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Abstract7

Consistent identification of neurons and neuronal cell types across different observation8

modalities is an important problem in neuroscience. Here, we present an optimization9

framework to learn coordinated representations of multimodal data, and apply it to a10

large Patch-seq dataset of mouse cortical interneurons. Our approach reveals strong11

alignment between transcriptomic and electrophysiological profiles of neurons, enables12

accurate cross-modal data prediction, and identifies cell types that are consistent across13

modalities.14
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The characterization of cell types in the brain is an ongoing challenge in contemporary neu-20

roscience. Describing and analyzing neuronal circuits using cell types can help simplify their21

complexity and unravel their role in healthy and pathological brain function.1–6 However,22

the effectiveness of such approaches rests on the existence of cellular identities that manifest23

consistently across different observation modalities, and our ability to identify them. Recent24

single cell RNA sequencing (scRNA-seq) experiments have provided a detailed window into25

the transcriptomic organization of cortical cells in the mouse brain.7,8 Technological develop-26

ments have enabled collection of large Patch-seq datasets that include electrophysiological and27

transcriptomic properties for the same set of neurons.9,10 The problem of aligning multimodal28

data for cell type research is challenging due to complexity of biological relationships between29

modalities, difficulties in measuring signal and quantifying noise in each modality, and the high30

dimensional nature of these datasets. Recent works to align single cell -omic measurements31

have largely focused on removing experimental batch effects, or on estimating correspondences32

between individual samples across unpaired modalities.11,12 For Patchseq-data, there are neither33

overlapping features nor known associations across the modalities. However the same samples34

are measured in each modality, and our goal is to formulate consistent cell identities. We35

present a new deep neural network based methodology referred to as coupled autoencoders that36

addresses the issue of data alignment, and demonstrate its utility for the multimodal cell type37

identification problem using a Patch-seq dataset with transcriptomic and electrophysiological38

profiles of 3,411 mouse cortical interneurons.939

Coupled autoencoders consist of multiple autoencoder networks, each of which consists of40

encoder and decoder subnetworks. These subnetworks are nonlinear transformations that41

project input data into a low dimensional representation, and back to the input data space42

respectively, Figure 1a. In learning these transformations, the goal is to simultaneously maximize43

reconstruction accuracy for each data modality as well as similarity across representations for44

the different modalities. In particular, hyper-parameter � controls the relative importance45

of achieving accurate reconstructions versus learning representations that are similar across46

modalities.47

We find that low-dimensional representations of transcriptomics and electrophysiological mea-48

surements can be aligned to a high degree, while capturing salient characteristics of neurons49

in the individual data modalities. This strongly supports the hypothesis that molecular and50

electrophysiological properties of individual neurons are closely related, reflecting attributes51

of a common cell type, albeit through a complicated mapping. Importantly, although linear52

transformations13,14 can align the major cell classes, a more detailed alignment of features53

and cell types is revealed only through non-linear transformations that avoid pathological54
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representations.55

Using the aligned representations, we show that unsupervised clustering can identify ⇠33 classes56

of GABAergic interneurons in the mouse visual cortex that are consistent across transcriptomic57

and electrophysiological characterizations of this neuron population. Additionally, these classes58

are in agreement with a reference transcriptomic taxonomy of cortical cell types.7 Our method59

is general and can be extended to accommodate additional modalities of interest such as60

morphology and connectivity, as the datasets mature. We further demonstrate how coupled61

autoencoders trained on a reference dataset such as the one in this study can serve as a62

dictionary for smaller, single modality datasets to accurately identify cell types as well as63

predict data for unobserved modalities.64

Aligned 3-d representations zt and ze for the transcriptomic and electrophysiological profiles for65

the high-dimensional observation vectors Xt and Xe obtained with coupled autoencoders are66

shown in Figure 1b-c. Cells labeled according to the reference taxonomy (see Figure S1) cluster67

together in representations of both observation modalities. Moreover, the representations68

largely preserve hierarchical relationships between cell types of the reference taxonomy. For69

example, in Figure 1b-c various cell types of the Sst class appear close together, while remaining70

well-separated from cell types of other classes such as Pvalb, Vip, and Lamp5.71

Representations obtained with coupled autoencoders may be used to perform a variety of72

downstream analyses on complex datasets. We considered supervised classification accuracy73

in predicting cell type labels at different resolutions (Methods) of the reference taxonomy74

from zt and ze in Figures 1d-e, and data reconstruction performance in Figure 1f. First, we75

orient the reader with results for the uncoupled setting (�te = 0.0) at each of these tasks. In76

Figure 1d, we note that the representations based on the transcriptomic data alone are best77

suited for supervised cell type classification using QDA, leading to >70% accuracy for leaf78

node cell type labels. This is not surprising, since the reference taxonomy was derived from79

analyses of gene expression alone. Electrophysiological profiles are expected to be noisy, and of80

lower resolution compared to transcriptomic profiles.15 Nevertheless in Figure 1e, classifiers81

based on representations of electrophysiology alone predict leaf node cell type labels with82

⇠30% accuracy (chance level is ⇠3%). Lastly, the within-modality reconstruction accuracy83

of uncoupled representations in Figure 1f provides an upper limit for both, within- and cross-84

modal reconstructions that may be achieved with 3-d representations obtained with coupled85

autoencoders.86

To evaluate whether complicated, non-linear transformations underlie the relationship between87

the transcriptomic and electrophysiological features of neurons, we considered the performance88
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Figure 1: Coordinated representations of transcriptomic and electrophysiological profiles

with coupled autoencoders (a) Schematic showing the coupled autoencoder architecture for Patch-
seq data. Encoders (E) compress input data (X) into low dimensional representations (z). Decoders
(D) reconstruct data ( eX) from representations. The coupling penalty in the loss function encourages
representations to be similar across the transcriptomic (t) and electrophysiology (e) modalities. (b-c)
3-d coordinated representations of the transcriptomic and electrophysiological datasets. Each point
represents a single cell, colored by the reference hierarchy leaf node to which the cell was mapped to.
(d-e) Supervised cell type classification with QDA at different resolutions of the reference hierarchy
that were based on 3-d representations obtained with coupled autoencoders and with linear methods.
(f) Reconstruction performance as measured with coefficient of determination in the within-modality
(Xe ! eXe and Xt ! eXt), and in the cross-modality (Xt ! eXe and Xe ! eXt) cases. Error bars show
(mean ± SD, 43-fold cross validation) for panels (d-f)
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of linear methods (PC-CCA), and coupled autoencoders with �te 2 {0.5, 1.0} at these tasks,89

with the representation dimensionality set to 3. We note that the Patch-seq experiment provides90

perfect knowledge of anchors between the modalities by virtue of paired recordings. In this91

setting, the popular tool Seurat16 uses a variant of linear CCA to achieve alignment, for92

which the performance is expected to be comparable to baselines considered here. Results in93

Figure 1d-f show that coupled autoencoders learn well-aligned representations of transcriptomic94

and electrophysiology data, such that cell type labels can be predicted with better accuracy, and95

the cross-modal data can be inferred more reliably compared to linear methods. Importantly,96

the within-modality reconstruction error is comparable to that obtained in the uncoupled97

setting, suggesting that the representations compress the individual data modalities with high98

fidelity.99

Cross-modal data prediction is a key computational tool for identifying corresponding properties100

of cell types, and in the design of new experiments. Non-linear transformations to align single101

cell modalities directly in the data domain have been explored before,17 but crucially did not102

provide low dimensional co-ordinated representations. We considered a subset of genes that103

underlie recently discovered cell type specific paracrine signaling pathways in the cortex.18 The104

Patch-seq transcriptomic data shows these cell type specific gene expression patterns, Figure 2a.105

We used only electrophysiology features to infer the expression patterns for all genes in the106

cross-modal setting, and show results for the same subset of genes as before in Figure 2b. The107

striking similarity of these expression patterns (Pearson’s r=0.89±0.10, mean±SD over cell108

types) not only demonstrates the effectiveness of coupled autoencoders at the cross-modal109

prediction task at a granular level, but also suggests that intrinsic electrophysiology contains110

information regarding neuropeptide communication networks.111

We considered cross-modal prediction of electrophysiological features in an analogous manner,112

pooling values of the features on a per cell type basis. We considered electrophysiological113

features that are captured by the compressed representation well (within-modality reconstruction114

R2 > 0.25, Figure S6). While results of Figure 1d-e already suggest that the electrophysiology115

features are not as specific to transcriptomic cell types, we can nevertheless identify cell type116

specific patterns, Figure 2c. The cross-modal reconstruction of these features also matches117

the data (Pearson’s r=0.99±0.01, mean±SD over cell types), reinforcing the idea that gene118

expression can explain many intrinsic electrophysiological features accurately, and that coupled119

autoencoders are a powerful starting point to unravel such non-linear relationships.120

We directly tested the idea that pre-trained coupled autoencoders can be used to predict121

unobserved cross-modal features in smaller independent experiments by using the Patch-seq122
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Figure 2: Cross-modal reconstructions capture cell type specific gene expression patterns

and electrophysiological features.(a) Gene expression levels averaged over samples of individual
cell types of the reference taxonomy, normalized per gene by the maximum value of each column. (b)
Cell type specificity of different genes is captured well by cross-modal prediction of gene expression
profiles from electrophysiological features. (c) A subset of electrophysiological features pooled by cell
types shows analogous cell type specificity. (d) Cross-modal reconstructions of the electrophysiology
features from gene expression profiles match the measured electrophysiology features.
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Figure 3: A proposal for consensus clusters (a) Unsupervised clustering using Gaussian Mixtures on
the coordinated representation zt and BIC based model selection suggests ⇠33 consensus clusters.
(b) Contingency matrix for cluster assignments based on independent, unsupervised clustering of the
transcriptomic and electrophysiology representations shows that the clusters are highly consistent.
(c) Contingency matrix for the leaf node cell type labels of the reference hierarchy compared to
unsupervised cluster assignments show that these unsupervised clusters have substantial overlap with
known transcriptomic cell types. Number of test cells for each label are indicated within parentheses
next to the label, and area of the dots is proportional to the number cells in panels (b) and (c).

dataset of Scala et al.,19 which includes 107 inhibitory neurons from mouse motor cortex.123

We applied a coupled autoencoder without additional training to predict the transcriptomic124

labels and electrophysiological properties of the 107 neurons from their transcriptomic profiles.125

Results in Figures S8 and S7 show that this approach yields accurate prediction of cell type126

labels and certain electrophysiological properties, despite ⇠5% mismatch between the gene lists127

and significant differences in electrophysiology protocols.128

While clustering of individual modalities into cell type taxonomies shows general correspondence,129

a strategy for consensus clustering is less clear. The notion of a consensus set of cell types can be130

formalized as a statistical mixture model. Accordingly, the observation for each cell is explained131

by a combination of its membership to one of a discrete number of types, and continuous132

variability around the type representative. Encouraged by the clustering of cells belonging133
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to similar transcriptomic types in Figure 1b-c, we explored the extent to which such a model134

can explain the data consistently across modalities. Specifically, we performed unsupervised135

clustering by fitting a Gaussian mixture model on coordinated representations obtained with136

the coupled autoencoder to explain both modalities. Figure 3a shows the distribution of optimal137

number of mixture components over representations obtained with different coupled autoencoder138

initializations. This plot suggests that the number of clusters that can be consistently defined139

with coordinated representations has a tight distribution around ⇠33. We refer to this de140

novo clustering of the data as consensus clusters. Figure 3b demonstrates that the same141

consensus cluster can be assigned to neurons not used during training with high frequency,142

based on observing either the transcriptomic or electrophysiological (but not both) modality.143

While the dominant diagonal of this contingency matrix indicates the success of this notion of144

consistent, multimodal cortical cell types, the off-diagonal entries point to imperfections of this145

view, either due to experimental noise and limitations of experimental characterization, or due146

to imperfection of the model itself.147

Lastly, the consensus clusters are also consistent with the reference transcriptomic taxonomy,148

Figure 3c. This might suggest over-splitting in the transcriptomic taxonomy and help identify149

transcriptomic “super-clusters” of GABAergic neurons, as well as point towards the limitations150

of the dataset, such as having too few samples for certain transcriptomic labels (see Figure S2)151

to support a mixture component.152

In this study, we have presented a principled way to align multimodal observations of neuronal153

data and define clusters that are consistent across data modalities. Our analysis of the154

largest multimodal Patch-seq dataset to date with an unsupervised clustering on coordinated155

representations reveals ⇠33 clusters that can be defined consistently with transcriptomic and156

electrophysiological measurements of cortical GABAergic neurons. We demonstrated that157

coupled autoencoders trained on reference datasets can serve as efficient look up tables for158

smaller, single modality neuron characterization to not only infer cell types, but also their159

properties in other modalities. Refining this ability will enable the design of new kinds of160

experiments.161

An intriguing and essential issue regarding cell types is whether they should be considered as162

discrete entities or as a continuum.20 Here, we tested a mixture model view on multimodal163

data, which allows for types to overlap each other in the representation space so long as the164

cluster centers are more dominant than the peripheries. With this model, mouse visual cortex165

interneuron Patch-seq data suggests the existence of ⇠33 clusters, more than the ⇠5 well-known166

subclasses but less than the > 50 partitions suggested by scRNA-seq data alone.167
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Finally, dataset size plays an important role in all our results. More samples can allow the168

use of larger representation space dimensionality and improve cross-modal data prediction.169

Similarly, clustering is ill-defined for cell types with too few samples. Therefore, the number of170

cortical GABAergic interneuron types is likely to grow, and the number of consensus clusters171

in Figure 3 more likely represents an under-count of the diversity when the notion of cell types172

is considered as a mixture model.173

Methods174

Coupled autoencoders175

Approaches to discover and extract relationships in multimodal datasets are discussed in litera-176

ture as cross-modal retrieval, multimodal alignment, multi-view representation learning.21–23
177

Deep learning methods such as DeepCCA24,25 and correspondence autoencoders26 are promising178

approaches to achieve multimodal data alignment, but have had limited success in associating179

complex neural datasets. Our coupled autoencoder networks are related architectures with key180

improvements to scaling of representations that are critical for the overall quality of learned181

representations.27
182

We first describe the general coupled autoencoder framework. Then, we show its application to183

the Patch-seq dataset. For K observation modalities, we represent the coupled autoencoder by184

� = ({(Ei,Di,↵i)}1iK ,�), (1)

where Ei and Di denote the encoding and decoding networks for the i-th observation modality,185

↵i sets the relative importance of the different modalities, and � � 0 sets the relative impor-186

tance of representation fidelity within observation modalities versus the alignment of different187

representations.188

For a set of paired observations X = {(xs1, xs2, . . . , xsK), s 2 S}, we define the loss due to � as189

L(X;�) =
X

s2S

2

664
KX

i=1

↵ikxsi �Di(Ei(xsi))k22 + �
X

i,j2K,
i<j

kEi(xsi)� Ej(xsj)k22
fij(X)

3

775 . (2)

That is, each autoencoding agent (Figure 1a) within the coupled architecture processes a190

separate data modality and optimizes a loss function that consists of penalties for (1) the191
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discrepancies between the actual input X and reconstructed input X̃ (2) mismatches between192

the representations learned by the different agents. (A slightly more general treatment can be193

found in Ref.27)194

In Eq. 2, the functional form of the denominator fij that scales the mean squared difference195

between representations of the same sample based on the different data modalities, is crucial to196

learn good quality representations. Common choices for fij lead to pathological solutions, i.e.197

the latent representations collapses into a zero- or one-dimensional space (see Propositions in198

Supplementary Methods). To avoid such pathological solutions, we propose using:199

fij(X) = min(�2
min(Zi), �

2
min(Zj)) (3)

where �min(Zi) denotes the minimum singular value of the matrix Zi, which consists of rows200

Zi(s, :) = zsi where zsi = Ei(xsi). In practice, we perform stochastic gradient descent and201

calculate fij by its mini-batch approximation. Scaling the coupling loss term in this manner202

approximates whitening by the full covariance matrix well, and also is practically important203

when the batch size is small or representation dimensionality is large, regimes where calculating204

the full covariance matrix would be unreliable and computationally expensive.205

Application to the Patch-seq dataset206

We use the fact that the same neurons were profiled with both modalities to obtain aligned,207

low-dimensional representations of the gene expression profiles and electrophysiological features.208

In the case of just these two data modalities, transcriptomics (t) and electrophysiology (e),209

the loss function according to Eq. 2 consists of two reconstruction error terms, and a single210

coupling error term. For a single sample s,211

L((xst, xse)) = ↵tkxst �Dt(Et(xst))k22 + ↵ekxse �De(Ee(xse))k22 + �te
kzst � zsek22

fte(X)
, (4)

where zst = Et(xst) and zse = Ee(xse). Here xst denotes gene expression vector for sample s212

and xse denotes the concatenated sPC and physiological feature measurement vectors for the213

same sample. The interplay between the accuracy with which the representations capture the214

individual data modality, versus how well the representations are aligned is a fundamental trade-215

off that any attempt to define consistent multimodal cell types must resolve (see Supplementary216

Material for an equivalent formulation in the probabilistic setting). The hyper-parameters ↵t, ↵e217

and �te explicitly control this trade-off in our formulation (Figure S3).218
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Data augmentation219

Data augmentation is important to regularize the networks and alleviate overfitting, particularly220

when the dataset size is small. We mimicked the biological dropout phenomenon28 and used221

Bernoulli noise (i.e., Dropout29) to augment repeated presentations of the transcriptiomic222

vectors while training. This strategy also renders the network robust to partial mismatches223

in gene lists, and reduces dependence of the representations and reconstructions on specific224

marker genes. The individual electrophysiological features have unequal variances, since the225

total variance in the sPC is normalized on a per-experiment basis. We therefore used additive226

Gaussian noise with variance proportional to that of the individual features to augment the227

electrophysiological vectors while training the network. The reconstruction loss for the decoders228

was calculated with both, the representation obtained by the encoder network of the same229

modality, and that obtained by the encoder for the other modality. This was done to improve230

performance of cross-modal prediction. We view this way of calculating the reconstruction loss231

function as an augmentation strategy for the decoder networks.232

Linear baselines233

Canonical correlation analysis (CCA) is a standard linear method to align low dimensional234

representations.13 To optimize the performance with linear methods, we first used principle235

component analysis (PCA) to reduce the dimensionality of individual data modalities, followed236

by CCA to achieve aligned representations across the modalities. The number of dimensions to237

which the transcriptomic and electrophysiology data were reduced to with PCA is indicated as238

a tuple in the legends of Figure 1. The dimensionality of CCA representations was chosen to239

match the dimensionality obtained with coupled autoencoders (dim=3). The inverse CCA and240

PCA transformations were used to reconstruct data from the representations both, for the the241

within- and across- modality cases in Figure 1f.242

Supervised cell type classification243

Label sets obtained at different resolutions of the reference taxonomy were used as ground truth244

to evaluate representations. The different resolutions correspond to different horizontal levels245

of the reference taxonomy hierarchy in Figure S1. Starting from the leaf node cell type labels,246

each cell is assigned the parent node label based on the set of labels that remains at a given247

level of the hierarchy. Quadratic Discriminant Analysis (QDA)13 was used to train classifiers on248
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the representations obtained with coupled autoencoders or CCA, and used to predict the cell249

type labels for all such label sets. Cells that were not used to train the coupled autoencoder250

were used to obtain accuracy values shown in Figure 1(d-e) using a k=43 fold cross validation251

approach. Validation folds were obtained such the class distribution in each fold was similar to252

that for the overall dataset. Classes with n  10 samples in the dataset were discarded from253

the analysis. Similarly, classes for which there were less than n=6 samples in the training set254

of any fold were discarded from evaluation for only that fold, since QDA classifier parameters255

for those poorly represented classes would be unreliable. The results were pooled across the256

folds for the remaining number of classes (i.e. QDA components) in Figure 1(d-e).257

Unsupervised clustering and consensus clusters258

Gaussian mixture models with a different number of components (15 to 45 in steps of 1) were259

fit on zt obtained with coupled autoencoders (�te = 1.0) for 21 different network initializations260

trained on the same 80% of the dataset. The remaining 20% of cells serve as the test set261

for this analysis. The training and test sets had similar distributions of the cell type labels262

based on the reference taxonomy. Each mixture model fit was initialized 50 times and fit263

until convergence. For the representation from each network initialization, we used Bayesian264

Information Criterion13 (BIC) to perform model selection. The distribution for optimal number265

of mixture components across the 21 different representations was binned using the Freedman-266

Diaconis rule,30 Figure 3a. Based on this distribution we estimated the number of clusters that267

can be consistently defined with coordinated representations to be 33. We picked the model268

with the lowest reconstruction error, and refer to the mixture model with 33 components fitted269

on zt as consensus clusters. The fitted mixture model was then used to assign consensus cluster270

labels to test cells based on zt, as well as based on ze. The consensus cluster assignments271

obtained in this manner are compared in Figure 3b. We used the Hungarian algorithm to272

match the consensus clusters with leaf node cell types of the reference taxonomy, using the273

negative of the contingency matrix based on training cells as the cost function. The order of274

the consensus clusters in Figure 3b-c reflects this optimal match.275

Patch-seq dataset276

We used the transcriptomic and electrophysiological profiles of 3,411 GABAergic interneurons277

from mouse visual cortex of a recent Patch-seq dataset.9 The dataset includes cell type labels278

that were obtained by mapping the gene expression profiles to a reference taxonomy.7 The279

12

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 2, 2020. ; https://doi.org/10.1101/2020.06.30.181065doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.30.181065
http://creativecommons.org/licenses/by-nd/4.0/


relevant taxonomy, and abundances of cells per type are shown in Figure S1 and Figure S2.280

There are 59 cell types at the highest resolution (i.e. leaf nodes) of this reference taxonomy.281

A set of 1,252 genes after removing genes related to mitochondria and sex were used as282

input for the analyses in this study. Gene expression values were CPM normalized, and then283

loge(•+ 1) transformed. 44 sparse principle components (sPC) were extracted to summarize284

the time series data from different portions of the electrophysiology measurement protocol.9285

Additionally 24 measurements of intrinsic physiology features were obtained using the IPFX286

library https://ipfx.readthedocs.io/. The sPC values were scaled to have unit variance287

per experiment. The remaining features were individually normalized to have zero mean and288

unit norm. Data was divided into k=43 folds for cross validation experiments. For the consensus289

cluster experiments, 20% of the cells were set aside as the test set. Different random seeds were290

used to train networks 21 times on the remaining 80% of the cells.291

Code availability292

Code for the coupled autoencoder implementation and analysis are available at https:293

//github.com/AllenInstitute/coupledAE-patchseq. The coupled autoencoder was imple-294

mented using Tensorflow 2.1. Scikit-learn31 version 0.22.2 implementations of PCA, CCA,295

QDA and Gaussian Mixture Models, and Scipy version 1.4.1 implementation of the Hungarian296

algorithm (linear sum assignment) were used to perform the analyses.297
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