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Abstract Small RNAs (sRNAs) play a crucial role in the regulation of bacterial gene expression by12
silencing the translation of target mRNAs. SgrS is an sRNA that relieves glucose–phosphate stress,13
or “sugar shock” in E. coli. The power of single cell measurements is their ability to obtain14
population level statistics that illustrate cell–to–cell variation. Here, we utilize single molecule15
super–resolution microscopy in single E. coli cells coupled with stochastic modeling to analyze16
glucose–phosphate stress regulation by SgrS. We present a kinetic model that captures the17
combined effects of transcriptional regulation, gene replication and chaperone mediated RNA18
silencing in the SgrS regulatory network. This more complete kinetic description, simulated19
stochastically, recapitulates experimentally observed cellular heterogeneity and is used to describe20
the dynamics of SgrS stabilization by the chaperone protein Hfq.21

22

Introduction23
The ability of living cells to modulate their gene expression in response to changing environmental24
conditions is critical to their growth and continued development. Many bacteria use the phospho-25
enolpyruvate phosphotransferase (PTS) system to transport and phosphorylate incoming sugars26
to prepare them for subsequent glycolytic metabolism. The uptake of phosphosugars must be27
balanced with their breakdown in order to prevent metabolic stress. In E. coli, a stress response28
induced by unbalanced glucose–phosphate transport and metabolism or “sugar shock", is referred29
to as glucose–phosphate stress response. A primary activity of this stress response is RNA silencing30
of ptsG, a gene coding for the glucose transport protein of the same name (also known as EIICBGlc31
in E. coli), by the small RNA (sRNA) SgrS. Small RNAs are usually non–coding RNA molecules that32
act by base pairing with target messengers to regulate translation or mRNA stability and have33
been observed across all domains of life (Babski et al., 2014). sgrS is upregulated by a transcrip-34
tional activator (SgrR) when the cell is under a state of glucose–phosphate stress. SgrS regulates35
ptsG post-transcriptionally by a mechanism where SgrS binds to ptsGmessenger RNA (mRNA) and36
prevents its translation to protein by blocking access of the ribosome to the mRNA (Vanderpool and37
Gottesman, 2004;Maki et al., 2010). This also enhances the co-degradation of ptsGmRNA and SgrS38
via enzymes responsible for the removal of bulk RNA such as ribonuclease E (RNase E) (Kawamoto39
et al., 2006;Maki et al., 2010). The co-degradation reduces the number of PtsG sugar transporter40
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proteins that are produced and thus reduces the impact of glucose–phosphate stress, since fewer41
transport proteins are available to bring sugar into the cell.42
SgrS and ptsG mRNA associate via complementary base pairing that occludes the ribosome43

binding site on the mRNA. Recently, this mechanism has been analyzed in conjunction with binding44
of the Sm-like chaperone protein Hfq to SgrS, which stabilizes the sRNA, and facilitates the inter-45
action between the sRNA and mRNA (Ishikawa et al., 2012). Hfq also promotes SgrS–dependent46
regulation of other targets involved in sugar shock such as manXYZ, and yigL in E. coli. In this study,47
we focus only on the primary regulatory target ptsG and do not consider the other targets of SgrS48
regulon, which are described in Bobrovskyy et al. (2019).49
Previous experimental and theoretical work (Jones et al., 2014; Peterson et al., 2015) has demon-50

strated the necessity of accounting for gene replication over the course of the cell cycle in order51
to capture the population variation observed in messenger RNA abundance. The additional noise52
emanating from transcription at multiple gene loci manifests itself in observed broad mRNA copy53
number distributions in a population of cells. This work also demonstrated that including the54
effect of gene regulation by transcription factors can be critical in order to appropriately describe55
stochastic dynamics. The effect of transcriptional regulation is apparent in the SgrS–ptsGmRNA sys-56
tem, where the expression of SgrS is maintained by the regulator SgrR, which activates sgrS and57
autorepresses its own expression during glucose-phosphate stress conditions (Vanderpool and58
Gottesman, 2004, 2007b).59
Recently, Fei et al. (2015) presented a deterministic kinetic model of the SgrSmediated regulation60

of ptsGmRNA in E. coli. Using single-molecule fluorescence experiments (smFISH and STORM), SgrS61
and ptsG mRNA copy numbers in cells were measured, which produced distributions of RNA at62
various time points after the induction of sugar stress across a population of fast-growing E. coli.63
However, it is important to note that both the ptsGmRNA and the SgrS regulating it are present in64
low copy number (a few to tens of particles) and therefore exhibit intrinsically noisy behavior in65
both their gene expression and regulatory behaviors. For this reason it is most appropriate to treat66
the regulatory network via stochastic simulation in order to quantify the variation that is observed67
across a population of cells, which has been demonstrated previously (Elowitz et al., 2002; Raser,68
2005; Earnest et al., 2018).69
Here, we have developed a stochastic model, to our knowledge the first of its kind for RNA70

silencing, that captures the mRNA and sRNA distributions observed in a population of hundreds71
of E. coli cells. The stochastic model additionally incorporates the following features that extend72
the platform given by Fei et al. (2015): (1) accounting for gene replication, (2) transcriptional gene73
regulation of sgrS by its activator SgrR and (3) explicit representation of the SgrS stabilization via the74
Hfq chaperone protein. This model robustly describes experimentally observed RNA distributions,75
closely matching regulatory dynamics from immediately after induction until a steady state is76
reached 20 minutes later. We also utilize this model to analyze the effects of the size of the pool77
of Hfq chaperone protein available, the rate of Hfq binding to SgrS to stabilize it and enhance its78
binding to the target, ptsGmRNA, and the effect of an SgrS point mutation in the SgrS-Hfq binding79
region on the regulatory network.80

Model81
The previous kinetic model for SgrS regulation of ptsGmRNA (Fei et al., 2015) utilized simple mass-82
action kinetics to describe the target search process and modeled gene expression as a constitutive83
process, with RNA species originating from a single gene copy. Despite its simplicity, this model84
captures average regulatory network behavior and also gives insight into many of the parameters85
required for the more descriptive stochastic model that is the focus of this work. For example,86
since a binding rate for SgrS to ptsGmRNA was established in Fei et al. (2015) we are now able to87
complexify the model by the addition of the chaperone protein Hfq, which allowed us to predict (by88
fitting to the experimental data) the size of the pool of Hfq available to stabilize SgrS and the rate at89
which it binds the sRNA.90
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Figure 1. Schematic of the kinetic model as described in the text. The RNA species are transcribed from asampled genome state with sgrS capable of switching between an on and off state. Explicitly represented Hfqcan bind and unbind with SgrS, and then the Hfq–SgrS complex binds (and potentially unbinds) with ptsGmRNA.All degradation events are carried out by the enzyme RNase E. See Figure 4 for the kinetic equations describedabove.

The kinetic model was implemented and solved stochastically as a well-mixed Chemical Master91
Equation (CME) in the Lattice Microbes (LM) simulation software suite (Roberts et al., 2013; Hallock92
et al., 2014; Hallock and Luthey-Schulten, 2016; Peterson et al., 2013). The corresponding rate93
constants (Table 1) were adapted from the kinetic model described above (Figure 1). One important94
feature added to the model is the explicit presence of the chaperone protein Hfq, which has been95
shown to both stabilize SgrS (substantially increasing its half-life) and facilitate the association96
of SgrS to ptsG mRNA (Hopkins et al., 2011; Wagner, 2013; Vanderpool and Gottesman, 2004;97
Santiago-Frangos and Woodson, 2018). In order to capture the cell-to-cell heterogeneity due to the98
small number of particles (e.g., gene copies) involved in transcription, it is critical to account for99
transcriptional regulation of the genes involved in the glucose-phosphate stress response. For this100
reason, we include the transcriptional activation of sgrS by the transcription factor SgrR, which has101
been shown to upregulate expression in the presence of �MG (Vanderpool and Gottesman, 2007a,102
2004). Regulation of ptsG by the transcriptional repressor Mlc was not included in the model since103
repression is relieved in the presence of glucoside sugars. With �MG present, Mlc is sequestered at104
the membrane by binding the EIIB subunit of the PtsG transporter protein complex (Lee, 2000; Seitz105
et al., 2003; Nam et al., 2008), relieving repression and resulting in high levels of ptsG transcriptional106
activity (Balasubramanian and Vanderpool, 2013). Since the decay time of PtsG proteins is expected107
to be approximately on the order of eight hours (Maier et al., 2011), much longer than the timescale108
of mRNA decay, Mlc repressors are likely still sequestered by the transporters at the membrane109
and have little effect on the SgrS regulatory process. Rates for the association of the Hfq-SgrS110
complex to ptsGmRNA (kon) and the dissociation of the Hfq-SgrS-ptsGmRNA complex (koff ) were111
obtained from Fei et al. (2015), which did not include Hfq explicitly but provides the corresponding112
association and dissociation reaction rates. The value for the co-degradation rate of SgrS and ptsG113
mRNA from the Hfq-SgrS-ptsG mRNA complex by RNase E (kcat) is also obtained from Fei et al.114
(2015) (see Section ’Methods and Materials’).115

Calculation of Gene Copy Number116
Finally, and critically, in order to appropriately capture regulatory effects on gene expression117
of SgrS and ptsG mRNA, it is important to account for gene duplication, as we have previously118
shown (Peterson et al., 2015). As illustrated by Jones et al. (2014) since the approximate time to119
replicate the E. coli genome (approximately 40 minutes) (Cooper and Helmstetter, 1968) is longer120
than the fast-growing E. coli cell division time of 20 minutes (or the 35 minutes observed in our121
experiments), the cell has nested replication forks that are already replicating the genomes of122
daughter and granddaughter cells prior to cell division. In particular, genes close to the origin of123
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replication are likely to have multiple copies present over much of the cell cycle. This phenomenon124
has been shown previously for genes near the origin in E. coli by both isotopic labeling of nucleotides125
and imaging of fluorescent chromosome markers (Cooper and Helmstetter, 1968; Youngren et al.,126
2014). Due to the position of sgrS (only 6° away along the circular chromosome) very near to127
the origin of replication, it is likely that multiple gene copies are accessible for transcription over128
the course of the cell cycle. About half-way between the origin and terminus of replication (at129
approximately 90°) ptsG is also likely to have multiple gene copies present at some point over the130
course of the cell cycle, although at lower copy number than sgrS. Figure 2 depicts the two genes131
and their location along the circular E. coli genome.132
The experimentally measured cells were unsynchronized and should have multiple replication133

forks present over the course of the 20 minutes post–induction, our measurement window. To134
account for gene duplication effects in the population of unsynchronized cells, we sample the135
percentage of the cellular population in either a low or high gene state, which corresponds to the136
expected distribution of the number of genes present over the course of the cell cycle after induction.137
In this way, we effectively flip a coin to decide whether a simulation replicate corresponding to138
an individual experimentally imaged E. coli cell has 2 copies (low gene state) of or 4 copies (high139
gene state) of sgrS and similarly 1 or 2 copies of ptsG. This allows us to account for the effect of140
gene duplication in generating mRNA noise over the heterogeneous population of hundreds of141
E. coli cells that were observed experimentally. We assume that all gene copies are transcribed142
independently from one another and at the same rate, a notion thatWang et al. (2019) has recently143
examined in E. coli under various growth conditions. Under similar growth conditions to ours (MOPS144
glucose-based medium with a doubling time of 35 minutes, (see Section ’Methods and Materials’)),145
the data from Wang et al. (2019) suggest that transcription does appear to be independent and146
uncorrelated between copies of the same gene (Wang et al., 2019).147
Figure 3 illustrates the reasoning for the specific choices of high and low state gene copy148

numbers for ptsG and sgrS in an E. coli cell growing faster than the expected time necessary for149
replication (approximately 40 minutes, compared to an experimentally observed generation time of150
approximately 35 minutes) (Cooper and Helmstetter, 1968; Youngren et al., 2014).151

oriC sgrS

ptsG

terminus

sgrS ~ 6o

ptsG ~ 90o

Gene location:

Figure 2. The gene location for SgrS and ptsGmRNA relative to the origin of replication (oriC)are shown on the circular chromosome of the E.
coli cells used for this study. As it is closer to theorigin of replication sgrS (cyan) is likely to bepresent in higher gene copy number than ptsG (inorange), which is farther away from the oriC asshown.

Stochastic simulations were performed by sam-152
pling the CME for the model given in Figure 1153
with the widely used Gillespie Direct Method of154
the Stochastic Simulation Algorithm (SSA), which155
is available through the publicly available Lat-156
tice Microbes (LM) software suite (version 2.3157
was used) and its python interface pyLM (Roberts158
et al., 2013; Hallock et al., 2014; Hallock and159
Luthey-Schulten, 2016; Peterson et al., 2013). We160
ran 2000 replicate simulations for 25 minutes af-161
ter �MG induction of glucose-phosphate stress162
in order to match the corresponding 20-minute163
smFISH-STORM experiments. Initial conditions164
for basal SgrS (1-3 copies) and ptsG mRNA (30-165
40 copies) copy number were sampled from the ex-166
perimentally measured distributions and rounded167
to the nearest integer particle number. Simula-168
tions were computed on a local cluster containing169
AMD Opteron Interlagos cores.170

SgrS Regulatory Network Kinetic Model171
The kinetic model describing the reactions characterizing the E. coli glucose–phosphate response172
network by the small RNA SgrS is given in Figure 4. Simulation files are available in Jupyter Notebook173
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Cell Division Cycle

DNA Replication Cycle(s)

Figure 3. A simplified depiction of possible cellular states throughout a single DNA replication cycle. Each cellshows a snapshot of the gene state of a cell given its progression through the DNA replication and cell divisioncycle. Due to the difference in lengths of the cell division cycle (∼35 mins) and DNA replication cycle (∼40 mins),DNA replication and cell division are not completely in sync. Multiple replication forks (red dots) can form onthe genome in order to ensure DNA is duplicated properly in these fast-growing cells. As a result, genes closerto the origin such as sgrS (blue) are duplicated in the same timeframe that replication is initiated (resulting in 2or 4 gene copies), while genes closer to the terminus such as ptsG (orange) are replicated in the C period, theperiod when a majority of DNA is duplicated (resulting in 1 or 2 gene copies). The black arrows denote the startof a cycle.

format to be simulated via the Lattice Microbes (LM) Software Package at Add link to jupyter174
notebook.175

Results176
Figure 5 demonstrates the ability of our newly developed kinetic model to capture the average177
cellular copy number of SgrS and ptsGmRNA over the course of the 20minute period post-induction.178
The overlap of the interquartile range of both the experimental and simulated cellular populations179
demonstrates the agreement over a variety of cells (at different gene states (i.e high/low copy180
number), and RNA expression levels).181
The ability of our improved kinetic model to capture population-level statistics of single cell copy182

number distributions of SgrS and ptsGmRNA is demonstrated in Figure 6. Kernel Density Estimates183
(KDE), which are used to estimate the probability densities of distributions of approximately 100–184
200 experimentally measured cells and 2000 simulated cells are displayed, along with dashed185
vertical lines giving the average RNA copy numbers observed. KDEs were utilized to provide a186
reasonable comparison to the experimental values despite the fact that there were a relatively low187
number of cells measured at each time point (approximately 100–200) compared to the number188
of replicates required for appropriate stochastic simulation (2000). The distributions obtained189
from both experiment and the kinetic model show strong agreement (especially in the case of190
ptsG mRNA), which can be seen quantitatively by the starred line showing the Kulback–Leibler191
Divergence (KL Divergence) in Figure 7. The KL Divergence (Equation 2), which was minimized to fit192
to experimental RNA distributions over all time points, is a statistical measure used to characterize193
the difference between a probability distribution (the KDE of simulated cells) and a reference194
distribution (the KDE of experimentally measured cells).195
The parameters obtained from the fitting process give some insight into the role of stabilization196

by Hfq in the SgrS-ptsG mRNA target search process and the role of transcriptional regulation197
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by SgrR in the regulatory network. The pseudo first order rate of Hfq binding to SgrS (kbind ) is198
0.063 s−1, while the degradation rate of SgrS (kds), obtained from Δhfq strain experiments (described199
in Section ’Methods and Materials’), is 0.022 s−1. The available Hfq pool size of 250 predicted200
by fitting to the kinetic model seems reasonable in that average proteomics values have been201
found to be on the order 1500 (Taniguchi et al., 2010; Santiago-Frangos and Woodson, 2018) and202
unique sRNAs have been shown to be bound to 10 to 1000 copies of Hfq in E. coli (Melamed et al.,203
2020) (Appendix 1–Effects of Varying Available Hfq Pool Size). Additionally, the aforementioned204
SgrS-Hfq binding rate kbind corresponds well to experimentally measured in vitro values for sRNA-205
Hfq binding for sRNA of its approximate size (Santiago-Frangos and Woodson, 2018; Fender et al.,206
2010; Hopkins et al., 2011). If the pseudo first order rate for kbind reported in Table 1 is converted207
to a bulk second order rate by incorporating the Hfq concentration at the predicted available208
pool size of 250, we obtain a binding rate of 1.5 × 105 M−1 s−1. This value agrees better with the209
reported value of approximately (Santiago-Frangos and Woodson, 2018) 106 M−1 s−1 for long RNAs210
binding to Hfq (Fender et al., 2010; Lease and Woodson, 2004) than 108 M−1 s−1 reported for short,211
unstructured RNAs binding to Hfq (Hopkins et al., 2011)). Since SgrS is a relatively long sRNA (sRNA212
have typically been found to be between 37–300 nt (Wang et al., 2015a)) with a length of 227213
nucleotides, the slow sRNA–Hfq binding rate obtained by fitting seems appropriate. This type214
of slow sRNA association process has been suggested to be characterized by RNA restructuring215
(by which Hfq remodels sRNA regions in order to make its secondary structure more accessible216
for target mRNA base pairing) (Antal et al., 2004; Bordeau and Felden, 2014; Soper et al., 2011;217
Soper and Woodson, 2008), which has been proposed to occur for SgrS (Maki et al., 2010). kbind is218
also much greater than the Hfq–SgrS unbinding rate (kunbind ) of 0.0018 s−1 which was obtained from219
fitting to the degradation rate of SgrS in a cell where Hfq was expressed (distinct from the Δhfq220

Figure 4. Kinetic Equations of the SgrS regulatory network. Don,p1,2 refers to the gene (or DNA) for ptsG in 1 (lowstate) or 2 (high state) copies and Don,s2,4 corresponds to the gene for sgrS in 2 (low state) or 4 (high state)copies. Don,s corresponds to sgrS when it is in the “ON" state due to activated or solute bound transcriptionalactivator SgrR being bound (Vanderpool and Gottesman, 2007b). kds corresponds to the experimentallymeasured degradation rate of SgrS when cellular Hfq is not present and kunbind corresponds to theexperimentally measured degradation of SgrS when Hfq was present.
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Figure 5. Average time trace and interquartile range (IQR) of labeled SgrS (left) and ptsGmRNA (right) from both85–169 cells from smFISH experiments (red) and 2000 replicates from kinetic model simulations (blue). Thekinetic model shows strong agreement, especially at long times (10-20 minutes) after induction and capturesoverall response behavior. An available pool of 250 Hfq and the kinetic parameters given in Table 1 wereutilized. Results considering both lower and higher available Hfq pools are discussed in Appendix 1–Figure 1.

Figure 6. Distributions of Wild-Type SgrS (top) and ptsGmRNA (bottom) at various time points from 0 to 20minutes post-induction. Data from smFISH-STORM experiments (red, 100–200 cells per time point) andstochastic simulations (blue, 2000 cells per time point) are shown as kernel density estimates. The effect ofnumber of cell replicates is studied further in Appendix 1–Figure 3. Average copy number at each time point isare displayed with dashed vertical lines.
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Table 1. The list of parameters used for the kinetic model. The % in each gene state refers to percentage of cellswith the gene being in a low or high gene copy state as described in . a) kbind is a Pseudo first order rateaccounting for the average expected pool size of Hfq participating in SgrS stabilization and enhancement (250).When converted to the corresponding bulk second order rate with 250 Hfq present kbind agrees well with therange of Hfq binding rates measured for other sRNA reviewed in (Santiago-Frangos and Woodson, 2018) anddiscussed further in Results
Parameter Value Unit Source

kt,p 0.12 s−1 Experimentally Measured
�p 3.7 × 10−3 s−1 Experimentally Measured

kon,Ds 3.0 × 10−2 s−1 fit
koff ,Ds 9.5 × 10−3 s−1 fit
kt,s 0.33 s−1 fit
kds 0.022 s−1 Δhfq decay rate of SgrS
kbind 0.063a s−1 fit
kunbind 0.0018 s−1 SgrS decay rate
kon 3.1 × 10−4 molec−1s−1 Fei et al. (2015)
koff 0.22 s−1 Fei et al. (2015)
kcat 0.3 s−1 Fei et al. (2015)

% high, low gene state sgrS 25, 75 % fit
% high, low gene state ptsG 46, 54 % fit

Hfq pool size (available to SgrS Regulon) 250 molec fit

rate) by assuming that Hfq–SgrS unbinding is the rate-limiting step in the degradation of free SgrS221
represented in Figure 4 Reaction 2.2. These results seem reasonable in that SgrS should associate222
with Hfq at a rate comparable to its degradation as well as that SgrS-Hfq binding should happen223
at a significantly higher rate than their dissociation for sRNA chaperone stabilization by Hfq to be224
effective.225
The kinetic values for transcriptional regulation by the activator SgrR also seem reasonable with226

a kon,Ds of 3.0 × 10−2 s−1 and a koff ,Ds of 9.5 × 10−3 s−1. The gene switching parameters correspond to227
sgrS activation via SgrR binding occurring approximately 30 seconds after initiation of induction,228
with all sgrS genes assumed to start in the “OFF" state (the effect of starting genes in the “OFF"229
versus the “ON" state is given in Appendix 1–Figure 2). This seems reasonable since SgrS sRNA230
moves from a basal level of a few copies to greater than 40 copies on average in two minutes time231
(Figure 5). The fact that kon,Ds is 3 times greater than koff ,Ds means that activation happens more232
frequently than deactivation from unbinding of SgrR. The relative behavior is somewhat expected233
as sugar shock has been induced and SgrR is believed to be transformed to its active conformation234
as a transcriptional factor for sgrS by binding to a small molecule at its C-terminus (Vanderpool235
and Gottesman, 2004, 2007b). While the available evidence suggests that the activity of SgrR due to236
solute binding rather than sgrR expression affects activation of sgrS, it has been demonstrated that237
SgrR is negatively autoregulated (Vanderpool and Gottesman, 2007b) which may lead to a ceiling238
on the level of sgrS activation that can occur even after glucose-phosphate stress is fully induced.239
Thus, we incorporate constant rates of kon,Ds and koff ,Ds for sgrS activation in our model, instead of a240
time variant rate constant for either parameter.241

Comparison of Goodness of Fit Based on Model Complexity242
To illustrate the improvement of the kinetic model to describe cellular populations, we compare243
simulation results sequentially as each level of complexity (i.e., transcriptional regulation by SgrR,244
gene replication, and stabilization by the chaperone protein Hfq) is added to the original reduced245
model presented in Fei et al. (2015). Figure 7 demonstrates the improvement in descriptiveness at246
both an average and population level with progression to a more fine–grained kinetic model. The247
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relative error of the average copy number of SgrS and ptsGmRNA gives the capability of the model248
to reproduce experiments on an average level, while the Kulback–Leibler Divergence (KL Divergence)249
shows the agreement between the experimentally observed and simulation distributions of RNA250
copy numbers at a series of times from 0 to 20 minutes post induction.251
The Relative Error used to illustrate the agreement between the experimentally measured252

average RNA copy number and the theoretical value is given by:253

� =
|

|

|

|

|

Expavg − Simavg
Expavg

|

|

|

|

|

(1)
The KL Divergence used to compare agreement between experimental and simulated distribu-254

tions is given by:255

DKL (P ||Q) =
∑

i
P (i) log

P (i)
Q(i)

(2)
where P(i) is the continuous probability distribution given by the Gaussian KDE of the experi-256

mental copy number distribution of RNA (SgrS or ptsGmRNA) and Q(i) is the analogous simulated257
RNA copy number distribution.258

It is clear that the decrease in the KL Divergence (Equation 2), describing the ability of the kinetic259
model to accurately describe heterogeneity, is most substantial in the final model presented in this260
work (star markers). Accounting for transcriptional regulation by SgrR, ongoing gene replication,261
and the stabilizing effect of Hfq allows for a more faithful description of the noise observed in a262
cellular population in the process of sugar shock response.263

Characterizing the Effects of SgrS PointMutation onAssociation toHfq and ptsGmRNA264
The stochastic model we have presented can also be utilized to characterize the effects of sgrS point265
mutations on the regulatory network as a whole. The polyU tail region of sgrS comprising the final 8266
residues of the 5’ end (all of which are uridine in the sRNA) has previously been shown to be an267
important site for Hfq recruitment (Otaka et al., 2011). When the polyU tail is truncated or similarly268
disrupted, there is a noticeable decrease in SgrS regulatory efficiency. With this in mind, we used269
the previously defined kinetic model (See Figure 4) to characterize the effect of a point mutation270
resulting in a U to G change in SgrS at position 224 (in the polyU tail region, hereafter referred271
to as U224G) of the sRNA on regulatory kinetics. This point mutation is well downstream of the272
seed region (nucleotides 168–187) where SgrS-ptsGmRNA base pairing occurs (Maki et al., 2010;273
Bobrovskyy and Vanderpool, 2014) so it should not directly interfere with sRNA–mRNA interactions.274
It is also important to consider the possible structural effects arising from polyU tail mutation.275
Through in silico folding (Appendix 1–Figure 5) with the RNA structure prediction tool mFold (Zuker,276
2003), we confirmed that the stability of the U224G with a ΔG of −17.60 kcal∕mol is unchanged from277
the predicted wild-type value of −17.60 kcal∕mol, indicating that sRNA structure is conserved and278
the measured wild-type ΔHfq degradation rate (see Section ’Methods and Materials’) is appropriate279
for use in fitting the U224G mutant data (as a rate for Figure 1, rxn 2.2).280
We then fit to the experimentally measured SgrS and ptsGmRNA distributions using the previ-281

ously determined kinetic model. A robust fit describing both average behavior as well as population282
level variation (Figure 8, Appendix 1–Figure 4) was achieved primarily by modulating the rates of283
SgrS to Hfq binding and unbinding and the ptsGmRNA annealing rates kon and koff (which were284
also free parameters in this treatment) to a much lesser extent, which further demonstrates the285
role of the polyU tail in Hfq chaperone recruitment.286
The changes in the kinetic parameters of the model used to fit mutant U224G relative to the287

wild-type cells (WT) illustrate the effects of this mutation on SgrS-Hfq association, relative to the288
subsequent annealing of SgrS to its target ptsGmRNA (Table 2).289
The 48% decrease in the SgrS-Hfq binding rate kbind and 66% increase in the unbinding rate of290

the sRNA and chaperone complex kunbind highlight the effects of polyU tail disruption, and support291
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Figure 7. Statistical analysis of the agreement of sRNA and mRNA copy number between experiment andtheory on both an average (Relative Error) and distribution (Kulback–Leibler: KL Divergence) level. KLDivergence values for the model with no Hfq stabilization nor Gene Duplication are not shown as the valuesobtained are at 1.0, corresponding to significant disagreement in that model variant and experiment. GeneDuprefers to a model with Gene Duplication for both SgrS and ptsG implemented and Reg refers to a model withtranscriptional regulation of SgrS by SgrR in place. The green line (with star markers) indicates the full kineticmodel used for this study, which provides the best fit to both average and population level data for both SgrSand ptsGmRNA.
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Figure 8. For U224G mutant cells, average time trace and interquartile range (IQR) of labeled SgrS (left) and
ptsGmRNA (right) from both 85-169 cells from smFISH experiments (red) and 2000 replicates from kineticmodel simulations (blue). The kinetic model shows strong agreement, especially at long times (10-20 minutes)after induction and captures overall response behavior. An available pool of 250 Hfq and the kinetic parametersgiven in Table 1 were utilized, other than changes to SgrS-HFq binding and unbinding rates and ptsGmRNA annealing and dissociation rates given in Table 2.

previous conclusions that this is an important site for Hfq stabilization of SgrS (Otaka et al., 2011),292
and the regulatory efficiency of the network as a whole. The smaller relative changes in the SgrS-ptsG293
mRNA annealing rates kon and koff by 32% and 22% respectively may be due to altered interactions294
with Hfq that impair Hfq–dependent annealing of SgrS and ptsGmRNA (Appendix 1 – Effects of295
SgrS Point Mutation on Regulatory Kinetics). In light of the previously discussed slow SgrS–Hfq296
association process, it is reasonable that RNA restructuring of Hfq may be disrupted by mutation297
U224G, thus leading to slower and weaker annealing to ptsGmRNA. One possible explanation for298
the disturbance of regulation in mutant U224G is the disruption of orderly transcription termination299
(the polyU tail at the 3’ end of sgrS). Such readthrough transcription has previously been ascribed to300
decrease the efficiency of SgrS binding to Hfq (Morita et al., 2015, 2017).301

Discussion302
The construction of a stochastic kinetic model including gene replication, transcriptional regulation,303
and the role of the Hfq chaperone protein demonstrates the utility of combining single cell experi-304
ments with stochastic modeling. The SgrS Regulatory Network is a noisy system characterized by305
small numbers of sRNA and mRNA, as well as gene copy numbers that vary from cell-to-cell. This306
leads to the population level heterogeneity that can then be used to parameterize a kinetic model307
for analysis of the role of specific molecular actors, such as the chaperone Hfq, and the effects of308
point mutation on sRNA silencing of mRNA.309
The average number of Hfq hexamers present in an E. coli cell has been reported to be on310

the order of 1400 to 10000 (2 �M - 15 �M) (Santiago-Frangos and Woodson, 2018; Taniguchi311
et al., 2010; Wiśniewski and Rakus, 2014; Mancuso et al., 2012; Wang et al., 2015b). It is worth312
noting that an extensive microfluidic-based, single-cell proteomics study that analyzed over 4000313
individual E. coli cells grown in similar media conditions as our study (Taniguchi et al., 2010) found314
a mean Hfq level of 1500. Additional immunoprecipitation and sequencing studies have shown the315
number of various individual mRNAs and sRNAs being bound to Hfq to range from 10s to 1000 in E.316
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Table 2. The list of kinetic parameters for SgrS-Hfq association (kbind and kunbind ) and annealing with ptsGmRNA (kon and koff ) for wild-type (WT) cells as well as SgrS mutant U224G (Reactions in Figure 4). Thesubstantial decrease in the values of kbind and kunbind demonstrate the disruption of Hfq binding thataccompanies the mutation in the polyU tail, which has been observed previously (Otaka et al., 2011). Thesmaller relative changes in the ptsGmRNA annealing rates may be due to disruption of RNA restructuring (Antal
et al., 2004; Bordeau and Felden, 2014; Soper et al., 2011; Soper and Woodson, 2008) of SgrS by Hfq thathampers association to the mRNA target.

Parameter Mutant Value % Difference from WT
kbind

U224G 0.033 s−1 −48%
WT 0.063 s−1

kunbind
U224G 0.003 s−1 +66%
WT 0.0018 s−1

kon
U224G 2.1 × 10−4 molec−1s−1 −32%
WT 3.1 × 10−4 molec−1s−1

koff
U224G 0.27 s−1 +22%
WT 0.22 s−1

coli (Melamed et al., 2020). Thus, our prediction (from fitting) that a pool of approximately 250 Hfq317
(0.5 �M) are available to bind with SgrS sRNA at any time in the simulation of sugar shock regulation318
seems reasonable.319

In addition, our approach allowed us to characterize the rate of Hfq-SgrS association compared320
to values for reported for Hfq stabilization of other regulatory sRNAs. If the pseudo first order Hfq321
binding rate kbind reported in Table 1 is converted to a bulk second order rate we obtain a binding322
rate of 1.5 × 105 M−1 s−1 which agrees reasonably well with the reported value (Santiago-Frangos323
and Woodson, 2018) of approximately 106 M−1 s−1 for long RNAs binding to Hfq (Fender et al., 2010;324
Lease and Woodson, 2004) (compared to the value of to 108 M−1 s−1 for short, unstructured RNAs325
binding to Hfq (Hopkins et al., 2011)). SgrS is a relatively long sRNA with a length of 227 nucleotides326
(sRNAs have been observed with 37-300 nt (Wang et al., 2015a)), therefore the slow sRNA-Hfq327
binding process that we describe does seem likely and could be due to RNA restructuring of328
SgrS (Maki et al., 2010; Antal et al., 2004; Bordeau and Felden, 2014; Soper et al., 2011; Soper and329
Woodson, 2008) by Hfq in order to promote binding with ptsGmRNA. It is thought that cellular sRNA330
and mRNA are present in large excess over Hfq (Wagner, 2013), so nearly all cellular Hfq hexamers331
are thought to be bound to RNA. Since cellular mRNA in E. coli are thought to be on the order332
of approximately 2000-8000 copies (Bartholomäus et al., 2016) (much greater than the highest333
measured SgrS sRNA value of 200) the available Hfq pool size that we present is representative of334
the relative competitiveness (and time-dependent cycling) of SgrS for Hfq relative to its other RNA335
targets.336
The study of mutant U224G shows the importance of Hfq stabilization in the SgrS regulatory337

network as a whole and seems to corroborate previous findings (Otaka et al., 2011) that highlight338
the importance of the polyU tail for Hfq association with SgrS. The substantial decrease of the339
Hfq-SgrS binding rate and increase in the related unbinding rate relative to the ptsGmRNA annealing340
rates further down the network obtained from fitting confirms this point (Table 2). The changes341
in the SgrS-ptsG mRNA annealing rates kon and koff seem to support conclusions from the wild-342
type cells that Hfq-SgrS binding may result in some restructuring of the sRNA that makes this a343
slow process. This may explain the lower efficiency in ptsGmRNA association observed in mutant344
U224G, since Hfq cannot bind SgrS as effectively due to mutation at the polyU tail. Therefore,345
the restructuring of SgrS by Hfq necessary to facilitate ptsGmRNA association is also hampered,346
resulting in slower and less stable mRNA binding (a decrease in kon and an increase in koff ).347

In conclusion, by incorporating gene replication, stabilization by the chaperone protein Hfq, and348
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transcriptional gene regulation of sgrS we have developed a kinetic model capable of describing the349
cellular heterogeneity observed in the E. coli sugar shock response network. Stochastic simulation350
of the kinetic model allows us to take full advantage of the single-molecule fluorescence data that351
illustrates cell-to-cell variability in a collection of hundreds of cells. While the post-transcriptional352
regulation and silencing of ptsG mRNA by the sRNA is the critical feature, accounting for gene353
replication, transcriptional regulation, and stabilization gives a more robust picture of the regulatory354
network as a whole. In addition, complexifying the model highlights the importance of stabilization355
by Hfq and chaperone proteins in general in RNA silencing networks and allowed for a prediction of356
the rate of association of SgrS and Hfq, the effective available Hfq pool size for the SgrS regulon357
under sugar stress conditions, as well as an analysis of an SgrS point mutation in one of the358
presumed Hfq binding modules (the polyU tail). The model presented in this work establishes a359
framework for models analyzing the other regulatory targets of SgrS along with spatially-resolved360
models describing SgrS target search kinetics.361

Methods and Materials362
Wild type E. coli cells (DJ480) were grown overnight at 37 ◦C, 250 rpm in LB Broth. The SgrS U224G363
mutant was grown in LB Broth with 50 �g/ml spectinomycin (Spec) (Sigma-Aldrich). The next day,364
overnight cultures were diluted 100-fold into MOPS EZ rich defined medium with 0.2% glucose365
and the cells were grown until OD600 reached 0.15–0.25. �-methyl D-glucopyranoside (�MG) (Sigma366
Aldrich) was then added to provoke glucose-phosphate stress and induce a SgrS expression re-367
sponse. Specific volumes of liquid were removed from the culture at 0, 2, 4, 6, 8, 10, 15, and 20368
minutes after induction and mixed with formaldehyde (Fisher Scientific) to a final concentration of369
4% for cell fixation prior to single molecule experiments.370
Following fixation, the cells were incubated and washed, before being permeabilized with 70%371

ethanol, to allow for fluorescence in situ hybridization (FISH). Stellaris Probe Designer was used372
to design the smFISH oligonucleotide probes that were ordered from Biosearch Technologies373
(https://www.biosearchtech.com/). Each sRNA was labeled with 9 Alexa Fluor 647 probes while each374
ptsGmRNAwas labeled with 28 CF 568 probes. The labeled RNAmolecules were then imaged via the375
super-resolution technique STORM (Stochastic Optical Reconstruction Microscopy). A density-based376
clustering analysis algorithm (DBSCAN) (Daszykowski et al., 2001) was utilized to calculate RNA377
copy numbers. The algorithm used was the same as previously published (Fei et al., 2015), but378
the Nps and Eps values were updated for the SgrS and ptsGmRNA images, since CF 568 was used379
instead of Alexa Fluor 568 and a 405 nm laser to reactivate the dyes. The SgrS (9 probes labeled380
with AlexaFluor 647) images were clustered using Nps = 3 and Eps = 15 and the ptsG mRNA (28381
probes labeled with CF 568) images were clustered usingNps = 10 and Eps = 25 and these numbers382
were empirically chosen. A MATLAB code was used for cluster analysis.383
The raw data was acquired using the Python-based acquisition software and it was analyzed384

using a data analysis algorithm which was based on work previously published by Babcock et al.385
(2013). The peak identification and fitting were performed using the method described previously.386
The z-stabilization was done by the CRISP system and the horizontal drift was calculated using Fast387
Fourier Transformation (FFT) on the reconstructed images of subsets of the super-resolution image,388
comparing the center of the transformed images and corrected using linear interpolation.389
The ptsGmRNA degradation rates were calculated via a rifampicin-chase experiment. The wild390

type (DJ480) E. coli cells and Δhfq mutant strain SA1816 [DJ480, laclg, tetR, spec, Δhfq::kan] cells391
were grown in LB Broth with the respective antibiotics at 37 ◦C, 250 rpm overnight. They were used392
to calculate the RNA degradation rates. The Δhfq::kan allele was moved to create strain SA1816393
constructed by P1 transduction (Miller, 1972). When the OD600 reached 0.15–0.25, rifampicin (Sigma-394
Aldrich) was added to cultures to a final concentration of 500 �g/ml. The cells were labeled by395
smFISH probes and analyzed by the same process described above, taking the time of rifampicin396
addition or �MG removal as the 0 time point. Aliquots were taken after 0,2,4,6,8,10,15, and 20397
minutes (0,2,4,6, and 8 minutes for ΔHfq strains). For the purpose of background subtraction, ΔSgrS398
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and ΔptsGmRNA strains were grown, labeled with probes and imaged in the same manner to be399
used for the measurement of the background signal due to the non-specific binding of Alexa Fluor400
647 and CF 568. The natural logs of the RNA copy numbers were plotted against time and the slope401
of the linear fitting was used to calculate the RNA lifetime and then the degradation rates. SgrS402
degradation rates were obtained from Fei et al. (2015), where they were measured by stopping403
the transcription of sgrS by removing �MG from the media and then were imaged and analyzed to404
calculate the degradation rates in the same manner as was described for ptsGmRNA. The values for405
kcat, kon, and koff for WT cells were confirmed to be within the errors reported for the values given406
in (Fei et al., 2015) by fitting to the experimentally measured RNA counts with the simplified model407
given in that work. The transcription rate of ptsG was determined using kt.p = �p × [p]0, (as described408
in Fei et al. (2015)), where [p]0 was the average initial level of ptsGmRNA before stress induction.409
The transcription rate obtained was unchanged between the wild-type and the U224G mutant cells.410
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Appendix 1551

Effects of Varying Available Hfq Pool Size552
The available pool of Hfq utilized in the model represents the fraction of cellular Hfq hex-
amers bound to SgrS as opposed to other targets and thus the relative binding strength of
SgrS compared to other RNAs stabilized by the chaperone. Previous work (Melamed et al.,
2020) has shown that the typical number of Hfq bound to a given sRNA varies widely across
sRNA species. If an even smaller pool of cellular Hfq is assumed to be available for SgrS
binding under sugar shock conditions the average behavior of SgrS experimentally observed
can be more exactly captured (Appendix 1–Figure 1). However, this comes at a loss of the
population level noise observed in the measured RNA distributions because fewer SgrS can
be stabilized and so it decays on a much faster timescale, resulting in a loss of cell-to-cell
variation. When additional Hfq is added to the available pool such as the 800 available in
the simulations shown in Appendix 1–Figure 1 the opposite behavior can be seen. SgrS
exhibits greater population level heterogeneity, but with a less robust fit to the average
behavior that is experimentally observed. We propose that this creates more noise because
SgrS is less likely to be present in its free form an decays more slowly when it is associated
with ptsGmRNA and Hfq (kon is small relative to kds) than it would when it is not stabilized byHfq (Figure 4, rxn 2.2 versus rxn 4 followed by rxn 5).
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569
Appendix 1 Figure 1. Left: Trace and interquartile range (IQR) of SgrS sRNA and ptsGmRNA mRNAwhere simulations include a smaller pool of 200 Hfq available (versus 250 in main text simulations).While averages can be more tightly fit, the population level variation observed for SgrS is minimizedeven further from what is observed experimentally, including at long times post-induction. Right: Asimilar plot of Trace and IQR with Hfq available pool size equal to 800. Here the population levelvariation is larger (especially at long times post induction), but the initial average traces are less wellcaptured.

570
571
572
573
574
575
576577

18 of 21

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted July 1, 2020. ; https://doi.org/10.1101/2020.06.30.178566doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.30.178566


Manuscript submitted to eLife

Effects of Initial Gene State578

579
Appendix 1 Figure 2. Distributions of Wild-Type SgrS (top) and ptsGmRNA (bottom) at various timepoints from 0 to 20 minutes post-induction. Data from smFISH–STORM experiments (red, 100-200 cellsper time point) and stochastic simulations (blue, 2000 cells per time point) are shown as kernel densityestimates. Average copy number at each time point is displayed with dashed vertical lines.
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Of interest from amore technical standpoint, is the state of the sgrS genes at time = 0min-
utes in the simulation. While, in principle these genes should be in the “OFF" state and
unable to be transcribed since induction has yet to begin it is interesting to understand
the effects of initial gene state on population level noise. Consider the following example,
when all SgrS genes begin in “ON" state. While the average behavior a times from 4 to
10 minutes is poorly captured, the RNA distributions are well-described at 15 and 20 min-
utes post-induction (Appendix 1–Figure 2). This model assumes an immediate switch of
the sgrS genes due to induction. While unrealistic when taken at face value, it is reasonable
to assume the induction occurs on the order of seconds, since the amount of SgrS increases
by a factor of 10 from its basal value by 2 minutes post-induction (Figure 5) and since binding
of the SgrR activator for sgrS is mediated by binding to a small molecule (i.e glucose-6 phos-
phate), which presumably takes some interval of time. The smaller kon,Ds and koff ,Ds values(2.0 × 10−3 s−1 and 6.5 × 10−4 s−1 versus 3.0 × 10−2 s−1 and 9.5 × 10−3 s−1, respectively) used in
Figure 4 Rxn 2.0 relative to those given in Table 1 then lead to a wider range of population
distributions at late times due to longer dwell times (i.e. up to 5 minutes) for the sgrS gene in
the “OFF" state compared to the a typical dwell time of less than 1 minute in the “OFF" state
when the more appropriate regulatory values (3.0 × 10−2 s−1 and 9.5 × 10−3 s−1) are used for
kon,Ds and koff ,Ds respectively.
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Effects of Increased Cell Replicate Number603
The number of E. coli cells that are simulated or have their RNA distributions experimentally
measured is of great importance when considering a process characterized by stochasticity.
A certain number of cells must be observed to accurately capture both the average behavior
and cell-to-cell variability that emanates from a kinetic regulatory system (Taniguchi et al.,
2010; Elowitz et al., 2002; Raser, 2005).
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Appendix 1–Figure 3 shows the effect of number of cells measured on the average and
standard deviation of the SgrS simulated at 20 minutes post-induction. The bootstrapping
technique presented allows for the selection of an individual E. coli cellular replicate with
replacement up to N cells. The vertical dashed line in each figure shows the expected average
and standard deviation values produced from bootstrapping with N=85, the number of cells
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experimentally measured at time 20 minutes post-induction. This highlights the possible
error in both mean copy number (5-10 copies) or population level variation (5-10 copies) that
could be accrued due to insufficient sampling.
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Appendix 1 Figure 3. Bootstrapping of SgrS sRNA simulated at 20 minutes post sugar shock induction.The x axis gives the number of samples taken (N) with replacement out of a total 2000 independentsimulation trajectories in the bootstrapping procedure. The vertical dashed line at N=85 shows thenumber of cells experimentally imaged at this time point. It takes thousands of simulated cells beforethe SgrS mean and population level variation noise begin to relax to the calculated values.
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Effects of SgrS Point Mutation On Regulatory Kinetics624
In order to fit to mutant U224G the same parameters were utilized other than the SgrS-ptsG
mRNA binding and unbinding rates kbind and kunbind and the ptsGmRNA association rates konand koff . The same gene state (high versus low gene copy number) percentages for sgrS and
ptsG as for the wild-type cells were used as well as the same “available" Hfq pool size of 250
hexamers. The distributions (as kernel density estimates) shown in Appendix 1–Figure 4 for
both SgrS and ptsGmRNA were obtained via the fitting process.
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Appendix 1 Figure 4. Distributions of polyU tail mutant U224G for SgrS (top) and ptsGmRNA (bottom)at various time points from 0 to 20 minutes post-induction. Data from smFISH–STORM experiments(red, 100-200 cells per time point) and stochastic simulations (blue, 2000 cells per time point) areshown as kernel density estimates. Average copy number at each time point is are displayed withdashed vertical lines.
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In order to attempt focus on a point mutation that primarily showed a disruption in
SgrS-Hfq association we sought a mutant in which SgrS secondary structure would not be
significantly disrupted, leading to a higher free degradation rate of SgrS. Via in silico folding
using the RNA structure prediction tool mFold (Zuker, 2003), we confirmed that the stability
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of the U224G with a ΔG of −17.60 kcal∕mol is unchanged from the predicted wild-type value
of −17.60 kcal∕mol, indicating that sRNA structure is conserved. The predicted U224G mutant
structure also shows similar shape to that of the wild-type (Appendix 1–Figure 5) and does
not show any additional stem loop formation as did other mutants. Thus, an assumption
that the measured wild-type ΔHfq degradation rate (see Section ’Methods and Materials’) is
appropriate for use in fitting the U224G mutant data is reasonable.
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WT SgrS

U224G

648
Appendix 1 Figure 5. Flattened predicted sRNA structures for wild-type (WT) SgrS (left) as well as theU224G mutant (right) studied in this work obtained via mFold in silico folding. Red: the SgrS-ptsGmRNA baseparing region, Blue: the polyU tail, with the mutated residue circled in the U224G structure.The predicted structures show similar conformation as well as identical free energies (−17.60 kcal∕mol),indicating that SgrS secondary structure is likely not significantly destabilized by the U224G pointmutation in the polyU tail.
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