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2 

Abstract 22 

Background: The loss of genetic diversity in segments over a genome (loss-of-heterozygosity, 23 

LOH) is a common occurrence in many types of cancer. By analysing patterns of preferential 24 

allelic retention during LOH in approximately 10,000 cancer samples from The Cancer 25 

Genome Atlas (TCGA), we sought to systematically identify genetic polymorphisms currently 26 

segregating in the human population that are preferentially selected for, or against during cancer 27 

development.  28 

 29 

Results: Experimental batch effects and cross-sample contamination were found to be 30 

substantial confounders in this widely used and well studied dataset. To mitigate these we 31 

developed a generally applicable classifier (GenomeArtiFinder) to quantify contamination and 32 

other abnormalities. We provide these results as a resource to aid further analysis of TCGA 33 

whole exome sequencing data. In total, 1,678 pairs of samples (14.7%) were found to be 34 

contaminated or affected by systematic experimental error. After filtering, our analysis of LOH 35 

revealed an overall trend for biased retention of cancer-associated risk alleles previously 36 

identified by genome wide association studies. Analysis of predicted damaging germline 37 

variants identified highly significant oncogenic selection for recessive tumour suppressor 38 

alleles. These are enriched for biological pathways involved in genome maintenance and 39 

stability. 40 

 41 

Conclusions: Our results identified predicted damaging germline variants in genes responsible 42 

for the repair of DNA strand breaks and homologous repair as the most common targets of 43 

allele biased LOH. This suggests a ratchet-like process where heterozygous germline mutations 44 

in these genes reduce the efficacy of DNA double-strand break repair, increasing the likelihood 45 

of a second hit at the locus removing the wild-type allele and triggering an oncogenic mutator 46 

phenotype.  47 
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Introduction 48 

Loss-of-heterozygosity (LOH) describes the somatic loss of genetic material from one copy of 49 

a heterozygous locus. It can occur as a consequence of whole or partial chromosome deletion, 50 

or as a copy-neutral event, in which one copy is replaced by the other - for example through 51 

homologous repair1 or locus duplication followed by loss of the non-duplicated allele. LOH 52 

often occurs as the ‘second-hit’ in tumour initiation, where somatic loss of the wild-type (WT) 53 

copy opposite either a germline or somatic mutation drives cancer progression2,3.  54 

 55 

Previous studies of LOH have sought to identify novel tumour suppressor genes by mapping 56 

patterns of LOH in tumours, but were hampered by low-resolution data and inadequate sample 57 

sizes4. A more recent study in ovarian cancer overlapped recurrent regions of LOH with somatic 58 

mutation data, and whilst their results revealed strong selection of known cancer genes (deletion 59 

of the WT allele in 94% of cases with deleterious somatic TP53 or BRCA1 mutations), it failed 60 

to reveal novel drivers5. In contrast, studies in cutaneous squamous cell carcinoma, ovarian 61 

cancer and colorectal cancer revealed evidence of preferential allelic imbalance of putative 62 

germline risk variants5–7, indicating that LOH may also have a role in the selection of small-63 

effect, inherited, cancer-predisposing variants. By systematically quantifying biased allele loss 64 

or retention across a large cohort of whole exome sequencing (WXS) data, we sought to explore 65 

genetic selection of common cancer-associated variants during cancer progression.  66 

 67 

The Cancer Genome Atlas (TCGA) is a public resource of genomic, clinical and associated 68 

data from over 10,000 patients across 36 types of cancer, including WXS from matched 69 

tumour:normal sample pairs8. This wealth of data is extensively used and a valuable resource 70 

in the field of cancer genomics, but is subject to the influence of batch effects and technical 71 

artefacts9–12. To control for these effects we performed a systematic analysis of mapping and 72 

sequencing artefacts, exome target capture kit biases and contamination in TCGA, and 73 
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developed a workflow to identify and remove these confounding influences. Strikingly we 74 

found evidence of contamination and other issues in 1,678 pairs of samples (14.7%), a result 75 

that may have had unforeseen impact on previous analyses performed using this dataset.   76 

 77 

After rigorous filtering of the data, we did not identify preferential retention of common 78 

variants via LOH, although we did observe an overall trend for biased retention of cancer-79 

associated risk alleles identified by genome wide association study (GWAS). Subsequent 80 

targeted analysis revealed strong oncogenic selection of predicted damaging germline variants 81 

in recessive tumour suppressor genes and preferential retention of predicted damaging germline 82 

variants in 25 protein interaction pathways, predominantly those involved in DNA damage 83 

repair and cell cycle. Of 1,175 patients with a predicted damaging germline variant in a 84 

recessive tumour suppressor gene, 284 had LOH with retention of the damaging allele at the 85 

locus (24.17%; 2.96% of 9,602 total patients analysed). 86 

  87 
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Results 88 

Initial analysis of biased allele retention during loss-of-heterozygosity in tumours 89 

Analysis of biased LOH was performed using paired normal and primary tumour samples from 90 

9,905 patients across 36 cancer subtypes. Germline variants were called using Strelka213 and 91 

GATK HaplotypeCaller14, and subsequent LOH calling was performed using CloneCNA15. To 92 

quantify allele retention bias during loss-of-heterozygosity, Fisher’s Exact tests were performed 93 

comparing reference versus alternative allele bias in samples that had undergone LOH versus 94 

those that hadn’t (Materials and Methods). Of the 210,456 loci tested (heterozygous in >= 50 95 

normal samples), 74 variants had evidence of significantly biased retention of either the 96 

reference or alternative allele (Figure 1a; Fisher’s-exact test; Bonferroni corrected p < 0.05).  97 

 98 

Autosomal germline variants are expected to have heterozygous variant allele frequency (VAF; 99 

proportion of reads mapping to the non-reference allele) of approximately 50% in the normal 100 

samples. Investigation of the significantly LOH-biased variants revealed them to have a 101 

significantly lower VAF in the normal sample than non-significant common variants 102 

(heterozygous in >=1% of normal samples) (Figure 1b; mean VAF 1.5 fold lower, t-test, p = 103 

2.5e-23). After cross-referencing our data with gnomAD16, a database of human genetic 104 

variation that includes the normal samples within TCGA; we found that the proportion of 105 

significantly LOH-biased variants failing gnomAD variant filters or missing from the gnomAD 106 

database was higher than seen for non-significant variants (Figure 1c; OR = 25.33, Fisher’s 107 

exact test, p-value = 1.1e-37). These results indicate that many of the significant allele retention 108 

biases we detected were the result of artefactual variants. Motivated by these results we 109 

undertook a systematic interrogation of TCGA WXS data covering three broad areas: 1) 110 

mapping and sequencing artefacts, 2) exome target capture kit biases and 3) sample specific 111 

abnormalities including contamination. 112 

 113 
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Systematic detection of artefactual and unreliable germline heterozygous variants  114 

We first removed all variants that failed the gnomAD filters or were missing from the gnomAD 115 

database, therefore focusing our analysis on consensus, high-quality germline variants. We 116 

found that the genomic regions with consistently low VAF giving rise to likely false biased 117 

allele retention signals, typically fall into one of two categories. First, lower alternative allele 118 

read-mapping rates in haplotype segments with clusters of non-reference alleles (example locus 119 

shown in Supplementary Figure 1a, associated normal sample VAF data in Supplementary 120 

Figure 1b,c). And second, in regions that have high sequence-identity paralogous regions 121 

elsewhere in the genome (example locus shown in Supplementary Figure 1d, associated 122 

tumour:normal VAF data in Supplementary Figure 1e). 123 

 124 

Low VAF can often occur due to stochastic sampling of reads at low coverage and is not always 125 

indicative of an underlying problem; as such, a standard VAF thresholding measure is not 126 

enough to identify error-prone or hard-to-map loci. Consequently we developed a binomial-test 127 

based reliability score to predict the likelihood of a variant being ‘true’ given its observed VAF 128 

and read-depth across all normal heterozygous samples (Materials and Methods, Figure 1d). In 129 

total, 13,088 variants (8.7% of common variants) failed our threshold, and were subsequently 130 

removed (Figure 1e,f) - this included all 26 variants previously identified as significant in the 131 

LOH bias analysis, which passed gnomAD filters.  132 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted July 4, 2020. ; https://doi.org/10.1101/2020.07.03.186593doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.03.186593
http://creativecommons.org/licenses/by/4.0/


7 

 133 

Figure 1: Artefactual germline variants influence loss-of-heterozygosity bias analysis. 134 
a, Pan-cancer LOH bias analysis. The Y-axis shows the -log10(p-value) from a Fisher's exact 135 
test for LOH bias. The red line indicates the threshold for significance (Bonferroni corrected p 136 
< 0.05). b, Mean VAF in the normal sample of germline heterozygous individuals for each 137 
variant included in the LOH bias analysis, versus significance in the LOH bias analysis, colour 138 
indicates density of points. Individual points above significance threshold plotted in black. 139 
Curves above the plot show VAF density of non-significant variants (black) and significant 140 
variants (red). c, Proportion of variants identified as non-significant (Non-Sig) / significant 141 
(Sig) in the LOH bias analysis that pass / fail gnomAD variant filters, or are missing from the 142 
gnomAD database. de, Distribution of mean VAF versus mean normalised read depth from 143 
normal samples in (d) all variants and (e) variants that pass our filter. Colour indicates density 144 
of points. Contour lines in d show 50%, 75% and 90% limits. Only variants that appear 145 
heterozygous in at least 1% of TCGA normal samples are included. Variants that fail gnomAD 146 
filters or are missing from the database have been removed. f, Cumulative distribution plot 147 
showing the distribution of ‘Reliability’ scores across all variants. Red horizontal line indicates 148 
the filtering threshold used in this analysis (0.88). 149 
 150 
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Influence of exome target capture kit on the output of whole exome sequencing data 152 

At many loci, samples sequenced by the same exome target capture kit tended to cluster by 153 

VAF and read depth (Figure 2a), demonstrating a kit specific effect on the raw sequence data, 154 

consistent with prior observations17,18. Additionally, we found that on average, individuals 155 

sequenced by the same kit had significantly more variants in common than those sequenced 156 

using a different kit (mean correlation coefficient 1.2 fold higher, t-test, p-value < 2.2e-16; 157 

Figure 2b,c; Supplementary Figure 2).  158 

 159 

We developed a linear regression based method to identify variants that were over-enriched in 160 

calls from specific kits (Figure 2d). This compared observed heterozygote frequency with a 161 

gnomAD derived allele frequency and stratified by both exome target capture kit and cancer 162 

subtype (Materials and Methods). In total, 80 variants (0.06%) were identified that passed 163 

previous filters and were significantly over-represented in one or more kits (Supplementary 164 

Figure 3c; Bonferroni corrected p < 0.05). Many previously filtered variants were significantly 165 

over-represented across all kits, although a small proportion showed a variable pattern of 166 

enrichment across the kits (Supplementary Figure 3a,b), indicating that some of the previously 167 

observed sequencing artefacts may be kit specific.  168 

 169 

 170 
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 172 
Figure 2: Exome target capture kit 173 
biases influence raw variant data and 174 
result in batch specific artefactual 175 
variant calls.  176 
a, Distribution of VAF versus normalised 177 
read depth at an example variant 178 
(rs62262685) for heterozygous normal 179 
samples, sequenced by the indicated 180 
exome target capture kit. To highlight the 181 
extent of variation within a single 182 
manufacturer, only kits from Nimblegen 183 
have been included though similar results 184 
are observed for other manufacturers. b, 185 
Correlation coefficients of pairs of 186 
patients sequenced by the same kit or by 187 
different kits. See extended methods for 188 
details, full results for all kit pairs in 189 
Supplementary Figure 1. c, Heatmap 190 
shows mean correlation coefficient 191 
between patients from each pair of kits, 192 
rows and columns are ordered as in d. d, 193 
Illustrative example of the filtering 194 
methodology. Plot shows proportion of 195 
white/European individuals heterozygous 196 
for an example variant (rs1050379), 197 

grouped by exome target capture kit. Points show individual cancer subtypes. Point sizes are 198 
proportional to the number of patients within each group. Vertical dashed line indicates the 199 
expected heterozygous frequency (hetFreq), calculated from the gnomAD non-Finnish 200 
European genome allele frequency (NFE_AF). Black crosses show the estimated effect of the 201 
exome target capture kit on the hetFreq, as calculated by linear regression; horizontal error bars 202 
= 2*SE. All kits significant p < 0.001. 203 
 204 
  205 
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Evidence of contamination in samples from The Cancer Genome Atlas 206 

The final step of our interrogation of technical artefacts in TCGA WXS data was to investigate 207 

sample specific abnormalities. The VAF distribution of germline heterozygous variants in 208 

matched tumour:normal samples can be used to infer characteristics of the tumour - such as the 209 

fraction of the genome subject to LOH (Figure 3a,b), and the cellularity of the sample (Figure 210 

3c). By quantifying deviations from the expected distribution, we can identify other 211 

abnormalities - such as contamination with genetic material from a different individual (Figure 212 

3d-g) and low quality sequencing data (Figure 3h,i). Using a combination of metrics derived 213 

from the tumour:normal VAF distribution we developed a two step pipeline to identify and 214 

filter problematic samples (Extended Methods). First, hard thresholds were used to exclude 215 

samples with severely abnormal distributions (subsequently denoted: X); secondly, an ordinal 216 

logistic regression based classifier was trained to quantify the extent of contamination in each 217 

tumour:normal sample pair, and assign them to one of four qualitative groups: C0 = non-218 

contaminated, C1 = minor contamination, C2 = moderate contamination, C3 = severe 219 

contamination (Figure 4a-d). Applying our pipeline to the TCGA samples, 185 (1.6%) pairs of 220 

samples were excluded in the first step, and 1,493 (13.3%) pairs of the remaining samples were 221 

identified as contaminated (C1 to C3; Figure 4e; full results in Supplementary Table 1).  222 

 223 

Further analysis of the contaminated samples identified a pair of patients, of the same cancer 224 

subtype, with an excessively high proportion of germline heterozygous variants in common; 225 

furthermore the shared variants formed distinct clusters in the tumour/normal VAF distribution 226 

(Supplementary Figure 4). Available metadata indicated they were likely processed in parallel 227 

(Supplementary Table 2) providing strong evidence of cross-contamination. Other 228 

corroborating metadata includes four patients with approximately 50% contamination in the 229 

normal sample, that were likely sequenced in parallel - indicative of mis-labelling of lanes 230 

during sequencing or mis-assignment of barcodes during downstream processing of the 231 

sequence data (Supplementary Figure 5, Supplementary Table 3).  232 
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 233 

Contamination and experimental error is not specific to TCGA and is a risk in all sequencing 234 

projects. To systematically identify such cases in tumour:normal pairs we have developed a 235 

software tool GenomeArtiFinder (https://git.ecdf.ed.ac.uk/taylor-lab/GenomeArtiFinder) 236 

allowing the easy application of the contamination classification and quantification methods 237 

developed here. Application to an in-progress study identified 4 problematic samples, 238 

independently confirmed using VerifyBamId19, out of 223 pairs of whole genome sequences 239 

(WGS). Application to a second in-progress study of 120 WGS sample pairs identified 3 sample 240 

swaps, confirmed using qSignature (available at: 241 

https://sourceforge.net/p/adamajava/wiki/qSignature/) and one highly contaminated sample, 242 

confirmed using VerifyBamId.  243 

 244 

To assess the effect of contamination and other experimental errors on downstream analysis, 245 

we compared the total number of somatic single nucleotide variants (SNVs) within the different 246 

groups. The contaminated samples, identified by logistic regression (C1, C2, C3), were 247 

combined into a single class (C, n=1,316). The samples excluded in the first step (X, n=185) 248 

were sub-classified based upon their reason for thresholding, as: low quality with few total 249 

variants (LQn, n=79); low quality with highly dispersed VAFs (LQd, n=8); high normal sample 250 

specific contamination (NC, n=12); tumour sample specific contamination (TC, n=23); high 251 

contamination of both the tumour and normal sample (NTC, n=23) and other (O, n=11). LQn 252 

samples had significantly fewer somatic SNPs than non-contaminated (median total somatic 253 

SNPs 3.5 fold lower, Mann-Whitney U Test, p = 9.3e-26), whilst NC and TC had significantly 254 

more (Mann-Whitney U Test, p < 0.001; Table 1; Supplementary Figure 6a). We then 255 

calculated the proportion of each sample’s somatic SNVs that appeared in gnomAD - allowing 256 

us to infer the relative extent to which germline variants are being erroneously called as somatic 257 

SNVs. Using a linear regression model, we hence estimated the enrichment of somatic 258 

gnomAD variants within each group. All groups except C and NC had a significant increase in 259 
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the proportion of somatic gnomAD variants compared to non-contaminated samples (p < 0.05), 260 

with the highest enrichment seen in TC samples (Supplementary Figure 6b; Table 1). For 261 

samples with evidence of tumour-sample contamination (TC, NTC), the increase in somatic 262 

gnomAD variants is likely due to mis-calling of contaminating germline variants in the tumour 263 

sample as somatic SNVs. In the low-quality samples (LQn, LQd), it seems likely that true-264 

germline variants missed in the normal sample are erroneously called as somatic due to the 265 

lower stringency required for calling variants in tumour samples.  266 

 267 

 268 
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 269 
Figure 3: Example VAF distributions of germline heterozygous variants in paired 270 
tumour:normal samples.  271 
Rare variants = purple, common variants = grey. Dotted lines show the median normal sample 272 
VAF for rare (red) and common (black) variants. a, In tumour samples with no LOH, the VAF 273 
distributions in both samples cluster around 0.5. bc, Alleles that have undergone LOH in the 274 
tumour have a VAF close to 0 or 1. The degree of separation between non-LOH and LOH 275 
alleles is defined by the tumour cellularity (proportion of normal cells in the tumour biopsy) 276 
and the clonality of the LOH event (proportion of LOH cells in the tumour biopsy). de, 277 
Contaminated samples are characterised by a left-shift of rare variants, and clusters of variants 278 
with very low (<0.2) or very high (>0.8) VAF, caused by the mixing of different genotypes 279 
from two individuals - as seen in Supplementary Figure 4. f, A 50/50 mix of two normal 280 
samples splits the distribution into multiple clusters corresponding to the different genotype 281 
combinations - illustrated in Supplementary Figure 4a. g, Tumour sample specific 282 
contamination causes a down-shift of rare variants. Contaminating variants that do not appear 283 
in the normal sample are misinterpreted as somatic mutations (Table 1; Supplementary Figure 284 
6). hi, Low sequencing quality can result in a highly dispersed distribution (h) or a very low 285 
total number of variants (i). 286 
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 287 

 288 
Figure 4: Evidence of substantial contamination in TCGA WXS data.  289 
a-d, Example VAF distributions of germline heterozygous variants in matched tumour:normal 290 
sample pairs from each contamination class.  Rare variants = purple, common variants = grey. 291 
Dotted lines show the median normal sample VAF rare (red) and common (black) variants. e, 292 
Plot shows the calculated probability of each patient belonging to each contamination class, 293 
shown as a cumulative distribution. Probabilities are taken from the output of the ordinal 294 
logistic regression based classifier. Dotted white lines show the limits of the classes, ie: where 295 
the probability of belonging to that class is >0.5. Full results in Supplementary Table 1. 296 
  297 
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Post-filtering analysis of biased allele retention 298 

For the subsequent analysis, we excluded all thresholded samples (X) plus those classified as 299 

most severely contaminated (C3), leaving 9,602 patients in our total pan-cancer set. As the 300 

output of the classifier is quantitative, in instances where a single patient had multiple pairs of 301 

tumour:normal samples we retained only the least contaminated pair (Supplementary Figure 302 

7). The artefactual variant and exome target capture kit bias filtering (as described above) was 303 

repeated with this patient set. Using the filtered patients and variants, we then repeated the pan-304 

cancer LOH bias analysis. No variants appeared to be significantly preferentially retained 305 

during LOH (Supplementary Figure 8a; Bonferroni corrected p < 0.05). LOH bias analysis was 306 

performed individually for each cancer subtype with more than 75 samples (n = 30). After 307 

multiple-testing correction, no variants appeared significant in any of the analyses 308 

(Supplementary Figure 8b; Bonferroni corrected p < 0.05).  309 

 310 

To estimate the minimum effect size our analysis has power to detect, we performed 311 

simulations based on the largest cohort (breast invasive carcinoma [BRCA]) and the cohort 312 

with the highest rate of LOH (ovarian serous cystadenocarcinoma [OV]) using the total number 313 

of patients (BRCA = 831, OV = 398, total patients = 9,602), and median frequency of LOH 314 

(BRCA = 0.31, OV = 0.45, total patients = 0.24; Supplementary Figure 8c-f). The results of the 315 

simulations indicated that for common variants (heterozygous frequency = 0.5), effect size odds 316 

ratios of 3.1 and 3.9 gave approximately 80% power to detect a robustly significant effect 317 

(Bonferroni corrected p-value < 0.05; BRCA and OV respectively). For less common variants 318 

(heterozygous frequency = 0.2), effect sizes of 7.8 and 16.0 were required. Although odds ratios 319 

for biased allele retention in established cancers are not directly comparable to odds ratios for 320 

cancer risk in the population, the maximum reported GWAS effect sizes in these cohorts was 321 

only 1.6 and 1.93 (EBI GWAS Catalog; BRCA and OV respectively). This suggests that with 322 

the data currently available we are underpowered to detect biased allele retention of common 323 

variants at an exome wide level of significance (Supplementary Figure 8e,f).  324 
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 325 

In a more targeted exploration, we tested for biased allele retention at previously reported 326 

GWAS significant variants in the matched cohort (e.g. lung cancer GWAS in lung cancer 327 

cohort). This potentially provides an orthogonal validation of the GWAS result and is an 328 

implicit test that the genetic effect is cancer cell autonomous, rather than for example 329 

manifesting as a cancer predisposition effect on the immune system. Cancer related SNPs from 330 

the EMBL-EBI GWAS Catalog (trait = cancer, EFO ID = EFO_0000311) were downloaded, 331 

and overlapped with our dataset. GWAS SNPs were then matched by trait to related TCGA 332 

cancer subtypes, leaving a final set of 172 SNPs, 118 with a reported GWAS OR. The LOH 333 

bias of GWAS SNPs from related traits was calculated and for variants with a reported GWAS 334 

OR, we used the observed number of LOH and non-LOH samples at the locus, and the GWAS 335 

OR to calculate the power of our analysis to detect a significant bias. Under these assumptions, 336 

none of the SNPs analysed here had sufficient power to detect a nominally significant LOH 337 

bias in this dataset (maximum power to detect a p-value < 0.05 = 35%; Supplementary Table 338 

4; Supplementary Figure 9a). Despite this, 1 SNP from skin cutaneous melanoma (SKCM) was 339 

significant after multiple testing correction (OR = 0.10, Fisher’s exact test, Bonferroni adjusted 340 

p-value = 0.044), and a further 7 had an unadjusted p-value < 0.05 (5 lung squamous cell 341 

carcinoma [LUSC], 1 liver hepatocellular carcinoma [LIHC] and 1 rectum adenocarcinoma 342 

[READ]; Supplementary Table 4). In all cases, SNPs with a p < 0.05 and a reported GWAS 343 

risk allele (n = 6) were biased towards retention of the risk allele during LOH. Furthermore, the 344 

LOH bias ORs of the 118 SNPs with a reported GWAS OR were significantly correlated with 345 

the derived GWAS ORs (adjusted for direction of the reported risk allele; rho = 0.21, 346 

Spearman’s rank correlation, p-value = 0.020; Supplementary Figure 9b), indicating a 347 

significant trend towards retention of the risk allele. Together, this indicates that at least a subset 348 

of cancer-associated risk alleles are being selected by LOH during tumour development. Our 349 

ability to detect this effect despite low anticipated power in the analysis suggests that GWAS 350 

reported OR are underestimating the effect size in biased allele retention. 351 
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 352 

LOH selects for disruptive germline variants in tumour suppressor genes and protein 353 

interaction pathways 354 

Park et al.20 recently reported selection of rare ‘potentially damaging’ germline variants during 355 

tumorigenesis via somatic LOH investigated using this same dataset. Analogously, we looked 356 

for evidence of selection of germline risk variants in genes from a curated catalogue of known 357 

cancer genes (COSMIC)21. Our analysis demonstrated a highly significant overall preference 358 

for retention of predicted loss-of-function mutations (annotated as ‘HIGH’ impact by Variant 359 

Effect Predictor [VEP22]; OR = 1.98, Fisher’s exact test, p = 6.7e-09; Figure 6a) and known 360 

pathogenic mutations (‘Pathogenic’ and ‘Likely Pathogenic’ annotations from ClinVar23; OR 361 

= 3.11, Fisher’s exact test, p = 9.2e-12; Figure 6b) in tumour suppressor genes with a recessive 362 

phenotype. In total, 418 out of 1,175 individuals (35.57%) with a heterozygous predicted 363 

damaging germline variant in a recessive tumour suppressor gene underwent LOH at the locus, 364 

and of these 284 (67.94%) retained the damaging allele. 365 

 366 

We subsequently performed LOH bias tests individually for all COSMIC genes with at least 1 367 

heterozygous predicted damaging germline variant. ATM, BRCA1, BRCA2 and SDHB were 368 

significantly biased towards retention of the damaging allele (false discovery rate [fdr] < 0.05; 369 

Figure 6c; Supplementary Table 4). Preferential retention of damaging ATM, BRCA1 and 370 

BRCA2 germline variants has previously been noted in the TCGA samples20. The LOH analysis 371 

was then repeated for all protein coding genes. Although no further genes appeared significant 372 

after multiple testing correction, PADI3 showed evidence of purifying oncogenic selection, 373 

with a nominally significant bias towards retention of the non-damaging allele (OR = 0.54, 374 

Fisher’s exact test, p = 0.0010; Figure 6d). This result indicates that functionally active PADI3 375 

may be essential within a subset of the tumours, a result that is supported by previous in vivo 376 

studies of PADI enzymes24. 377 

 378 
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Finally, we looked for evidence of selection of predicted damaging germline variants in protein 379 

interaction pathways from the pathway database, Reactome25. Out of 1,897 pathways tested, 25 380 

had a significant bias towards retention of the damaging allele after LOH (Bonferroni corrected 381 

p-value < 0.05; Figure 6e,f; Table 2). These pathways were split between five biological 382 

processes: DNA repair (n=14), gene expression (n=5), cell cycle (n=4), metabolism of proteins 383 

(n=1) and reproduction (n=1). In total, the significant pathways included 232 unique genes, 12 384 

of which, when removed from the analysis, cause at least one pathway to drop below the 385 

threshold for significance, demonstrating a significant contribution towards the overall burden 386 

of that pathway (Figure 6g; ATM, BRCA1, BRCA2, BRIP1, HIST1H4B, HIST1H4H, MCM2, 387 

MRE11, NBN, TP53, UBA52 and WRN). At least one of: ATM, BRCA1 or BRCA2 appeared 388 

in every significant pathway, indicating that these individually significant genes were 389 

contributing the majority of the signal.  390 

 391 

Overall, our analysis found strong evidence for selection of predicted damaging germline 392 

variants in tumour suppressor genes during LOH as a common mechanism of cancer evolution. 393 

Furthermore, we identified proteins and pathways involved in DNA repair as the most 394 

significant targets. 395 

 396 
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 397 

Figure 5: Selection for predicted damaging germline variants via LOH during tumour 398 
development.  399 
ab,  LOH bias for COSMIC genes. Genes were grouped by annotations in COSMIC and either 400 
(a) VEP or (b) ClinVar. Horizontal lines show the 95% confidence interval. c, LOH bias of 401 
predicted damaging germline variants in COSMIC genes. Purple = fdr < 0.05. Full results in 402 
Supplementary Table 5. d, LOH bias of predicted damaging germline variants in genes with at 403 
least 1 predicted damaging germline variant. e, LOH bias of predicted damaging germline 404 
variants in Reactome pathways. Purple = p-value < 0.05. In a-e, log10(OR) <0 = reference 405 
allele bias, >0 = alternative allele bias. f, Pathway membership of genes found to contribute to 406 
the overall burden of at least one significant pathway. Blue indicates pathway membership, 407 
purple indicates that when removed from the analysis the pathway drops below the threshold 408 
for significance. g, Hierarchical network diagram of Reactome pathways with a significant 409 
LOH bias towards predicted damaging germline variants (Bonferonni corrected p-value < 410 
0.05). Each node represents a biological pathway, statistically significant pathways have a red 411 
border. Branches link sub-processes within larger pathways, with the most broadly defined 412 
biological processes at the top of the plot. Non-significant branches within each network are 413 
excluded. Details of each significant pathway are shown in Table 2.  414 
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 415 
Discussion 416 

LOH as a mechanism of oncogenic selection has been a key tenet of cancer etiology since 417 

197126. By performing a targeted analysis of potentially deleterious germline variation in 418 

known cancer associated genes, we identified LOH as the ‘second-hit’ in 24.17% of patients 419 

with a heterozygous damaging variant in a tumour suppressor genes (n = 284; 2.96% of 9,602 420 

total patients analysed). Analysis of individual genes found this signal to be dominated by 421 

mutations in: ATM, BRCA1, BRCA2 and SDHB (Figure 5c). As inactivation of ATM, BRCA1 422 

and BRCA2 are all associated with increased genome instability and consequent LOH27–29, this 423 

indicates a cyclical mechanism of oncogenesis, in which a heterozygous loss-of-function 424 

mutation reduces the overall efficiency of double-strand break repair (DSBR), thereby 425 

increasing the likelihood of a LOH event targeting the WT copy. This conclusion is further 426 

supported by studies demonstrating that whilst BRCA1 and BRCA2 heterozygous knockouts 427 

are phenotypically normal under most conditions, a phenotype of ‘conditional 428 

haploinsufficiency’ and consequent genomic instability can be induced by exposure to different 429 

endogenous and exogenous stressors30–33. The identification of significant preferential retention 430 

of predicted damaging germline variants in DSBR pathways (Figure 5e), including significant 431 

contributions from other DSBR proteins such as: MRE11, WRN and NBN (Figure 5g) implies 432 

that genomic instability driven by conditional haploinsufficiency of DSBR proteins may be a 433 

common cancer evolution pathway. By studying the effects of different stressors in cells with 434 

heterozygous DSBR loss-of-function mutations, we will gain insight into the specific 435 

combination of genetic and environmental factors that drive the ‘second hit’ in cancer 436 

evolution.  437 

 438 

Our results show that biased LOH selects for pathogenic or loss-of-function variants in 439 

recessive tumour suppressor genes (Figure 5a,b), demonstrating the dysregulation of normal 440 

cellular function as a key step in the acquisition of oncogenicity. In contrast, PADI3 441 
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(peptidylarginine deiminase 3) showed nominally significant purifying selection against 442 

predicted damaging germline variants (OR = 0.54, t-test, unadjusted p = 0.0010; Figure 6d), 443 

indicating that functionally active PADI3 may be necessary for a subset of tumours, a result 444 

that is supported by previous in vivo studies of PADI enzymes24. Due to the high proportion of 445 

BRCA and OV patients in the TCGA cohort (831 and 398, respectively; 12.80% of total 446 

patients), these results are predominantly biased towards breast and ovarian cancer associated 447 

genes - by repeating this analysis within different cohorts of patients, it may be possible to 448 

identify functionally essential proteins from specific cancer subtypes, revealing novel 449 

therapeutic targets. 450 

 451 

The majority of LOH events do not involve loss-of-function or pathogenic variants, and hence 452 

their phenotypic impact is still unknown5. It is possible that many common LOH events are 453 

passenger mutations with no functional influence on cancer progression, or alternatively, it is 454 

perhaps more likely that due to the limitations of the data currently available, we are unable to 455 

detect the selective effect of common, small effect variants. In this study we identified a 456 

significant correlation between the GWAS OR and LOH OR of previously reported GWAS 457 

variants in matched cancer subtypes (Supplementary Figure 9b), demonstrating a pan-cancer 458 

trend towards retention of cancer-associated variants during LOH. Taken with previous 459 

analyses of biased LOH at putative risk variants5–7, this result indicates that small-effect cancer 460 

associated variants are likely influencing cancer evolution, albeit to an extent that we are 461 

currently underpowered to robustly detect per-gene.  462 

 463 

TCGA is one of the most widely used resources in cancer genomics, with more than 2,000 464 

citations of the original 2013 flagship publication8 and over 3,500 papers in pubmed containing 465 

the keyword ‘TCGA’. Consequently, our identification and quantification of substantial 466 

contamination and experimental error in 382 pairs of samples (185 = X; 197 = C3), and mild to 467 

moderate contamination in a further 1,296 (C1 = 456; C2 = 840) has important implications. 468 
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For example, our discovery of a significant increase in total somatic SNP burden in 469 

contaminated samples (Supplementary Figure 6a) illustrates how genetic material from other 470 

sources can be mis-interpreted as somatic mutations, potentially leading to incorrect 471 

conclusions. Batch effects have previously been reported across TCGA samples9,12 but these 472 

studies have not considered sample contamination as a systematic confounder.  We provide our 473 

per-sample contamination estimates as a resource to allow other researchers working with 474 

TCGA to choose appropriate filters for their analysis (Supplementary Table 1). Furthermore, 475 

our results and methodology provide a broadly applicable framework that can be used to profile 476 

contamination, low quality data and other technical issues using germline variant data from 477 

matched tumour:normal samples. To enable the general application of these quality control 478 

metrics to both user-generated and public data we make the GenomeArtiFinder software 479 

package available (https://git.ecdf.ed.ac.uk/taylor-lab/GenomeArtiFinder).  480 

 481 

As we’ve demonstrated, the primary limiting factor in genomics studies is power 482 

(Supplementary Figure 8c-d) - consequently, the genomics field is becoming dominated by 483 

large collaborative sequencing projects, relying on data generated in multiple batches, from 484 

multiple centres, often over multiple years. Many projects - including TCGA and PanCancer 485 

Analysis of Whole Genomes (PCAWG)34 - use standardised bioinformatic pipelines to 486 

eliminate technical variation in the downstream analysis, and although important - this does 487 

nothing to account for experimental variation. The confounding impact of experimental batch 488 

effects in high-throughput data and their propensity to lead to false conclusions has been well-489 

documented35,36, and yet they often remain unaccounted for. Many batch effects can be 490 

overcome with careful experimental design - for example: ensuring comparative groups (eg: 491 

test samples and controls) are processed in parallel to avoid confounding technical variation 492 

with biological difference; and using standardised reagents and protocols to minimise 493 

experimental variation. Additionally, experimental metadata - such as sample processing and 494 
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sequencing groups - should be made readily available to researchers, so that the potential 495 

confounding impact can be properly profiled, and where necessary accounted for. 496 

 497 

Measures of biased allele retention efficiently re-discover loci known to harbour cancer 498 

predisposing germline variants in the human population, and implicate new candidates such as 499 

MCM2. Pathway based analyses of these rare deleterious variants shows their importance to 500 

many families, and points to a genome instability ratchet that biases heterozygous carriers of 501 

deleterious mutations to undergoing LOH providing an opportunity to develop a full-blown 502 

genome instability phenotype. This ratchet effect may also explain why GWAS odds ratios 503 

seem to under-estimate the effect size of damaging variants when viewed from the perspective 504 

of biased allele retention. The success of GWAS validation suggests that the biased allele 505 

retention approach will be informative at the genome-wide scale as larger datasets of cancer 506 

genome sequencing are acquired. 507 

 508 

 509 

 510 

 511 

  512 
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Materials and Methods 513 

Availability of data and materials 514 

Details of all software and packages used in the analysis are in Supplementary Table 6. 515 

 516 

All analyses were performed using the Genomic Data Common (GDC) data harmonization and 517 

generation pipeline GRCh38 reference sequence (GRCh38.d1.vd1.fa, available from:  518 

https://gdc.cancer.gov/about-data/data-harmonization-and-generation/gdc-ference-files).  519 

Aligned whole exome sequence (WXS) reads were downloaded as BAM files from the TCGA 520 

and TARGET projects using the GDC data portal. Somatic variant calls generated from 521 

matched tumour:normal pairs were downloaded from the GDC data portal as VCFs. Details of 522 

BAM and VCF pre-processing are available from: https://gdc.cancer.gov/documentation. 523 

 524 

Variant calling and LOH/SCNA analysis were limited to exonic regions using a genomic region 525 

file, adapted from ExAC (exome_calling_regions.v1.interval_list, available from: 526 

ftp://ftp.broadinstitute.org/pub/ExAC_release/release0.3.1/resources/). Firstly, intervals were 527 

lifted over from hg19 to hg38 using Picard (v2.6) and LiftOver resources from UCSC Genome 528 

Browser. Secondly, genomic intervals of low-complexity regions (LCR) and segmental 529 

duplication (SegDup) regions were downloaded from gnomAD (LCR.interval_list and mm-2-530 

merged.bed.gz, respectively, both available from gs://gnomad-public/intervals/ using the 531 

Python application gsutil), and lifted over to hg38. LCR and SegDup regions were then 532 

subtracted from the exome target region file using BEDTools (v2.25.0)37.  533 

 534 

To produce a consensus file of genomic regions common to all exome target capture kits used 535 

in TCGA, BED files corresponding to the target regions of each of the kits were queried from 536 

TCGA metadata. BED files of additional probes and target regions were excluded, as well as 537 

Gapfiller_7m (all patients sequenced using this kit failed filtering steps) and SureSelect_50Mb 538 
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(only used to sequence 5 patients); consequently BED files from eight exome target capture 539 

kits were downloaded (Supplementary Table 7). Files were lifted over to hg38 then intersected 540 

using BEDTools to produce a consensus file of genomic regions common to all eight kits. 541 

Finally, LCR and SegDup regions were then subtracted from the exome target region file as 542 

described previously. 543 

 544 

GnomAD VCFs from WXS and WGS (gnomad.exomes.r2.1.sites.vcf.bgz and 545 

gnomad.genomes.r2.1.sites.vcf.bgz, available for download using gsutil (v4.28) from 546 

gs://gnomad-public/release/2.1.1/vcf/) were downloaded then lifted-over to hg38 using Picard 547 

(v2.9.4). Multi-variant positions were split using a custom perl script, to ensure correct 548 

assignment of annotations to alternative alleles. Normalisation and further processing was 549 

performed using bcftools (v1.3.1). 550 

 551 

Sample Selection 552 

For each patient, one pair of tumour:normal samples were selected for analysis, ensuring that 553 

both samples were prepared for sequencing using the same exome target capture kit and where 554 

possible were sequenced in the same experiment. For patients with multiple pairs of samples, 555 

the most recently sequenced pair was chosen. Out of 10,316 patients, 9,905 had at least one 556 

pair of tumour:normal samples that passed our criteria and underwent successful LOH 557 

prediction. Following contamination classification, only sample pairs classified as ‘C0’, ‘C1’, 558 

and ‘C2’ were used in the analysis. For patients with multiple pairs of samples, the pair with 559 

the lowest contamination score was selected (examples in Supplementary Figure 7). In total, 560 

9,602 patients were included in the final LOH bias analysis. 561 

 562 

Germline Variant Calling and Annotation 563 

Germline variants were called from normal BAM files individually using Strelka2 (v2.8.3)13 564 

and in batches of approximately 200 samples using the GATK HaplotypeCaller (v3.8) best 565 
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practices workflow14,38. The output VCFs from Strelka2 and GATK HaplotypeCaller were then 566 

overlapped and filtered to keep only variants that were called by both callers and passed all 567 

quality control measures. Variant annotation was performed using Variant Effect Predictor 568 

(VEP)22 using the v88 GRCh38 cache (homo_sapiens_vep_88_GRCh38.tar.gz, available from 569 

ftp://ftp.ensembl.org/pub/release-88/variation/VEP/). 570 

 571 

Loss of Heterozygosity and Somatic Copy Number Alteration Prediction 572 

CloneCNA (v2.0) was used to predict changes in copy number and heterozygosity, and 573 

additionally estimate tumour cellularity and clonality of mutations15.  574 

 575 

Exome-Wide Preferential Allelic Imbalance Detection 576 

Allele specific read counts for germline heterozygous SNPs were generated individually for all 577 

pairs of tumour:normal BAM files using ExomeSeqMiner (included with the CloneCNA 578 

software package). SNPs with VAF <0.2 or >0.8 or read depth <10 in the normal sample were 579 

removed from the analysis. Loci were then overlapped with segmental LOH/SCNA predictions 580 

from CloneCNA to give a per-variant LOH prediction. For each variant, the allelic count odds 581 

ratio (ORAC) of alternative versus reference reads in tumour versus normal was calculated to 582 

predict which allele had been retained in the tumour. At every loci with at least 50 heterozygous 583 

individuals within the test group, a Fisher’s exact test was performed comparing counts of test 584 

group samples that had undergone LOH at the loci (CloneCNA predictions: HEMD 585 

[hemizygous deletion], NLOH [copy-neutral loss-of-heterozygosity] or ALOH [copy-586 

amplification loss-of-heterozygosity]) and had retained the alternative or reference allele (ORAC 587 

>1 or ORAC <1, respectively), versus counts of all patient samples that had not undergone LOH 588 

or any other segmental mutation at the loci (CloneCNA prediction: NHET [copy-neutral 589 

heterozygous)]). We expect that the ORAC of NHET samples should be equally distributed 590 

around 1, therefore by using the NHET samples as a control group, we can control for overall 591 

bias in the distribution of ORAC at a given loci. Exome-wide LOH bias tests were performed 592 
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for the pan-cancer dataset (all versus all), and on a cancer subtype specific basis (test group 593 

versus all). 594 

 595 

Cancer GWAS Variants 596 

Using the EMBL-EBI GWAS Catalog, all previously reported cancer-associated variants were 597 

downloaded  (trait = cancer, EFO ID = EFO_0000311, 5,552 associations from 580 studies). 598 

After processing, genome information was extracted for 4,723 unique SNPs. SNPs were 599 

intersected with our dataset, leaving 217 cancer associated exome variants. For each cancer 600 

subtype, associated traits were queried with related keywords to extract cancer subtype specific 601 

SNP associations. LOH bias was calculated for each SNP as described above. 602 

  603 

COSMIC: Preferential Allelic Imbalance Detection 604 

To test for preferential selection of mutations in known cancer genes, tier 1 genes from 605 

COSMIC (Catalog of Somatic Mutations in Cancer; cancer_gene_census.csv, available from: 606 

https://cancer.sanger.ac.uk/cosmic/download) were grouped by role (oncogene versus tumour 607 

suppressor) and molecular genetics (recessive versus dominant). Germline variants within each 608 

of these gene groups were then collected and cross-referenced with their VEP annotations and 609 

ClinVar23 predictions of pathogenicity (clinvar_20190325.vcf.gz, available from: 610 

ftp://ftp.ncbi.nlm.nih.gov/pub/clinvar/vcf_GRCh38/), in addition to their LOH status. For each 611 

gene group, and each VEP annotation category (‘HIGH’, ‘MODERATE’, ‘LOW’, 612 

‘MODIFIER’), and ClinVar prediction (‘Pathogenic’, ‘Benign’, ‘Unknown’, ‘Missing’; 613 

ClinVar categories were collapsed as shown in Supplementary Table 8) a Fisher’s exact test 614 

was performed comparing retention of the reference versus alternative alleles in samples that 615 

underwent LOH versus those that didn’t, as described above. 616 

 617 
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Gene and Gene Pathway: Preferential Allelic Imbalance Detection 618 

To test for preferential selection of potentially damaging mutations, germline heterozygous 619 

variants in all genes were collected and cross-referenced with their VEP annotations and 620 

ClinVar predictions of pathogenicity. On a gene-by-gene basis, reference versus alternative 621 

allele retention after LOH in samples with at least one damaging mutation (annotated as ‘HIGH’ 622 

impact by VEP, with a population allele frequency of <0.001 (gnomAD); or annotated as 623 

‘Pathogenic’ in ClinVar) was compared to reference versus alternative allele retention after 624 

LOH samples with benign mutations (annotated as ‘LOW’ impact or ‘MODIFIER’ by VEP, 625 

with a population allele frequency of >0.05; or annotated as ‘Benign’ in ClinVar) using a 626 

Fisher’s exact test.  627 

 628 

To test for enrichment in specific gene interaction pathways, a list of all genes with at least one 629 

predicted damaging germline variant were entered into Reactome25. Genes were then grouped 630 

into pathways identified by Reactome, and Fisher’s exact tests were performed combining 631 

counts from all genes within each pathway.  632 

 633 

Mapping And Sequencing Artefacts 634 

To quantify the ‘reliability’ of all common variants (heterozygous frequency >1%), we used a 635 

binomial test to calculate the probability of sampling the observed VAF at the observed read 636 

depth based upon the expected reference allele bias (0.53139). Read depths were first normalised 637 

as follows: (variant read count / sample median read depth) * population median read depth. 638 

A binomial test was then performed for every common variant in every heterozygous normal 639 

sample. For each variant, we then calculated the proportion of the 99% confidence intervals 640 

given by the binomial test that overlapped with the expected - to give an overall measure of 641 

reliability at that locus. Finally, we compared the proportion overlapping the expected across 642 

all common variants in the dataset, and selected a threshold at the apex of the distribution (0.88, 643 

Figure 1f).  644 
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 645 

Exome Target Capture Kit Bias 646 

To quantify the extent of intra-kit allele-sharing, we performed pairwise correlations between 647 

randomly selected patients from the seven most common kits used in TCGA. Firstly, 50 patients 648 

were randomly selected from each kit. Secondly, the heterozygosity of each patient was 649 

determined at 5,000 randomly selected variants appearing in genomic regions common to all 650 

exome target capture kits and heterozygous in at least 50 of the sampled patients. Thirdly, 651 

heterozygosity was correlated between each pair of patients, to give a measure of allele sharing. 652 

This analysis was permuted 12 times using different randomly selected sets of patients and 653 

variants. Correlation coefficients were then compared between all kits.  654 

 655 

To identify kit-specific enrichment of variants, we used linear regression to calculate the effect 656 

of each kit on the observed population frequency of heterozygotes (hetFreq), compared to the 657 

expected (estimated from the gnomAD non-Finnish European genome allele frequency 658 

[NFE_AF], using Hardy-Weinberg equilibrium). HetFreq was estimated from White/European 659 

individuals only, to account for population stratified variants. Patients were grouped by kit and 660 

by cancer subtype - to control for the possibility of cancer segregating germline variants that 661 

may be over-represented in specific kit groups. To account for variation in sample size, the 662 

linear regression was weighted by the number of individuals within each kit/cancer-subtype 663 

group. 664 

 665 

Manually Excluded Variants 666 

Whilst investigating abnormal patient VAF distributions, we identified 25 patient samples (24 667 

prostate adenocarcinoma [PRAD] and 1 kidney renal papillary cell carcinoma [KIRP]) with 668 

multiple rare variants with low VAF in both the tumour and normal samples. After cross-669 

referencing these variants, we found that although they were rare across the total dataset, they 670 

were enriched within this subset of samples. We consequently compared their observed hetFreq 671 
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within these 25 patients to their expected hetFreq (estimated from the gnomAD population 672 

allele frequency using Hardy-Weinberg equilibrium) and filtered any variant that was more 673 

than fivefold enriched, removing 170 variants in total. All analyses were performed having pre-674 

filtered these variants from all samples. 675 

 676 

Thresholding of Contaminated, Low Quality and Abnormal Samples 677 

Firstly, tumour/normal VAF distributions were split into grids of 25 evenly sized squares, and 678 

the number of rare and common variants appearing in each square counted, giving a vectorised 679 

representation of the total distribution. Secondly the median VAF was calculated for rare and 680 

common variants in both the tumour and normal samples - giving an estimate of any strong 681 

shifts in the overall distribution, and allowing identification of samples with lower VAF in rare 682 

variants compared to common - a characteristic of contaminated samples. The standard 683 

deviation of VAF in the normal sample was also calculated, to identify samples with high VAF 684 

dispersion - indicative of low quality sequence data. Finally, the proportion of rare and common 685 

variants above and below the midpoint of the central distribution was calculated, to give another 686 

representation of any shifts in the distribution of variants in the tumour sample - often the result 687 

of tumour-sample specific contamination. Individual examples from across the distribution of 688 

the different variables were investigated, and thresholds were consequently placed to remove 689 

individuals with abnormal tumour/normal VAF distributions.  690 

 691 

Sample Specific Quantification of Contamination 692 

To construct a quantitative contamination classifier, a combination of 22 metrics that best 693 

captured the features of the tumour/normal VAF distributions contributable to contamination 694 

were chosen (variant counts in the outer regions of the tumour/normal VAF distribution [normal 695 

sample VAF <0.2 or >0.8] and median normal sample VAF of rare and common variants). 696 

Using the chosen metrics, we calculated the Mahalanobis distance of all samples from the total 697 

distribution. After splitting the ranked distribution of Mahalanobis distances into 6 groups, 100 698 
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patients were randomly selected from within each group (600 patients total) to generate a 699 

training set, equally representing the complete scale of contamination seen in our dataset. 700 

Patients were then manually classified as non-contaminated (C0) or contaminated (C1, C2, C3) 701 

using a sliding scale of severity, with ‘C3’ representing the most severe contamination. An 702 

ordinal logistic regression was performed on these samples, using the 22 metrics as predictor 703 

variables, and contamination group as the outcome variable. The output was then used to 704 

systematically classify the whole dataset.  705 

 706 

Somatic Variant Analysis 707 

For each tumour:normal sample pair, somatic variant VCFs from four different somatic variant 708 

callers (MuSE, MuTect2, VarScan2, SomaticSniper) were downloaded from GDC. VCFs were 709 

intersected using GATK CombineVariants, and only variants passing all filters in at least two 710 

of the variant calling pipelines were kept.  711 

 712 

To assess the extent of contaminating germline variants in the tumour samples, somatic variants 713 

from each tumour sample were overlapped with gnomAD exome variants, and the proportion 714 

of total SNPs appearing in the gnomAD database was calculated.  715 

  716 
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Tables 831 

 
Filtering Sub-
Classification 

 
Total 
Samples 

Somatic SNVs Proportion gnomAD 

Median  P-value1 Median  Effect Size2 P-value2 

C0 Non-contaminated 
(C0) 

8688 154 NA 0.140 NA NA 

C Contaminated (C1, 
C2, C3) 

1316 155 0.44 0.139 0.00148 0.58 

NC Excluded (X), 
normal sample 
contamination 

12 496 0.00054 0.173 0.0378 0.12 

NTC Excluded (X), 
normal and 
tumour sample 
contamination 

23 243 0.065 0.168 0.0352 0.050 

TC Excluded  (X), 
tumour sample 
contamination  

23 1022 8.9e-07 0.411 0.258 3.38e-08 

LQd Excluded (X), low 
quality: dispersed 

8 444 0.025 0.290 0.108 0.059 

LQn Excluded (X), low 
quality: few 
variants 

79 44 9.3e-26 0.209 0.0580 4.57e-06 

O Excluded (X), 
other 

11 319 0.050 0.161 0.105 0.11 

Table 1: Influence of contamination and sequencing quality on somatic mutation data. 832 
Comparison of the total number of somatic SNVs in contaminated and abnormal samples, 833 
compared to non-contaminated samples (C0), and proportion of total somatic SNVs found in 834 
gnomAD. Excluded samples (X, n=185) were sub-classified based upon their reason for 835 
thresholding, samples identified as contaminated by logistic regression were combined into a 836 
single class (C). 837 
1 Mann-Whitney U Test, versus C0 838 
2 Linear regression, response variable = proportion of somatic SNPs found in the gnomAD database, 839 
predictor variables = total somatic SNPs and filtering sub-classification. 840 
  841 
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 842 
Biological 
Process 

Pathway 
Identifier 

Pathway Name ID Total 
Genes 

OR1 p-value1 Adj p-
value2 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 Repair 

R-HSA-5693532 DNA Double-
Strand Break 
Repair 

D2 94 1.71 4.0e-08 7.2e-05 

R-HSA-5693606 DNA Double 
Strand Break 
Response 

D3.a 37 2.77 8.1e-11 1.5e-07 

R-HSA-5693538 Homology 
Directed Repair 

D3.b 79 1.73 1.4e-07 0.00025 

R-HSA-5693571 Nonhomologous 
End-Joining 
(NHEJ) 

D3.c 38 2.55 1.9e-09 3.6e-06 

R-HSA-5693565 Recruitment and 
ATM-mediated 
phosphorylation 
of repair and 
signaling proteins 
at DNA double 
strand breaks 

D4.a 37 2.77 8.1e-11 1.5e-07 

R-HSA-5693567 HDR through 
Homologous 
Recombination 
(HRR) or Single 
Strand Annealing 
(SSA) 

D4.b 74 1.83 1.6e-08 2.9e-05 

R-HSA-5685942 HDR through 
Homologous 
Recombination 
(HRR) 

D5.a 47 2.44 8.8e-13 1.6e-09 
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R-HSA-5685938 HDR through 
Single Strand 
Annealing (SSA) 

D5.b 26 1.94 1.6e-05 0.029 

R-HSA-5693607 Processing of 
DNA double-
strand break ends 

D5.c 51 1.99 1.6e-06 0.0030 

R-HSA-5693579 Homologous 
DNA Pairing and 
Strand Exchange 

D6.a 33 2.98 5.4e-15 1.0e-11 

R-HSA-5693537 Resolution of D-
Loop Structures 

D6.b 29 3.18 2.6e-16 4.8e-13 

R-HSA-5693616 Presynaptic phase 
of homologous 
DNA pairing and 
strand exchange 

D7.a 30 2.93 9.1e-14 1.7e-10 

R-HSA-5693568 Resolution of D-
loop Structures 
through Holliday 
Junction 
Intermediates 

D7.b 28 3.24 1.2e-16 2.2e-13 

R-HSA-5693554 Resolution of D-
loop Structures 
through 
Synthesis-
Dependent Strand 
Annealing 
(SDSA) 

D7.c 24 3.47 2.9e-17 5.4e-14 
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Gene 
Expression 

R-HSA-8953750 Transcriptional 
Regulation by 
E2F6 

G4.a 11 3.77 3.1e-07 0.00057 

R-HSA-6796648 TP53 Regulates 
Transcription of 
DNA Repair 
Genes 

G5.c 35 2.30 1.1e-08 2.1e-05 

R-HSA-6804760 Regulation of 
TP53 Activity 
through 
Methylation 

G6.a 9 3.27 2.1e-05 0.038 

R-HSA-6804756 Regulation of 
TP53 Activity 
through 
Phosphorylation 

G6.b 42 2.05 1.3e-07 0.00023 

R-HSA-6803207 TP53 Regulates 
Transcription of 
Caspase 
Activators and 
Caspases 

G6.c 8 3.34 1.5e-05 0.028 

Cell Cycle R-HSA-1500620 Meiosis C2.b 59 1.84 9.0e-09 1.6e-05 

R-HSA-69481 G2/M 
Checkpoints 

C3.a 75 1.67 1.5e-05 0.027 

R-HSA-912446 Meiotic 
recombination 

C3.b 40 2.23 5.1e-11 9.5e-08 

R-HSA-69473 G2/M DNA 
damage 
checkpoint 

C4 51 2.00 6.0e-07 0.0011 

Metabolism 
of Proteins 

R-HSA-5689901 Metalloprotease 
DUBs 

M4 17 4.13 5.1e-08 9.3e-05 
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Reproduction R-HSA-1474165 Reproduction R1 78 1.63 4.7e-07 0.00086 

Table 2: Reactome Pathways with significant preferential retention of predicted 843 
damaging germline variants during loss-of-heterozygosity 844 
LOH bias test of predicted damaging germline variants was performed for all Reactome protein 845 
interaction pathways containing at least one gene with a heterozygous predicted damaging 846 
germline variant (n=1,897). Table shows all significant pathways: Bonferroni corrected p-value 847 
< 0.05. 848 
1 Fisher’s exact test, rare versus common allele retention of damaging versus benign variants 849 
2 Bonferroni adjusted p-value 850 
 851 

 852 

 853 

 854 

 855 

 856 

 857 

 858 

 859 

 860 

Supplementary Figures 861 

 862 
Supplementary Figure 1: Regions of high-sequence identity and fixed haplotype blocks 863 
affect read alignment  864 
a, Screenshot from the UCSC genome browser of chr11:244129-244197. b, Screenshot from 865 
gnomAD interactive IGV.js showing read alignments of whole exome sequencing data (WES) 866 
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from normal samples. Coloured bars indicate proportion of reads containing the indicated base 867 
at that position. c, Boxplots of normal sample variant allele frequency (VAF) of the indicated 868 
variants from heterozygous individuals. Red dotted line indicates the expected VAF for a 869 
heterozygote (0.5). d, Screenshot from the UCSC genome browser of chr9:104605116-870 
104605184. e, VAF of rs1851716-A/T in matched tumour:normal samples from germline 871 
heterozygous individuals. Black lines show the limits of 2*sd+mean of normal sample VAF. 872 
Red dotted line: x=y.  f, Table of variants included in this figure. 873 

 874 

 875 
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Supplementary Figure 2: Intra-kit correlations 876 
Boxplot plots show correlation coefficients of pairs of patients sequenced by the indicated  kits. 877 
Analysis was permuted 12 times, for 50 randomly selected patients from each kit, comparing 878 
heterozygosity at 50,000 common variants. The coloured boxplot in each plot shows the intra-879 
kit comparison. The red horizontal line shows the median of correlation coefficient of the intra-880 
kit comparison. *** = p-value < 0.001, t-test compared to the intra-kit comparison.  881 
 882 
 883 
 884 
 885 
 886 

 887 
Supplementary Figure 3: Significantly kit biased variants  888 
Kit bias logistic regression results shown across all kits for variants that are significantly over-889 
represented in at least one kit, as determined by linear regression. Significance threshold: 890 
Bonferroni corrected p < 0.05.  a, Variants that failed either gnomAD exome or genome filters.  891 
b, Variants that failed the initial round of binomial-based filtering of mapping and sequencing 892 
artefacts. c, Variants that passed all previous filters. 893 
 894 
 895 
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 896 
Supplementary Figure 4: Cross contaminated patient samples in TCGA. 897 
A: VAF distributions of germline heterozygous variants in matched tumour:normal sample 898 
pairs from two cross-contaminated samples. Grey variants are unique to a single sample; 899 
coloured variants are shared between both samples, with colours matched between the two 900 
plots. Labels indicate the approximate limits of the clusters corresponding to the different 901 
genotype combinations. See Supplementary Table 2 for associated sequencing metadata. B: 902 
Schematic illustrating mixing of genotypes from two individuals at different proportions, 903 
resulting in the VAF distribution observed in A. 904 
 905 
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 906 
Supplementary Figure 5: Samples processed in parallel with 50% normal sample 907 
contamination 908 
VAF distributions of germline heterozygous variants in matched tumour:normal sample pairs 909 
from four heavily contaminated patients, sequenced in parallel. Rare variants are shown in 910 
purple, common variants in grey. Vertical dotted lines show the median VAF in normal samples 911 
for rare (red) and common (black) alleles. See Supplementary Table 3 for associated 912 
sequencing metadata. 913 
  914 
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 915 
Supplementary Figure 6: Influence of contamination and sequencing quality on somatic 916 
mutation data 917 
Boxplots show distribution of (A) total somatic SNPs and (B) proportion of somatic SNPs 918 
found in the gnomAD database for tumour:normal sample pairs within each filtering sub-919 
classification. Details of each sub-classification are in Table 2. Values at the bottom of the plot 920 
indicate total number of sample pairs in each group. Significance calculated by (A) Mann-921 
Whitney U test compared to ‘C0’; (B) linear regression, response variable = proportion of 922 
somatic SNPs found in the gnomAD database, predictor variables = total somatic SNPs and 923 
filtering sub-classification. * = p-value < 0.05, ** = p-value < 0.01, *** = p-value < 0.001.  924 
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925 
Supplementary Figure 7: Variable degrees of contamination in pairs of samples from the 926 
same patient 927 
VAF distributions of germline heterozygous variants in matched tumour:normal sample pairs 928 
from four patients with multiple normal samples. Within each pair, the normal samples are 929 
matched against the same tumour sample. Uncontaminated samples (C0) are on the top row, 930 
contaminated samples (C3) on the bottom row. Rare variants are shown in purple, common 931 
variants in grey. Vertical dotted lines show the median VAF in normal samples for rare (red) 932 
and common (black) alleles.  933 
 934 

 935 

 936 

 937 

 938 
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 939 
Supplementary Figure 8: Whole-exome analysis of LOH bias 940 
a, Results of the pan-cancer LOH bias analysis, post-filtering. Y-axis shows the -log10(p-value) 941 
from a Fisher's exact test for LOH bias. Red line indicates Bonferroni corrected threshold for 942 
significance (p < 2.7e-07). b, Results of the per cancer subtype LOH bias analysis, post-943 
filtering. Plot shows the most significant result across all subtypes for each variant. c, Results 944 
of power simulations performed for the largest cohort (breast invasive carcinoma [BRCA]) 945 
Simulations were performed using the total number of patients (831) and median frequency of 946 
LOH (0.31), and a range of heterozygosity and effect size. d, Barplot comparing the maximum 947 
observed GWAS effect size for BRCA (1.6), with the minimum effect size required to achieve 948 
80% power for the indicated heterozygosity. ef, As in cd, but performed for the cohort with the 949 
highest rate of LOH (ovarian serous cystadenocarcinoma [OV]). Total number of patients = 950 
398, median frequency of LOH = 0.45, maximum observed GWAS effect size = 1.93 (EBI 951 
GWAS Catalog).  952 
  953 
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 954 
Supplementary Figure 9: Preferential allelic retention of cancer subtype specific GWAS 955 
variants 956 
A: Power to detect preferential allelic retention of cancer subtype specific GWAS variants in 957 
TCGA. Power represents proportion of simulations where p-value < 0.05. Simulations were 958 
performed using the reported GWAS OR (EBI GWAS Catalog), the total number of patients 959 
and median rate of LOH in the matched cancer subtype. B: Comparison of OR reported by the 960 
EBI GWAS Catalog, and the OR from the LOH bias analysis. Point sizes represent the 961 
significance of the LOH bias analysis. Full results in Supplementary Table 4. 962 
 963 
  964 
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Supplementary Tables 965 

Supplementary Table 1: Contamination classifications of all matched tumour:normal 966 
sample pairs in TCGA 967 
<Additional File: perSamplePair.contaminationPrediction.csv> 968 
 969 

 
 Patient UUID BAM UUID Sample 

Type 
Sequencing 
Date1 

Shared / Total 
Variants (%)2 

A 

54d21956-25e4-
42df-adbe-
6907721fc4b5 

085dc201-7c19-
4652-a199-
5daca6b1c552 

Normal 2015-03-20T00 26256 / 27577 
(95.2%) 
 
22073 / 23807 
(92.7%) d9bd04f9-42b6-

4dbd-a770-
0fa5da681290 

Tumour 2015-01-16T00 

B 

f8970455-bfb2-
4b1d-ab71-
3c5d619898ad 

089c6901-5fe6-48b0-
97ab-39f00609255c 

Normal 2015-01-17T00 
2015-01-18T00 

26256 / 40177 
(65.3%) 
 
22073 / 34019 
(64.9%) 

546ba1f1-7e16-4701-
875a-8e9dd426fb76 

Tumour 2015-01-16T00 
2015-01-18T00 

Supplementary Table 2: Cross contaminated patient samples in TCGA. 970 
Associated sequencing metadata for two cross-contaminated samples from TCGA. Patient VAF 971 
distributions shown in Supplementary Figure 4a. 972 
UUID: Universally unique identifier. 973 
1 GDC API endpoint: analysis.metadata.read_groups.sequencing_date 974 
2 Italics: before filtering; plain text: after filtering. Variants = germline heterozygous variants only. 975 
 976 

  Patient UUID BAM UUID Sample Type Sequencing Date1 

1 60778da8-d99e-
4e51-96a2-
3e900b3978d9 

5ab3a14f-0376-49bf-
93bb-3db8f5152591 

Normal 2010-08-24T19 
2010-08-30T19 
2010-09-14T19 

65600d4b-5164-
4ae2-a520-
9acdc3209a26 

Tumour 2010-08-24T19 
2010-08-30T19 
2010-09-14T19 

2 866de12b-e4df-4f19-
b62e-e3fd85d4ec08 

95167e4f-db67-40a5-
86c9-9a16820538cf 

Normal 2010-08-24T19 
2010-08-30T19 
2010-09-14T19 

35cae7a5-f598-4415-
82d1-706b0ae44cec 

Tumour 2010-08-24T19 
2010-08-30T19 
2010-09-14T19 
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3 8e00e7e7-ffaf-44f0-
91a7-172671f18e08 

f9a83975-e7b9-473a-
9f8c-e398348e54fc 

Normal 2010-08-24T19 
2010-08-30T19 
2010-09-14T19 

79a4be20-fb85-450d-
9b44-f33bfdb298f8 

Tumour 2010-08-29T19 
2010-08-30T19 
2010-09-14T19 

4 d846228f-67af-4b3b-
9796-dbc263c2054c 

cad67cb1-39df-4576-
9d82-cec6605a180b 

Normal 2010-08-24T19 
2010-08-30T19 
2010-09-14T19 
2010-10-23T19 

454157b3-78b8-
4da4-bf74-
b45addabcb85 

Tumour 2010-08-24T19 
2010-08-30T19 
2010-09-14T19 

Supplementary Table 3: Samples processed in parallel with 50% normal sample 977 
contamination 978 
Associated sequencing metadata for four highly contaminated samples from TCGA.  Patient 979 
VAF distributions shown in Supplementary Figure 5. 980 
UUID: Universally unique identifier. 981 
1 GDC API endpoint: analysis.metadata.read_groups.sequencing_date 982 
 983 
Supplementary Table 4: Results of cancer subtype specific GWAS variant LOH bias 984 
analysis 985 
<Additional File: gwas.perCohort.results.csv> 986 
 987 
Supplementary Table 5: Results of the COSMIC gene burden LOH bias analysis 988 
<Additional File: cosmicBurden.byGene.csv> 989 
 990 

  991 
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 992 

Software / Package Name Version 

R 3.3.2 

Perl 5.24.0 

mySQL 5.5.60-MariaDB 

matlab R2015b 

gsutil 4.28 

SAMtools40 1.4.1 

BCFtools41 1.3.1 

VCFtools42 0.1.13 

BEDtools37 2.25.0 

VEP22 88 

gdc-client 1.3.0 

Strelka13 2.8.3 

CloneCNA15 2.0 

GATK14 3.8.0 

picard 2.9.4 

optparse (R package) 1.6.4 

MASS (R package) 7.3.45 

scales (R package) 0.4.1 

dplyr (R package) 0.5.0 

RColorBrewer (R package) 1.1.2 

Supplementary Table 6: Software and packages. 993 
  994 
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 995 

Kit Source File Name 

Nimblegen_2.1M Nimblegen 2.1M_Human_Exome.capture.hg19.bed 

Nimblegen_hg18_v2 Nimblegen hg18_nimblegen_exome_version_2.bed 

Nimblegen_SeqCapEZ_v2.0 Nimblegen SeqCap_EZ_Exome_v2.bed 

Nimblegen_SeqCapEZ_v3.0 Nimblegen SeqCap_EZ_Exome_v3_capture.bed 

Nimblegen_SeqCapEZ_VCRome Nimblegen VCRome_2_1_hg19_primary_targets.bed 

SureSelect_38Mb Agilent S0293689_Covered.bed 

SureSelectXT_V5 Agilent S04380110_Covered.bed 

CustomV2ExomeBait Agilent whole_exome_agilent_1.1_refseq_plus_3_boost
ers.targetIntervals.bed 

Supplementary Table 7: Exome target capture kit genomic region files 996 
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 998 

Benign 

Benign Benign/Likely_benign,_risk_factor 

Likely_benign Benign/Likely_benign,_protective 

Benign/Likely_benign Benign/Likely_benign,_association 

Benign/Likely_benign,_other  

Pathogenic 

Pathogenic Pathogenic,_risk_factor 

Pathogenic/Likely_pathogenic Pathogenic/Likely_pathogenic,_risk_factor 

Likely_pathogenic Pathogenic,_Affects 

Likely_pathogenic,_risk_factor  

Unknown 

Uncertain_significance Conflicting_interpretations_of_pathogenicity,_risk_factor 

not_provided Conflicting_interpretations_of_pathogenicity 

drug_response drug_response,_protective,_risk_factor 

risk_factor . 

Missing 

Not in ClinVar database  

Supplementary Table 8: Collapsed ClinVar Categories 999 
 1000 
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