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Correlations between maps. A large ensemble (n=106) of random GRNs was created by setting

Ng~U(1,24) and p(Bij≠0)~U(0,1), so that a variation in GRN size and connectivity were represented.

The same ensemble was used for the three models. Model-specific elements were randomly drawn:

Zij~U(-1,1);  Di~U(0,1).  For  each  random  GRN,  parameter-to-phenotype  maps  were  generated

through systematic (parametric) perturbations in each of the GRN elements. The element perturbed

was randomly chosen for each replicate (n=30) and given values from 0 to 1 at 0.1 intervals (in this

work, the input values of the different maps are of similar magnitude, an idealisation that allows us

to compare the evolutionary properties of the different maps). During these perturbations,  GRN

topology was always held fixed. Perturbations in Bij were conceptualised as genetic changes; in G0

as changes in the initial conditions (i.e., parental effects); and in Ej or Di as environmental changes

(Fig. 1). That way, the systematic perturbation of each element generated 10 different phenotypes

that were recorded in a two trait morphospace, constituting a map (GP map, PP map or EP map,

respectively). Note that our “maps” are not maps in a formal mathematical sense because they do

not retain the univocal relationship between the inputs and the outputs. However, they allow us to

compare different phenotypic distributions whose inputs have different units and magnitudes.

We focus on two-trait phenotypes because they embody the minimal multivariate system

where associations between traits can be found. These maps were compared, two by two, using two

measures of map-to-map similarity. The first is a coarse-grained measure: Pearson’s  r correlation

between the two linear slopes in the phenotypic morphospace (Fig. 2). In order to take into account

negative  and  close-to-zero  slopes,  the  original  slope  values  were  transformed  to

Sa=sgn(S)·Log(1+S),  so  that  negative  values  correspond to  negative  slopes,  and not  to  0<S<1

(therefore, the radially symmetric distribution of points around the origin (0,0) observed in in Fig.

2A suggests  that  individual  trait-trait  correlations  across  maps have similar  likelihood of being

positive or negative). Two maps a and b were said to be correlated or uncorrelated depending on

their  sectorial  position  in  this   correlational  (Sa,Sb)  space:  corr(a,b)↔|tan-1(Sa/Sb)-π/4|≤π/12,
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anticorr(a,b)↔|tan-1(Sa/Sb)+π/4|≤π/12, and not correlated otherwise (Fig. 2B).  The second, fine-

grained measure is the Euclidean distance (EDa,b) between maps a and b (Fig. S3):

EDa, b=√∑
j=1

10

(T aj 1−T bj1 )
2
+(T aj 2 −T bj 2)

2                                                                                              (5)

where Tijk is the value of trait k in the jth phenotype of map i. As Fig. S3A shows, EDa,b α|Sa/Sb|. As a

proxy for map complexity (Ca) we use the sum of the squared residuals of each map with respect to

its linear regression: the more a map departs from a perfect line the more complex it is:

Ca=∑
i=1

10

(T i2 − T i 1 Sa)
2                                                                                                                          (6)

where  Tij is the value of the trait  j of the  ith point (phenotype) of the map considered. For this

analysis  maps  were  re-scaled  to  (0<Tij<1)  values  in  order  to  avoid  size-effects  on  the  map

complexity (otherwise the squared residuals of maps with large phenotypic values would result in

artefactually higher complexity) (Fig. S3B). We assess the effect on map-map similarity (slopes and

map complexities) of GRN size (Ng) and connectivity p(Bij≠0) (Fig. S4), but not of GRN topology

itself as this is beyond the scope of this work (for a discussion on this see Salazar-Ciudad et al. 2000

and Jimenez et al. 2015).

Control experiments. Two control experiments were set up to better understand the causes of the

observed correlations between slopes  S and  map complexities  C. In the first,  with a probability

p={0.1,0.2,...1},  GRN  topology  was  changed  as  Mij→|Mij-1| and  the  GRN  input  values  as

x→x~U(0,1).  Then,  correlations  were recorded between the  maps arising  from the  unperturbed

GRN (S and C) and the randomized ones (S* and C*, Fig. S4). In the second control experiment, we

used a set  of randomly generated mathematical  functions  (polynomials  f(x) with known degree

deg(f)≤4) as a null, non-generative space in which we could test whether the observed correlations

between  map  complexities  are  a  general  property  of  any  mathematical  function  rather  than  a

biologically relevant phenomenon (argument and value of f(x) are considered to correspond to the

traits T1 and T2). A discrete “mapping” was created by assigning ten values to x={0.1,0.2,...1}, and

then calculating the corresponding y-values (Fig. S5):

y (≈T 2)=∑
i=0

4

R (i ) x (≈T 1)
i e− i                                                                                                                 (7)
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where  R is a vector of random numbers  R(i)~U(0,1)  and  e-i a corrective token that devalues the

high-degree  terms  of  the  function,  ensuring  that  polynomials  of  different  degrees  are  equally

represented.  If  necessary,  y-values  were  rescaled  to  (0<y<1,  as  in  Fig.  S3B),  so  that  the  map

complexity of the the function was measured under the same conditions as for GRNs.

Evolving maps. Several of our experiments involve the adaptive evolution of a map: a population

of  p(=64) haploid individuals picked from the random ensemble evolves in a mutation-selection-

drift scenario until a map with a target slope  ST is encountered, or until a maximum number of

tmax=105 generations is reached. Arbitrarily, ST is set to ST=1 (other choices do not alter the results,

see  Fig.  S6).  With  a  rate  of  0.05  (=1/Ngmax)  per  element  and  generation,  point  mutations  are

introduced in the matrices encoding the topology and interaction strengths of the GRN: Bij→Bij+ξ

(ξ~N(μ,σ); μ=0, σ=0.01); μ=0, σ); μ=0, σ=0.01=0.01) and  Mij→|Mij-1|. The fitness of each individual  Wi is calculated on the

basis of its ability to create a map similar to the target one (not on the basis of a single phenotype).

Thus,  each  individual  in  each  generation  is  exposed to  10  different  inputs  in  one  of  its  GRN

elements (the element depends on the map being evolved), and its slope Si in a T1-T2 morphospace

recorded and compared to the target slope  ST. This algorithm is formally equivalent to an inter-

generational variation in the inputs (De Jong 1995). The similarity with the target slope determines

the individual’s  fitness and, in turn, the probability of each individual to contribute to the next

generation:

W i=e
−|S i− ST|                                                                                                                                        (8)

Some of our experiments involve different levels of  selective grain on the maps, which has two

different components: intra-generational (i.e., how many different inputs (or points of the whole

map) can the population experience in a single generation) and inter-generational (i.e., how often

these inputs change, which can be conveniently expressed as the number of generations between

changes in the input values). For the sake of simplicity we collapse these two components in a

single composite measure of fine-grainedness as inputs/generation (Fig. 5, Fig. S7 and Fig. S8).

Since slopes alone cannot account for the number of points in a map, the fitness is now calculated

as:

W i=e− ED
mapi, map

T                                                                                                                                      (9)

where EDmapi,mapT is the Euclidean distance, point by point, between the individual’s map (mapi) and

the target map (mapT), as described in Eq. (5).
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Supplementary Figures:

Figure S1. General Phenotypic Distributions (GPDs). A general phenotypic distribution (GPD) is the total

amount of phenotypic variation that a given developmental mechanism (with a fixed GRN topology) can

produce  under  systematic  variations  of  all  their  phenotypic  determinants  (i.e.  genetic,  parental  and

environmental perturbations). The concept of GPD explicitly expands the previously proposed concept of

“variational  properties”  (See  Ref.  24)  in  order  to  incorporate  parental  variation.  This  figure  shows  15

different GPDs, each one  corresponding to a different but representative GRN of our random ensemble. For

each one, instead of varying one single GRN element at a time using ten pre-established values (0 to 1 at 0.1

intervals), we vary all of them simultaneously and in a more continuous manner (100 random values 0<x<1).

That is, instead of n=30 phenotypes (10 genetic+10 parental+10 environmental perturbations), we get n=106

(100x100x100) potential perturbations (and phenotypes) per GRN. Each point in these panels corresponds to

one of these 106  potential phenotypes in a T1-T2 morphospace (scaled to fit the the minimum and maximum

T1-T2 values of the GPD). The colour represents the density of points: regions with high density (calculated

on the basis of a 100x100 grid) are coloured in yellow, and regions with rare phenotypes are coloured in

purple.  Notice  that  the  GPD  has  two  levels  of  structure:  One  is  the  set  of  developmentally  possible

phenotypes (the occupied area of the morphospace), which as the panels show, is often discontinuous and

non-isotropic. The other is the different likelihood of the different phenotypes within this region (specially

the most probable phenotypes exemplified by the yellowish regions and ridges). This two-level structure of

the GPD suggests that development creates correlations between the maps (green and blue lines) because the

maps most likely contain phenotypes belonging to the ridges of maximal phenotypic probability (which are

often parallel or sub-parallel). Dashed white lines are the average slope of the GP, EP and PP maps (dark

green blue and light green lines, respectively). GRN + Multilinear model.
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Figure S2. Map-to-map correlation are robust across the different models considered. A large ensemble

(n=106) of random developmental mechanisms was generated by creating a random GRN (as in Fig. 2, see

SI1) and by assigning random values (U~(0,1)) to the remaining model-specific parameters (see Methods).

For  each  of  these  mechanisms,  systematic  parametric  variations  were  introduced  to  each  of  the  GRN

elements (genetic, initial conditions, environmental inputs). In the case of the lattice model, variation was

also  introduced  in  the  diffusion  rates  D.  Each  perturbation  on  an  element  generates  a  collection  of

phenotypes (a map) in a two-trait morphospace, characterised by a linear slope S and a map complexity C.

The  panels  show the  correlations  (Pearson’s r)  between pairs  of  slopes  (solid  lines)  and  pairs  of  map

complexities  (dashed  lines)  for  the  three  models  considered:  the  pure  GRN  Model  (A),  the  GRN  +

Multilinear model (B) and the lattice model (C). The schemas below panel (C) assigns a specific colour to

each map-map pair (notice that the three models are readily comparable because they map onto the same

two-trait morphospace and have similar ranges in the parametric variation). For each model, the randomly

generated mechanisms have been sorted according to their  number of genes (Ng) and GRN connectivity

(proportion of non-zero elements in the matrix B), to see how these topological features affect the map-to-

map  correlations  (left  and  central  panels).  In  addition,  for  each  mechanism the  correlations  have  been

recorded over a different number of developmental iterations (right panels). Overall, this figure shows that

Pearson  correlations  are  significant  (r>0.3)  across  the  different  models  considered  and  under  different

topological and developmental constraints. (D) Since the different mechanisms bear the same (n=106) GRNs,

we assess the effect of an increased model complexity in the correlations. Yellow lines show how adding

extra layers of complexity (e.g., a multi-linear layer or multicell reaction-diffusion processes) to a basic GRN

affects the map-to-map correlations. 
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Figure  S3.  Correlation  between  maps  is  robust  when  using  fine-grained  measures  of  phenotypic

distances. In addition to slope correlation (a coarse-grained measure of phenotypic distances) between maps,

we have also measured map-to-map similarity using the euclidean distances (ED) between them (a fine-

grained  measure  of  phenotypic  distances  that  takes  into  account  distances  between  pairs  of  individual

phenotypes). (A)  ED between paired maps for each GRN in our random ensemble are compared with the

slope similarity (absolute value of slope differences) between maps. We proceed that way because there is

not an a priori null expectation about which would be the minimum ED value above which the similarity

would be significant. The three panels show that slope similarity strongly correlates (Pearson’s r>>0.3) with

the Euclidean distance between any pair of maps. This implies that the former coarse-grained measure can be

confidently used as a proxy of map similarity, as it has been extensively used in most plots. In addition, we

have detected that complex parameter-to-phenotype maps (Log(C)>0), yellowish dots) have a much noisier

relationship  between  slope  differences  and  euclidean  phenotypic  distances  (EDs)  than  simpler  maps

(Log(C)<0), purple dots). This is probably due to the fact that, although complex maps tend to have larger

EDs between them, their linear slopes tend to be small, which explains the great scattering of yellow dots

below the diagonal. (B) The whole random ensemble is analysed now in terms of EDs alone. The frequency

plot shows a skewed multimodal distribution where the majority of maps have moderate  EDs≈2 between

them. This correspond to cases where both maps being compared show relatively simple, monotonic and

smooth trait covariation (see example maps above in a normalized T1-T2 space). A second peak in frequency

happens around  EDs≈6 account for the maps that, although still showing monotonic trait covariation (see

above), exhibit flipped slopes (a situation that is statistically more common than no-correlated maps, see Fig.

2B). This third peak (EDs≈8.5) contains either highly non-linear maps or pairs of maps where one them

shows no parametric sensitivity (a point in the  T1-T2 space, see top right panel). This third peak roughly

corresponds to the bulk of yellow off-diagonal points shown in (A). n=106. GRN + Multilinear model.
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Figure S4. GRN topology as the main contributor to phenotypic correlations. The figure summarizes a

stability test aimed to better understand the causal origins of the map-to-map correlations observed in Fig. 2

(specifically, if correlations arose from the developmental mechanism itself or from similarities on the input

parameter values). In order to discriminate between these two causal factors, we gradually randomize both

(with a probability  p={0.1,0.2,...1},  the GRN topology  was changed as  Mij→|Mij-1|  and the GRN input

parameters  as  x→x~U(0,1))  while recording if  the correlations between maps were still  retained or not.

Notice that in here correlations are established between maps arising from the unperturbed (elemental) GRN

(slopes S and map complexities C) and the perturbed, randomized ones ( S* and C*). (A) For every GRN in

our  random ensemble,  correlations  are  robust  against  input  randomization but  fall  dramatically  to  non-

significant values (r<0.3) when the GRN topology is allowed to change parametrically. The observed pattern

is very similar for both slopes (solid lines) and map complexities (dashed lines). This insensitivity to the

randomization in the input values (see SI1) suggests that they are not causally involved in the correlations

observed in Fig. 2A. On the contrary, correlations rather show a strong dependence with the GRN topology,

which embodies the dynamical developmental system that creates the phenotypes. (B) Each point plotted in

(A) represents a correlation measured in a two-dimensional spaces for slopes S or map complexities C (As in

Fig. 2A). We provide, as an illustrative example, two of these spaces corresponding to maps which arise

from genetic perturbations (spaces for other types of perturbations are very similar, Fig. 2A). In the upper

row,  all  the  maps  emerging  from a  set  of  genetic  inputs  x={0,0.1,0.2,…,1.0} are  compared  with  those

emerging from maximally randomized genetic inputs x~U(0,2). The limited scattering suggests that a given

GRN produces almost  identical  GP maps irrespective of the inputs  used.  Below, using the same set  of

genetic inputs x={0,0.1,0.2,…,1.0} and the same GRN ensemble, maps emerging from elemental GRNs and

from perturbed  GRNs  whose  topologies  have  been  fully  randomized  (Mij→|Mij-1|  ∀ Mij)  are  compared,

showing  that,  despite  having  identical  inputs,  they  produce  totally  unrelated  phenotypes.  r stands  for

Pearson’s correlation. Yellow areas in SGPM  vs S*GPM spaces (left plots in B) contain 90% of GRNs. n=106.

GRN + Multilinear model.
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Figure  S5.  Geometry  alone  does  not  explain  the  observed  positive  correlation  between  map

complexities.  The  aim  of  this  experiment  is  to  assess  whether  the  observed  correlation  between  map

complexities (Fig. 2C) is a general feature  mathematical functions or not. In order to do this, we analysed

the relationship between function complexities (measured the same way as map complexity C, see SI1) in a

large ensemble of random polynomial equations of known degree (deg(f)≤4), where the x,y variables of f(x)

are considered to correspond to the  T1 and  T2 traits (see SI1). (A) When two functions  f(x) and  g(x) are

randomly picked from the ensemble, no correlation between their map-complexities is observed. Colours

express  absolute  differences  between  slopes  (As  in  Fig.  2C).  (B)  A  positive  correlation  between  map

complexities only appears when the functions to be compared are first sorted according to their complexity

class, that is when deg(g(x)):=deg(f(x)). (C) The same as A, but colours now represent differences on the

degree of the functions (|deg(f(x))-deg(g(x))|) rather than differences between slopes. (D) The same as A, but

colours now denote the degree of the functions deg(f(x)) (since functions have been previously sorted, it is

the same as deg(g(x)).  Notice than in B and D, the correlation only appears as an inter-class effect simply

because the function complexity correlates with the degree of that function (deg(f(x)αC{f(x)}), but it is absent

within  the  same  class  functions.  This  suggests  that  development  creates  correlations  between  the  map

complexities by restricting the number of developmental outcomes to well-defined and mechanism-specific

possible general phenotypic distributions (GPDs, Fig. S1). n=106.
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Figure S6. Using negative slopes (anti-correlated traits) as a target does not change the general results

of map evolution.  This figure reproduces the same results of Fig. 3, but in this case  a target map with a

slope Sx=-1 (instead of Sx=1) has been used in the simulations. A comparison between both figures clearly

reveals that results of the experiments involving adaptive evolution of maps are very similar when using

different  (linear)  targets.  As  in  Fig.  3,  a  population  whose  individuals  initially  exhibit  no  particular

phenotypic distribution in t=0 (A, small panels) is evolved to fit a target phenotypic distribution using as an

input just one kind of phenotypic determinant. In each generation, one individual is exposed to 10 different

values (0<x<1) of this phenotypic determinant, thus producing a set of ten potential phenotypes whose slope

in a T1-T2 space is  compared with the target  to evaluate the individual’s fitness  Wi,  see SI1).  After  105

generations in a mutation-selection-drift scenario (where other sources of phenotypic variation are frozen),

population has a narrow phenotypic distribution in the evolved map (A, big panels). Then, we uncover the

hidden variation in the other maps by i) freezing the variation in the parameter that generated the evolved

map to  an intermediate  value and ii)  introducing  parametric  variation (0<x<1)  in  the  other  phenotypic

determinants (those that were kept fixed during the evolutionary trial). (B) Results reveal that evolving a

single map adaptively creates significant side-effect phenotypic distributions in the other maps that are not

the target of natural selection. (C) Correlations in the side-effect maps are significant irrespective of the

value at which the parameter of the evolved map is frozen.  p=64 individuals ;  n=30 replicates. GRN +

multilinear model.
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Figure S7. The structure of the GPD is determined by the map under more fine-grained selection. For

this experiment, two different maps (EP map and GP map), each one having a different selective grain, are

simultaneously evolved. (A) In order to discriminate between the effects of selection on the EP map and on

the  GP  map,  the  slopes  of  the  target  maps  are  maximally  different:  ST
EPM=(ST

GPM)-1.  Only  the  spatial

component  of  fine-grainedness  (how  many  “points”  in  the  evolving  maps  are  selectable,  see  SI1)  is

considered for this experiment. For instance, the white asterisk represents a population in which the fitness is

calculated taking into account four points of the EPM and eight points of the GPM (in both cases, in each

generation  the  these  points  are  randomly  selected  from a   set  of  10).  Colours  represent  the  ED-based

similarity  of  the  general  phenotypic  distribution  (GPD)  to  the  targets  after  t=104 generations

ED(GPD,GPMT)-ED(GPD,EPMT). Basically, yellowish colour indicates that trait covariation found in the

GPD closely resembles that of the ST
EPM, and bluish colour that of the ST

GPM. The resulting heatmap shows

that the structure of the GPD is determined by the map under more fine-grained selection. The pattern is

most clear when selection on one of the maps is very fine-grained (off-diagonal dashed lines) and in the

other map is very coarse-grained. When the  selective grain of the two maps is comparable, or when the

selection on a map is not very fine-grained, intermediate maps not attributable to any target are found. (B) As

in (A) but using non-linear targets (a random polynomial function with  deg(f)>2). As Fig. 5 shows, the

ability of the developmental  systems to evolve non-linear maps is  severely limited,  so here most of  the

evolved maps are different from both targets (if the target map is too non-linear, nor the genotype nor the

environment can be the leaders of adaptive change). n=30 replicates, p=64 individuals, GRN + multilinear

model.
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Fig. S8. Simpler maps evolve more easily than complex ones. As in Fig. 5, this figure shows the efficiency

of natural  selection in evolving certain maps (fitness achieved,  vertical  axis)  under different  regimes of

selective grain (the average number of parameter-phenotype points that can be “seen” by natural selection in

each generation, horizontal axis). In this experiment, however, we use also different non-linear functions

(random polynomials) as targets maps. (A) shows the same result shown in Fig. 5: Linear maps can be easily

evolved given certain degree of  selective grain. (B-C) generalise this result to non-linear target functions:

complex maps are hard to evolve even under fine-grained selection regimes. This suggests that the adaptive

evolution of very complex maps would require biologically unrealistic levels of  selective grain (although

they could be attained by means of non-adaptive mechanisms, see main text). For a given target complexity,

specially for simpler ones, maximal efficiency is generally achieved when single individuals can experience

more than one input per generation (Log(Input/Generation)>0, shadowy areas). Biologically, these high levels of

selection fine-grainedness can only be achieved by the Environment-to-Phenotype (EP) map (see main text

and Fig. 5). For the sake of clarity, only averages over the n=30 replicates are shown (points), and Log-scale

is used in the horizontal axis. Euclidean-distance (ED)-based fitness.  p=64 individuals;  t=104 generations,

GRN + Multilinear model. For each replicate, the target map is a polynomial function of known degree

(complexity) and arbitrary non-zero coefficients.
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