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 2 

Abstract  1 

Background: Microbial whole-genome sequencing (WGS) is now increasingly used to 2 

inform public health investigations of infectious disease. This approach has transformed 3 

our understanding of the global population structure of Salmonella enterica serovar Typhi 4 

(S. Typhi), the causative agent of typhoid fever. WGS has been particularly informative for 5 

understanding the global spread of multi-drug resistant (MDR) typhoid. As WGS capacity 6 

becomes more decentralised, there is a growing opportunity for collaboration and sharing 7 

of surveillance data within and between countries to inform disease control policies. This 8 

requires freely available, community driven tools that reduce the barriers to access 9 

genomic data for public health surveillance and that deliver genomic data on a global 10 

scale. 11 

Methods: Here we present the Pathogenwatch (https://pathogen.watch/styphi) scheme for 12 

S. Typhi, a web application enabling the rapid identification of genomic markers of 13 

antimicrobial resistance (AMR) and contextualization with public genomic data to identify 14 

high-risk clones at a population level. Data are delivered in single genome reports or in 15 

collections of genomes combined with geographic and other data using trees, maps and 16 

tables.  17 

Results: We show that the clustering of S. Typhi genomes in Pathogenwatch is 18 

comparable to established bioinformatics methods, and that genomic predictions of AMR 19 

are largely concordant with phenotypic drug susceptibility data. We demonstrate the public 20 

health utility of Pathogenwatch with examples selected from over 4,300 public genomes 21 

available in the application.  22 

Conclusions: Pathogenwatch democratises genomic epidemiology of S. Typhi by providing 23 

an intuitive entry point for the analysis of WGS and linked epidemiological data, enabling 24 

international public health monitoring of the emergence and spread of high risk clones. 25 

 26 

Keywords: Salmonella Typhi, typhoid fever, enteric fever, antimicrobial resistance, 27 

genomics, whole-genome sequencing, surveillance, genomics, epidemiology, public 28 

health.  29 
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 3 

Introduction 1 

Bacterial pathogens have the potential for rapid evolution and adaptation (1). The ability to 2 

rapidly sequence microbial genomes directly from the field is facilitating the tracking of 3 

pathogen evolution in real-time and in a geographical context. Genomic surveillance 4 

provides the opportunity to identify the emergence of genetic signatures indicating 5 

antimicrobial resistance (AMR), or adaptation to host, facilitating early intervention and 6 

minimising wider dissemination. Consequently, genomic data has the ability to transform 7 

the way in which we manage the emergence of microbes that pose a direct threat to 8 

human health in real time.  9 

Although pathogen genomic data is being generated at a remarkable rate, we need to 10 

bridge the gap between genome sciences and public health with tools that make these 11 

data broadly and rapidly accessible to those who are not expert in genomics. To maximise 12 

the impact of ongoing surveillance programs, these tools need to quickly highlight high-risk 13 

clones by assigning isolates to distinct lineages and identifying genetic elements 14 

associated with clinically relevant features such as AMR or virulence. In this way, new 15 

isolates can be examined against the backdrop of a population framework that is 16 

continuously updated and that enables both the contextualisation of local outbreaks and 17 

the interpretation of global patterns.  18 

Salmonella enterica subsp. enterica serovar Typhi (S. Typhi) causes typhoid (enteric) 19 

fever, a disease that affects approximately 20-30 million people every year (2, 3). The 20 

disease is predominant in low-income communities where public health infrastructure is 21 

poorly resourced. Similar to other infections, typhoid treatment is compromised by the 22 

emergence of S. Typhi with resistance to multiple antimicrobials, including those currently 23 

used for treatment (3). Until recently, epidemiological investigations and surveillance of 24 

typhoid fever have employed alternative molecular techniques such as pulse-field gel 25 

electrophoresis (PFGE (4)), multi-locus sequence typing (MLST (5)), multiple-locus 26 

variable-number tandem-repeat (VNTR) analysis (MLVA (6)), and phage-typing (4), which 27 

offer limited resolution for a bacterium that exhibits very limited genetic variability. Whole 28 

genome sequencing (WGS) has proven key to identify S. Typhi high-risk clones by linking 29 

the population structure to the presence of AMR elements. For example, the recent 30 

resurgence of multi-drug resistant (MDR) typhoid (defined as resistance to all the historical 31 

first-line agents chloramphenicol, ampicillin and co-trimoxazole) has been explained in part 32 

by the global spread of an MDR S. Typhi lineage known as haplotype H58 or subclade 33 
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 4 

4.3.1 (7, 8), which is associated with both acquired AMR genes (conferring MDR) and 1 

fluoroquinolone resistance mutations (7, 9).  2 

WGS is increasingly being implemented in local and national public health laboratories, 3 

and web applications can provide rapid analysis and access to actionable information for 4 

infection control in the context of a global population framework. Online resources are 5 

available for Salmonella enterica species for the identification of acquired AMR 6 

mechanisms (10) and for in silico typing and visualisation of genome variation and 7 

relatedness based on WGS data (11, 12). Here, we describe Typhi Pathogenwatch, a web 8 

application to support genomic epidemiology and public health surveillance of S. Typhi 9 

through the rapid identification and linking of genetic lineages with AMR determinants. 10 

Typhi Pathogenwatch rapidly places new genomes within the population context, predicts 11 

their genotype according to established nomenclatures (5, 8, 11), and detects the 12 

presence of AMR determinants and plasmid replicon genes to assess public health risk. 13 

Typhi Pathogenwatch displays this information interactively, allowing users to link 14 

lineages, AMR patterns, geographical data and other metadata to quickly determine if 15 

similar strains have been previously identified, where and when. Furthermore, results can 16 

be downloaded or shared via a web address containing a unique collection identifier. This 17 

approach allows the rapid incremental addition of new data and can be used to underpin 18 

the international surveillance of typhoid, MDR and other public health threats.  19 
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 5 

Methods 1 

 2 

The Pathogenwatch application 3 

The Pathogenwatch user interface is a React (13) single-page application with styling 4 

based on Material Design Lite (14). Phylocanvas (15) is used for phylogenetic trees, 5 

Leaflet (16) is used for maps, and Sigma (17) is used for networks. The Pathogenwatch 6 

back-end, written in Node.js, consists of an API service for the user interface and four 7 

“Runner” services to perform analysis: species prediction, single-genome analyses, tree-8 

building, and core genome multi-locus sequence typing (cgMLST) clustering. Runner 9 

services spawn Docker containers for queued tasks, streaming a FASTA file or prior 10 

analysis through standard input and storing JSON data from standard output. Data storage 11 

and task queuing/synchronisation are performed by a MongoDB cluster. 12 

 13 

S. Typhi genome assemblies and data privacy 14 

Genome assemblies can be uploaded by the user in FASTA format or assembled de novo 15 

from high-throughput short read data with the Pathogenwatch pipeline using SPAdes (18), 16 

as described in the Pathogenwatch documentation (19). Sequence data and metadata 17 

files uploaded by the user are kept private to the user account unless explicitly requested 18 

to be publicly shared. Genomes can be grouped into collections and kept private or set to 19 

be made available to collaborators through a web link. Users can also integrate private 20 

and potentially confidential metadata into the display without uploading it to the 21 

Pathogenwatch servers. This private metadata will not be shared even if the collection is 22 

set to be shared via web link (20).  23 

Genomes from published studies with geographical localisation metadata and short read 24 

data on the European Nucleotide Archive (ENA) are available as public data and 25 

accessible to all users for browsing and for contextualisation of their own datasets. At the 26 

time of submission, 4389 public S. Typhi genomes from 26 studies were available 27 

(Additional File 1: Supplementary Table S1). The sequences of 2490 public genomes were 28 

generated at the Wellcome Sanger Institute with Illumina HiSeq technology and 29 

assembled as previously described (21). Briefly, FASTQ files were used to create multiple 30 

assemblies using VelvetOptimiser v2.2.5 and Velvet v1.2 (22). An assembly improvement 31 

step was applied to the assembly with the best N50, and contigs were scaffolded using 32 

.CC-BY-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted July 3, 2020. ; https://doi.org/10.1101/2020.07.03.186692doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.03.186692
http://creativecommons.org/licenses/by-nd/4.0/


 6 

SSPACE (23) and sequence gaps filled using GapFiller (24). For the remaining 1899 1 

public genomes the FASTQ files were downloaded from the ENA and assembled with 2 

Velvet as above, as well as with SPAdes v3.9.0 (18) and a range of k-mer sizes of 66-90% 3 

of the read length (in increments of 4). A total of 814 Velvet assemblies and 1068 SPAdes 4 

assemblies were included based on comparisons of the assembly stats and the 5 

Pathogenwatch core genome stats with both methods. Seventeen public genomes were 6 

excluded as neither assembly method produced a satisfactory draft genome based on the 7 

assembly stats and/or GC content. The public genomes metadata submitted to the ENA or 8 

made available as supplementary information in the corresponding publications was made 9 

available in the Metadata table (e.g., country/location, collection year/date, run and study 10 

accessions and PMID). 11 

 12 

Characterisation and genotyping of S. Typhi genomes with Pathogenwatch  13 

For both user-uploaded and public genomes, Pathogenwatch outputs a taxonomy 14 

assignment, a map of their locations, and assembly quality metrics. The taxonomy 15 

assignment is the best match to a microbial version of the RefSeq genome database 16 

release 78, as computed with Mash (25) (k=21, s=400). Details of the speciator tool can be 17 

found in the documentation (26). 18 

Pathogenwatch also provides compatibility with Salmonella serotyping (SISTR (12)), multi-19 

locus sequence typing (MLST (5)), core-genome MLST (cgMLST (11)) and S. Typhi 20 

single-nucleotide polymorphism (SNP)-based genotyping (GenoTyphi (8)). Detailed 21 

descriptions of the implementation of the typing tools can be found in the documentation 22 

(27). 23 

The MLST and cgMLST schemes are periodically downloaded from Enterobase (28) and 24 

(29), respectively. Samples are typed as described in the documentation 25 

(https://cgps.gitbook.io/pathogenwatch/technical-descriptions/typing-methods/mlst and 26 

https://cgps.gitbook.io/pathogenwatch/technical-descriptions/typing-methods/cgmlst). 27 

Exact allele matches are reported using their allele ID. Multiple allele hits for a gene are 28 

reported if present. Inexact allele matches and novel STs are reported by hashing the 29 

matching allele sequence and the gene IDs, respectively. 	30 

Pathogenwatch implements SISTR (Salmonella In Silico Typing Resource (12)), which 31 

produces serovar predictions from WGS assemblies by determination of antigen gene and 32 
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 7 

cgMLST gene alleles using blastn v2.2.31+. Pathogenwatch uses the cgmlst_subspecies 1 

and serovar fields from the SISTR JSON output to specify the serovar. 2 

GenoTyphi assigns S. Typhi genomes to a predefined set of clades and subclades based 3 

on a curated set of SNPs (8) that is regularly updated as novel lineages of epidemiological 4 

interest are identified (30). Pathogenwatch uses an in-house implementation designed to 5 

work with assembly output. The blastn v2.2.30 program is used to align the query loci and 6 

identify positions of diagnostic SNPs, which are then processed according to the rules of 7 

the GenoTyphi scheme (31). The genotype assignment and the number of diagnostic 8 

SNPs identified on the assemblies are reported.  9 

The plasmid replicon marker sequences are detected in the user and public genome 10 

assemblies with Inctyper, which uses the PlasmidFinder Enterobacteriaceae database 11 

(32). Details of the Inctyper tool can be found in the documentation (33). 12 

 13 

Generation of the S. Typhi core genome library 14 

Pathogenwatch supports SNP-based neighbour joining trees of S. Typhi both for user 15 

genomes (collection trees) and public genomes (population tree and subtrees). The trees 16 

are inferred using a curated core gene library of 3284 S. Typhi genes (34) generated from 17 

a pan-genome analysis of 26 complete or high-quality draft genomes (Additional File 1: 18 

Supplementary Table S2) with Roary (35) and identity threshold of 95%. The core gene 19 

families were realigned using MAFFT v7.2.2.0 (36), and filtered or trimmed according to 20 

the quality of the alignments. The gene with the fewest average pairwise SNP differences 21 

to the other family members was selected as the representative for each family. We then 22 

selected 19 reference genomes (Additional File 1: Supplementary Table S2) belonging to 23 

different genotypes according to the population structure previously described (8). The 24 

gene families were then searched against each of the 19 reference genomes and filtered 25 

according to the following rules: a) only universal families with complete coverage of the 26 

representative were kept; b) all paralogues were removed; c) overlapping gene families 27 

were merged into a single, contiguous pseudo-sequence. A BLAST (37) core library was 28 

then built with the representative genes, and a profile of variant sites determined for the 29 

core genes present in each reference genome. Each of the 4389 public genomes was 30 

then clustered with its closest reference genome based on this profile of variant sites, thus 31 
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 8 

constituting each of the 19 population subtrees that Pathogenwatch employs to 1 

contextualise user-uploaded genomes.  2 

 3 

Typhi Pathogenwatch genome clustering 4 

The relationships between genomes are represented with trees (dendrograms) based on 5 

the genetic distance computed from substitution mutations in the core gene library, as 6 

described in detail in the documentation (38). User-provided assemblies are queried 7 

against the S. Typhi core gene library with blastn v2.2.30 (37) using an identity threshold 8 

of 90%. The core gene set of each query assembly is compared to the reference genome 9 

core that has the most variant sites in common. An overall relative substitution rate is 10 

determined, and loci that contain more variants than expected assuming a Poisson 11 

distribution are filtered out. Pairwise distances between assemblies (including user-12 

provided and reference) are scored via a distance scoring algorithm that compares all 13 

variant positions from all pairs of core gene sets, SNPs are counted (generating a 14 

downloadable pairwise difference matrix) and normalised by the relative proportion of the 15 

core present (generating a downloadable pairwise score matrix). The pairwise score matrix 16 

is then used to infer a midpoint-rooted neighbour-joining tree using the Phangorn v2.4.0 17 

(39) and Ape v5.1 (40) R packages. Trees are computed for the user assemblies only 18 

(collection tree), and for the user assemblies and public assemblies assigned to the same 19 

reference genome (public data subtrees), all of which are downloadable in Newick format. 20 

We benchmarked the Pathogenwatch clustering method against other methods of SNP-21 

based tree inference with three subsets of published genomes: Dataset I) 118 genomes 22 

spanning the population diversity of S. Typhi defined by GenoTyphi (Additional File 2: 23 

Supplementary Table S3); Dataset II) 138 closely related genomes, from a recent clonal 24 

expansion of the multidrug-resistant haplotype H58 within Africa (Additional File 2: 25 

Supplementary Table S4); and Dataset III) 43 strains from clade 3.2 including CT18, the 26 

first completed S. Typhi genome, which remains reference of choice for most population 27 

genomics studies (Additional File 2: Supplementary Table S5). For each subset a tree was 28 

generated with four different methods: 1) Pathogenwatch; 2) maximum likelihood (ML) with 29 

RAxML v8.2.8 (41) on SNPs extracted from an alignment of concatenated core genes 30 

generated using Roary (35); 3) neighbour joining (NJ) with FastTree (42) using the option 31 

–noml on the same alignment as 2); and 4) ML with RAxML v8.2.8 on SNPs extracted 32 
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 9 

from a previously published CT18-guided alignment (7). Five hundred bootstrap replicates 1 

were computed for the ML trees (methods 2 and 4). We compared the trees thus 2 

generated using the tree comparison software Treescape v1.10.18 (Kendall-Colijn 3 

distance, now available as Treespace (43)) and the Tanglegram algorithm of Dendroscope 4 

(44). The tree files used in the tree comparisons are provided in (45). 5 

Genomes can also be clustered in Typhi Pathogenwatch based on their cgMLST profile 6 

using single linkage clustering. Distance scores are calculated between each pair of 7 

samples by identifying the genes which have been found in both samples and by counting 8 

the number of differences in the alleles. The SLINK algorithm (46) is used to quickly group 9 

genomes into clusters at a given threshold. For a given genome, users are able to see 10 

how many other genomes it is clustered with at a range of distance thresholds, view the 11 

structure of the cluster as a network graph, and view the metadata and analysis for 12 

sequences in that cluster. 13 

 14 

Genomic predictions of antimicrobial resistance 15 

Pathogenwatch predicts the presence of genes and single point mutations conferring AMR 16 

by querying genome assemblies using PAARSNP v2.4.9 with blastn v2.2.30 (37) and a 17 

curated S. Typhi database of genes and mutations (Additional File 1: Supplementary 18 

Table S6 (47)) known to confer resistance to ampicillin (AMP), chloramphenicol (CHL), 19 

broad-spectrum cephalosporins (CEP), ciprofloxacin (CIP), sulfamethoxazole (SMX), 20 

trimethoprim (TMP), the combination antibiotic co-trimoxazole (sulfamethoxazole-21 

trimethoprim, SXT), tetracycline (TCY), azithromycin (AZM), colistin (CST) and 22 

meropenem (MEM). For details of the implementation see Pathogenwatch documentation 23 

(48)  24 

PAARSNP also provides a prediction of AMR phenotype inferred from the combination of 25 

identified mechanisms. To benchmark the genotypic resistance predictions, we used a set 26 

of 1316 genomes from 16 published studies (Additional File 1: Supplementary Table S1) 27 

with drug susceptibility information available for at least one of the twelve antibiotics 28 

reported by Typhi Pathogenwatch. The drug susceptibility data reported was 29 

heterogeneous across the studies (minimum inhibitory concentration (MICs), disk diffusion 30 

diameters, and/or susceptible/intermediate/resistant (SIR)). We first compared the Typhi 31 

Pathogenwatch antibiotic resistance predictions to the drug susceptibility phenotype (SIR 32 
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 10 

interpretation provided by the studies) of 1316 genomes, grouping the Resistant and 1 

Intermediate classifications as non-susceptible. For each antibiotic, the sensitivity, 2 

specificity, positive predictive value (PPV) and negative predictive value (NPV) for 3 

detection of known resistance determinants, and their 95% confidence intervals (CI) were 4 

calculated with the epi.tests function of the epiR v1.0-14 package (49). False negative 5 

(FN) and false positive (FP) results were further investigated with alternative methods by 6 

querying the genome assemblies with Resfinder (10) and/or by mapping and local 7 

assembly of the sequence reads to the Bacterial Antimicrobial Resistance Reference 8 

Gene Database (Bioproject PRJNA313047) with ARIBA (50).  9 

Seven studies reported ciprofloxacin MICs for a total of 889 S. Typhi strains, albeit 10 

interpreted with different breakpoint guidelines and versions (Additional File 2: 11 

Supplementary Table S1). We compared the Typhi Pathogenwatch ciprofloxacin 12 

resistance predictions (SIR) for each observed combination of genetic AMR determinants 13 

against the MIC values re-interpreted with the ciprofloxacin breakpoints for Salmonella 14 

spp. from CLSI M100 30th edition (susceptible MIC£0.06; intermediate MIC = 0.12 to 0.5; 15 

resistant MIC ³1 (51)) with a script that is available at (45) .  16 

  17 
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 11 

Results 1 

 2 

Overview of the Typhi Pathogenwatch application 3 

We have developed a public health focused application for S. Typhi genomics that uses 4 

genome assemblies to perform three essential tasks for surveillance and epidemiological 5 

investigations, i.e., (i) placing isolates into lineages or clonal groups, (ii) identifying their 6 

closest relatives and linking to their geographic distribution, and (iii) detecting the presence 7 

of genes and mutations associated with AMR. These data can aid the local investigator to 8 

rapidly identify a potential source of transmission and to predict AMR phenotypes. 9 

The Pathogenwatch application can be accessed at https://pathogen.watch/styphi, where 10 

users can create an account and upload and analyse their genomes (Figure 1 (52)). User 11 

data remains private and stored in their personal account. Pathogenwatch provides 12 

compatibility with typing information for MLST (5), cgMLST (11), in silico serotyping 13 

(SISTR (12)), a SNP genotyping scheme (GenoTyphi (8)), and plasmid replicon 14 

sequences (32). The results for a single genome are displayed in a genome report that 15 

can be downloaded as a PDF. The results for a collection of genomes can be viewed 16 

online and downloaded as trees and tables of genotypes, AMR predictions, assembly 17 

metrics, and genetic variation. Results can also be accessed at a later date and shared via 18 

a collection ID embedded in a unique weblink, thus facilitating collaborative surveillance. 19 

 20 

Clustering genomes into lineages with Pathogenwatch 21 

A fundamental process for interpreting large genomic datasets is to identify the nearest 22 

neighbours to the genome(s) under investigation. The pairwise genetic distance between 23 

isolates provides an operational unit for genomic surveillance, which we can combine with 24 

epidemiological metadata to make inferences during an investigation or for routine 25 

surveillance. Typhi Pathogenwatch clusters user genomes based on their genetic distance 26 

and displays their relationships in a collection tree.  27 

We benchmarked the Pathogenwatch clustering method against established methods of 28 

SNP-based tree inference, i.e. maximum likelihood or neighbour-joining trees inferred from 29 

core genome SNPs or whole-genome SNPs. We used three sets of published genomes: I) 30 

118 genomes spanning the population diversity of S. Typhi defined by GenoTyphi (8); II) 31 
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 12 

138 closely related genomes, from a clonal expansion of 4.3.1 within Africa (7); and III) 43 1 

strains from clade 3.2 including CT18, the genome of choice for reference-guided 2 

population genomics studies (8). The Pathogenwatch trees clustered the diverse genomes 3 

from subset I according to genotype assignments (Additional File: Supplementary Figure 4 

S1a), and detected phylogeographic signal in the closely related genomes of subset II 5 

(Additional File: Supplementary Figure S1b), in agreement with previous studies. In 6 

addition, we found that the Typhi Pathogenwatch clustering algorithm produced trees 7 

comparable to the established methods based on visualisations of the tree space and tree 8 

topology (Additional File 3: Supplementary Figure S2). 9 

 10 

Contextualisation with public data 11 

Pathogenwatch contextualises the user-uploaded genomes with public genomes using a 12 

population tree of 19 diverse genome references (Additional File 3: Supplementary Figure 13 

S3) to guide the SNP-based clustering of user and public genomes into subsets of closely 14 

related genomes (population subtrees). Therefore, Pathogenwatch can display user 15 

genomes in the context of the most relevant public data, facilitating visualisation and 16 

interpretation. A previous investigation of a typhoid outbreak in Zambia exemplifies the 17 

value of this integrated contextualisation (53). This retrospective study identified clonal 18 

diversity and a two repertoires of AMR genes within outbreak organisms, which belonged 19 

to haplotype H58 (genotype 4.3.1). The study also identified an isolate from Central Africa 20 

as the nearest neighbour to the Zambian genomes among the only 5 genomes from 4.3.1 21 

available for comparison at the time. Using Pathogenwatch, the clonal diversity of the 22 

outbreak strains can be rapidly contextualised with the 2500 H58 genomes available at the 23 

time of publication. This revealed two different clusters with close relationships to 24 

contemporary genomes from neighbouring countries Malawi and Tanzania (Figure 2a-b) 25 

that are also characterised by different dfrA genes (Figure 2c-d). The integration of 26 

genomic data and associated metadata from different studies in Pathogenwatch facilitates 27 

the contextualisation of a local outbreak via the web and without the need for 28 

bioinformatics expertise. 29 

Users interested in exploring the public genomes without creating their own collections can 30 

browse the public data as a whole (54) or view by published study (55). At the time of 31 

submission, Typhi Pathogenwatch included 4389 public genomes from 26 published 32 
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articles (Additional File 1: Supplementary Table S1). The average length of the genome 1 

assemblies was 4,787,922 bp (sd = 85492, range = 4535,494 – 5,211,763), the average 2 

N50 was 196,001 bp (sd = 130667, range = 19,527 – 4,806,333), the average number of 3 

contigs was 59.3 (sd = 43.44, range = 1 – 633), the average number of non-ATCG 4 

characters was 1,841.1 (sd = 3,718, range = 1 – 48,002) and the GC content was 52.0% 5 

(sd = 0.1, range = 51.4 - 52.4). The genomes spanned the years 1905 to 2019, the 6 

majority of which were from 2000 onwards (N=3,795, 86.49%). Seventy-seven countries 7 

were reflected by the public genomes, with the largest representations from the Indian 8 

subcontinent (N=1,602, 36.50%), the United Kingdom (N=629, 14.33%) and Southeast 9 

Asia (N=570, 12.99%, Additional File 3: Supplementary Figure S4). Over 97% of the 10 

genomes were classified as either ST1 (68.2%) or ST2 (29.0%) using the 7-locus 11 

Salmonella MLST scheme, with the remaining 2.8% divided between 33 rare STs 12 

(Additional File 1: Supplementary Table S7). Similarly, over half of the genomes (N=2,500, 13 

57.0%) belonged to the globally dominant MDR genotype 4.3.1, which is further 14 

discriminated into five genotypes with different temporal distributions and relative 15 

abundance (Additional File 3: Supplementary Figure S5). 16 

 17 

Genomic predictions of antimicrobial resistance 18 

Typhi Pathogenwatch provides resistance predictions for antimicrobials relevant to 19 

treatment of typhoid fever by querying genome assemblies with BLAST (37) and a curated 20 

library of known AMR genes and mutations (Additional File 1: Supplementary Table S6). 21 

To benchmark the Typhi Pathogenwatch predictions, we compared the genotypic 22 

resistance genotypes to the available drug susceptibility phenotypes (SIR interpretation) of 23 

1316 genomes, grouping the Resistant and Intermediate classifications as insusceptible. 24 

The sensitivity of the Pathogenwatch genotypic predictions was at least 0.96 for all 25 

antibiotics with a computed value (Table 1); at the time of writing, there were no 26 

insusceptible isolates described for colistin or meropenem. The false negative (FN) calls 27 

for ampicillin (N=4), cephalosporins (N=2), chloramphenicol (N=6), and sulfamethoxazole-28 

trimethoprim (N=7) corresponded to genomes for which no resistance gene was reported 29 

in the original genome studies (56-58), nor by an alternative bioinformatics method (50), in 30 

agreement with Pathogenwatch phenotype. For all of the 49 FN calls for ciprofloxacin, the 31 

Pathogenwatch genotypic predictions agree with the sequence analyses reported in the 32 

original genome studies (30, 58), in which no QRDR mutations or qnr genes were 33 
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detected. Only mutations outside of the quinolone-resistance determining region (QRDR) 1 

of parE (A364V, N=17) or gyrA (D538N, N=2) were detected in 20 genomes. These 2 

mutations have not as yet been shown to induce ciprofloxacin resistance and were 3 

therefore excluded from the Pathogenwatch AMR library.  4 

The specificity of the Pathogenwatch genotypic predictions was at least 0.95 for most 5 

antimicrobials (Table 1), with the exception of ciprofloxacin, for which the specificity was 6 

0.66 (95% confidence interval 0.58-0.73), showing that a third of the ciprofloxacin 7 

susceptible isolates were reported as insusceptible by Pathogenwatch. A closer inspection 8 

of the 57 false positive (FP) results showed that Pathogenwatch reported one (N=55), two 9 

(N=2) or three (N=1) mutations in the QRDR of gyrA, gyrB and/or parC, most frequently 10 

the single mutations gyrA_S83F (N=25) and gyrB_S464F (N=16). For 54 of these cases, 11 

the same mutations were reported in the original genome studies. For the remaining three 12 

genomes, no mutations were reported in the original studies, but we confirmed the 13 

presence of gyrB_S464F (N=2) or gyrB_S464Y (N=1) in the assemblies using Resfinder 14 

(10). Similarly, we confirmed the Pathogenwatch identification of blaTEM-1, catA1, or sul1-15 

dfrA7 for all 47 of the FP calls for ampicillin (N=8), chloramphenicol (N=14), and 16 

sulfamethoxazole-trimethoprim (N=25), respectively, either from the original genome 17 

studies or with Resfinder.  18 

The additive effect of QRDR mutations on ciprofloxacin susceptibility has been previously 19 

described (59). In addition, the presence of three non-synonymous mutations in the gyrA 20 

(S83F and D87N) and parC (S80I) genes was previously associated with ciprofloxacin 21 

resistance and fluoroquinolone treatment failure (59, 60) and was predictive of 22 

ciprofloxacin resistance in a study of reference laboratory isolates (61). Pathogenwatch 23 

thus reports this specific combination of mutations as resistant on the Antibiotics table with 24 

a red circle, while any other single, double or triple QRDR mutation is reported as 25 

decreased susceptibility (intermediate, yellow circle). We evaluated the ciprofloxacin MICs 26 

of 889 S. Typhi isolates from nine previous studies against the different combinations of 27 

resistance mechanisms identified by Pathogenwatch. Overall, the distribution of MIC 28 

values was consistent with the genomic predictions of AMR from Pathogenwatch (Figure 29 

3). The MIC values linked to some of the mechanisms, however, straddled two or even all 30 

three SIR categories, explaining many of the differences observed between phenotype 31 

and genotypic predictions. The isolates with 1 or 2 QRDR mutations had intermediate 32 

MICs against ciprofloxacin, and support reporting as intermediate in Pathogenwatch. The 33 
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highest ciprofloxacin MIC values were observed for the combination of gyrA_S83F-1 

gyrA_D87N-parC_S80I mutations, reported as resistant by Pathogenwatch. However, the 2 

triple combination gyrA_S83F-gyrA_D87G-parC_E84K was represented by 9 isolates with 3 

MICs in both the resistant (N=6) and the intermediate (N=3) ranges, and is reported by 4 

Pathogenwatch as intermediate. Further susceptibility testing of isolates with this 5 

combination of mutations is needed to refine genotypic predictions. Likewise, several other 6 

mechanisms potentially conferring insusceptibility to ciprofloxacin were found in the public 7 

genomes but had with no or little associated MIC data, including seven additional triple 8 

mutations (Additional File 1: Supplementary Table S8, Additional File 3: Supplementary 9 

Figure S6). 10 

Genomic predictions of AMR are presented in three interactive and downloadable tables, 11 

Antibiotics, Genes, and SNPs, which display the predicted resistance profile, AMR genes 12 

and AMR-associated chromosomal SNPs found for each genome in the collection, 13 

respectively. The user can overlay the genotypic predictions on the tree and the map 14 

views for one or multiple antibiotics/genes/SNPs, thus intuitively linking resistance with 15 

genome clustering and geographic location. For example, the distribution of genomic 16 

predictions of ciprofloxacin resistant, MDR, or extremely drug resistant (XDR, defined as 17 

MDR + ciprofloxacin resistant) S. Typhi on the map and on the tree of 4389 public 18 

genomes highlight the lineages that represent a particular challenge to treatment and their 19 

geographical distribution (Additional File 3: Supplementary Figure S7). A summary of the 20 

genomic predictions of MDR and XDR S. Typhi highlights the differences in the distribution 21 

of high-risk clones by region, year and genotype, as inferred from the public genomes 22 

(Additional File 3: Supplementary Figure S8).  23 

In addition, Pathogenwatch presents a granular picture of the different genetic 24 

mechanisms behind resistance to an antibiotic. For example, the distinct distribution of 25 

trimethoprim-resistance gene dfrA15 in West Africa associated with genotype 3.1.1, and of 26 

dfrA7 across Central and East Africa, associated with genotypes 2.5.1 and 4.3.1.1, 27 

respectively (62) (Additional File 3: Supplementary Figure S9). The most frequent AMR 28 

genes in the public collection of 4389 genomes associated with an MDR phenotype were 29 

blaTEM-1 (ampicillin, N=1460), catA1 (chloramphenicol, N=1406), sul1 (sulfamethoxazole, 30 

N=1447), and dfrA7 (trimethoprim, N=1232). Notably, blaCTX-M-15 was the most frequent 31 

gene coding for an extended-spectrum beta-lactamase (N=92, Additional File 3: 32 

Supplementary Figure S10). The distribution of the sequence identity values of acquired 33 
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AMR genes found in the public genomes showed only minor deviations from being 1 

identical to the AMR library representatives (Additional File 3: Supplementary Figure S11). 2 

Several plasmids have been implicated in the dissemination of drug-resistant S. Typhi. 3 

Notably, the MDR phenotype is linked to a composite transposon carrying multiple 4 

resistance genes, either located in IncH1 plasmids or integrated into the chromosome (7). 5 

An IncY plasmid that confers resistance to fluoroquinolones and third-generation 6 

cephalosporins was detected in XDR S. Typhi from an outbreak in Pakistan (56), while 7 

plasmids belonging to at least five different Inc types have been described in a recent pan-8 

African study (62). Pathogenwatch identifies plasmid replicon marker sequences in the 9 

user genomes and reports them on the Typing table on the collection view for multiple 10 

genomes (Figure 1). A more detailed output is included in the single genome report, where 11 

any resistance genes found on the same assembled contig as the replicon marker 12 

sequence are also indicated. Pathogenwatch reported between one and four plasmid 13 

replicon marker sequences in a third of the public genomes (1,571/4,389, 35.79%, 14 

Additional File 3: Supplementary Figure S12a). Predictably, plasmid replicon markers were 15 

more frequent in genomes with predicted genotypic resistance, in particular those 16 

organisms that were resistant to multiple antimicrobials (Additional File 3: Supplementary 17 

Figure S12b). Notably, the cryptic plasmid pHCM2, which does not carry resistance genes 18 

(63), was the most common replicon detected amongst genomes in which acquired 19 

resistance genes were not detected. The distribution of replicon genes showed that the 20 

combination of IncH1A and IncH1B(R27) was prevalent in MDR genomes from Southeast 21 

Asia and East Africa belonging to clade 4.3.1, while the same combination with the 22 

addition of IncFIA(HI1) was more prevalent in West Africa, and associated with clade 3.1 23 

(Additional File 3: Supplementary Figure 12b-d). The IncH1A and IncH1B(R27) detect 24 

fragments of the repA2 and repA genes, respectively, of the IncHI1 conjugative plasmid 25 

which has historically been associated with the majority of MDR typhoid (7). IncFIA(HI1) 26 

detects fragments of the repE gene that is present in a subset of IncHI1 plasmids, 27 

including the plasmid sequence type PST2 variant common in S. Typhi 3.1 in West Africa, 28 

but is lacking from the PST6 variant that is widespread in S. Typhi 4.3.1 in East Africa and 29 

Asia (62). 30 

 31 

Maximising the utility of genomic data  32 
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Pathogenwatch makes the public WGS data easily accessible and searchable, and also 1 

constitutes a growing resource to which new data can be added. While genomic 2 

predictions of AMR are based on known mechanisms, the predictions can easily be 3 

updated as new mechanisms are discovered. Azithromycin is one of the last oral treatment 4 

options for typhoid for which resistance is currently uncommon, of particular importance in 5 

endemic areas with high rates of fluoroquinolone-resistance and outbreaks of XDR S. 6 

Typhi. A non-synonymous point mutation in the gene encoding the efflux pump AcrB 7 

(R717Q) was recently singled out as a molecular mechanism of resistance to azithromycin 8 

in S. Typhi (64). Pathogenwatch detected the acrB_R717Q mutation in a collection of 12 9 

Bangladeshi genomes of genotype 4.3.1.1 isolated between 2013 and 2016 in which this 10 

mutation was first described (Figure 4). Notably, Pathogenwatch also detected the 11 

acrB_R717Q mutation in three additional genomes, two from isolates recovered in 12 

England in 2014 (no travel history available (65)), and one from an isolate recovered in 13 

Samoa in 2007 (7). The Samoan genome 10349_1_30_Sam072830_2007 was typed as 14 

genotype 3.5.4, while the English genomes 65343 and 32480 (no travel information 15 

available) belonged to genotypes 4.3.1.1 and 4.3.2.1, respectively. Genome 65343 was 16 

closely related to the cluster of 12 genomes from Bangladesh where this mutation was first 17 

described, while genome 32480 belonged to a small cluster of five genomes from India or 18 

with travel history to India. Thus, reanalysis of public data with Pathogenwatch showed 19 

that the acrB_R717Q mutation has emerged in multiple genetic backgrounds, in multiple 20 

locations, and as early as 2007.  21 

 22 

Pathogenwatch applied to rapid risk assessment 23 

Typhoid fever is rare in countries with a good infrastructure for the provision of clean water 24 

and sanitation infrastructure, with most cases arising from travel to endemic areas (66). 25 

Ceftriaxone-resistant typhoid fever was recently reported in developed countries and 26 

associated with travel to Pakistan (67-69). These ceftriaxone resistant isolates were 27 

associated to the recent outbreak of XDR S. Typhi in the Sindh province of Pakistan by the 28 

epidemiological data, the antibiograms, and information derived from WGS of the clinical 29 

isolate, such as presence of resistance genes, and mobile genetic elements. In some 30 

cases the genomes were contextualised with retrospective genomes by building a 31 

phylogenetic tree using an existing bioinformatic pipeline (67, 68) . 32 
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We exemplify how Pathogenwatch facilitates this analysis with the genome from the 1 

isolate recovered in Canada (PHL5950, accession RHPM00000000 (69)). Pathogenwatch 2 

provides a printable genome report (Additional File 3: Supplementary Figure S13) 3 

including genotyping and in silico serotyping information, predicted resistance profile, and 4 

the presence of resistance genes and mutations. In addition, Pathogenwatch places the 5 

genome within the Pakistani XDR outbreak (Figure 5) and shows the close genetic 6 

relatedness (between 3 and 8 pairwise differences) of the isolates via the downloadable 7 

score matrix.  8 

 9 

Pathogenwatch as a tool for international collaboration in typhoid surveillance 10 

As WGS capacity becomes a reality in typhoid endemic countries, there is a growing 11 

opportunity for local genomic surveillance and for collaboration across borders. This is 12 

underscored by the growing number of genomes from the Indian Subcontinent (Additional 13 

File 3: Supplementary Figure S3), where epidemic clone 4.3.1 (H58) and the nested clade 14 

of fluoroquinolone-resistant triple mutants belonging to genotype 4.3.1.2 (H58 lineage II) 15 

have been shown to have originated (7, 60)). The triple mutants were first reported in 16 

Nepal (isolated in 2013-2014) and linked to isolates from India from 2008-2012 (60). More 17 

recent surveillance studies in India showed that this lineage was still prevalent in S. Typhi 18 

isolates collected in Nepal in 2016 and in India in 2016-2017 (30, 70). The public data 19 

integrated in Pathogenwatch showed that (at the time of writing) this lineage is 20 

represented by 195 public genomes from seven countries (India, Bangladesh, Nepal, 21 

Pakistan, Myanmar, Japan, and United Kingdom, Figure 6a, (7, 58, 59, 65, 70-73)) and 22 

from as early as 2006 (Japan, with travel history to India, Figure 6b (71)). Linking the tree 23 

and the map highlights distinct clusters of genomes that show evidence of transmission 24 

across borders, for example between India-Pakistan and India-Nepal (Figure 8c-d). In 25 

addition, three isolates recovered in 2016 in India were reported to be resistant to 26 

cephalosporins, linked to the presence of the blaSHV-12 gene (74); Pathogenwatch detected 27 

blaSHV-12, qnrB and the IncX3 plasmid replicon in these genomes. Another previous study 28 

reported an IncN replicon in three genomes from the United Kingdom (two with travel 29 

history to India) that also carried resistance genes dfrA15 (trimethoprim), sul1 30 

(sulfamethoxazole), and tetA(A) (tetracycline) (59). Pathogenwatch identified the same 31 

AMR genes and plasmid replicon in these genomes, and also in two closely related 32 

genomes from Japan with travel history to Nepal and India (Figure 6b). Altogether, these 33 
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observations suggest that this lineage circulating in South Asia and linked to treatment 1 

failure with fluoroquinolones, can acquire plasmids with additional AMR genes, with the 2 

concomitant risk of the clonal expansion of a lineage that poses additional challenges to 3 

treatment.  4 
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Discussion 1 

 2 

Our understanding of the S. Typhi population structure, including MDR typhoid has 3 

improved dramatically since the introduction of WGS, which provides a level of 4 

discrimination much needed for a human-adapted pathogen that exhibits very limited 5 

genetic variability. Progress towards the widespread implementation of WGS for 6 

epidemiological investigations and integrated routine surveillance within public health 7 

settings needs to be accompanied by i) active surveillance programs in endemic regions; 8 

ii) implementation of WGS at laboratories in endemic regions; iii) analysis of WGS data 9 

with fast, robust and scalable tools that deliver information for public health action; iv) 10 

dissemination of WGS data through networks of collaborating reference laboratories at the 11 

national, international and global scales; and v) provision of WGS data and associated 12 

metadata through continuously growing databases that are amenable to interaction and 13 

interpretation (75). Here, we described Typhi Pathogenwatch, a web application for the 14 

genomic surveillance and epidemiology of S. Typhi, which enhances the utility of public 15 

WGS data and associated metadata by integration into an interactive resource that users 16 

can browse, or query with their own WGS data.  17 

Rapid, timely access to information on local patterns of AMR may inform treatment 18 

regimens, which could ultimately lead to a reduction in morbidity and mortality associated 19 

with enteric fever as this is much greater in the absence of effective antimicrobial therapy 20 

(76) . Typhi Pathogenwatch provides a general framework for genomic predictions of AMR 21 

and of related strain clusters, and is accessible to users of all bioinformatics skills levels. 22 

This enables users with an understanding of genomics but no bioinformatics training to 23 

conduct surveillance and epidemiological investigations using WGS. Furthermore, it allows 24 

experienced bioinformaticians to rapidly perform the essential tasks listed in the results 25 

section, thus freeing up time for more advanced downstream analyses. 26 

We demonstrated that genomic predictions of AMR are largely concordant with the 27 

resistance phenotype (overall concordance 96.34%, Table 1), but with the added value of 28 

immediate contextualisation with location, time and population structure in an interactive 29 

visualisation with which to easily explore these aspects. A previous study of 332 isolates 30 

analysed in a single reference laboratory reported only 0.03% discordant results (61) 31 

versus 3.66% from our data. Our results, however, amalgamated published susceptibility 32 
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data from thirteen different studies conducted in eight different countries. The availability of 1 

consistent laboratory antimicrobial susceptibility testing data is key for the periodic 2 

benchmarking and refinement of genomic predictions of AMR (77), in particular for 3 

ciprofloxacin due to the diverse combinations of mechanisms (Additional File 1: 4 

Supplementary Table S8). It should also be noted that Pathogenwatch was developed with 5 

a focus on surveillance, not for clinical decision making. 6 

Novel mechanisms of AMR can easily be added to the curated Pathogenwatch AMR 7 

library, and the growing collection of public genomes can be retrospectively screened, 8 

potentially revealing the presence of a newly identified gene or mutation in genomes from 9 

isolates previously collected (Figure 4). This illustrates how the provision of public genomic 10 

data through Pathogenwatch maximises reusability from which new insights into novel 11 

AMR mechanisms can be derived. The utility of maintaining a regularly updated archive of 12 

WGS data that can be rapidly ‘mined’ for the presence of newly discovered AMR gene was 13 

elegantly illustrated before by the retrospective discovery of the colistin resistance gene 14 

mcr-1 in S. enterica and Escherichia coli genomes from Public Health England (78). 15 

Pathogenwatch extends this utility to the Typhi entire community, thus democratizing the 16 

reusability of the genomic data. 17 

Contextualizing new genomes with existing data is now a routine part of genomic 18 

epidemiology, as it can complement epidemiological investigations to, among many 19 

applications, place the new genomes in or out of an outbreak, link to past outbreaks, and 20 

determine if the success of a resistant phenotype is the result of a single clonal expansion 21 

or multiple independent introductions (79). Using the publicly available genomes, we 22 

provided examples of the utility of Pathogenwatch to contextualise user-uploaded 23 

genomes for outbreak investigation in endemic areas (Figure 2) or for the management of 24 

patients in non-endemic countries with travel history to endemic areas (Figure 5). 25 

Analysing new genomes in the context of global genomes involves the retrieval, storage 26 

and bioinformatic analysis of large amounts of sequence data and linked metadata, which 27 

is time-consuming at the least, and largely unfeasible for hospitals or public-health 28 

agencies with limited computing infrastructure. Pathogenwatch bridges this gap and 29 

provides contextualisation with the closest-related genomes guided by the S. Typhi 30 

population tree (Additional File 3: Supplementary Figure S3) and subtrees.  31 

The interpretation of the genomic context relies heavily on the completeness of the public 32 

collection used for contextualisation, and this in turn depends on the establishment of 33 
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local, national and international surveillance programs for the real-time management of 1 

emerging lineages that pose a direct threat to human health. The International Typhoid 2 

Consortium collected and sequenced around 40% of the global genomes available in 3 

Pathogenwatch for comparison (7, 8), but ongoing surveillance and WGS are needed to 4 

maintain a relevant, contemporary genome collection. Additionally, this requires retrieval 5 

and curation of the genome data and associated metadata, as Pathogenwatch does not 6 

currently support automated submissions. 7 

Pathogenwatch can facilitate collaborative surveillance in endemic areas via data 8 

integration and shared collections for the early detection and containment of high-risk 9 

clones (Figure 6). Collections can be set to off-line mode to work while disconnected from 10 

the internet, which may be advantageous in settings with unreliable internet connections. 11 

Despite recent efforts to promote data openness in times of pandemics (80, 81), several 12 

challenges to sharing genomic data and linked metadata remain in both the academic and 13 

public-health settings (75). User-uploaded genomes and metadata remain in the 14 

Pathogenwatch user account, and collections also remain private unless the user 15 

specifically shares them via a collection URL. Moreover, Pathogenwatch offers a private 16 

metadata option to work with confidential information.  17 

Recent improvements in our understanding of the disease burden and the dissemination 18 

of AMR, and the development of new typhoid conjugate vaccines have bolstered efforts to 19 

employ routine vaccination for the containment of typhoid fever (82). Routine surveillance 20 

coupled with WGS can inform decisions on suitable settings for the introduction of 21 

vaccination programs and on the evolution of pathogens in response to them (83, 84). 22 

Pathogenwatch could be linked to routine genomic surveillance around typhoid vaccination 23 

initiatives to monitor the population dynamics in response to the deployment of new 24 

vaccines. 25 

While other tools have been developed for the analysis of WGS data of the Salmonella 26 

enterica species, such as the comprehensive database Enterobase (11) and the in silico 27 

typing resource SISTR (12), the S. Typhi analysis framework of Pathogenwatch has been 28 

developed with a focus on the epidemiology of this human-adapted serovar and AMR. The 29 

modular architecture allows new functionalities to be added to cater to the community 30 

needs.  31 

 32 
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Conclusions 1 

Typhi Pathogenwatch combines accurate genomic predictions of AMR with genomic and 2 

geographic context within an easy to use interface for delivered for the community and to 3 

support ongoing typhoid surveillance programs. 4 

 5 
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Figures 1 
 2 

 3 
 4 
Figure 1. Workflow of the Typhi Pathogenwatch application. Input assemblies or sequence reads and 5 
metadata files can be uploaded via drag-and-drop onto the Upload page. Once the analyses completed, the 6 
genomes are listed on the Genomes page with Pathogenwatch outputs for speciation and MLST. Clicking on 7 
a genome name on the list pops up a Genome Report. The user can create collections of genomes. The 8 
Collection view displays the user genomes clustered by genetic similarity on a tree, their location on a map, 9 
a timeline, as well as tables for metadata, typing and AMR. The Population view displays the user genomes 10 
by their closest reference genome in the population tree. Clicking on one of the highlighted nodes (purple 11 
triangles) opens the Population subtree view, which contextualises the user genomes with the closest public 12 
genomes. 13 
  14 

.CC-BY-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted July 3, 2020. ; https://doi.org/10.1101/2020.07.03.186692doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.03.186692
http://creativecommons.org/licenses/by-nd/4.0/


 31 

 1 
 2 
Figure 2. Pathogenwatch provides genomic context for outbreak investigations. a-b Genomes from an 3 
outbreak in Zambia (purple markers on tree and map) are linked by genetic relatedness to genomes from 4 
neighbouring countries Malawi and Tanzania (grey markers) forming 2 separate groups of 16 (a) and 4 (b) 5 
outbreak genomes, respectively. The number of pairwise differences (range) between outbreak and related 6 
genomes as downloaded from the Pathogenwatch score matrix are indicated on the bottom-right of the tree 7 
panel. c-d Differential distribution of trimethoprim resistance genes dfrA7 (c) and dfrA14 (d) across the two 8 
clades containing outbreak genomes. The data is available at 9 
https://pathogen.watch/collection/g5pbucot6e58-hendriksen-et-al-2015. 10 
 11 
  12 
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 1 

 2 
 3 
 4 
Figure 3. Distribution of minimum inhibitory concentration (MIC) values (mg/L) for ciprofloxacin in a 5 
collection of S. Typhi isolates with different combinations of genetic mechanisms that are known to confer 6 
resistance to this antibiotic. Only combinations observed in at least 5 genomes are shown. Dashed 7 
horizontal lines on the violin plots mark the CLSI clinical breakpoint for ciprofloxacin. Point colours inside 8 
violins represent the genotypic AMR prediction by Pathogenwatch on each combination of mechanisms. 9 
Barplots on the top show the abundance of genomes with each combination of mechanisms. Bar colours 10 
represent the differences between the predicted and the observed SIR (i.e. red for a predicted susceptible 11 
mechanism when the observed phenotype is resistant).  12 
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 1 
 2 

 3 
 4 
Figure 4. Pathogenwatch data reusability. Fifteen genomes carrying the acrB_R717Q mutation recently 5 
linked to azithromycin resistance in S. Typhi are shown in red on the tree of 4389 public genomes and on the 6 
map. The presence of the mutation is indicated by the red circles on the SNPs table. Three of these 7 
genomes (tree labels) belong to isolates collected before the mutation was first described and are shown in 8 
more detail in the bottom panels. The data is available at https://pathogen.watch/collection/07lsscrbhu2x-9 
public-genomes 10 
  11 
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 1 

 2 
 3 
Figure 5. Rapid risk assessment of typhoid fever cases in non-endemic regions. Pathogenwatch 4 
places genome PHL5950 from an isolate recovered in Canada and with travel history to Pakistan within the 5 
XDR-outbreak in Pakistan (red markers). The data is available at 6 
https://pathogen.watch/collection/11lsok8nrzts-wong-et-al-2018-idcases-15e00492 7 
 8 
 9 
 10 
 11 
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Figure 6. Pathogenwatch to for collaborative international surveillance of S. Typhi. a Pathogenwatch 3 
highlights 195 ciprofloxacin-resistant triple mutants on the public data tree and map by simultaneously 4 
selecting the mutations gyrA_S83F, gyrA_D87N, and parC_S80I on the SNPs table. b Detailed visualisation 5 
of the triple mutants showing the temporal distribution of the genomes on the timeline. Magenta arrowhead: 6 
3 genomes from India with blaSHV-12, qnrB and an IncX3 replicon. Purple arrowhead: 4 genomes with sul1, 7 
dfrA15, tetA(A) and an IncN replicon from the UK and Japan. Selecting individual clades on the tree shows 8 
distinct clades that span neighbouring countries India-Pakistan (c) and India-Nepal (d). The data is available 9 
at https://pathogen.watch/collection/07lsscrbhu2x-public-genomes10 
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Tables 
 
 
 

Antibiotic Total TN TP FN FP Sensitivity 
(95% CI) 

Specificity 
(95% CI) 

PPV 
(95% CI) 

NPV 
(95% CI) 

VME 
rate 

ME 
rate 

Concordance 
(%) 

AMP 875 461 402 4 8 0.99 
(0.97-1.00) 

0.98 
(0.97-0.99) 

0.98 
(0.96-0.99) 

0.99 
(0.98-1) 0.01 0.02 98.63 

CEP 348 256 90 2 0 0.98 
(0.92-1.00) 

1.00 
(0.99-1.00) 

1.00 
(0.96-1.00) 

0.99 
(0.97-1.00) 0.02 0 99.43 

CHL 913 518 375 6 14 0.98 
(0.97-0.99) 

0.97 
(0.96-0.99) 

0.96 
(0.94-0.98) 

0.99 
(0.98-1.00) 0.02 0.03 97.81 

CIP 1282 111 1065 49 57 0.96 
(0.94-0.97) 

0.66 
(0.58-0.73) 

0.95 
(0.93-0.96) 

0.69 
(0.62-0.76) 0.04 0.32 91.73 

SXT 912 513 367 7 25 0.98 
(0.96-0.99) 

0.95 
(0.93-0.97) 

0.94 
(0.91-0.96) 

0.99 
(0.97- 0.99) 0.02 0.05 96.49 

TCY 44 40 4 0 0 1.00 
(0.40-1.00) 

1.00 
(0.91-1.00) 

1.00 
(0.40-1.00) 

1.00 
(0.91-1.00) 0 0 100 

AZM 156 144 12 0 0 1.00 
(0.74-1.00) 

1.00 
(0.97-1.00) 

1.00 
(0.74-1.00) 

1.00 
(0.97-1.00) 0 0 100 

CST 41 41 0 0 0 - 1.00 
(0.91-1.00) - 1.00 

(0.91-1.00) - 0 100 

MEM 132 132 0 0 0 - 1.00 
(0.97- 1.00) - 1.00 

(0.97- 1.00) - 0 100 

 
Table 1. Benchmark analysis of Typhi Pathogenwatch AMR predictions for ampicillin (AMP), 
chloramphenicol (CHL), broad-spectrum cephalosporins (CEP), ciprofloxacin (CIP), sulfamethoxazole-
trimethoprim (SXT), tetracycline (TCY), azithromycin (AZM), colistin (CST) and meropenem (MEM). The total 
number of comparisons, true negatives (TN), true positives (TN), false negatives (FN), false positives (FN), 
sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV), very major error 
(VME) rate, major error (ME) rate, and concordance are shown. Confidence intervals (95%) are shown in 
parenthesis. 
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