
SUPPLEMENTARY INFORMATION FOR: H-Mem: Harnessing
synaptic plasticity with Hebbian Memory Networks

Thomas Limbacher
Institute of Theoretical Computer Science

Graz University of Technology
8010 Graz, Austria

thomas.limbacher@igi.tugraz.at

Robert Legenstein
Institute of Theoretical Computer Science

Graz University of Technology
8010 Graz, Austria

robert.legenstein@igi.tugraz.at

July 1, 2020

S1 Model and training details

Here we give details to our models, and to the encoding and representation of images and questions used in our models.

S1.1 Details to: Flexible associations through Hebbian plasticity

Model details We used a CNN as input encoder in this task. The CNN consisted of 11 weight layers with the
following structure: 5 × (Conv2D→ BatchNorm→ Conv2D→ BatchNorm→MaxPooling→ Dropout)→ Fully
connected→ BatchNorm→ Dropout, with 32, 64, 128, 256, and 512 filters, respectively. Each with a kernel size of
3 × 3 (stride = 1, padding="same") and ELU nonlinearity [1]. We used a 2 × 2 pool size in the max pooling layers.
The dropout rate was set to 0.1, 0.1, 0.2, 0.3, 0.3, and 0.3, respectively. The last fully connected layer was of size 128
followed by a ReLU nonlinearity (BatchNorm denotes a batch normalization layer [2]).

Training details We used the MNIST and the CIFAR-10 data set in this task (we kept the default train-test split of
these data sets; data sets from the TensorFlow data set API). Training examples were generated as described in the
main text. We trained on 12 500 examples and tested on 2230 examples. The optimal hyper-parameters were selected
through grid search on a held-out validation set which was 10% of the training set. The model was trained with Adam
[3] using a learning rate of µ = 0.001, that was decayed exponentially (starting at epoch 50) with a decay rate of 0.01.
The weights were initialized using the He uniform variance scaling initializer [4]. We applied L2 regularization to
the weights. The L2-norm of these weights was scaled by 0.001 before adding it to the loss. The hetero-associative
memory module was represented by a square matrix of order m = 200 and was initialized with all its elements set to
zero. Plasticity coefficients were set to γ+ = 0.01 and γ− = 0.01, and wmax was set to 1. The networks were trained
for 100 epochs with a batch size of 32. Gradients with an L2-norm larger than 10.0 were normalized to have norm 10.0.
We performed two independent runs with different random initializations and report the results of the model with the
highest validation accuracy in these runs.

S1.2 Details to: Question answering through Hebbian plasticity

Model details We evaluated three different representations for the sentences. The first one is the standard bag-of-
words (BoW) representation. It embeds each word wt,j of a sentence xt = {wt,1,wt,2, . . . ,wt,J} and sums the
resulting vectors: et =

∑
j Awt,j . Here, A is the embedding matrix. As [5] pointed out, this representation has the

drawback that it can not capture the order of the words in the sentence, which is important for some tasks. We therefore
used a representation that encodes the position of the words within a sentence (as proposed in [5]). The authors call this
type of representation position encoding (PE), which takes the form: et =

∑
j lj ◦Awt,j , where ◦ is the Hadamard

product. The column vector lj with one-based indexing has the structure lkj = (1− j/J)− (k/d)(1− 2j/J), where
J is the number of words in the sentence and d the embedding size. We found it helpful to let the model choose for

itself which type of sentence encoding to use. As proposed in [6], we therefore used a learned encoding (LE) given by
et =

∑
j fj ◦Awt,j . The vectors fj were constant across time steps and were trained jointly with the other parameters

of our model. By using this type of encoding the model can adapt the sentence representation to best suit the task at
hand. It can either choose a BoW representation (by setting all elements in fj to one), a position encoding, or any
encoding beneficial to the task.

In order to enable our models to capture the temporal context of a task, we used a temporal encoding for sentences as
introduced in [5]. This encoding uses a special matrix TA that encodes temporal information. The modified sentence
representation is then given by et =

∑
j Awt,j + rowt(TA) (BoW), et =

∑
j lj ◦ Awt,j + rowt(TA) (PE), and

et =
∑

j fj ◦ Awt,j + rowt(TA) (LE), where rowt(TA) is the tth row of the matrix TA. Note that TA was learned
during training and that sentences are indexed in reverse order, so that x1 is the last sentence of a story.

Answers to questions in the bAbI QA tasks are typically a single word. In a few tasks, answers are a set of words (e.g.,
task 8: Lists/Sets). In this case, we considered each answer as one word in the vocabulary (i.e., there was one output
class for each word pair that could be a target output).

We found it helpful to apply a batch normalization layer at the output of the input encoder of our model.

Training details The optimal hyper-parameters were selected through grid search on a held-out validation set which
was 10% of the bAbI training set. We used version 1.2 of the data set (we kept the default train-test split of the data
set). The model was trained with Adam [3] using a learning rate of µ = 0.003, that was reduced by 15% every 20
epochs. The weights and the embedding matrices were initialized using the He uniform variance scaling initializer [4].
We found it helpful to apply L2 regularization to W s

key, W s
val, and W q

key. The L2-norm of these weights was scaled
by 0.001 before adding it to the loss. The embedding dimension d was 80. The hetero-associative memory module
was represented by a square matrix of order m = 100 and was initialized with all its elements set to zero. Plasticity
coefficients were set to γ+ = 0.01 and γ− = 0.01, and wmax was set to 1. In our recurrent model, the number of
memory queries N was set to 3. The networks were trained for 100 epochs with a batch size of 128 (200 epochs with a
batch size of 32 in the 1k training example setting). Gradients with an L2-norm larger than 20.0 were normalized to
have norm 20.0. Since the number of sentences and the number of words per sentence varied within and between tasks,
a null symbol was used to pad them to a fixed size. The embedding of the null symbol was constraint to be zero. We
observed rather high variance in the model’s performance for some tasks. We therefore performed three independent
runs with different random initializations and report the results of the model with the highest validation accuracy in
these runs (similar to previous work [5], [6]).

2

S2 Results on 1k QA data set

Table S1: Test error rates (in %) on the 20 bAbI QA tasks for models using 1k training examples. Keys: BoW =
bag-of-words representation; PE = position encoding representation; LE = learned encoding.

Baseline H-Mem

Task LSTM MemN2N EntNet BoW PE LE

1: Single Supporting Fact 50.0 0.0 0.7 0.0 0.0 0.0
2: Two Supporting Facts 80.0 8.3 56.4 65.5 66.1 66.7
3: Three Supporting Facts 80.0 40.3 69.7 66.1 67.9 66.2
4: Two Arg. Relations 39.0 2.8 1.4 43.6 0.0 0.0
5: Three Arg. Relations 30.0 13.1 4.6 30.6 26.6 28.8
6: Yes/No Questions 52.0 7.6 30.0 32.6 33.6 30.3
7: Counting 51.0 17.3 22.3 19.3 18.1 17.6
8: Lists/Sets 55.0 10.0 19.2 12.7 12.1 11.0
9: Simple Negation 36.0 13.2 31.5 28.8 28.1 28.7
10: Indefinite Knowledge 56.0 15.1 15.6 41.9 43.0 40.5
11: Basic Coreference 38.0 0.9 8.0 2.5 3.3 2.6
12: Conjunction 26.0 0.2 0.8 0.0 0.0 0.0
13: Compound Coref. 6.0 0.4 9.0 4.0 2.0 3.8
14: Time Reasoning 73.0 1.7 62.9 24.5 29.4 26.4
15: Basic Deduction 79.0 0.0 57.8 18.8 0.0 0.0
16: Basic Induction 77.0 1.3 53.2 54.2 55.2 57.0
17: Positional Reasoning 49.0 51.0 46.4 41.1 43.9 44.5
18: Size Reasoning 48.0 11.1 8.8 45.3 8.3 8.0
19: Path Finding 92.0 82.8 90.4 88.3 90.0 86.8
20: Agent’s Motivations 9.0 0.0 2.6 0.0 0.0 0.0

Mean error 51.3 13.9 29.6 31.0 26.4 25.9
Failed tasks (err. > 5%) 20 11 15 15 13 13

3

S3 Comparison of our feed-forward and our recurrent model on QA data set

In Table S2 we compare our feed-forward model to our recurrent model. We compare the performance of these models
in terms of their mean error, error on individual tasks, and the number of failed tasks. We observed a variety of tasks
that could be solved by our recurrent model but not by the feed-forward model. Figure S1 shows some examples of
bAbI tasks along with the evolution of the validation error over 100 epochs of our H-Mem models on these tasks.

Table S2: Test error rates (in %) on the 20 bAbI QA tasks for our feed-forward model N = 1 and our recurrent model
N = 3 using 10k training examples (mean test errors for 1k training examples are shown at the bottom). Results for
N = 3 match those reported in Table 1 of the main manuscript. Keys: BoW = bag-of-words representation; PE =
position encoding representation; LE = learned encoding.

H-Mem (N = 1) H-Mem (N = 3)

Task BoW PE LE BoW PE LE

1: Single Supporting Fact 0.0 0.0 0.0 0.0 0.0 0.0
2: Two Supporting Facts 63.9 64.9 64.2 0.2 0.0 0.2
3: Three Supporting Facts 56.6 59.0 58.6 30.5 24.9 26.9
4: Two Arg. Relations 42.5 0.0 0.0 37.8 0.0 0.0
5: Three Arg. Relations 9.1 4.3 4.1 11.6 1.8 1.3
6: Yes/No Questions 11.2 9.6 12.2 1.2 1.5 1.2
7: Counting 0.6 0.6 0.8 0.5 6.8 0.8
8: Lists/Sets 0.4 0.8 0.4 0.7 0.8 0.5
9: Simple Negation 14.8 14.6 15.5 2.9 6.6 3.3
10: Indefinite Knowledge 21.8 22.6 21.3 1.4 1.5 1.5
11: Basic Coreference 5.4 1.0 0.1 0.0 0.0 0.0
12: Conjunction 0.0 0.0 0.0 0.0 0.0 0.0
13: Compound Coref. 2.3 3.8 2.3 0.0 0.0 0.0
14: Time Reasoning 7.9 7.9 7.9 0.0 0.3 1.1
15: Basic Deduction 14.0 0.4 1.0 10.6 0.0 0.0
16: Basic Induction 53.4 55.3 54.2 53.6 54.3 54.8
17: Positional Reasoning 41.2 38.0 38.8 38.7 41.1 28.7
18: Size Reasoning 43.6 3.1 4.8 44.3 6.8 1.9
19: Path Finding 83.0 76.4 74.7 74.8 70.0 77.1
20: Agent’s Motivations 0.0 0.0 0.0 0.0 0.0 0.0

Mean error 23.6 18.1 18.0 15.4 10.8 10.0
Failed tasks (err. > 5%) 14 9 9 8 7 4

On 1k training data
Mean error 33.2 28.5 28.2 31.0 26.4 25.9
Failed tasks (err. > 5%) 17 16 16 15 13 13

4

Task 19: Path Finding

The kitchen is south of the office.
The bedroom is north of the office.
The bathroom is east of the office.
The bedroom is east of the hallway.
How do you go from the office to the hallway?
 n,wAnswer:

Mary moved to the bathroom.
John went to the hallway.
Daniel went back to the hallway
Sandra moved to the garden.
Where is Daniel?
 hallwayAnswer:

Task 1: Single Supporting Fact

Sandra journeyed to the garden.
Sandra went back to the bedrooom.
John went to the hallway.
Daniel journeyed to the bathroom.
Is Sandra in the office?
 noAnswer:

Task 6: Yes/No Questions

Julie is either in the cinema or the park.
Mary is in the cinema.
Bill travelled to the cinema.
Fred is in the kitchen.
Is Julie in the park?
 maybeAnswer:

Task 10: Indefinite Knowledge

Figure S1: Sample stories from the bAbI data set and evolution of the validation error of H-Mem for this task.
A) Example story from task 1 of the bAbI data set and evolution of the validation error over 100 epochs of the
feed-forward (blue) and recurrent (green) H-Mem model. Both models solved this task since it requires only one
memory query to answer the question. B) Same as in A) but for task 6 of the bAbI data set. The recurrent model solved
this task but not the feed-forward model. C) Same as in A) but for task 10 of the bAbI data set. The recurrent model
solved this task but not the feed-forward model. D) Same as in A) but for task 19 of the bAbI data set. Both models had
failed to solve this task.

5

References

[1] D.-A. Clevert, T. Unterthiner, and S. Hochreiter, “Fast and accurate deep network learning by exponential linear
units (elus),” arXiv preprint arXiv:1511.07289, 2015.

[2] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep network training by reducing internal covariate
shift,” arXiv preprint arXiv:1502.03167, 2015.

[3] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” arXiv preprint arXiv:1412.6980, 2014.
[4] K. He, X. Zhang, S. Ren, and J. Sun, “Delving deep into rectifiers: Surpassing human-level performance on

imagenet classification,” in Proceedings of the IEEE international conference on computer vision, 2015, pp. 1026–
1034.

[5] S. Sukhbaatar, J. Weston, R. Fergus, et al., “End-to-end memory networks,” in Advances in neural information
processing systems, 2015, pp. 2440–2448.

[6] M. Henaff, J. Weston, A. Szlam, A. Bordes, and Y. LeCun, “Tracking the world state with recurrent entity
networks,” arXiv preprint arXiv:1612.03969, 2016.

6

	Model and training details
	Details to: Flexible associations through Hebbian plasticity
	Details to: Question answering through Hebbian plasticity

	Results on 1k QA data set
	Comparison of our feed-forward and our recurrent model on QA data set

