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Abstract

Electroencephalography (EEG) and magnetoencephalography (MEG) are among the most impor-
tant techniques for non-invasively studying cognition and disease in the human brain. These signals
are known to originate from cortical neural activity, typically described in terms of current dipoles.
While the link between cortical current dipoles and EEG/MEG signals is relatively well understood,
surprisingly little is known about the link between different kinds of neural activity and the current
dipoles themselves. Detailed biophysical modeling has played an important role in exploring the
neural origin of intracranial electric signals, like extracellular spikes and local field potentials. How-
ever, this approach has not yet been taken full advantage of in the context of exploring the neural
origin of the cortical current dipoles that are causing EEG/MEG signals.

Here, we present a method for reducing arbitrary simulated neural activity to single current
dipoles. We find that the method is applicable for calculating extracranial signals, but less suited for
calculating intracranial electrocorticography (ECoG) signals. We demonstrate that this approach
can serve as a powerful tool for investigating the neural origin of EEG/MEG signals. This is done
through example studies of the single-neuron EEG contribution, the putative EEG contribution from
calcium spikes, and from calculating EEG signals from large-scale neural network simulations. We
also demonstrate how the simulated current dipoles can be used directly in combination with de-
tailed head models, allowing for simulated EEG signals with an unprecedented level of biophysical
details.

In conclusion, this paper presents a framework for biophysically detailed modeling of EEG and
MEG signals, which can be used to better our understanding of non-inasively measured neural
activity in humans.
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Graphical abstract.

Highlights1

• Current dipoles are computed from biophysically detailed simulated neuron and network ac-2

tivity3

• Extracted current dipoles allow for accurate computation of EEG and MEG signals in simpli-4

fied and detailed head models5

• Current-diplole approximation generally not suitable for accurate calculations of ECoG signals6

• Method provides biophysics-based link between detailed neural activity and systems-level7

signals8

1. Introduction9

Electroencephalography (EEG) is one of the most important non-invasive methods for studying10

human cognitive function and diagnosing brain diseases [Cohen, 2017; Pesaran et al., 2018]. Yet,11

we know surprisingly little about the neural origin of these electric scalp potentials [Cohen, 2017]:12

On the one hand, we have a relatively good understanding of the biophysics of EEGs, in knowing13

that these signals originate from cortical current dipoles, and having a well-defined framework for14

linking such cortical dipoles to electric scalp potentials [Nunez and Srinivasan, 2006]. This has been15

taken advantage of for a long time in source localization, by inverse modeling of the underlying16

cortical current dipoles from EEG data. On the other hand, even though these cortical dipoles17

are assumed to mainly originate from large numbers of synaptic input to cortical pyramidal cell18

populations [Nunez and Srinivasan, 2006; Lopes da Silva, 2013; Pesaran et al., 2018; Ilmoniemi19

and Sarvas, 2019], the precise link between cortical dipoles and the underlying neural activity has20

remained unclear. In other words, we know very little about exactly which types of neural activity21

that cause even the most well-studied characteristics of the EEG signal, such as different types22

of oscillations (e.g., alpha, beta, and gamma waves) and stereotyped EEG shapes in response to23

sensory stimuli (event-related potentials, ERPs) [Cohen, 2017]. Importantly, these different EEG24
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characteristics are affected in predictable ways by various brain conditions, such as sleep and25

attention [Klimesch et al., 1998; Palva and Palva, 2011; Siegel et al., 2012], and by brain disorders26

including epilepsy and schizophrenia [Niedermeyer, 2003; Light and Näätänen, 2013; Freestone27

et al., 2015; Mäki-Marttunen et al., 2019a]. This means that a better insight into how different types28

of brain activity is reflected in cortical current dipoles could help us not only in making better inverse29

models for source localization, but also in providing a better understanding of the mechanisms of30

human cortical activity and possibly curing brain diseases [Uhlirova et al., 2016; Cohen, 2017;31

Mäki-Marttunen et al., 2019a].32

The reasons why we lack understanding of the neural origin of EEG signals are many, the main33

being (i) strong ethical constraints on invasive human brain measurements and (ii) the high number34

of neurons that contribute to the signal. However, in recent years there have been major advances35

in several relevant branches of neuroscience, meaning that a better understanding of the EEG36

signal may now be within reach [Uhlirova et al., 2016; Cohen, 2017].37

To bypass challenge (i), we look to the rapid development in the technology and methods used38

to study neural activity in lab animals. The possibility to control and manipulate neural activity, while39

simultaneously recording both intracranial signals like the local field potential (LFP) [Einevoll et al.,40

2007; Blomquist et al., 2009] and extracranial non-invasive signals like the EEG [Bruyns-Haylett41

et al., 2017], can be expected to make important contributions to our understanding of non-invasive42

measurements of human brain activity [Lopes da Silva, 2013; Uhlirova et al., 2016; Cohen, 2017;43

Pesaran et al., 2018]. Furthermore, detailed biophysical modeling of neural activity has become44

an important tool for understanding intracranial LFP measurements [Einevoll et al., 2013a; Pesaran45

et al., 2018]. Given that EEG is expected to reflect the same basic process as LFP, that is, large46

numbers of synaptic input to geometrically aligned pyramidal cells [Nunez and Srinivasan, 2006;47

Pesaran et al., 2018; Buzsáki et al., 2012], it seems likely that detailed biophysical modeling can48

also help shed light on the neural origin of EEG signals.49

As indicated in challenge (ii), EEG signals are expected to reflect the activity of much larger neu-50

ral populations than the LFPs, making the simulations computationally demanding. Biophysically51

detailed large-scale simulations of neural networks have, however, been gaining substantial mo-52

mentum in recent years, thanks to large ongoing neuroscience initiatives like Project MindScope53

at the Allen Institute for Brain Science, the Blue Brain Project and the EU Human Brain Project54

[Einevoll et al., 2019]. The possibility to calculate EEG signals from such existing and future large-55

scale biophysically detailed neural simulations could lead to valuable insights into the neural origin56

of the EEG.57

Another complicating aspect of EEG modeling, is that these predictions in general require a58

head model to account for the widely different electrical conductivities of the brain, cerebrospinal59

fluid (CSF), skull and scalp [Nunez and Srinivasan, 2006; Ilmoniemi and Sarvas, 2019]. While many60

such head models exist, they tend to take current dipoles as input [Nunez and Srinivasan, 2006;61

Pesaran et al., 2018], instead of the transmembrane currents that are available from biophysical62

neural simulations and that form the basis for modeling LFPs [Einevoll et al., 2013b].63

Here, we introduce an approach for reducing arbitrary biophysically detailed simulated neural64

activity to current dipoles, which represents an enormous reduction in term of model complexity65

when computing brain signals. We verify that the approach gives accurate results when calculating66

EEG signals, but less so for intracranial electrocorticography (ECoG) signals. Next, we look into67

how the approach can be applied for investigating the origin of EEG signals, with a particular focus68

on calcium spikes, before demonstrating how our methods can be applied for pre-existing large-69

scale network models. Finally, we show how current dipoles can be combined with detailed head70

models, which enables simulation of EEG signals with unprecedented biophysical detail.71

Note that the clear separation between calculation of current dipoles and the corresponding72

EEG is equally valid for magnetoencephalography (MEG) signals. While we here focus mostly on73

3

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted July 4, 2020. ; https://doi.org/10.1101/2020.07.01.181875doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.01.181875


EEG, the presented approach for calculating current dipoles from neural activity is equally valid74

for MEG signals, through use of an appropriate forward model [Hagen et al., 2018; Ilmoniemi and75

Sarvas, 2019].76

2. Methods77

Neural activity generates electric currents in the brain, which in turn create electromagnetic78

fields. In this section, we explain how electric brain signals can be modeled in both simple and79

more complex volume conductors.80

2.1. Forward modeling of electric potentials81

We assume negligible capacitive effects in the head [Pfurtscheller and Cooper, 1975; Ranta82

et al., 2017; Miceli et al., 2017] and that electric and magnetic signals effectively decouple. We83

can then apply the quasistatic approximation of Maxwell’s equations for calculating these signals84

[Hämäläinen et al., 1993; Nunez and Srinivasan, 2006]. In other words, for computing extracellular85

electric potentials, we envision the head as a 3D volume conductor, and combining Maxwell’s equa-86

tions with the current conservation law, we obtain the Poisson equation for computing extracellular87

potentials [Griffiths, 1999]:88

∇ · J = ∇ · (σ∇φ) , (1)

where J is the electric current density in extracellular space, σ is the extracellular conductivity and89

φ is the extracellular electric potential. The Poisson equation can be solved analytically for simple,90

symmetric head models, such as an infinitely big space and spherically symmetric models. For91

more complex head models, numerical methods such as the Finite Element Method (FEM) can be92

used [Logg et al., 2012; Vorwerk et al., 2014; Haufe et al., 2015; Seo et al., 2016; Vorwerk et al.,93

2019].94

2.1.1. Compartment-based approach95

Extracellular potentials generated by transmembrane currents can be calculated with a well-96

founded biophysical two-step forward-modeling scheme. The first step involves multicompartmental97

modeling and incorporates the details of reconstructed neuron morphologies for calculating trans-98

membrane currents [Sterratt et al., 2011]. In the second step, Equation (1) is solved under the99

assumption that the extracellular medium is an infinitely large, linear, ohmic, isotropic, homoge-100

neous and frequency-independent volume conductor. The transmembrane currents entering and101

escaping the extracellular medium can be seen as current sources and sinks, and give the extra-102

cellular potential φ at the electrode location r,103

φ(r) =
1

4πσ

N∑
n=1

In
|r− rn|

, (2)

where rn is the location of transmembrane current In, N is the number of transmembrane currents104

and σ is the extracellular conductivity. This scheme is here referred to as the compartment-based105

approach, and was applied using the Python package LFPy 2.0 running NEURON under the hood106

[Hagen et al., 2018; Carnevale and Hines, 2006].107
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2.1.2. Current dipole approximation108

Analogous to how electric charges can create charge multipoles, a combination of current sinks109

and sources can set up current multipoles [Nunez and Srinivasan, 2006]. From electrodynamics,110

we know that extracellular potentials from a volume of current sinks and sources can be precisely111

described by expressing Equation 2 as a multipole expansion [Nunez and Srinivasan, 2006]:112

φ(R) =
Cmonopole

R
+
Cdipole

R2
+
Cquadrupole

R3
+ ... , (3)

when the distance R from the center of the volume to the measurement point is larger than the113

distance from the volume center to the most peripheral source [Jackson, 1998]. In neural tissue,114

the current monopole contribution is zero due to current conservation, since the transmembrane115

currents sum to zero at all times [Koch, 1999; Pettersen et al., 2012]. Further, the quadrupole,116

octopole and higher order terms are negligible compared to the current dipole contribution when R117

is sufficiently large. In this case, the extracellular potential from a neuron model can be estimated118

with the second term of the current multipole expansion; an approximation known as the current119

dipole approximation [Pettersen and Einevoll, 2008; Pettersen et al., 2014; Nunez and Srinivasan,120

2006]:121

φ(r) =
Cdipole

R2
=

1

4πσ

|p| cos θ

|r− rp|2
. (4)

Here, p is the current dipole moment in a medium with conductivity σ, R = |R| = |r − rp| is the122

distance between the current dipole moment at rp and the electrode location r, and θ denotes the123

angle between p and R. The current dipole moment p can be calculated from an axial current I124

inside a neuron and the distance vector d traveled by the axial current: p = Id, analogous to a125

charge dipole moment. The current dipole approximation is applicable in the far-field limit, that is126

when R is much larger than the dipole length d = |d| [Nunez and Srinivasan, 2006].127

Multi-dipole approach. From some multicompartmental neuron simulations (Figure 1- 3), we com-128

puted multiple current dipole moments, i.e., one for each axial current flowing between neighboring129

compartments in the neuron:130

pk = Iaxialk dk. (5)

Here, Iaxialk is an axial current traveling along distance vector dk, resulting in a current dipole131

moment pk. By inserting all the current dipole moments from a neuron simulation into the cur-132

rent dipole approximation (Equation 4), we get a good estimate of the extracellular potential at133

any electrode location where the distance between the electrode and the nearest dipole is suffi-134

ciently large [Nunez and Srinivasan, 2006]. Note that the length of each (multi-)dipole is equal to135

half the length of its corresponding neuronal compartment. The calculation of multi-dipoles from136

simulated neural activity was implemented in LFPy 2.0, and can be used through the function137

Cell.get_multi_current_dipole_moments [Hagen et al., 2018].138

Single-dipole approximation. From each multicompartmental neuron simulation, we computed one139

single current dipole moment. This can either be done by summing up the multiple current dipole140

moments,141

p(t) =
M∑
k=1

pk(t) =
M∑
k=1

Iaxialk (t)dk, (6)
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where M is the number of axial currents, or equivalently from a position-weighted sum of all the142

transmembrane currents [Lindén et al., 2010; Hagen et al., 2018]:143

p(t) =
N∑

k=1

Itransk (t)rk, (7)

where N is the number of compartments in the multicompartmental neuron model and rk is the144

position of transmembrane current Itransk (t). For calculating EEG signals a location for the current145

dipole must be chosen, and unless otherwise specified we positioned the dipole halfway between146

the position of the soma and the position of the synaptic input (for multiple synaptic inputs, we used147

the average position of the synaptic inputs). Note, however, that the large distance from the neuron148

to the EEG electrode (∼10 mm) implies that the EEG signal is relatively insensitive to small changes149

in the dipole location within cortex. The calculation of current-dipole moments from simulated neural150

activity was implemented in LFPy 2.0, and can be used through Cell.current_dipole_moment151

[Hagen et al., 2018].152

2.2. Head models153

Electric potentials will be affected by the geometries and conductivities of the various parts of the154

head [Nunez and Srinivasan, 2006], which is especially important for electrode locations outside of155

the brain. This can be incorporated into our extracellular potential calculations by applying simplified156

or complex head models.157

2.2.1. Four-sphere head model158

The four-sphere head model is a simple analytical model consisting of four concentric shells159

representing brain tissue, cerebrospinal fluid (CSF), skull and scalp, where the conductivity can be160

set individually for each shell [Srinivasan et al., 1998; Nunez and Srinivasan, 2006], see Table 1161

for parameters used in this paper. The model solution is given in Næss et al. [2017] and is found162

by solving the Poisson equation subject to boundary conditions ensuring continuity of current and163

electric potentials over the boundaries, as well as no current escaping the outer shell. This model164

is based on the current dipole approximation.165

Radius (cm) σ (S/m)
Brain 7.9 0.3
CSF 8.0 1.5
Skull 8.5 0.015
Scalp 9.0 0.3

Table 1: Radii and electrical conductivities used in the four-sphere model. The radius of each spherical
shell in the four-sphere model, with σ denoting the respective electrical conductivities.

2.2.2. New York Head model166

The New York Head model is a detailed head model based on high-resolution, anatomical167

MRI-data from 152 adult heads [Huang and Parra, 2015]. The model was constructed by taking168

advantage of the reciprocity theorem, stating that the position of the electrode and the dipolar169

source can be switched without affecting the measured potential [Rush and Driscoll, 1969]. This170

means, that virtually injecting current at the locations of the EEG electrodes and using the finite171

element method [Logg et al., 2012] to compute the resulting potential anywhere in the brain, gives172

the link between current dipoles in the brain and the resulting EEG signals [Malmivuo and Plonsey,173
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1995; Ziegler et al., 2014; Huang et al., 2016; Dmochowski et al., 2017]. This link was captured in174

a matrix known as the lead field L [Nunez and Srinivasan, 2006]:175

L =
E

I
(8)

Here, I is the injected current at the electrode locations and E is the resulting electric field in the176

brain. The lead field matrix gives us the precise link between a current dipole moment p in the brain177

and the resulting EEG signals Φ [Nunez and Srinivasan, 2006]:178

Φ = L · p. (9)

We applied the New York Head model by downloading the lead field L from parralab.org/nyhead/.179

The units incorporated in the lead field matrix was not immediately obvious. However, from Dmo-180

chowski et al. [2017]; Huang et al. [2013] it appears that an injected current I of 1 mA gives an181

electric potential E in V/m, meaning that a current dipole moment p in the unit of mAm gives EEG182

signals in the unit of V.183

2.3. Simulation of neural activity184

All neuron simulations were performed using the python package LFPy, running NEURON un-185

der the hood [Hagen et al., 2018]. For investigations of single-cell contributions to extracellular186

potentials, we applied three different morphologically reconstructed cell models: The human layer-187

2/3 pyramidal cell from Eyal et al. [2018], the layer-5 pyramidal cell from rat cortex constructed by188

Hay et al. [2011] and a rat layer-5 chandelier cell; an interneuron model developed by Markram189

et al. [2015].190

The pyramidal cell models were downloaded from senselab.med.yale.edu/modeldb/, with191

accession numbers 238347 (2013_03_06_cell03_789_H41_03) and 139653 (cell1) respectively,192

while we found the interneuron at the Neocortical Microcircuit Collaboration Portal (bbp.epfl.ch/193

nmc-portal/microcircuit) under layer-5, Chandelier Cell (ChC), continuous Non-accomodating194

(cNAC), (rp110201_L_idA_-_Scale_x1.000_y0.975_z1.000_-_Clone_3).195

For all simulations with passive ion channels only (Fig. 1-3), we used the following cell param-196

eters: membrane resistance of 30000 Ωcm2, axial resistance of 150 Ωcm [Mainen and Sejnowski,197

1996] and a membrane capacitance of 1 µF/cm2 [Gentet et al., 2000; Sterratt et al., 2011]. When198

active mechanisms were included in the simulations (Fig. 4), all cell properties were incorporated199

as described in the specific cell’s documentation.200

Neural simulations shown in Fig. 1-4 received synaptic input modeled as conductance-based,201

two-exponential synapses (Exp2Syn in NEURON). The rise time constant was set to 1 ms and the202

decay time constant was 3 ms, synaptic reversal potential was 0 mV and the synaptic weight was203

set to 0.002 µS, unless otherwise specified.204

For modeling of population activity (Figure 5, 6), we used the so-called hybrid scheme recently205

proposed by Hagen et al. [2016]. The simulation was unmodified from their presented results with206

transient thalamocortical input (their Fig. 1 and 7), except that all single-cell current dipole moments207

were recorded, and the EEG signals calculated.208

2.4. Code availability209

Simulation code to reproduce all figures in this paper is freely available from https://github.210

com/solveignaess/EEG.git211
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3. Results212

We introduce an approach for modeling electroencephalography (EEG) and magnetoencephalog-213

raphy (MEG) signals from detailed biophysical multicompartment cell models. The approach in-214

volves two steps: First, current dipole moments are extracted from activity in neurons or networks.215

Second, the extracted current dipoles are used as sources in established forward models. Here we216

only demonstrate the approach by computing EEG signals, but the current dipoles are equally appli-217

cable for computing MEG signals using the appropriate magnetic-field forward models [Hämäläinen218

et al., 1993; Hagen et al., 2018; Ilmoniemi and Sarvas, 2019]. For illustration, we first consider EEG219

signals stemming from single synaptic input onto single neurons in an infinite homogeneous head220

model, before moving on to a simple, generic head model. Finally, we study EEGs from large-scale221

simulated network activity, also applying a detailed head model.222

3.1. At sufficiently large distances, extracellular potentials become dipolar223

When modeling electric potentials within the brain, we can apply the well-established compartment-224

based approach assuming a homogeneous volume conductor (section 2.1.1) [Einevoll et al., 2013a;225

Holt and Koch, 1999]. However, this assumption is no longer valid when it comes to modeling226

EEG signals on the scalp, which calls for an inhomogeneous head model [Ilmoniemi and Sarvas,227

2019]. Such head models typically take current dipoles as input, as opposed to individual current228

sinks/sources, and must be based on the current dipole approximation [Nunez and Srinivasan,229

2006]. Here, we introduce an approach for computing current dipoles from arbitrary simulated neu-230

ral activity, and compare current-based and dipole-based modeling of electric potentials generated231

by a single cell receiving excitatory synaptic input. Excitatory synaptic input initiates a negative232

current at the synapse location, since positive ions flow into the cell. Due to current conserva-233

tion [Koch, 1999], this negative current is exactly balanced by spatially distributed positive currents234

along the cellular membrane, as illustrated in Fig. 1A for a single apical excitatory synaptic input235

to a passive human cortical layer-2/3 pyramidal cell model [Eyal et al., 2016]. See Methods 2.3236

for simulation details. In the standard procedure for modeling extracellular potentials, here referred237

to as the compartment-based approach, the transmembrane current in each cellular compartment238

corresponds to a point current source/sink. Another strategy is to consider the axial current of239

each cellular compartment as a small current dipole (see Equation (6)), which we refer to as the240

multi-dipole approach (Fig. 1B). By vector summation of all these dipoles into one single dipole at241

a specific position, we obtain the single-dipole approximation (Fig. 1C). For the sake of comparing242

these modeling approaches, we have assumed that the cell is positioned in an infinite homoge-243

neous electric medium. Very close to the neuron, the extracellular potential will strongly depend on244

the exact distribution of transmembrane currents across the cellular morphology and will, therefore,245

typically not take a purely dipolar shape (Fig. 1 D,E versus F). However, since the dipole contribution246

will dominate when we are further away from the current sources (see Equation 3), the extracellu-247

lar potential becomes more and more dipolar with increasing distance from the cell [Lindén et al.,248

2010]. This implies that for the purpose of calculating extracellular potentials far away from the249

cell, the single-dipole approximation might be well justified (Fig. 1G-I). Note that there can be small250

differences between the results from the compartment-based and the multi-dipole approaches for251

electrode locations in the immediate vicinity of the current sources, due to the approximations in-252

herent in using the current dipole model (Fig. 1D versus Fig. 1E).253
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Figure 1: Extracellular potentials become dipolar in the far field limit. A: Passive layer-2/3 pyramidal
cell from human [Eyal et al., 2016] with an excitatory, conductance-based, two-exponential synapse placed
on apical dendrite (red dot), see Methods (2.3) for parameters. The resulting transmembrane currents for
each compartment are shown as a blue arrow (input current) and red arrows (return currents). B: Green
arrows represent the multiple current dipole moments between neighboring neural compartments. C: Gray
arrow illustrates the total current dipole moment, that is, the vector sum of the dipoles in B. D-F: Extracellular
potential in immediate proximity of the neuron, computed with the compartment-based approach, multi-dipole
approach and single-dipole approximation, respectively. Note that the multi-dipole results differ slightly from
the compartment-based approach when the distance from the measurement point to the nearest current dipole
moment is short compared to the dipole length. G-I: Same as D-F, but at a larger spatial scale (zoomed out).
See 1 mm scalebar in panel A, D and G. The colorbar is shared for panels D-I.

9

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted July 4, 2020. ; https://doi.org/10.1101/2020.07.01.181875doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.01.181875


3.2. Single-dipole approximation is justified for EEG, but not ECoG signals254

In order to test the applicability of the single-dipole approximation for calculating ECoG and255

EEG signals, we applied the four-sphere head model [Næss et al., 2017; Hagen et al., 2018, 2019].256

Since the four-sphere head model takes current dipoles as input, the multi-dipole approach was257

used as benchmark: an assumption that should be well justified for the cell-to-electrode distances258

considered, see section 3.1.259

For different locations of a single excitatory synaptic input to a human cortical layer-2/3 pyra-260

midal cell model [Eyal et al., 2016] (Fig. 2A), we calculated the electric potential at point-electrode261

positions spanning from 100 µm above the top of the cell, to the surface of the head, using both the262

multi-dipole approach and the single-dipole approximation (Fig. 2B). In the simulations shown, we263

used conductance-based synapses and included only passive membrane conductances, but we264

confirmed that using current-based synapses or a fully active cell model gave very similar results.265

The electric potential decreased steeply with distance when crossing the different layers of266

the head model, most strongly across the low-conducting skull (Fig. 2B). For all synaptic input267

locations, we observed that the electric potential calculated with the single-dipole approximation268

markedly deviated from the multi-dipole approach directly above the neuron, but the difference269

strongly decreased with distance from the neuron (Fig. 2B, full versus dashed lines for two selected270

synapse locations). We quantified the model dissimilarities by looking at the relative error at the271

timepoint of the maximum current dipole moment, and for a chosen distal synaptic input the relative272

error was 40.0% and 1.06% at the position of the ECoG and EEG electrodes respectively (Fig. 2C,273

green line). For a specific proximal synaptic input we observed a relative error of 76.1% at the274

ECoG position, and 7.61% at the EEG position (Fig. 2C, purple line). Inserting a single strong275

synaptic current (synaptic weight 0.05 µS) into the soma of the same layer-2/3 pyramidal cell with276

active mechanisms [Eyal et al., 2018], resulting in a somatic spike, gave relative errors of 34.7%277

and 0.967% for the computed ECoG and EEG signals, respectively (results not shown). We found278

that calculating EEG signals with the single-dipole approximation gave relative errors peaking for279

synaptic locations ∼ 60 and 400 µm above the soma (Fig. 2D), but note that these synaptic input280

locations also gave relatively weak EEG signals (Fig. 2E). This demonstrates that the relative error281

of the single-dipole approximation is negatively correlated with the amplitude of the scalp potential282

(Fig. 2F). This is as expected, given that the strongest EEG signals are expected to be caused by283

dipole-like source/sink distributions (section 2.1.2). In summary, the single-dipole approximation284

can result in substantial errors at the position of the ECoG electrodes, but gives small errors at the285

position of the EEG electrodes for synaptic locations leading to strong EEG signals.286
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Figure 2: Single-dipole approximation is justified for EEG but not ECoG signals. A: Illustration of four-
sphere head model, where the pink, blue, green and purple spherical shells represent the brain, CSF, skull and
scalp respectively, see Table 1. The pink inset shows the human layer-2/3 neuron [Eyal et al., 2016] located
in the brain, 78.9 mm above head center. 41 simulations lasting 100 ms with a single synaptic input after 20
ms to cell with passive ion channels only, were performed for varying input locations, see colored dots. The
z-component of the resulting current dipole moments for two synaptic input locations (large colored dots) are
shown in inset below as functions of time. The results presented in this figure are computed at the simulation
time points producing the largest current dipole moment for each synaptic input location. B: Magnitude of
extracellular potential |φ| as function of distance from the top of the neuron, shown for two simulations with
synaptic input locations marked by large colored dots in upper inset of A. In each simulation, we consider the
time point with the largest current dipole moment. Dashed lines show extracellular potentials computed with
multi-dipole, and full lines show single-dipole calculations. C: Relative error RE at EEG location comparing the
single-dipole model to the multi-dipole model, as function of distance from top of neuron to measurement point.
D: Relative error RE showing how single-dipole model deviates from multi-dipole model EEG calculations, as
function of distance from soma to synapse location. E: Magnitude of EEG signal, |EEG|, as function of distance
from soma to synaptic input location. F: Relative error, RE, showing how EEG calculations performed with the
single-dipole approximation deviates from multi-dipole approach as a function of amplitude of the EEG signal,
|EEG|.
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3.3. Single-dipole approximation simplifies estimate of EEG contribution287

In the previous section, we showed that the single-dipole approximation was applicable for288

calculation of EEG signals, and in this section we demonstrate that the single-dipole approximation289

can substantially simplify the analysis of the biophysical origin of EEG signals.290

Pyramidal cells have a preferred orientation along the depth axis of cortex (here the z-axis),291

and the direction of the current dipole moment p can be expected to align with this axis since292

radial symmetry will tend to make the orthogonal components (px, py) cancel at the population293

level [Hagen et al., 2018]. In contrast, interneurons show much less of a preferred orientation,294

and are therefore expected to give a negligible contribution to the EEG signal, except indirectly295

through synaptic inputs onto pyramidal cells [Hagen et al., 2016]. We illustrated this by applying the296

single-dipole approximation to three different cell types (Fig. 3A), each receiving a large number of297

synaptic inputs with target regions on the cells set up to vary over time (Fig. 3B).298

For the previously used human layer-2/3 cell (Fig. 3A, purple; Eyal et al. [2016]) receiving a299

volley of excitatory synaptic inputs that were restricted to the uppermost 200 µm of the cell (t=50 ms;300

Fig. 3B, purple dots), we observed a negative deviation of pz (Fig. 3C, purple line). For basal301

synaptic input (t=100 ms; Fig. 3B, purple line), the polarity of pz was instead positive, but of slightly302

lower amplitude than for apical input, as can be expected because the large area of the somatic303

region will cause strong return currents in the immediate vicinity of the synaptic inputs, and therefore304

an overall weaker current-dipole moment.305

A uniform distribution of 400 synaptic inputs across the cell membrane with area-weighted prob-306

ability (t=150 ms; Fig. 3B, purple line), only gave rise to small ripples in pz, due to the substantial307

cancellation of current dipoles of opposite polarity. It is sometimes assumed that excitatory input308

is relatively uniformly distributed onto pyramidal cells, while inhibitory input is more directed to the309

perisomatic region [Mazzoni et al., 2015; Teleńczuk et al., 2019; Skaar et al., 2020; Teleńczuk et al.,310

2020]. As expected, we found that this combination of uniformly distributed excitatory synaptic input311

and perisomatic inhibitory input gave rise to a clear negative response in pz (t=200 ms; Fig. 3B,312

purple line), which could be part of the explanation why inhibitory synaptic input in some cases has313

been found to dominate the LFP [Hagen et al., 2016; Teleńczuk et al., 2017].314

For a rat cortical layer-5 pyramidal cell model (Fig. 3A, blue; Hay et al. [2011]), the resulting315

current dipole moment was very similar in shape, but larger in amplitude, which was expected316

because the longer apical dendrite will tend to give larger current dipole moments (Fig. 3C, blue317

line). Lastly, we used a rat cortical layer-5 interneuron model (Fig. 3A, green; Markram et al.318

[2015]), but since the dendrites of interneurons are not structured into the same distinctive zones319

as pyramidal cells, the synaptic input caused very small net current dipole moments.320

We calculated the EEG signals with the four-sphere head model, using both the multi-dipole321

(Fig. 3D, dotted lines) and the single-dipole (Fig. 3D, solid lines) approach. To compare the ap-322

proaches, we computed the relative error over time, that is, the absolute difference between the323

results from the two approaches, normalized by the maximum EEG magnitude computed with the324

multi-dipole approach. The single-dipole approach gave a maximum error of 2.2%, 3.5% and 0.34%325

for the human layer-5 cell, the rat layer-5 cell and the rat interneuron, respectively. Importantly, the326

EEG signal is essentially fully described by the z-component of the current dipole moment pz, that327

is, a single time-dependent variable. This reduction in signal description represents a massive sim-328

plification in the understanding of the biophysical origin of the EEG signal, compared to considering329

the transmembrane currents and position of each cellular compartment.330
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Figure 3: EEG signals and current dipole moment from three different cell types with various synaptic
input. A: The morphologies of a human L2/3 pyramidal cell (purple; Eyal et al. [2016]), a rat L5 pyramidal cell
(blue; Hay et al. [2011]), and a rat L5 interneuron (green; Markram et al. [2015]). The remaining panels display
data connected to each cell type, see cell-specific colors. B: Each dot represents an excitatory synaptic input
at a specific time (x-axis) at a specific height of the neuron (z-axis, corresponding to panel A) for a specific
cell type (color). The crosses mark inhibitory synaptic input. The four input bulks represent 1) 100 apical
excitatory synapses, 2) 100 basal excitatory input, 3) 400 homogeneously spread-out excitatory synapses and
4) 400 homogeneously spread-out excitatory synapse and inhibitory basal synapses. The synaptic weights
sum to 0.01 µS for all sets of excitatory/ inhibitory synapses in each wave (see sec. 2.3 for details). For the
interneuron, which doesn’t have typical "apical" or "basal" zones, the synapses were spread out all over the
morphology for all input types. C: The x-, y- and z-components of the current dipole moment p for the three
different cell types. D: EEG signals, φ from the three cell types computed with the four-sphere model.

3.4. Current dipole moment expose dendritic calcium spikes331

Suzuki and Larkum [2017] recently demonstrated that dendritic calcium spikes can be recorded332

experimentally at the cortical surface, and that the signal amplitudes can be similar to contributions333

from synaptic inputs. This demonstrates that active conductances may play an important role in334

shaping ECoG and EEG signals. Furthermore, it suggests that information about calcium dynamics335

might be present in such signals, and that this information could potentially be taken advantage of336

when studying learning mechanisms associated with dendritic calcium spikes [Suzuki and Larkum,337

2017].338

The previously introduced rat layer-5 cortical pyramidal cell model from Hay et al. [2011] can339

exhibit dendritic calcium spikes. When this cell model received a single excitatory synaptic input340
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to the soma (Fig. 4A, blue dot), strong enough to elicit a somatic action potential (Fig. 4B1, blue),341

a small depolarization was also visible in the apical dendrite (Fig. 4B1, orange). Even so, this did342

not initiate any dendritic calcium spike. However, when combining the same somatic synaptic in-343

put with an additional excitatory synaptic input to the apical dendrite, 400 µm away from the soma344

(Fig. 4A, orange dot), we observed a dendritic calcium spike. This calcium spike did, in turn, induce345

two additional somatic spikes (Fig. 4C1). For both synaptic input strategies described above, the346

extracellular potential simulated 30 µm away from the soma took the shape of stereotypical extra-347

cellular action potentials: that is, a sharp negative peak followed by a broader and weaker positive348

peak (Fig. 4B2, C2). Further, we observed that the slow dendritic calcium spike was not reflected349

in the extracellular potential close to the soma (Fig. 4C2). We found that for the case with only a350

somatic spike and no calcium spike, the single-cell current dipole moment resembled the inverse of351

the extracellular potential (Fig. 4B3), while for the case with both somatic and dendritic spiking, a352

pronounced slow component was also present in the single-cell current dipole moment (Fig. 4C3).353

Somatic action potentials are typically not expected to contribute significantly to EEG signals (but354

see Teleńczuk et al. [2015]), because the very short duration of spikes with both a positive and355

a negative phase implies that extreme synchrony is needed for spikes to sum constructively, and356

spikes that are only partially overlapping tend to sum destructively. The same cannot be expected357

to hold for the calcium spikes, which are not only longer-lasting but also predominately cause a358

negative response in the current current dipole moment. To mimic a neural network scenario with359

multiple cells spiking at slightly different times, we calculated the sum of 1000 instances of the360

single-cell current dipole moment that was jittered (shifted) in time (normally distributed, standard361

deviation=10 ms). We found that the case with the dendritic calcium spike now had a 6.6-fold larger362

maximum amplitude than the case with only the somatic spike (Fig. 4 B4 versus C4, max|p| =363

30.8 µAµm and 204.2 µAµm respectively). This demonstrates that dendritic calcium spikes are364

much more capable of summing constructively for a population of cells, and substantiates the role365

of dendritic calcium spikes in affecting ECoG/EEG/MEG recordings.366

The amplitude of the slow component of the current dipole moment from the calcium spike was367

about 0.5 µAµm (Fig. 4C3), and later (Sec. 3.5) we will present results from a simulated neural368

network where the average event-related current dipole moment of layer 5 pyramidal cells were369

found to be about 0.1 µAµm (Fig. 5D, bottom left). This indicates that our results are compatible370

with the claim by Suzuki and Larkum [2017] that signal amplitudes from calcium spikes could be371

similar in amplitude to contributions from synaptic input.372

We can make a very rough estimate of the number of simultaneous calcium spikes required373

to cause a measurable EEG response: A current dipole moment of 1 µAµm gives an EEG ampli-374

tude on the order of 10−3 µV (see for example Fig. 3 C,D, note different scales). Assuming that375

an EEG contribution must exceed ∼10 µV to be detectable [Nunez and Srinivasan, 2006; Hagen376

et al., 2018] implies a minimum needed current dipole moment of ∼104 µAµm. A number of per-377

fectly synchronous calcium spikes would each contribute with ∼0.5 µAµm (Fig. 4C3), suggesting378

that about 20.000 synchronous calcium spikes would be needed to cause a measurable EEG re-379

sponse. Further, considering that the signal amplitude decreases by about 100-fold from cortical380

surface to scalp (Fig. 2B) and assuming a similar detection threshold, indicates that a few hundred381

simultaneous calcium spikes would be detectable by ECoG electrodes.382

It might initially seem surprising that the dendritic calcium spike is so strongly reflected in the383

single-cell current dipole moment, given that the transmembrane currents associated with the so-384

matic action potential are much larger than those associated with the dendritic calcium spike: the385

maximum amplitude of the transmembrane currents of the somatic compartment was 45.1 nA,386

compared to just 0.30 nA for the compartment in the apical dendrite (Fig. 4A, blue and orange387

dots). However, the current dipole moment is given as the product between the amplitude of the388

current and the separation between the source and sink (p = Id; Equation 6). While the currents389
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associated with the somatic action potential will for the most part be contained within the somatic390

region, giving very small sink/source separations, the currents associated with the dendritic calcium391

spike will be distributed over a much larger part of the cell membrane. This effect can be illustrated392

by comparing the spatial profile of the extracellular potentials around the neuron at a snapshot in393

time during a somatic spike or during a calcium spike (Fig. 4 D versus E).394
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Figure 4: Current dipole moment expose dendritic calcium spikes. A: Layer-5 cortical pyramidal cell
model from rat [Hay et al., 2011], receiving either a single excitatory synaptic input to the soma evoking a
single somatic action potential (blue dot, results in B1-4), or in addition an excitatory synaptic input to the
apical dendrite, evoking a dendritic calcium spike and two additional somatic spikes (orange dot, results in C1-
4). B1, C1: Membrane potential at the two positions indicated in A. B2, C2: Extracellular potential 30 µm away
from the soma (red diamond in A), assuming for illustration an infinite homogeneous extracellular medium.
B3, C3: Single-cell current dipole moment. B4, C4: Sum of 1000 instances of the single-cell current dipole
moment (from B3, C3), that has been randomly shifted in time with a normally distributed shift with a standard
deviation of 10 ms. D: Contour lines of extracellular potential around neuron at a snapshot in time during the
somatic spike in B1 (t=32.2 ms; time marked by dashed line). E: Contour lines of extracellular potential around
neuron at a snapshot in time during the calcium spike in C1 (t=36.0 ms; time marked by dashed line). The
synaptic weight was 0.07 and 0.15 µS for the somatic and apical input location, respectively.

3.5. EEG from large-scale neural network simulations395

So far, we have only considered EEG contributions from single cells, but real EEG signals396

are expected to reflect the activity of hundreds of thousands to millions of cells [Nunez and Srini-397

vasan, 2006; Cohen, 2017]. Biophysically detailed modeling of large populations is still in its infancy398

[Einevoll et al., 2019] and at present typically include “only” a few tens of thousands of biophysically399

detailed cells [Markram et al., 2015; Billeh et al., 2020]. Networks of point neurons, on the other400
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hand, are regularly used to simulate hundreds of thousands [Billeh et al., 2020] or even millions401

of cells [Senk et al., 2018; Schmidt et al., 2018], but LFP, ECoG, EEG or MEG signals can not be402

computed directly from point neurons [Einevoll et al., 2013a]. To investigate EEG signals generated403

by neuronal networks, we therefore used a hybrid scheme [Hagen et al., 2016; Senk et al., 2018;404

Skaar et al., 2020], where the network activity is first simulated in a highly computationally efficient405

manner with point neurons in NEST [Linssen et al., 2018] and the resulting spiking activity of each406

neuron saved to file. Afterwards, each cell is modeled with biophysically detailed multicompartment407

morphologies and the stored spikes of all the presynaptic neurons are used as activation times for408

synaptic input onto these neurons in a simulation where the extracellular potentials are calculated409

[Hagen et al., 2016; Senk et al., 2018].410

We used the large-scale point-neuron cortical microcircuit model from Potjans and Diesmann411

[2014]; Hagen et al. [2016], which has ∼80 000 neurons divided into 8 different cortical popula-412

tions, one excitatory and one inhibitory, across four layers (L2/3 - L6), and can exhibit a diverse413

set of spiking dynamics including different oscillations and asynchroneous irregular network states414

[Hagen et al., 2016; Brunel, 2000]. We chose the scenario with transient thalamocortical input, and415

the only difference from the original simulation by Hagen et al. [2016] was the added calculation of416

current dipole moments and EEG signals. We simulated transient thalamic synaptic input to layers417

4 and 6 (Fig. 5A), and after the spikes had been mapped onto the multicompartment cell models418

(Fig. 5B), we calculated the LFP (Fig. 5C) similarly to Hagen et al. [2016] (their Fig. 1), in addition419

to the current dipole moments of each cell.420

For all cell populations, we found that the current dipole moments from individual cells could421

show large transient responses to thalamic input (Fig. 5D; gray lines show current dipole moment422

from individual cells in two example populations: L5 inhibitory (L5I) and L5 exitatory (L5E)), but423

for all inhibitory populations the thalamic response was not visible in the average current dipole424

moment (Fig. 5D; black lines, L5I). The same was true for the current dipole moment components425

perpendicular to the depth axis for excitatory populations (Fig. 5D; L5E, px, py, black lines), but not426

for the component along the depth axis which had a substantial average response to the thalamic427

input (Fig. 5D; L5E, pz, black line). These observations imply, as previously noted, that only the z-428

component of the current dipole moment from excitatory populations can be expected to contribute429

significantly to the EEG signal.430

Our findings invite a simplified approach to calculate the EEG signal: Instead of calculating all431

single-cell EEG contributions and summing them (taking into account the position of the individual432

cells, similarly to what is done for the LFP signal), we can compute a single summed pz-component433

from all neurons in each pyramidal cell population, place it in the center of the population column,434

and calculate the resulting simplified EEG signal. This approximation can be expected to be rea-435

sonable when the population radius is small compared to the distance from the population center436

to the EEG electrode. Note that the distance from the top of cortex to the top of the head is typically437

∼10 mm, while the radius of the present simulated population is only ∼0.5 mm (Fig. 5; population438

outline in B is drawn in red in E). Indeed, when we combined the current dipole moments with the439

four-sphere head model (Fig. 5E), we found that the full EEG signal that was calculated as the sum440

of the EEG contribution from each of the ∼80 000 cells at their respective positions, was in fact441

indistinguishable from the simplified EEG signal (Fig. 5F). This implies that the EEG signal from442

the simulated cortical activity can be fully represented by a single time-dependent variable for each443

pyramidal cell population.444

We also compared the relative amplitude of the EEG signal from each population, and found445

that for the present example, the excitatory population of L2/3 was the dominant source of the EEG446

signal (Fig. 5F). Note, however, that we expect this observation to be somewhat model-dependent,447

and that strong general claims about the contribution of different pyramidal cell populations to the448

EEG signal cannot be made from this example study alone.449
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Figure 5: Large-scale neural simulations can be used to probe biophysical origin of EEG signals. A:
Stimulus-evoked spiking activity from thalamic input (time t = 900 ms, denoted by thin vertical line) in the
cortical microcircuit model from Potjans and Diesmann [2014]. Dots indicate spike times of individual neurons,
and populations are represented in different colors (I=inhibitory, E=excitatory). B: Multicompartment model
neurons used to produce the measurable signals, with colors corresponding to panel A, showing one example
morphology per population. Layer boundaries are marked at depths relative to cortical surface, z = 0. A
laminar recording electrode with 16 contacts separated by 100 µm (black dots) is positioned in the center of
the population. C: LFPs calculated at depths corresponding to black dots in B. D: For the two L5 populations
(L5I and L5E), the three components of the current dipole moment is shown for all individual cells (gray),
together with the population average (black). E: Illustration of the four-sphere head model, with the red column
corresponding the the outline of the population in panel B. F: The EEG signal from each population found by
summing the single-cell EEG contribution of all individual cells within each population (different colors, same
color scheme as in A,B), together with the total summed EEG signal (black). The simplified EEG signal was
found by first summing the z-component of the current dipole moments for all pyramidal cells, that is L2/3E,
L5E and L6E, and calculating the EEG from this single current dipole (red dashed).

3.6. Dipole approximation in complex head models450

Even though the four-sphere head model is convenient for generic EEG studies, many applica-451

tions such as accurate EEG source analysis, may require more detailed head models [Dale et al.,452

1999; Vorwerk et al., 2014]. The construction of such complex head models is dependent on ex-453

pensive equipment, that is magnetic resonance imaging (MRI), to map the electrical conductivity of454

the entire head at resolutions of ∼0.5-1.0 mm3 [Huang and Parra, 2015; Huang et al., 2016]. After-455

wards, numerical techniques such as the Finite Element Method (FEM) [Logg et al., 2012] can be456

used to calculate the signal at the EEG electrodes for arbitrary arrangements of current dipoles in457

the brain, but at a high computational cost. The number of computing hours is, however, reduced by458

applying the reciprocity principle of Helmholtz. The reciprocity principle states, in short, that switch-459

ing the location of a current source and a recording electrode will not affect the measured potential460

[Malmivuo and Plonsey, 1995; Ziegler et al., 2014; Huang et al., 2016; Dmochowski et al., 2017].461

This implies that it suffices to use FEM to calculate the lead field in the brain from virtual current462

dipoles placed at each of the EEG electrodes. From the lead field matrix, we can infer the potential463

at the EEG electrodes, given an arbitrary arrangement of current dipoles in the brain. Luckily, sev-464

eral such pre-solved complex head models are freely available, and one example is the New York465

Head (NYH) (Fig. 6A), which we have applied here (Huang et al. [2016]; parralab.org/nyhead/).466

To illustrate the use of pre-solved complex head-models, we inserted the current dipole moment467

obtained from the cortical column model in section 3.5 into the New York Head model (Fig. 6A), at468

two manually chosen positions: one in the parietal lobe, and one in the occipital lobe, see stars in469

Fig. 6C, E, respectively. In both cases, the current dipole moment was oriented along the normal470

vector of the brain surface, and the EEG signal was calculated. For comparison with a simplified471

head model, we inserted the same current dipole moment into the four-sphere head model (Fig. 6B)472
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at locations comparable to the dipole positions chosen in the occipital and parietal lobe in the NYH473

model: the locations in the four-sphere model were chosen close to the brain surface, such that474

the distance from dipole position to the closest electrode (Fig. 6D, F, stars) and the brain surface475

normal vectors were similar to the respective positions in the NYH model.476

The computed EEG signals from the two head models were in this case relatively comparable477

in both spatial shape and amplitude (Fig. 6C-F). The two head models also generated EEG signals478

of the same temporal shape, as expected, but while the four-sphere head model gave very similar479

EEG amplitudes for the two different dipole locations, the EEG amplitudes from the complex head480

model was much more variable, even for similar distances to the closest electrode (Fig. 6G, H).481

The higher variability of the complex head model was also apparent in the decay of the maxi-482

mum EEG amplitude with distance, which was perfectly smooth, exponential-like [Nunez and Srini-483

vasan, 2006], and very similar for the two locations in the four-sphere model, but very variable for484

the complex head model, although with the same general shape (Fig. 6I, J).485

Note that despite the complexity, the NYH model is substantially faster than the four-sphere486

model. In order to simulate the EEGs from a dipole moment vector containing 1200 timesteps, the487

NYH model execution times were ∼ 0.4 s, while the four-sphere model needed ∼ 1.5 s.488
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Figure 6: EEG signals from cortical column network can be modeled with the four-sphere model and
the New York Head. EEG signals from population dipole resulting from waves of synaptic input to the cortical
microcircuit model from Potjans and Diesmann [2014]. Population dipole was placed in two different locations:
parietal lobe (C,D,E,F) and occipital lobe (G,H,I,J). A: The four-sphere model consisting of four concentrical
shells: brain tissue, CSF, skull and scalp. B: The New York Head model. C, D: EEG signals (φ) on scalp surface
electrodes, seen from above, showing time point of the strongest current dipole moment |p| of the population
simulation. Dipole is placed in the parietal lobe and location is marked by orange star, having the following
coordinates in the NYH model: (55, -49, 57) mm. EEG signals were computed with the New York Head model
(C) and the four-sphere head model (D). E: EEG trace computed with the four-sphere model (black) and the
New York Head model (gray) on closest scalp surface electrode: i.e. the electrode with the shortest distance
to the current dipole moment location. Dipole is placed in parietal lobe (distance is 16.13 mm for the four-
sphere model and 16.76 mm for NYH). F: Absolute value of EEG signals from panel C,D generated by dipole
in parietal lobe, plotted as function of distance from dipole to measurement electrode. G,H: Equivalent to panel
C,D, however, dipole is placed in occipital lobe, and electrodes are seen from the back of the head. Dipole
coordinates for NYH model: (-24.3, -105.4, -1.2) mm. I: EEG trace from dipole in occipital lobe computed on
closest electrode (distance is 16.90 mm for the four-sphere model and 14.64 mm for NYH), equivalent to panel
E. J: Equivalent to panel F, with EEG signals from panel G,H generated by dipole in occipital lobe.

4. Discussion489

4.1. Summary490

In this paper, we have introduced an approach for reducing arbitrary simulated neural activity491

from biophysically detailed neuron models to single current dipoles (Fig. 1). We verified that the ap-492

proach was applicable for calculating EEG, but generally not for ECoG signals (Fig. 2-3), and gave493

examples of how reducing neural activity to a single dipole can be a powerful tool for investigating494

and understanding single-cell EEG contributions (Fig. 3-4). Furthermore, we demonstrated that495
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the presented approach could easily be integrated with existing large-scale simulations of neural496

activity. Moreover, we showed how single dipoles are useful for constructing compact represen-497

tations of the EEG contributions from entire neural populations, with methods still firmly grounded498

in the underlying biophysics (Fig. 5). Finally, we demonstrated how the simulated current dipoles,499

from single cells or large neural populations, can be directly inserted into complex head models for500

calculating more realistic EEG signals (Fig. 6).501

4.2. Application of current dipoles for computing EEG, MEG and ECoG signals502

We have highlighted that the calculation of current dipoles from neural activity is cleanly sep-503

arated from the calculation of the ensuing EEG signals. Since MEG sensors like EEG electrodes504

are positioned far away from the neural sources, the same is true for MEG signals. The calculated505

current dipoles can therefore also be used in combination with simplified or detailed frameworks506

for calculation of MEG signals, for example by following methods outlined in Hagen et al. [2018];507

Ilmoniemi and Sarvas [2019].508

ECoG electrodes are in general positioned closer to the neural sources. For our example simu-509

lations of the ECoG signal generated by individual neurons, we found that use of the single-dipole510

approximation gave substantial errors (Fig. 2). Thus for computation of ECoG signals, the standard511

compartment-based formalism or the multi-dipole approach (Fig. 1) requiring much more compu-512

tational resources, may be required. Here an alternative to using full head models is to use the513

method of images, taking into account the discontinuity of electrical conductivity at the cortical sur-514

face [Pettersen et al., 2006; Hagen et al., 2018]. Note that while we here used LFPy 2.0 [Hagen515

et al., 2018, 2019], a python interface to NEURON [Carnevale and Hines, 2006], calculation of516

current dipole moments can easily be implemented into any framework where the transmembrane517

currents are available, through the simple formula given in eq. (7).518

4.3. Generalization to non-compartmental models519

EEG and MEG recordings reflect neural activity at the systems-level [Pesaran et al., 2018;520

Einevoll et al., 2019]. Here, we have focused on calculating current dipoles from detailed multi-521

compartment neuron models, but neural modeling at the systems-level is often based on higher522

levels of abstraction, like point neurons [Linssen et al., 2018] or firing rate populations [Sanz-Leon523

et al., 2013]. Calculation of electric or magnetic signals from such higher-level neural simulations524

must in general rely on some kind of approximation trick, since neurons require a spatial structure525

to be capable of producing electromagnetic signals [Einevoll et al., 2013a]. One such trick that we526

took advantage of here is the hybrid scheme [Hagen et al., 2016]. This two-step scheme involves527

neural network activity first being simulated by point neurons, before the resulting spike trains are528

replayed onto multi-compartment neuron models for calculating LFP and EEG signals (sec. 3.5;529

Fig. 5).530

Further, the hybrid scheme can be generalized to also allow for calculation of EEG/MEG signals531

from firing-rate models by using the so-called kernel method, which has previously been success-532

fully applied to the LFP [Hagen et al., 2016; Skaar et al., 2020; Teleńczuk et al., 2020]. In practice,533

this can be done in two steps: First, simultaneously activating all outgoing synapses from a specific534

(presynaptic) simulated population, and recording the total current dipole moment of the response535

(the kernel) [Hagen et al., 2016]. Second, computing the EEG/MEG contribution stemming from536

this (presynaptic) population by convolving the kernel with the population firing rate, and applying537

an appropriate forward model. Here, the firing rate would be obtained separately in point neuron538

network models or firing-rate models. In this way, the basic biophysics of EEG and MEG signals539

from synaptic activation of multi-compartment neuron models is included, avoiding, however, com-540

putationally heavy multicompartmental modeling of spiking dynamics. The calculated current-dipole541

kernels should be applicable for different kinds of input to the original network model, but would in542

general have to be recomputed for changes to cell or synaptic parameters.543
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4.4. Connection to other work544

Calculation of current dipole moments from morphologically complex cell models has been pur-545

sued before, for example to study the EEG and MEG contribution of spiking single cells [Murakami546

and Okada, 2006], or to study how the synaptic input location affects the current dipole [Lindén547

et al., 2010; Ahlfors and Wreh II, 2015]. Important work on EEG interpretation in terms of the548

underlying neural activity has also previously been done through use of "minimally sufficient" bio-549

physical models, see for example Murakami et al. [2002, 2003]; Jones et al. [2007, 2009]; Sliva et al.550

[2018]; Neymotin et al. [2020]. Here, "minimally sufficient" means that the cell models only had min-551

imally needed multi-compartment spatial structure (point neurons cannot produce current dipole552

moments), only considered a few cell types, and employed simple synaptic connection rules. In553

particular, the Human Neocortical Neurosolver (HNN) [Neymotin et al., 2020] enables researchers554

to link measured EEG or MEG recordings to neural activity through a pre-defined canonical neo-555

cortical column template network. HNN comes with an interactive GUI, designed for users with556

little or no experience in computational modeling, and might therefore be an appropriate choice557

for researchers seeking to gain a better understanding of their EEG/MEG data. However, while558

the use of such minimally sufficient models allows for quick and direct comparison between simu-559

lated and recorded EEG signals, it is not (presently) compatible with simulating EEG or MEGs from560

biophysically detailed single cell- or network models, constructed from detailed experimental data561

[Reimann et al., 2013; Egger et al., 2014; Markram et al., 2015; Hagen et al., 2016; Gratiy et al.,562

2018; Arkhipov et al., 2018; Billeh et al., 2020].563

A more high-level approach for simulating MEG/EEG signals from the underlying neural activity564

has been pursued through neural field or neural mass models [Jirsa et al., 2002; David and Friston,565

2003; Coombes, 2006; Deco et al., 2008; Bojak et al., 2010; Ritter et al., 2013], which aim to model566

the evolution of coarse-grained variables such as the mean membrane potential or the firing rate567

of neuron populations. Such coarse-graining drastically reduces the number of parameters and the568

computational burden of the simulation, and can be used to study the interplay among entire brain569

regions, and indeed run whole-brain simulations. The Virtual Brain (TVB) is an excellent example570

of a software for whole-brain network simulations [Sanz-Leon et al., 2013, 2015; Ritter et al., 2013],571

where detailed and potentially personalized head models can be combined with tractography-based572

methods identifying the connectivity between brain regions [Sanz-Leon et al., 2013]. To calculate573

measurement modalities like MEG and/or EEG signals from neural field or neural mass models,574

it is typically assumed that the population current dipole moments are roughly proportional to, for575

example, the average excitatory membrane potential [Bojak et al., 2010; Ritter et al., 2013]. Further,576

EEGs can be calculated from the resulting current dipole moments in combination with head models577

as presented in this paper, or through other softwares or techniques [Gramfort et al., 2014]. This578

suggests an intriguing future development, where one could apply the above-mentioned kernel579

method based on biophysically detailed neuron models to substantially increase the accuracy of580

LFP, EEG and MEG predictions from high-level large-scale simulations of neural activity.581

4.5. Outlook582

EEG and, later, MEG signals have been an important part of neuroscience for a long time, but583

still very little is known about the neural origin of the signals [Cohen, 2017]. A better understanding584

of these signals could lead to important discoveries about how the brain works [Lopes da Silva,585

2013; Uhlirova et al., 2016; Pesaran et al., 2018; Ilmoniemi and Sarvas, 2019], and provide new586

insights into mental disorders [Mäki-Marttunen et al., 2019a; Sahin et al., 2019]. This work lays587

some of the foundation for obtaining a better understanding of EEG/MEG recordings, by allowing588

easy calculation of the signals from arbitrary neural activity. The presented formalism is well suited589

for modeling EEG/MEG contributions from various potential neural origins, including different cell590

types, different ion channels and different synaptic pathways. For example, to study the effect of591
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calcium spikes [Suzuki and Larkum, 2017], Ih currents [Ness et al., 2016, 2018; Kalmbach et al.,592

2018], or gene expression on EEG signals [Mäki-Marttunen et al., 2019b], one only needs to know593

how the z-component of the resulting population current dipole is affected. This decoupling of the594

current dipole moment and head model allows for easier investigation and improved understanding595

of the origin of the EEG/MEG signal.596

EEG/MEG measurements are often used for source localization, aiming to identify the under-597

lying cortical current dipoles [Nunez and Srinivasan, 2006; Gramfort et al., 2014; Ilmoniemi and598

Sarvas, 2019]. However, such reconstructed current dipoles are generic in the sense that they are599

typically not intended to represent specific neural populations. By allowing for calculation of current600

dipoles from cortical populations, the work presented here takes a step towards consolidating the,601

so far, mostly separate scientific disciplines of neural modeling and EEG/MEG data analysis (but602

see also Neymotin et al. [2020]).603

While there are many examples of detailed biophysical modeling of neural activity improving604

interpretation of measured intracranial extracellular potentials in lab animals [Einevoll et al., 2007;605

Blomquist et al., 2009; McColgan et al., 2017; Luo et al., 2018; Chatzikalymniou and Skinner, 2018;606

Teleńczuk et al., 2019], much less has been done for human EEG/MEG signals. This is natural607

given that studies of healthy human brains necessarily are limited to non-invasive technologies608

[Lopes da Silva, 2013; Uhlirova et al., 2016; Cohen, 2017]. However, given all the valuable insights609

that could be gained from an increased understanding of non-invasive measurements of neural610

activity in humans, an important challenge in modern neuroscience is to build on the mechanistic611

insights from animal studies and use them for understanding non-invasive signals in humans [Lopes612

da Silva, 2013; Uhlirova et al., 2016; Cohen, 2017; Einevoll et al., 2019; Mäki-Marttunen et al.,613

2019a]. The approach for calculating EEG/MEG signals in this paper should therefore ideally be614

used in combination with animal studies simultaneously measuring multisite laminar LFP (and MUA)615

signals within cortex, as well as EEG/MEG signals (see for example Bruyns-Haylett et al. [2017])616

[Cohen, 2017].617

Today, we have a reasonably good understanding of how single neurons operate, that is, how618

they respond to synaptic input, and how multitudes of synaptic inputs combine to produce action po-619

tentials [Einevoll et al., 2019]. Similarly, we can, to a high degree, explain the measurement physics620

of EEG/MEG, that is, how neural currents affect electromagnetic brain signals recorded outside of621

the head [Nunez and Srinivasan, 2006; Cohen, 2017; Ilmoniemi and Sarvas, 2019]. The challenge622

of understanding EEG/MEG signals is therefore closely related to the greatest challenge in mod-623

ern neuroscience: understanding neural networks. Making sense of such complicated dynamical624

systems typically requires computational modeling [Einevoll et al., 2019], but the complexity of neu-625

rons, and the complexity and size of the neural networks involved in even the simplest of cognitive626

tasks, makes this a daunting challenge. The steady increase in available computing power, in com-627

bination with the ever-increasing knowledge on synaptic connectivity patterns is, however, making628

this approach more and more attractive [Reimann et al., 2013; Egger et al., 2014; Markram et al.,629

2015; Hagen et al., 2016; Gratiy et al., 2018; Arkhipov et al., 2018; Reimann et al., 2019; Billeh630

et al., 2020]: Today, there are several ongoing research projects pursuing such modeling efforts,631

for example at the Allen Institute for Brain Science and in the Human Brain Project [Einevoll et al.,632

2019]. While biophysically detailed, large-scale neural simulations are still in their infancy, we ex-633

pect these simulations to become an increasingly important research tool in neuroscience [Einevoll634

et al., 2019]. The presently described method enables EEG/MEG simulations combining detailed635

neural simulations with realistic head models. We believe that this approach will help shedding light636

on the neural origin of EEG/MEG signals, and help us take full advantage of these important brain637

signals in the future.638
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