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Supporting Methods 
 
A.  Derivation for autophosphorylation model rate balance analysis shown in Figure 6b. The production 
and degradation terms for Ap can be derived from its rate equation: 
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where Ap is the phosphorylated kinase, A is the unphosphorylated kinase, P is the phosphatase, and AAp 
is a dimer of kinases. To solve for the production and degradation terms each as a function of Ap only, 
we use the conservation of total kinase KT and phosphatase PT: 

𝑃 + 𝐴0𝑃 = 𝑃1  

𝐴 + 𝐴𝑝 + 2𝐴𝐴𝑝 + 𝐴𝑝𝑃 = 𝐾1  
Along with the rate equations for ApP, the dimer of kinase and phosphatase, and AAp, the kinase 
dimer, solved for at steady-state:  
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Using these 5 equations, we recover: 
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For particular parameter sets, the fixed points are then determined for values of Ap where the 
production is equal to the degradation. 



 
B. Additional Model description details for spatial clock model simulations with localized promoters. 
The reaction network is unchanged. For this model, promoters are localized to the center of the system, 
with DPRMA = DPRMR =0 𝜇m2/s (bound and unbound). 
V1. DA = DR = DRNA = DRNP =10 𝜇m2/s.  DA.R=10 𝜇m2/s. 
V2. DA = 5 𝜇m2/s.  DR =50 𝜇m2/s. DRNA = DRNP =5 𝜇m2/s.  DA.R=4.5 𝜇m2/s. 
V3. DA = 2 𝜇m2/s.  DR =50 𝜇m2/s. DRNA = DRNP =5 𝜇m2/s.  DA.R=1.9 𝜇m2/s. 
For the NERDSS simulations, note the binding radii had to increase to accommodate the slowing 
diffusion.  
V1.  A+R: ka=356262.9 nm3𝜇s-1, 𝜎=8 nm.  A+PrmA: ka=189336 nm3𝜇s-1, 𝜎=8 nm, kb=9466.8 s-1 A+PrmR: 
ka=189336 nm3𝜇s-1, 𝜎=8 nm, kb=18933.6 s-1 
V2.  A+R: ka=4747.72 nm3𝜇s-1, 𝜎=5 nm.  A+PrmA: ka=189336 nm3𝜇s-1, 𝜎=16 nm, kb=9466.8 s-1 A+PrmR: 
ka=189336 nm3𝜇s-1, 𝜎=16 nm, kb=18933.6 s-1 
V3.  A+R: ka=5156.4 nm3𝜇s-1, 𝜎=5 nm.  A+PrmA: ka=189336 nm3𝜇s-1, 𝜎=40 nm, kb=9466.8 s-1 A+PrmR: 
ka=189336 nm3𝜇s-1, 𝜎=40 nm, kb=18933.6 s-1 
 
Sim Parameters: V1: ∆t =2*10-6s. V2: ∆t =0.5 and 2*10-6s. V3: ∆t =0.5 and 2*10-6s. 
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Fig S1. State assignment and analysis of autophosphorylation model. a) 2D histogram of copy numbers 
of both of Ap and A (unphosphorylated). State assignments were determined from the 2D vector of copy 
numbers at each time point. To minimize rapid crossings across a single threshold line, which biased 
towards very short residence times, we created two thresholds and a transition region. All values of A 
above the red line are in State 1, and all below the pink line are in State 2. Points in the transition region 
can be in either state, depending on where they originated. Points coming from State 1 remain in State 1 
until they cross the pink link. Points coming from State 2 remain in State 2 until they cross the Red line. 
This distribution is representative of most trajectories, with ~88% of points assigned to State 2. b) 
Histogram of counts of residence times spent in either state. Bin widths are even on a log10 scale. For 
both plots, data is from a Gillespie simulation for 200s, with points saved every 10-4s. The analysis above 
resulted in 68 transitions out of each state.  



 

 
Fig S2. Autophosphorylation model shows switching in stochastic single-particle simulations with 
distinct diffusion coefficients. (Top) From NERDSS simulations with D=100 𝜇m2/s, the kinase is in the 
low phosphorylation state 17% of the time (red pluses), in intervals of 0.3±0.04s.  The high state (yellow 
circles) for 1.46±0.17s intervals. The statistics were collected from two 100s trajectories. (Bottom) For 
D=10  𝜇m2/s, the results are similar, but the kinase spends 9% of time in the low state, in intervals of 
0.18±0.02s, and remainder in the high state with intervals of 1.73±0.2s. The statistics were collected 
from a 200s trajectory, with similar results from independent trajectories. In both plots, black data is the 
copies of phosphorylated kinase, and blue data is copies of the unphosphorylated kinase. State 
assignments were made based on thresholding across two transition lines (Methods and Fig S1).  
 
 



 
Fig S3. Clock oscillator model with slower decay of repressor protein. Compared with Fig. 3, here, the 
decay of the repressor is slowed from, 0.2 to 0.05s-1, causing oscillations to disappear in the 
deterministic simulation (black curves) but persist in the stochastic single-particle simulations (green 
curves), as observed in the original publication1. The single-particle NERDSS simulations2 were run for 
1000s, producing oscillations with periods of 63±2.8 and 63±2.8s (SEM over 16 peaks), or more than 
twice as slow as the original model (25s). The lag between A and R slowed from 6s to 7.6s±0.3.  

 

 
Fig S4. Clock Oscillator model with localized genes. Localizing and immobilizing the DNA (prmR and 
prmA) to the center of the volume in PDE models. Top: this does not affect the oscillations produced in a 
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PDE solution (black curves) for the small cell size studied here (R=1𝜇m), when DA=10	𝜇m2/s.  Across the 
width of the cell, the density of molecules is nearly uniform, showing undetectable differences between 
the maximum and minimum values of A or R reached for each time point. For reference, we plot the 
ODE solution that thus has no spatial dependence (gray curves). Bottom: With slowing A, where DA=2	
𝜇m2/s, we do start to see increased localization of A in the cell center near the promoter (cyan vs black), 
causing a shortening of the oscillation time from 25s to 22.6s.  

 
Fig S5. For MinCDE model, no MinD-ATP2D oscillations occur in nonspatial model. In the ODE model, no 
spatial oscillations are possible for MinD-ATP2D, but no temporal oscillations occur either. For the PDE, 
the total MinD-ATP2D copies are constant whilst their spatial oscillations are symmetric, but their total 
copies also oscillate when spatial oscillations are pole-to-pole.  
 
 
 
 
 

 
 
Fig S6. MinCDE model dependence on initial copies and error tolerance. a) By increasing the initial copy 
numbers of [MinD-ATP, MinE] from [2.1143,0.74] to [2.5, 0.875] 𝜇M, the symmetric oscillations at the 
beginning of the simulation are much more apparent relative to Fig S7 and Fig 8 main text. We note the 
presence of oscillations are also sensitive to the ratio of MinD-ATP/MinE, and a sufficient total 
concentration of both (e.g. no oscillations with half of the original copies).   b) The species are initially 
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uniform in the solution volume and oscillations are symmetric (blue and orange copies on exact 
opposite points of cylinder). Symmetry breaking occurs due to numerical precision errors. On the right, 
we increased the [absolute, relative error tolerances] of the PDE from [1e-9, 1e-7] to [1e-10, 1e-9], 
causing the symmetric oscillations to persist out to almost ~400s, instead of only ~300s, showing that 
the pole-to-pole oscillations are clearly more stable and robust. Increasing the mesh size by a factor of 
two also delays the symmetry breaking to ~320s. 

 
 

 
Fig. S7 MinCDE model, time-dependent minDt oscillations at cell ends. (a) sketch of the cell with 
particles at both poles being tracked, same model as Fig 4. (b) Pole-to-pole oscillation in the Smoldyn 
model. The high peak at t = 0 s shows the asymmetric initialization. (c) Symmetric oscillation of the PDE 
model up to 250 s. Afterwards the oscillation switches to a pole-to-pole mode. The period of these 
oscillation is roughly the same in the Smoldyn (43.0 ± 0.7 s) and PDE (41.3 ± 0.3 s) model. 
 
 
 
 
 
 
 
 
 



Supporting Tables 
 
Table S1. Categorized software tools 

 
 
Table S2. Software tools and features 

 
 
 
 
 
 
 
 
 



Table S3. Wall time for simulation tools applied to the clock model 
 Total Wall time for 30s 

Clock model sim. (s) 
Wall time per 
iteration (s) 

Time-step (s) 
 

ODE 2 - - 
Gillespie 2 - - 
PDE 53 - - 
Smoldyn 166246 0.0055 10-6 
NERDSS 11422 0.0038 10-5 
Mcell 12179 0.0004 10-6 

 
Table S4. Autophosphorylation Model State properties 

 Pstate 1 Pstate 2 𝜏1 (s) 𝜏2 (s) Ntransition 
SSA (200s) 0.12±0.02✢ 0.88±0.02✢ 0.34±0.06▴ 2.6±0.36▴ 68 

NERDSS (D100) 
(2x100s) 

0.17±0.026✢ 0.83±0.026✢ 0.3±0.04▴ 1.46±0.17▴ 113 

NERDSS (D40) 0.09±0.02✢ 0.91±0.02✢ 0.2±0.025▴ 1.93±0.25▴ 94 
 

NERDSS (D10) (200s) 0.09±0.02✢ 0.91±0.02✢ 0.18±0.02▴ 1.73±0.2▴ 105 
 

✢SEM values reported over 10-20 chunks of the full trajectory. ▴SEM values reported as 𝜎/√Ntransition. 
 
Table S5. Autophosphorylation Model B State properties, with all rates reduced by 10 

 Pstate 1 Pstate 2 𝜏1 (s) 𝜏2 (s) Ntransition 
SSA (2000s) 0.13±0.025✢ 0.87±0.025✢ 3.6±0.66▴ 25.7±3▴ 69 

NERDSS (D100) 
(103s: N.S.) 

0.27±0.2✢ 0.73±0.2✢ 4±2.8▴ 15±11.0▴ 6 

NERDSS (D10) 
(2x1000s) 

0.18±0.02✢ 0.82±0.02✢ 2.7±0.3▴ 12.3±1.2▴ 149 

NERDSS (D1) (5180s) 0.07±0.008✢ 0.93±0.008✢ 1.4±0.1▴ 19±1.4▴ 253 
✢SEM values reported over 10 chunks of the full trajectory. ▴SEM values reported as 𝜎/√Ntransition. N.S. 
Not significant—trajectories are not long enough. 
 
Table S6. Clock model time-scales where D=10𝜇m2/s for all species. 

  A period (s) R period (s) Lag-time (s) Sim. Time (s) Npeaks 
ODE 25.2±0.1✢ 25.1±0.1✢ 6±0.1✢ 200 8 

PDE 25.3±0.2✢ 25±0✢ 5.9±0.2✢ 200 8 

Gillespie 25±0.4✢ 25±0.4✢ 6±0.1✢ 200x10 traj. 74 

NERDSS 24.4±0.4✢ 24.3±0.4✢ 6.1±0.1✢ 600 x2 traj. 49 

Smoldyn 25.9±0.9✢ 25.7±0.9✢ 5.7±0.2✢ 200x2 traj. 16 



✢SEM values reported over Npeaks. 
 
Table S7. Clock model time-scales for localized and immobile promoters. 

  A period (s) R period (s) Lag-time (s) Sim. Time (s) Npeaks 
PDE (DA=10) 25.3±0.2✢ 25±0✢ 5.9±0.2✢ 200 8 

PDE (DA=5) 24.5±0.3✢ 24.3±0.1✢ 5.9±0.2✢ 200 9 

PDE (DA=2) 22.6±0.3✢ 22.5±0.1✢ 5.8±0.2✢ 200 10 

NERDSS (DA=10) 24.7±0.7✢ 24.7±0.7✢ 6.1±0.1✢ 1000 ∆t=10𝜇s 41 

NERDSS (DA=10) 24.5±1.2✢ 24.4±1.9✢ 5.7±0.5✢ 200 ∆t =2𝜇s 9 

NERDSS (DA=5) 23.7±0.8✢ 23.5±0.8✢ 5.7±0.2✢ 260 ∆t =0.5	𝜇s 12 

NERDSS (DA=5) 23.8±0.5✢ 23.8±0.6✢ 5.8±0.2✢ 830 ∆t =2	𝜇s 34 

NERDSS (DA=2) 22.3±0.8✢ 22.5±1✢ 5.9±0.3✢ 250 ∆t =0.5	𝜇s 11 

NERDSS (DA=2) 23±0.4✢ 23±0.5✢ 5.7±0.2✢ 880 ∆t =2	𝜇s 37 
✢SEM values reported over Npeaks. Oscillation periods were the same at the center and periphery of the 
cell in the PDE. NERDSS periods are from spatially averaged copies vs time. 
 


