frequency bands and different animals. We also investigated the 225

similarity between phase and envelope ICMs across frequency bands, as well as their 226

interfrequency and interindividual consistency. Additionally, we explored and 227

compared the performance of computational models of various complexity and some 228

topological ingredients in predicting simultaneously envelope and phase ICMs. All 229

investigations were conducted with ICM measures sensitive or insensitive to volume 230

conduction effects. Generally, we found that SC is significantly related to both types 231

of ICMs in a similar way. When using original ICM measures both pICMs and eICMs 232

are highly similar and consistent across frequency bands and animals. Using lagged 233

ICM measures virtually abolished the association with SC, and reduced their 234

similarity and consistency. Computational models are challenged to predict these ICM 235
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Fig 6. Predictive power of the structural walks. (A) Correlation between
structural walks and empirical phase and envelope ICMs across frequency bands.
(Left) For each ICM measure, each walk length and each frequency band, we
represented the correlation for the group average. (Right) For each ICM measure and
each frequency band, we represented the individual correlations (bar chart
representing means and associated standard deviations), as well as the correlation for
the group average (red curve), between the linear combination of the walks and ICMs.
We additionally plotted the correlation between SC and ICMs for the group average
(green curve) as reference. (B) Same as (A) when using lagged ICM measures.

patterns consistently and simultaneously. The models are generally good at predicting 236

original ICM measures but fail for the lagged ones. Interestingly, the emergence of 237

ICM patterns seems largely driven by the underlying SC topological architecture, 238

where a linear combination of structural walks outperformed the prediction compared 239

to the employed computational models. Overall, our results suggest that ICMs during 240

ongoing activity in awake ferrets reflect, to a significant degree, the topological 241

organization of anatomical cortical networks, but are likely also influenced by other 242

factors. 243

June 22, 2020 11/35

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted June 29, 2020. ; https://doi.org/10.1101/500009doi: bioRxiv preprint 

https://doi.org/10.1101/500009


Structure-function relationships 244

In previous studies, envelope ICMs and their association with structural connectivity 245

were mainly investigated using resting-state fMRI data, where consistent positive 246

correlations between SC and eICMs were reported [20–23,33,43], reviewed in [44]. 247

Some recent studies have extended and confirmed these observations based on the 248

refined temporal resolution offered by electrophysiological measurements. The 249

relationship between pICMs and SC has been explored using both EEG [24,28,45] and 250

MEG [25,46] data, while eICMs were investigated using MEG recordings [39,47]. 251

Similar to the resting-state literature, a positive relationship between both types of 252

ICMs with SC has been reported consistently, but its potential frequency dependence 253

has not been thoroughly investigated [24,47]. Here, we confirm these observations by 254

showing that both types of ICMs are positively correlated to SC and this across the 255

frequency ranges. As a matter of fact, both measures appeared to be also correlated to 256

each other independently of the frequency. Additionally, we observed a relatively high 257

consistency of the original ICM measures both across frequencies and animals, similar 258

to observations in MEG recordings [48]. 259

One important confound in the analysis of functional connectivity using 260

electrophysiological measurements is the potential presence of volume conduction. A 261

number of measures and procedures have been designed to mitigate such effects. Most 262

of them specifically remove zero-lag synchronization or coactivations [49]. But, reliable 263

estimation of ICMs with electrophysiological recordings remains challenging due to 264

signal mixing [50,51]. We observed that the similarity between phase and envelope 265

ICMs, and their consistency across frequencies are largely reduced when using lagged 266

measures, as previously reported [48,52]. The correlation between both types of ICMs 267

with SC appears also largely reduced and virtually abolished, except for high 268

frequency, compared to the original measures. Such results showed us that the 269

classical ICM measures are strongly driven by near-zero coactivations, which are in 270

part resulting from volume conduction, but in part also due to physiological 271

synchrony [1, 2, 7], which occurs most prominently across short distances and depends 272

on the underlying network structure [53]. 273

ICMs models 274

Computational brain models give us a parsimonious approach to explore the 275

generative mechanisms of ICMs [31,32,54]. Most modeling studies have investigated 276

the emergence of eICMs using resting-state fMRI [11,33,34,55] or MEG data [37–39], 277

while few studies have explored the generative processes of pICMs using MEG [38] or 278

EEG [28] recordings. Using computational models of various complexity, we showed 279

their potential for predicting both types of ICM. None of the models investigated here 280

appears to be able to predict simultaneously original and lagged ICM measures. As a 281

matter of fact, none can predict lagged measures, even when fitting the models 282

explicitly for these measures. One of the most intriguing results is the fact that none 283

of the models seems to predict ICM patterns much better than SC alone. Looking at 284

the topological architecture of SC and especially the structural walks, we showed that 285

original ICMs are mostly explained by short walks while the opposite is true for the 286

lagged measures. As such, and as previously observed in resting-state fMRI studies, 287

patterns of functional interactions appear substantially constrained by the underlying 288

topological scaffold of the brain [35,56]. 289

June 22, 2020 12/35

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted June 29, 2020. ; https://doi.org/10.1101/500009doi: bioRxiv preprint 

https://doi.org/10.1101/500009


Biological significance 290

On the one hand, the removal of zero-lag interactions avoids artefacts that is known to 291

arise from signal mixing at sensor level [12, 57,58]. On the other hand, such a 292

treatment may also remove actual biological signals. Indeed, the present results 293

confirm that zero-lag interactions are an essential component of cortical coupling 294

modes [1,2,7,13]. Adjacent regions of the ferret cortex are strongly connected by short 295

fibres [41]. This kind of connectivity supports very fast, zero-lag interactions between 296

neighbouring regions [59]. The importance of these interactions for intrinsic cortical 297

coupling is demonstrated by the observation that (original) eICMs as well as pICMs 298

strongly depend on the physical embedding in the cortex and decay with distance 299

(Fig 2A). Moreover, direct structural connections (walks of length one) are most 300

strongly correlated with original eICMs and pICMs, while the correlation becomes 301

gradually weaker for longer walks with longer delays (Fig 4A). Conversely, the 302

dominant role of direct, short-distance interactions is abolished for lagged ICMs 303

(Figs 2B, 4B). Instead, such ICMs are based more equally on walks of all lengths 304

(Fig 4B), that is, mostly on indirect connectivity. Moreover, as structural cortical 305

connectivity is dominated by short connections, the predictive power of computational 306

models is much reduced for lagged versus original ICM measures. These findings once 307

again underline the role of direct and indirect structural connectivity in cortical 308

communication. 309

Caveats 310

The present results are subject to several methodological considerations. First, the 311

spatial coverage of the ECoG-array was limited to roughly one half of a cerebral 312

hemisphere that limits us for a potential generalization and prevents us to study, for 313

example, interhemispheric structure-function relations which have been studied in 314

other preparations before [60] but shown to be challenging [33]. Additionally, we solely 315

focused on the awake resting-state periods in order to make concrete comparisons with 316

the existing literature mostly based on that brain state. Little is known about the 317

eventual modulation of the structure-function relationships across diverse contexts, 318

including, for example, sleep stages or when animals interact with the environment, 319

deserving further investigations [52,61]. Regarding computational modelling, we made 320

use of standard models together with their default settings (except for the coupling 321

strength and the average delay). For further refinement, one should consider to 322

optimize a larger number of parameters or even to incorporate knowledge from 323

external modalities including, for example, receptor maps [62] or anatomical laminar 324

details [63]. 325

Materials and methods 326

ECoG data 327

Intrinsic coupling modes were extracted from ECoG recordings of ongoing brain 328

activity in awake ferrets (Mustela putorius furo). Data were collected in five adult 329

female ferrets [40]. All experiments were approved by the Hamburg state authority for 330

animal welfare and were performed in accordance with the guidelines of the German 331

Animal Protection Law. 332

To obtain the recordings from an extended set of cortical areas in freely moving 333

animals, an ECoG array had been implanted that was co-developed with the 334

University of Freiburg (IMTEK, Freiburg) [64]. The array covered a large portion of 335

the posterior, parietal, and temporal surface of the left ferret brain hemisphere. 336
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Sixty-four platinum electrodes (� 250 µm) were arranged equidistantly (1.5 mm) in a 337

hexagonal manner. See Fig 1 for a schematic diagram of the ECoG layout. Ferrets 338

had been accustomed to a recording box (45×20×52 cm), where they could move 339

around freely while neural activity was recorded. For each animal, at least 4 separate 340

recording sessions with a duration of at least 2 hours had been obtained. ECoG 341

signals had been recorded using a 64 channel AlphaLab SnRTM recording system 342

(Alpha Omega Engineering, Israel), filtered (0.1–357 Hz bandpass), and digitized 343

(1.4 kHz sampling rate). A total of 23 recording sessions were obtained and analysed. 344

The position of ECoG grids was then projected onto a scaled illustration of the atlas 345

of Bizley et al. [42]. Data from each electrode were then allocated to the cortical area 346

directly underlying the corresponding ECoG contact. 347

Noise epochs were detected using a threshold of 10 standard deviations. Data were 348

rejected in a window of ± 10 s from all time points that exceeded this threshold. 349

Then, notch filters were applied to remove line noise and its harmonics (50, 100, and 350

150 Hz), and the data were downsampled to 700 Hz. All data were visually inspected 351

before further analysis to exclude electrical artefacts. In a previous study, brain 352

activity was objectively classified into slow-wave sleep, rapid-eye-movement sleep and 353

awake periods, using a data-driven approach [40]. The present study focused only on 354

data from awake periods, on average, 34 periods of 78 s per session across animals 355

(periods shorter than 10 s were discarded to increase statistical power). For each 356

animal and each period, a time-frequency estimate Xi(t, f) of signal xi(t) at electrode 357

i was computed by convolution with a series of Morlet’s wavelets. Carrier frequencies 358

were spaced logarithmically from 0.5 to 200 Hz. The width of the wavelets was set to 7 359

cycles. Spectral estimates were computed at a rate of 5 Hz. Then, phase and envelope 360

ICMs were computed between all pairs of electrodes using the measures of coherence 361

and power correlation, respectively, see Intrinsic coupling modes section. 362

Empirical ICM measures were first computed at the electrode level. To account for 363

inter-animal differences in the position of the ECoG-array and thus make cross-animal 364

comparisons possible, ICM matrices were calculated at the area-level using the atlas of 365

Bizley et al. [42]. Each electrode was assigned to a cortical area by a ‘winner-takes-all’ 366

method using its maximum overlap, and the average ICM values between these areas 367

were computed. In total, 13 areas were covered by the ECoG-array for all animals 368

(Fig 1). Subsequently, ICM matrices were averaged within canonical frequency bands: 369

0.5-3 Hz (δ); 4-7 Hz (θ); 8-15 Hz (α); 16-30 Hz (β); 30-100 Hz (γ) for condensed 370

representations. Finally, ICM matrices were averaged across awake periods within 371

each session per animal (session-level), then across sessions within each animal 372

(animal-level), and also across animals (group-level). Results on the animal- and 373

group-levels are presented in the main text, while results on the session-level are 374

reported in supplementary figures. 375

All data analysis was performed using custom scripts for Matlab (Mathworks Inc) 376

and the Fieldtrip software [65]. 377

Intrinsic coupling modes 378

Phase and envelope ICMs were estimated pairwise using the measures of coherence 379

and power envelope correlation, respectively. Coherence represents the analogue of the 380

classic correlation for frequency resolved data. Coherence is based on the normalized 381

cross spectral density (or coherency), it is a measure of the linear relationship between 382

oscillatory signals, where a high value corresponds to signals with similar amplitudes 383

and aligned phases. The coherency between signals at location i and j and for 384

frequency f , is given by 385
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Cohij(f) =
CSD ij(f)

√

CSD ii(f)CSDjj(f)
, (1)

where CSD ij(f) =
〈

Xi(t, f)X
∗

j (t, f)
〉

is the cross spectral density, with 〈〉 the 386

expected operator in time and ∗ the complex conjugate. The measure of coherence is 387

defined as the absolute value of the coherency, |Coh|. 388

Power correlation is a measure of the similarity between the power envelopes of the 389

recorded signals [12, 66,67]. Power envelope is given by the squared absolute values of 390

the complex spectral estimates. Furthermore, a logarithmic transform was applied to 391

render the statistics more normal. Then, the Pearson correlation between the resulting 392

power envelopes from two different locations i and j was computed 393

PEC ij(f) = corr(log(|Xi(t, f)|
2), log(|Xj(t, f)|

2)). (2)

Alternatively, we also explored measures robust to volume conduction effects. 394

Phase and envelope ICMs were estimated pairwise using the imaginary coherence and 395

orthogonal power envelope correlation, respectively. Imaginary coherence, the 396

imaginary part of coherency, |ℑ(Coh)|, eliminates the contribution of 397

volume-conducted signals by exclusively considering phase-lagged signal 398

components [57]. Orthogonal power envelope correlation, similar to imaginary 399

coherence, removes instantaneous covariations by orthogonalizing signals before 400

computing their power envelopes [12,58]. The time-frequency estimate Xi(t, f) 401

orthogonalized with respect to signal Xj(t, f) is given by 402

Xi⊥j(t, f) = ℑ

(

Xi(t, f)
X∗

j (t, f)

|Xj(t, f)|

)

. (3)

The orthogonalization being not symmetric, Xi⊥j(t, f) 6= Xj⊥i(t, f), power 403

envelope correlation was computed in both directions and subsequently averaged. 404

Structural connectivity 405

Ferret brain structural connectivity data were based on diffusion MRI tractography 406

covering the 13 areas available from the ECoG recordings [41]. High resolution MRI 407

were acquired ex vivo from a postmortem 2 month old ferret using a small animal 7 408

Tesla Bruker MRI scanner (Neurospin, Saclay, France). The ferret was euthanized by 409

an overdose of pentobarbital and perfused transcardially with 0.9% saline solution and 410

post-fixed with phosphate-buffered 4% paraformaldehyde (PFA). After extraction, the 411

brain was stored at 4◦C in a 4% PFA solution until the MRI acquisition. All 412

procedures were approved by the Institutional Animal Care and Use Committee of the 413

Universidad Miguel Hernández and the Consejo Superior de Investigaciones 414

Cient́ıficas, Alicante, Spain. 415

High resolution T2-weighted MRI data was acquired using a multislice multiecho 416

sequence with 18 echo times and 0.12 mm isotropic voxels. Diffusion MRI data were 417

acquired using a multislice 2-D spin-echo segmented EPI sequence (4 segments) with 418

the following parameters: TR = 40 s; TE = 32 ms; matrix size = 160×120×80; 0.24 419

mm isotropic voxels; 200 diffusion-weighted directions with b = 4000 s/mm2; and 10 420

b0 at the beginning of the sequence, diffusion gradient duration = 5 ms and diffusion 421

gradient separation = 17 ms. The total acquisition time of the diffusion MRI 422

sequences was about 37 hr. 423

Diffusion MRI were first visually inspected to exclude volume with artefacts. Then, 424

the following preprocessing steps were carried out: local principal component analysis 425

denoising [68], Gibbs ringing correction [69], FSL-based eddy current 426
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correction [70,71] and B1 field inhomogeneity correction [72]. A brain mask was 427

manually segmented from the high-resolution T2 volume. Spatial normalization using 428

a linear transformation between the high-resolution T2 volume and diffusion MRI 429

data was computed using FLIRT tools [73], and the brain mask was registered to the 430

diffusion space. Tractography was performed based on the fiber orientation 431

distribution estimated with a multishell multitissue constrained spherical 432

deconvolution (msmt CSD) [74]. Spherical harmonic order was set to 8. The response 433

functions were computed using the ‘dhollander’ algorithm which provides an 434

unsupervised estimation of tissue-specific response functions. The msmt CSD was 435

performed using a WM/CSF compartment model [75]. The streamline tractographies 436

were then produced following a probabilistic algorithm (iFOD2) [76]. One million 437

streamlines were tracked over the full brain with the parameters recommended by 438

MRtrix3: stepsize 0.12 mm, angle 45◦ per voxel, minimal streamline length 1.2 mm, 439

maximal length 2.4 cm. Streamline seeds were produced at random locations within 440

the brain mask until the defined number of streamlines was reached. To prevent 441

streamlines from going across sulci, the brain mask was used as a stopping criterion. 442

A structural connectivity matrix was extracted from the tractography output using 443

the number of streamlines connecting pairs of regions of a parcellation based on the 444

atlas of the posterior cortex by Bizley et al. [42]. The parcellation scheme was 445

manually drawn on the left hemisphere in the diffusion MRI space using the online 446

tool BrainBox (http://brainbox.pasteur.fr/). The structural connectivity matrix 447

was inherently symmetric as diffusion MRI tractography does not provide any 448

information about directionality. A matrix reporting the averaged fiber lengths 449

between regions was also computed. The structural connectivity network is 450

represented by the weighted matrix A, where the entries aij are the weights of the 451

connections, i.e., the number of streamlines, between pairs of areas i and j. 452

All data analysis was performed using custom scripts for Python 453

(http://www.python.org/) and the MRtrix3 software (http://www.mrtrix.org/). 454

Computational models 455

We employed computational models of various complexity: the spiking attractor 456

network model, a biologically realistic model of a large network of spiking neurons [77], 457

the Wilson-Cowan model, a popular neural-mass model of coupled excitatory and 458

inhibitory populations [78], and the spatial autoregressive model, a statistical model 459

capturing the stationary behavior of a diffuse process on networks [36]. All models 460

incorporated a parameter that represents the coupling strength between regions. This 461

parameter was optimized separately for each model, see Statistics section. The 462

structural connectivity matrix was normalized before simulations such that the 463

matrix’s rows sum to one [33,79,80]. 464

Spiking attractor network model 465

The SAN model is a detailed computational model based on spiking neurons and 466

realistic synapses. A description for the microscopic level, that is within areas, is 467

achieved by using a biologically realistic model of interconnected populations of 468

excitatory and inhibitory neurons. The postsynaptic activity is dependent on the 469

incoming synaptic input currents from other neurons through AMPA, NMDA and 470

GABA receptors, as well as from external background input modelled by Poisson spike 471

trains. Excitatory populations are interconnected at large-scale (inter-areal) via the 472

structural connectivity scaled by a global coupling strength factor. For a detailed 473

description of the model refer to [77], all parameter values (except the coupling 474

strength) were retained from the original study. 475
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We explored coupling parameter values from 0.1 to 10 by steps of 0.1. For each 476

coupling strength value, the SAN model was simulated at a sampling frequency of 10 477

kHz for 5 minutes. The resulting data were then downsampled to 1 kHz. Simulated 478

ICMs from the neuronal activity were extracted in a similar way as for the empirical 479

data from a time-frequency decomposition of the simulated signals. 480

Wilson-Cowan model 481

The WC model represents a network of neural masses describing the activity of an 482

ensemble of excitatory (E) and inhibitory (I) neuronal populations [30,78]. The 483

dynamics is governed by the following equations: 484

τE
∂Ei(t)

∂t
= −Ei(t) + φ



weeEi(t) + wieIi(t) + k
∑

j

aijEi(t− τij) + Ib + σνEi





τI
∂Ii(t)

∂t
= −Ii(t) + φ (weiEi(t) + wiiIi(t) + σνIi) ,

where Ei (resp. Ii) represents the average firing rate of the excitatory (resp. 485

inhibitory) population i, and τE (resp. τI) the excitatory (resp. inhibitory) time 486

constant. wab is the local connectivity strength between populations a and b, and k 487

represents the global coupling strength. A = {aij} represents the structural 488

connectivity matrix. Ib is a constant spontaneous background input. τij is the 489

propagation delay between regions i and j, based on the average fiber tract length 490

between regions scaled by the axonal velocity, v, i.e., τij = Lij/v. ν is a random 491

fluctuating input accounting for sources of biophysical variability, scaled by σ. The 492

transfer function φ accounts for the saturation of firing rates in neuronal populations 493

and is modeled by a sigmoid: φ(x) = [1 + e−(x−a)/b]−1. All parameter values (except 494

the coupling strength and the delay) were set as in [38]. 495

We explored coupling strength values from 0.025 to 1 by steps of 0.025, and mean 496

delay values from 0 to 50 ms by steps of 2 ms. For each pair of parameter values, the 497

WC model was simulated at a sampling frequency of 10 kHz for 5 minutes. The 498

resulting data were then downsampled to 1 kHz. As excitatory pyramidal cells 499

contribute most strongly to EEG/MEG/ECoG signals, we associate activity in the 500

excitatory populations of the model with signals in experimental data [81]. Simulated 501

ICMs from the neuronal activity were then extracted in a similar way as for the 502

empirical data from a time-frequency decomposition of the simulated signals. 503

Spatial autoregressive model 504

The SAR model assumes that fluctuating neuronal signals, x = {xi}, are related 505

through a model of structural equations, which relies on expressing each signal as a 506

linear function of the others and weighted by a global coupling factor k, leading to 507

x = kAx+ e. (4)

A represents the structural connectivity matrix, e is some additive noise that 508

stands for the part of the signal that cannot be accounted for by SC. It is usually 509

assumed to be normally distributed with zero mean and unknown covariance Σ, with 510

spatial and temporal independence. We here further assumed that the variance of e is 511

uniform across areas, reducing its covariance to a single constant value, Σ = σ2. 512

According to Eq 4, x is multivariate normal with covariance 513

(I − kA)−1σ2(I − kA′)−1, (5)
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where I stands for the identity matrix, and ′ is the regular matrix transposition. 514

This model is also known as the simultaneous autoregressive model [36], which has 515

been extensively used for the analysis of spatial data from diverse disciplines such as 516

demography, economy and geography [82,83]. 517

We explored coupling parameter values from 0.001 to 0.999 by steps of 0.02. The 518

SAR model provides a closed form for the covariance matrix that can be used to 519

directly compute the predicted ICMs via its normalization. Of note, the SAR model 520

does not provide frequency-resolved ICMs, we assume a common pattern across 521

frequency bands. 522

Model optimization 523

To evaluate the predictive power of the different models, we computed the Spearman 524

correlation as well as distance between simulated and empirical ICM matrices. The 525

distance (D) between two matrices A and B is defined as the root-mean-square 526

deviation, also known as the Frobenius norm, 527

D(A,B) =

√

∑

i>j

(aij − bij)2. (6)

Optimal model parameters should maximize the similarity between simulated and 528

empirical ICMs. This similarity was assessed using a simple objective function, 529

representing the distance between simulations and empirical data: 530

Obj (ICM , F,Ω) = D(ICM sim(Ω), ICMemp) [1− corr(ICM sim(Ω), ICMemp)] , (7)

where F denoted the frequency band of interest, Ω the set of model’s parameters, 531

ICM sim(Ω) the simulated ICM (either phase or envelope) according to the model’s 532

parameters Ω, and ICMemp the corresponding empirical ICM measure. Optimal model 533

parameters are those minimizing the sum of the objective functions averaged across all 534

frequency bands: 535

arg min
Ω

∑

F

Obj (ICM , F,Ω). (8)

We explored different strategies of optimization by either minimizing the objective 536

functions averaged over all ICM measures combining both original and lagged 537

measures (one parameter set; all), over only original (original) or only lagged (lagged) 538

ICM measures (two parameter sets), or for each ICM measure individually (four 539

parameter sets; individual). 540

Structural walks 541

Spectral graph theory relates the k-th power of the structural connectivity matrix A 542

with walks of length k, such that the sum of the weights of all walks of length k 543

corresponds to the entries of Ak. In order to investigate whether topological 544

information as reflected in the walks can predict empirical ICMs, we used a general 545

linear model, a weighted sum of the powers of A, to fit phase and envelope ICMs 546

separately and for each frequency band. 547

Statistics 548

In order to probe the structure-function relationships, we computed the Spearman 549

correlation between SC and phase and envelope ICM values for each frequency band, 550
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each animal and the group average. Additionally, we explored how much of the 551

structure-function relationships may be explained by distance (fiber length). We 552

computed the partial Spearman correlations between SC and phase and envelope ICM 553

values, controlling for the distance. We also computed marginal Spearman correlations 554

of both SC and ICMs with the distance. Similarity between phase and envelope ICMs 555

was quantified by means of the Spearman correlation between the respective patterns 556

for each frequency band, each animal and the group average. We computed also, for 557

each type of ICM, the interfrequency consistency, i.e., the similarity between all pairs 558

of frequency bands within each animal and the group average, and the interindividual 559

consistency, i.e., the similarity between all pairs of animals within each frequency 560

band. Since all brain connectivity measures are symmetrical, all correlation 561

coefficients were computed using the upper triangular part of each connectivity matrix 562

for the different scenarios. 563

In order to test the significance of the correlation coefficients and the significance 564

of the difference between correlation coefficients (e.g., the difference between the 565

correlation of pICMs with SC compared to the correlation of eICMs with SC) we used 566

a frequentist approach based on bootstrap resampling [84]. For each correlation 567

coefficient or pair of correlation coefficients, we generated 1 000 surrogate coefficients 568

by randomly sampling connectivity values with replacement. Then, the overlap of the 569

bootstrap distribution with zero was used to estimate the corresponding p-values. All 570

statistical tests were rejected at p < 0.01 significance. Correction for multiple 571

comparisons was performed by controlling the false discovery rate when 572

appropriate [85]. 573
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Pineda-Pardo J. Multimodal description of whole brain connectivity: a
comparison of resting state MEG, fMRI, and DWI. Human Brain Mapping.
2016;37(1):20–34. doi:10.1002/hbm.22995.

48. Colclough GL, Woolrich MW, Tewarie PK, Brookes MJ, Quinn AJ, Smith SM.
How reliable are MEG resting-state connectivity metrics? NeuroImage.
2016;138:284 – 293. doi:https://doi.org/10.1016/j.neuroimage.2016.05.070.

49. Bastos AM, Schoffelen JM. A Tutorial Review of Functional Connectivity
Analysis Methods and Their Interpretational Pitfalls. Frontiers in Systems
Neuroscience. 2016;9:175. doi:10.3389/fnsys.2015.00175.

50. Palva JM, Wang SH, Palva S, Zhigalov A, Monto S, Brookes MJ, et al. Ghost
interactions in MEG/EEG source space: A note of caution on inter-areal
coupling measures. NeuroImage. 2018;173:632–643.
doi:10.1016/j.neuroimage.2018.02.032.

51. Siems M, Siegel M. Dissociated neuronal phase- and amplitude-coupling
patterns in the human brain. NeuroImage. 2020;209:116538.
doi:10.1016/j.neuroimage.2020.116538.

52. Galindo-Leon EE, Stitt I, Pieper F, Stieglitz T, Engler G, Engel AK.
Context-specific modulation of intrinsic coupling modes shapes multisensory
processing. Science Advances. 2019;5(4). doi:10.1126/sciadv.aar7633.
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Supporting information

Fig S1. Structure-function relationships, statistics. (A) Significance of
correlation values between structural connectivity and phase and envelope ICMs
across frequency bands and animals. For each frequency band, each animal and the
group average (a), we represented the significance of the difference in correlation
(pICMs vs. eICMs) or the significance of the correlation (pICMs or eICMs) between
SC and ICMs (SC corr), between SC and ICMs when controlling for the distance (SC
pcorr), and between distance and ICMs (dist corr). We also represented the
significance of the difference in correlation of SC with ICMs across frequency bands
(SC corr cross-frequency). (B) Same as (A), when using lagged ICM measures.
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Fig S2. Structure-function relationships across animals when using original

ICM measures. (A) Correlation between structural connectivity and phase and
envelope ICMs across frequency bands, animals, and sessions when using original ICM
measures. For each ICM measure, each animal and each frequency band, we
represented the individual session correlations (bar chart representing means and
associated standard deviations), as well as the correlation for the average session (red
curve), between SC and ICMs (SC corr). (B) Same as (A) when controlling for the
distance (SC pcorr). (C) Same as (A) when correlating ICMs with distance (dist corr).
The green line represents the correlation between distance and SC.
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Fig S3. Structure-function relationships across animals when using lagged

ICM measures. (A) Correlation between structural connectivity and phase and
envelope ICMs across frequency bands, animals, and sessions when using lagged ICM
measures. For each ICM measure, each animal and each frequency band, we
represented the individual session correlations (bar chart representing means and
associated standard deviations), as well as the correlation for the average session (red
curve), between SC and ICMs (SC corr). (B) Same as (A) when controlling for the
distance (SC pcorr). (C) Same as (A) when correlating ICMs with distance (dist corr).
The green line represents the correlation between distance and SC.
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Fig S4. ICM similarity and consistency, statistics. (A) Significance of the
similarity of phase and envelope ICMs, and interfrequency and interindividual
consistency across frequency bands and animals. We represented the significance of
the correlation between pICM and eICM (cross-ICM), for each frequency band, each
animal and the group average (a); the significance of the correlation between ICMs
across frequency bands (cross-frequency), for each ICM measure, each animal and the
group average (a), and each pair of frequency bands; and the significance of the
correlation between ICMs across animals (cross-animals), for each ICM measure, each
frequency band and each pair of animals. (B) Same as (A) when using lagged ICM
measures.

June 22, 2020 29/35

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted June 29, 2020. ; https://doi.org/10.1101/500009doi: bioRxiv preprint 

https://doi.org/10.1101/500009


Fig S5. ICM similarity and consistency across animals when using original

ICM measures. (A) Correlation between phase and envelope ICMs. For each animal
and each frequency band, we represented the individual session correlations (bar chart
representing means and associated standard deviations), as well as the correlation for
the average session (red curve). (B) Interfrequency consistency of ICM patterns. For
each animal, each ICM measure, and each session, we represented all pairwise
correlations between frequency bands (bar chart representing means and associated
standard deviations). (C) Intraindividual consistency of ICMs measures. For each
animal, each ICM measure and each frequency band, we represented all pairwise
correlations between sessions (bar chart representing means and associated standard
deviations).
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Fig S6. ICM similarity and consistency across animals when using lagged

ICM measures. (A) Correlation between phase and envelope ICMs. For each animal
and each frequency band, we represented the individual session correlations (bar chart
representing means and associated standard deviations), as well as the correlation for
the average session (red curve). (B) Interfrequency consistency of ICM patterns. For
each animal, each ICM measure, and each session, we represented all pairwise
correlations between frequency bands (bar chart representing means and associated
standard deviations). (C) Intraindividual consistency of ICMs measures. For each
animal, each ICM measure and each frequency band, we represented all pairwise
correlations between sessions (bar chart representing means and associated standard
deviations).
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Fig S7. Predictive power of the computational models, statistics part 1. (A)
Significance of the correlation between simulated and empirical phase and envelope
ICMs across frequency bands. For each frequency band, each ICM measure, and each
optimization strategy (columns), we represented the significance of the correlation
between simulated and empirical ICM measures (including SC). (B) Same as (A) when
using lagged ICM measures.
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Fig S8. Predictive power of the computational models, statistics part 2. (A)
Significance of the difference between models in the correlation between simulated and
empirical phase and envelope ICMs across frequency bands. For each frequency band,
each ICM measure, and each optimization strategy (columns), we represented the
significance of the difference between all pairs of models (including SC) in the
correlation between simulated and empirical ICM measures. (B) Same as (A) when
using lagged ICM measures.
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Fig S9. Predictive power of the structural walks. (A) Correlation between
structural walks and empirical phase and envelope ICMs across frequency bands. For
each walk length (and their linear combination) and each frequency band, we
represented the individual correlations (bar chart representing means and associated
standard deviations), as well as the correlation for the group average (red curve). (B)
Same as (A) when using lagged ICM measures.
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Fig S10. Predictive power of the structural walks, statistics. (A) Significance
of the correlation between structural walks and empirical phase and envelope ICMs
across frequency bands. For each frequency band, each ICM measure, and each walk
length (and their combination), we represented the significance of the correlation
between structural walks and empirical ICM measures. (B) Same as (A) when using
lagged ICM measures.
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