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1 Probabilistic programming: an introduction
In this section, we give a brief introduction to (universal) probabilistic programming languages (PPLs), focusing on the key
constructs that are available in most PPLs. First, we give a short overview of different PPLs, followed by an introduction to
three essential concepts in probabilistic programming: (i) sampling, (ii) conditioning, and (iii) inference. These concepts
are illustrated here in the WebPPL languagea, which is based on a functional subsetb of the JavaScript language.

1.1 Overview
A central objective of probabilistic programming is to separate the model from the inference algorithm, such that a user
can construct and use a probabilistic model without the need to implement the inference algorithm explicitly. Instead, it
is the task of the runtime system of the PPL to automatically perform the inference, potentially based on some method
preferences specified by the user.

Programming and modeling languages that separate the model specification from the inference algorithm have been
around for several decades. One of the first of these languages is BUGS (Bayesian inference Using Gibbs Sampling)1.
BUGS allows users to describe probabilistic graphical models2—in particular Bayesian networks—in a declarative way.
The model parameters of interest are then estimated by automatically applying Bayesian inference using Gibbs sampling
(and some other methods). More recent languages that separate modeling and inference of graphical models include
Infer.NET3.

Although the above-mentioned languages and environments have shown great success in their application areas,
they have certain model restrictions. In particular, they are limited to models where the dependencies between random
variables can be expressed as a Bayesian network, that is, a finite directed acyclic graph, potentially with if-then-else
conditions over variables. In some domains, this is not sufficient to describe the models of interest. Rather recently, the
concept of probabilistic programming languages4 has gained significant attention as a promising solution, in particular
within the machine learning and programming language communities. The key idea of this new paradigm is to extend
Turing-complete programming languages with probabilistic operations that include, for example, the drawing of (random)
samples from a given probability distribution, the conditioning of random variables on observed outcomes, and the
marginalization of random variables5,6.

Such languages are sometimes referred to as universal probabilistic programming languages to clearly differentiate
them from languages based on Bayesian networks, which have sometimes in recent years also been included in the prob-
abilistic programming family. Here, we will use the terms “probabilistic programming” and “probabilistic programming
language (PPL)” exclusively for universal languages.

Turing-completeness is an important concept in computer science, describing how expressive a programming language
is. The famous Church-Turing thesis conjectures that any function, whose value can be computed by an algorithm, can
be computed by a Turing-complete programming language. For instance, PPLs make it possible to use recursion (or
loops) dependent on a stochastic expression when defining probabilistic models. This means that the graphical network
describing the model is dynamic and can change during inference due to random sampling and observed data. In a PPL,
the probabilistic model is a program, where the inference algorithm is not part of that program (the model). Hence, an
alternative and potentially more intuitive name for a probabilistic program may be a programmatic model: a model that
is implemented as a program.

∗E-mail: fredrik.ronquist@nrm.se
†F.R., J.K., and V.S. contributed equally to this work.
ahttp://webppl.org
bFunctional programming (FP) is a programming paradigm, in which code is structured in units called functions that have no side effects; i.e. they

only operate on a given input and produce an output but do not manipulate external objects.
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One of the earliest PPLs is Church7, which extends a functional subset of the Scheme programming language. Other
PPLs (both universal and non-universal) include Figaro8 (a PPL embedded in Scala), WebPPL9 (a recent PPL embedded
into JavaScript), Anglican10 (a general-purpose PPL embedded into Clojure that runs on the Java virtual machine),
Venture11 (a PPL with syntax similar to JavaScript), Edward12 (a Python library for probabilistic modelling), Pyro13 (a
PPL built on top of PyTorch), Birch14 (a PPL that compiles into C++), and Stan15 (a platform for statistical modelling
and computation). Note that this list is far from complete, and there exist many more experimental PPLs.

In this paper, WebPPL and Birch have been used for the reason of simplicity and efficiency, respectively. Some of the
authors of this paper are currently developing a new domain-specific probabilistic programming language on top of the
Miking16 platform. This language, called TreePPL, is designed specifically for the domain of statistical phylogenetics.

In the rest of this section, we describe the key concepts of probabilistic programming. The examples are given in
WebPPL, but could easily be translated into any of the other universal PPLs. The WebPPL code can be run in the web
browser using the following web page: http://webppl.org. For a more comprehensive introduction to probabilistic
programming, see for example the introductory text by van de Meent et al.17.

1.2 Sampling
The first key construct in probabilistic programs is sample, meaning that a value is drawn from a given probability
distribution. Consider the following WebPPL code:
sample(Bernoulli({p: 0.5}))

The program models a simple coin flip scenario, where we sample from the Bernoulli distribution with probability 0.5,
that is, a fair coin. When executed, the program returns either true or false, with probabilities corresponding to the
sampled distribution.

Suppose we instead introduce another random variable x that models the probability of getting heads on the toss of
the coin. Mathematically, such a model can be defined as follows:

x ∼ Beta(α, β)
y ∼ Bernoulli(x)

where the beta distribution is used as a prior probability distribution for the value of x. The same model can be written as
a PPL program (assuming we set α = β = 2)

var x = sample(Beta({a: 2, b: 2}))
var y = sample(Bernoulli({p: x}))

Note that the sample construct is conceptually used to denote random variables, in this case the two variables x and y.
If we run the program many times and plot the values of x, we get an approximation of the probability density function
(PDF) for x in our mathematical model, that is, an approximation of the Beta(2, 2) distribution. Because the expected
value of x is 0.5, y in the program still models an unbiased coin.

1.3 Conditioning and observations
Probabilistic programs are based on Bayesian statistics, and typically are intended to compute the posterior distribution,
given a prior distribution and some observations. In the coin flip example, suppose we observe heads (encoded as true)
after flipping the coin once. We want to infer p(x |y), the posterior distribution of x, conditioned on the new observation
y = true. As in the previous example, we assume that the prior distribution of x is Beta(2, 2). This model can be defined
as follows.
var coinFlip = function() {
var x = sample(Beta({a: 2, b: 2}))
observe(Bernoulli({p: x}), true)
return x

}

Note how the second sample construct is replaced with an observe construct. The program returns x, which is a
(weighted) sample from the posterior distribution of x, computed by updating the prior distribution of x (defined explicitly
in the model) with the observation that the coin flip resulted in true (conditioning on the observation). Fig 1(a) shows
the prior distribution of the bias x, which corresponds to the Beta(2, 2) distribution. Note how the posterior distribution
in Fig 1(b) has moved closer to 1 (bias towards heads), compared to the prior distribution.

The observe statement is a way of weighting a sample according to some distribution. It is basically equivalent to
sampling from a distribution, followed by conditioning, using the condition statement covered in the main textc. In
WebPPL, there is also a construct called factor, which performs explicit weighting (also called scoring) of samples. A

cAccording to the WebPPL documentation, for efficiency, the observe statement should be used instead of the combination of sampling and
conditioning, especially for continuous distributions.
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score or weight for a specific value can be computed using a distribution’s PDF. In WebPPL, there is a scoremethod that
gives back the score of a value for a specific distribution. Thus, the observe statement in the previous example could be
replaced with the following equivalent encoding using factor:

factor(Bernoulli({p: x}).score(true))

The factor construct is often used explicitly in the phylogenetic models described in this paper, especially in WebPPL.

1.4 Recursive models and stochastic branching
In the previous examples, the models were very simple. However, the power of universal probabilistic programming is
that a model can be any Turing-complete program. Consider the following program that includes an if statement:
var mixture = function(){
if (sample(Bernoulli({p: 0.7}))) {
return sample(Gaussian({mu: -2, sigma: 1}))
} else {
return sample(Gaussian({mu: 3, sigma: 1}))
}
}

The model illustrates the use of stochastic branching, meaning that the paths taken in a program depend on the outcome of
sampling. In the example, the guard of the if statement samples from the Bernoulli distribution. Depending on whether
the true or false branch is taken, sampling of the resulting value is done with different Gaussian distributions (different
µ values). The plot of the model is shown in Fig 1(c). As can be seen in the figure, the true branch has larger weight,
because of the probability of 0.7 of it being chosen.

Stochastic branching can be combined with recursion: this is a key building block for phylogenetic models. Consider
the following model, which describes a model of the geometric distribution:
var geometric = function(p) {
if (sample(Bernoulli({p: p}))) {
return 1

} else {
return geometric(p) + 1

}
}

Note that there is no requirement of a deterministic termination of the recursion: the termination of the recursion depends
on the stochastic branch. Fig 1(d) shows the plot of geometric(0.6). The simple recursion above generates a linear
sequence of random length. We use similar recursions in our scripts to model the processes that generate bifurcating
phylogenetic trees. We do that by including two recursive calls within the same function, one for each descendant of a
speciation event.

1.5 Inference
The focus of this tutorial text has so far been on the model (the probabilistic program), and not on the inference algorithms.
As discussed previously, in probabilistic programming, the choice of inference algorithm is intentionally separated from
the model. For instance, using the Infermethod ofWebPPL, a user can apply the Sequential Monte Carlo (SMC) method
to perform the inference of the coin example
Infer({model: coinFlip, method: ’SMC’, particles: 20000})

or, alternatively, a Markov chain Monte Carlo (MCMC) method can be used:
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Figure 1: (a) Prior distribution of the bias for the coin flip example. (b) Posterior distribution of the bias after observing
heads once. (c) Mixture model of two Gaussian models mixed using stochastic branching. (d) Resulting geometric
distribution with p = 0.6. All plots are generated using the WebPPL environment.
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Infer({model: coinFlip, method: ’MCMC’, samples: 20000, burn: 5000})

The user also needs to specify the granularity of the approximation, using the number of particles or samples for SMC or
MCMC, respectively.

In general, a key strength of the probabilistic programming paradigm is its expressive power, which is clearly shown
in this paper within the domain of phylogenetics. One of the main research challenges within the PPL community is how
to develop inference algorithms and compilers that scale to very large and complex models. Although this is an active
area of research, our study hopefully demonstrates that already state-of-the-art PPL systems make it possible to perform
effective inference on non-trivial phylogenetic models.

2 Tools for phylogenetic probabilistic programming
The paper is accompanied by a code repository containing all the sources, tools and data used for the study, including
documentation. Specifically, the resources in the repository are designed to facilitate the use of two existing probabilistic
programming languages—WebPPL and Birch—for phylogenetic inference. The code repository is available at:

https://github.com/phyppl/probabilistic-programming

The reader is referred to the README.md file in the repository, in which we describe how to install the tools and how
to use them to rerun our analyses or to experiment with probabilistic programming for phylogenetic problems.

2.1 WebPPL for statistical phylogenetics
WebPPL is a universal probabilistic programming language based on JavaScript. We have written two packages, phywppl
and phyjs that enable the reader to run phylogenetic simulations in WebPPL. The verification of the WebPPL programs
relies on an auxiliary R package, rppl. Please refer to the aforementioned online documentation for further explanation.

2.2 Birch for statistical phylogenetics
Birch is a universal probabilistic programming language compiling into C++. The models presented in this paper are run
like regular Birch packages. Refer to the aforementioned online documentation for further explanation.

2.3 Reading in phylogenetic trees
The WebPPL and Birch scripts we provide either simulate the diversification process along an observed reconstructed
tree or computes the likelihood using analytical equations for such a tree. To facilitate the import of the observed tree
data, we use a new JSON format for phylogenetic trees named PhyJSON18. Supported by the resources we provide in
the repository, both WebPPL and Birch have mechanisms for reading in phylogenetic trees stored in the PhyJSON format.
We also provide a stand-alone tool, nexus2phyjson, which can be used to convert trees in Nexus tree files to PhyJSON
format18.

For convenience, we include several phylogenetic trees in the phyjs package for purposes such as testing and
verification (Table 1). An up-to-date account of the included test trees is provided in the webppl/phyjs/README.md file.

Tree Leaves Age (Ma) Description Reference

phyjs.bisse_32 32 13.0 Example tree from Mesquite software 19

phyjs.cetacean_87 87 35.9 Cetacean tree from BAMMtools package 20

phyjs.primates_233 233 65.1 Primate tree from Diversitree package 21

Table 1: Example trees provided in the phyjs package.

3 Diversification models
3.1 Basic notation and terminology
All of the diversification models considered in this study can be generically described as follows (see Table 2 for a
summary of the notation). The process starts at some time t0 > 0 in the past, where t = 0 represents the present time.
Evolutionary lineages split (speciate) at a per-lineage rate λ and go extinct at per-lineage rate µ. The rates λ and µ are
either constant, time-dependent or lineage-dependent, depending on the specific model. Each speciation event produces
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two lineages that further evolve independently of each other. The process is stopped when reaching the present (t = 0), at
which point lineages still surviving are sampled (included in the observed tree) with probability ρ ≤ 1.

The diversification process generates both trees with lineages that survive until the present, and trees that go completely
extinct. Many surviving trees include side branches or whole subtrees that went extinct along the way. If the extinct parts
and the branches leading to unsampled taxa are pruned away, we get what is called the “reconstructed tree”. In other
words, the reconstructed tree is the subtree spanned by only those surviving lineages that have been sampled.

In diversification analyses, the focus is typically on reconstructed trees. For simplicity, we assume here that the
reconstructed tree is known without error, but we note that it is straightforward to extend our probabilistic programming
approach to accommodate uncertainty about the tree by drawing the tree from an appropriate tree sample. Learning
the parameters of the diversification process involves computing the likelihood of one or more reconstructed trees given
different parameter values.

We denote a reconstructed tree ψ = (V, t), where V is a set of nodes (vertices) and t is a corresponding vector of
speciation ages. The tree has n tips (terminal nodes or leaves) of degree one, n − 1 interior nodes of degree three, and the
origin node of degree one. We index the nodes and their ages as follows:

• the origin has index 0;

• internal nodes have indices {1, 2, . . . , n − 1}, ordered in decreasing age;

• tips have indices {n, n + 1, . . . , 2n − 1} (in any order)

The node V1 corresponds to the first split between extant (surviving) lineages; it is referred to as the most recent common
ancestor (MRCA) or the root of the reconstructed tree. The age of a node i is ti; leaves have age 0. A subtree with root at
node i and origin at time t ≥ ti is denoted ψi(t).

We will often find it convenient to distinguish between the two descendants of a node; without loss of generality, refer
to them as the left and right descendant, respectively. A tree without leaf labels where nodes have been oriented in this
way is an “oriented tree”22.

We define three mapping functions for indices in an oriented tree:

• a(i) is the index of the immediate ancestor of node i

• l(i) is the index of the left descendant of node i

Table 2: Summary of notation.

Symbol Interpretation

λ speciation (birth) rate
µ extinction (death) rate
ε turnover, µ/λ
ρ probability of sampling a leaf
λ(t) function characterizing time dependence of λ in some models
λ0 initial λ, when λ varies over time
z rate of exponential increase or decrease in λ
λi speciation rate of process or branch i
λi(t) time-dependent speciation rate of process i
µi extinction rate of process i
zi exponential rate of increase or decrease in λ for process i
α long-term trend in λ inheritance at speciation in ClaDS models
σ standard deviation (log scale) in λ inheritance at speciation in ClaDS models
η rate of switching of diversification process in the BAMM and LSBDS models
tMRCA age of most recent common ancestor
ψ reconstructed tree (extinct and unsampled side branches pruned away)
n number of leaves in the reconstructed tree
V the set of nodes (vertices) in the reconstructed tree
a(i) index of immediate ancestor of node i
l(i) index of left descendant of node i in oriented tree
r(i) index of right descendant of node i in oriented tree
c number of cherries (terminal bifurcations) in a tree
P(·) probability (density)
L(·) likelihood
S(t, θ) probability of process with parameters θ surviving from t until the present
Z normalization constant of Bayes’s theorem

5



• r(i) is the index of the right descendant of node i

3.2 Conversions between tree spaces
In phylogenetics, we are interested in computing the likelihood of a labelled reconstructed tree, that is, a tree with leaf
labels but with no distinction between the two descendants of a given ancestor. However, it is often convenient to derive
the probability density of oriented trees without leaf labels first, and then convert it to a density on labelled trees without
orientation22. The conversion factor is easy to find if we consider what happens if we start with a density on an oriented
tree, then label it and finally remove the orientation. There are n! unique ways of labelling an oriented tree, each with
probability 1/n!. When we remove the orientation, there are 2n−1 labelled oriented trees that produce the same labelled
tree without orientation, where n − 1 is the number of interior nodes in the tree. Thus, the conversion factor is 2n−1/n!.

For completeness, we derive the conversion factor with the operations in the reverse order, first dropping the orientation
and then applying the labels. When labels are missing, there are 2n−1−c unique oriented trees for each tree without
orientation, where c is the number of “cherries”. A cherry is a pair of leaves that are each other’s closest relatives23;
without labels the descendants of a cherry are identical and there is only one unique way in which they can be oriented.
Labelling a tree without orientation is similarly affected by cherries, so that there are n! 2−c unique label assignments.
The conversion factor is thus 2n−1−c/(n! 2−c) = 2n−1/n!.

In the literature on advanced diversification models, it is common practice to derive the density on unlabelled oriented
trees and ignore the conversion to a density on labelled unoriented trees; in fact, the omission of this factor is rarely
acknowledged. This contrasts with the derivation of the analytical likelihood for simple models, such as CRBD, where the
conversion factor is almost always accommodated. Previous work on diversification models has focused on a single model
and a single tree; in such cases, ignoring the conversion factor is not a problem. However, here we compare diversification
models using Bayes factors, so the normalization constant needs to be computed consistently for all models, that is, based
on the same outcome space.

For convenience, our simulations of diversification processes assume unlabeled and oriented trees. This makes the
scripts simpler, and it facilitates comparison to previous descriptions of these models. Our simulations are weighted
with the appropriate conversion factor to generate the density for labelled and unoriented trees. Thus, the normalization
constants we compute are directly comparable to the likelihoods computed using the standard analytical equations
established for the simple diversification models, such as CRBD22.

3.3 Conditioning on the age of the MRCA
A process that starts at some time t0 in the remote past will produce a reconstructed tree that has a stalk, i.e., a branch
leading to the MRCA. However, we usually do not have any information about the length of this stalk. For this reason, and
others, it is often more convenient in practice to condition the process on the first split in the reconstructed tree, t1 22. This
can easily be done by noting that t1 can be considered the time of origin for both the left and the right subtrees originating
from the first split, and that both of these lineages survived until the present by the very definition of the concept of
MRCA. Thus, the probability of the reconstructed tree, conditioned on the age of the MRCA, is obtained by multiplying
together the probabilities of the left and the right subtrees and by conditioning on their joint survival. Given an oriented
tree ψ, now without the “stalk” from the origin to the most recent common ancestor, the likelihood is thus given by

L(ψ | θ, t1) =
P(ψl(1)(t1)|θ, t1)P(ψr(1)(t1)|θ, t1)

(S(t1, θ))2
,

where θ is the vector of parameters of the model, and S(t, θ) is the probability of the process surviving (producing at least
one sampled descendant) after time t.

3.4 Diversification models
In the paper, we consider nine different diversification models (Table 3).

The CRB(D) and TDB(D) models are simple diversification models, which assume that the process is the same for the
entire tree, even though it can change over time. The other models (the advanced models) accommodate lineage-specific
variation in diversification rates. The BAMM and LSBDS assume that the diversification process changes in a major way
at certain points in time. In fact, the process is completely reset. Thus, LSBDS and BAMM can be described as models
of punctuated change in diversification. The ClaDS models instead assume gradual, heritable changes in speciation and
extinction rates. Specifically, this is modeled as small stepwise changes associated with speciation events (also called
cladogenetic events).

We provide a tabular summary of the parameters of each model (Table 4) to facilitate comparison across them. We
describe each model in detail below.
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3.4.1 Constant rate birth-death models (CRBD and CRB)

The constant rate birth-death (CRBD) model is the simplest model considered here. Evolutionary lineages split at a
constant per-lineage birth rate λ and go extinct at a constant per-lineage death rate µ. The parameter vector for this model
is thus θ = (λ, µ, ρ). As a special case, we consider the constant rate birth (CRB) model, also known as the Yule model,
with µ = 025.

The probability that a CRBD process starting at time t survives until the present and is sampled is known analytically22;
it is

S(t, λ, µ) = r
λ − (λ − r/ρ) e−rt ,

where r = λ − µ is known as the “net diversification rate”. The likelihood of a reconstructed tree conditioned on the time
of the MRCA is also known analytically; it is given by:

L(ψ |θ, t1) =
2n−1

n!
λn−2 ρn

ĝ(t1)2
n−1∏
i=2

ĝ(ti)

ĝ(0)n S(t1)2
,

where
ĝ(t) = e−rt

(λ − (λ − r/ρ) e−rt )2
.

Even though the likelihood is known analytically, there are no conjugate priors for λ and µ that would yield an
analytical posterior. Thus, we end up with an intractable integral if we want to learn these parameters from one or more
observed trees.

3.4.2 Time-dependent birth-death models (TDBD and TDB)

In the time-dependent birth-death model (TDBD), the speciation rate is assumed to change continuously through time.
More specifically, we consider the following time-dependence:

λ(t) = λ0 ez(t1−t).

Thus, λ0 is the speciation rate prevailing at the time of the MRCA. Furthermore, if z < 0 (resp. z > 0), the speciation rate
decreases (resp. increases) exponentially when going toward the present. An exponentially decreasing speciation rate can
be seen as an approximate model for diversity dependence. The parameter vector for this model is θ = (λ0, µ0, x, ρ).

Table 3: Overview of phylogenetic diversification models considered in the paper.

Model Full name Reference

CRB Constant rate birth model Yule 24 , Nee 25

CRBD Constant rate birth-death model Feller 26
TDB Time-dependent birth model Kendall 27
TDBD Time-dependent birth-death model Kendall 27
BAMM Bayesian analysis of macro-evolutionary mixtures Rabosky 28

LSBDS Lineage-specific birth-death shift model Höhna et al. 29
ClaDS[0-2] Cladogenetic diversification rate shift models Maliet et al. 30

Table 4: Summary of diversification model parameters.

Model Parameters Notes

CRB λ λ is speciation rate
CRBD λ, ε ε = µ/λ is turnover rate
TDB λ(t), z z is exponential time-dependence parameter
TDBD λ(t), ε, z
LSBDS η, {(λi, µi)} η is change rate, i is index of process
BAMM η, {(λi, µi, zi)} zi is time-dependence parameter of process i
ClaDS0 α, σ, {λi} α is trend parameter, σ is noise parameter in λ inheritance at speciation;

i is branch index in complete tree
ClaDS1 α, σ, µ, {λi} µ is extinction rate
ClaDS2 α, σ, ε, {λi} ε is turnover rate
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The likelihood appears to be intractable for the present model with exponentially varying speciation rate and constant
extinction rate. On the other hand, a simple solution is available for the slightly different model examined here, in which
λ and µ are both exponentially decreasing or increasing at the same rate z (and thus the turnover rate λ/µ is constant):

λ(t) = λ0 ez(t1−t),

µ(t) = µ0 ez(t1−t).

Under this model, the probability that a lineage starting at time t survives until the present and is sampled is now (for a
general method of deriving the likelihood for time-dependent birth-death models, see Yang 31 ):

S(t, λ0, µ0, z) =
r0

λ0 − (λ0 − r0/ρ) e−(r0/z)(1−e−zt )
,

where r0 = λ0 − µ0. The likelihood of a reconstructed tree conditioned on the time of the MRCA has the same general
form as for the CRBD:

L(ψ |θ, t1) =
2n−1

n!
ρn

ĝ(t1)2
n−1∏
i=2

ĝ(ti) λ(ti)

ĝ(0)n S(t1)2

with S such as just given and:

ĝ(t) = e−(r0/z)(1−e−zt )(
λ0 − (λ0 − r0/ρ) e−(r0/z)(1−e−zt )

)2 .

As a special case, we consider the time-dependent birth (TDB) model, which is equivalent to TDBD except that there
is no extinction, that is, µ = 0. Note that the TDBD model collapses to CRBD when z = 0. Similarly, TDB becomes
equivalent to CRB when z = 0.

3.4.3 Bayesian analysis of macroevolutionary mixtures (BAMM)

TheBAMMmodelwas proposed byRabosky 28 . The original formulation of the change process is statistically incoherent32
but it is straightforward to fix this, and we follow the slight reinterpretation of the model suggested by Moore et al. 32 .
In this version, BAMM is an episodic, Poisson-modulated, birth-death process with exponentially decaying speciation
rate. To describe the process, consider a generic lineage e at time t. At this time point, the lineage is associated with rate
parameters with index e(t). Specifically, the lineage carries with it a triplet of rates (λe(t), µe(t), ze(t)). Then:

• at rate µe(t), the lineage goes extinct;

• at rate λe(t), the lineage splits into two lineages (say f and g), in which case the two daughter lineages inherit the
current rates, i.e.

(λ f (t), µ f (t), z f (t)) = (λe(t), µe(t), ze(t)),
(λg(t), µg(t), zg(t)) = (λe(t), µe(t), ze(t));

• λe(t) increases or decays exponentially at rate z;

• at rate η, the triplet of rate parameters is redrawn from a pre-specified trivariate distribution Φ, i.e.

(λe(t−), µe(t−), ze(t−)) ∼ Φ

The process starts with a single lineage a at some time t0, with rate parameters (λa(t0), µa(t0), za(t0)) ∼ Φ. Specifically,
we start the process at the time immediately before the first split in the tree (at the MRCA), and we assume that the process
index at this point is a(tMRCA) = o (o for origin). The prior distributions used in this paper forΦwere chosen to harmonize
with the priors used for other models, as specified in the section on priors below. The process stops when reaching the
present (t = 0) and the surviving lineages are sampled with probability ρ.

The likelihood under the BAMM model does not have an analytical solution, nor does it seem to be amenable to any
known numerical techniques for solving the complex differential equations involved32. However, describing the model
using a PPL is straightforward, and effective inference can be performed using more generic techniques available for
PPLs, such as SMC or PMCMC (particle Markov chain Monte Carlo), as we show in the current paper.
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3.4.4 LSBDS

The recently proposed LSBDS model29 can be seen as a specialized version of the BAMM model, in which z = 0 at all
times and for all lineages. In other words, there is no exponential decay of speciation rates; the speciation rate remains
constant between rate shift events. As a result, Φ is now a bivariate distribution.

Under these conditions, it becomes possible to compute the likelihood of a reconstructed tree by approximating Φ as
a product of two discrete distributions, with a finite (and small) number of possible values for λ and µ, and then relying
on standard numerical techniques for solving the differential equations involved33,29. This is similar to the discretization
approach frequently used in phylogenetics in order to efficiently approximate the likelihood when rates vary across sites
according to a continuous gamma distribution34.

Using this approach, the backward-in-time recursion for the extinction probability and for the conditional likelihood,
which are both conditioned on the current value of λ and µ for the lineage under consideration, entails a set of LM coupled
master equations, where L and M are the number of bins used for the λ and µ distributions, respectively. In practice, this
imposes a rather strict constraint on the number of discretization bins that can be used, as the computational complexity
otherwise becomes unmanageable. We note that the empirical examples discussed in the LSBDS paper all use a fixed
value for µ across the tree, thus effectively setting L = 1. The SMC techniques we use in the current paper do not suffer
from such limitations, as they rely on sampling values from the λ and µ distributions.

3.4.5 The cladogenetic diversification rate shift models (ClaDS)

The ClaDS models30 assume that the speciation rate changes by a small random amount at each speciation event. The
extinction rate is assumed to be either equal to 0 (ClaDS0), constant but positive (ClaDS1), or proportional to the speciation
rate, such that the turnover rate (ε = µ/λ) is constant (ClaDS2). Thus, in all cases, µ = µ(λ) can be seen as a (possibly
constant, for ClaDS0 and ClaDS1) deterministic function of λ.

Consider a generic lineage e at time t. This lineage carries with it a rate λe. Then:

• at rate µ(λe), the lineage goes extinct;

• at rate λe, the lineage splits into two lineages (say f and g), in which case the two daughter lineages draw their
respective speciation rates, λ f and λg as follows:

log λ f ∼ N(log(αλe), σ2).
log λg ∼ N(log(αλe), σ2).

The process starts with a single lineage o at some time t0, with speciation rate λo.
The α parameter introduces a deterministic long-term trend in the otherwise random variation of λ through time,

across the many speciation events typically occurring over the complete phylogeny. When α < 1 (resp. α > 1), the
speciation rate decreases (resp. increases) exponentially on average, thus corresponding to z < 0 (resp. z > 0) in the case
of the TDBD, TDB and BAMM models.

The likelihood under the ClaDS1 and ClaDS2 models is not analytically available, but it can be numerically evaluated
(Maliet et al, 2019). The evaluation involves various numerical approximation techniques, including discretization of
time and rate space, and expands over thousands of lines of code in the RPANDA R package.

4 Prior probability distributions
To facilitate the interpretation of the Bayes factor tests, we standardized prior probability distributions across diversification
models as much as possible in our analyses. Before going into details, it may be helpful to explicitly declare the
parameterizations we assume for the statistical distributions used. Thus, for the exponential distribution, we assume the
rate parameterization, for the inverse gamma distribution we use the shape-scale parameterization, and finally, for the
normal (Gaussian) distribution, the parameters are the mean and the variance of the distribution.

Across all models, we used an Exponential(1) prior for the speciation rate, and a Uniform(0, 1) prior for the turnover
rate, both common priors in the diversification model literature. The specific implementations are listed for each model
below. For the σ parameter of the ClaDS models, Maliet et al. 30 used a prior with most probability mass close to 0
(σ ∼ InvGamma(1, log(1.1)). Upon examination of the empirical results published in the same paper, we concluded that
this choice is overly conservative. We also note that it is more natural to consider an inverse gamma prior for the variance
rather than the standard deviation of the normal distribution, since this is a conjugate prior for the normal distribution.
Therefore, we used a σ2 ∼ InvGamma(1, 0.2) prior in our analyses.

The original ClaDS paper30 used an improper prior for the α parameter. This is not suitable for our purposes, as we
need to simulate from the prior in SMC. We instead assumed logα ∼ N(0, σ2). By making the variance of the logα
prior dependent on σ2, we establish a conjugate normal-inverse-gamma prior. This results in a joint prior on (logα, σ2)
that has its mode for α at 0, at which point there is neither acceleration nor deceleration of speciation rates. The posterior
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distribution of α values reported earlier for the bird trees under the Clads2 model30 is also well covered by this joint prior.
For z, we used the prior proposed in the original BAMM paper28, namely z ∼ N(0, 0.052).

Finally, for the LSBDS and BAMM models, we wanted a prior on η that was scaled to time. In the LSBDS and
BAMM papers29,28,35, it has been common to instead specify a prior scaled to the total length of the tree. This allows
one, for instance, to specify a prior with an expectation of one change in the diversification process over the reconstructed
tree. However, if the changes we observe in diversification rates are the result of some evolutionary process, then it would
seem more reasonable to assume that the expected number of changes is a function of evolutionary time rather than of
an arbitrarily circumscribed reconstructed tree. To obtain this effect, while still maintaining some scaling to tree size,
we chose a prior with one expected change in diversification rates over the time period from the most recent common
ancestor to the present. For a small reconstructed tree, this would correspond to an expectation of slightly more than one
change over the tree, while the expectation could be more than a few changes in a big tree. Specifically, we assumed
η ∼ Exponential(tMRCA), where tMRCA is the age of the first split in the tree.

For completeness, all prior probability distributions are listed below for each of the examined models (see also Fig.
2).

4.1 CRB
The CRB model has only one parameter, λ, for which we use the standard prior:

λ ∼ Exponential(1).

4.2 CRBD
The CRBD model has two parameters, λ and µ. For λ we use the standard prior, and for µ the indirect prior induced by
assuming a uniform prior on the turnover rate ε = µ/λ.

λ ∼ Exponential(1),
ε ∼ Uniform(0, 1).

4.3 TDB
For the TDB model, we applied the standard priors as follows:

λ0 ∼ Exponential(1),
z ∼ N(0, 0.052),

where λ0 is the initial speciation rate, and z is the time dependence parameter in λ(t) = λ0ezt . In other words, the standard
λ prior applies to the initial speciation rate in this model.

4.4 TDBD
The TDB priors are extended to the TDBD case as follows:

λ0 ∼ Exponential(1),
z ∼ N(0, 0.052),
ε ∼ Uniform(0, 1),

where λ0 is the initial speciation rate, z is the time dependence parameter in λ(t) = λ0ezt , and ε is the turnover rate. Note
that in our implementation we have kept the turnover rate constant (rather than the extinction rate), i.e., µ(t) = ελ(t).

4.5 ClaDS0
For the ClaDS0 model, we applied the standard λ prior to the initial speciation rate, in line with the TDB(D) models. The
α and σ priors are justified above. Specifically, the ClaDS0 priors we used are:

λ0 ∼ Exponential(1),
σ2 ∼ InvGamma(1, 0.2),

logα ∼ N(0, σ2),

where λ0 is the initial speciation rate, σ2 represents the variance in the inherited speciation rate and α is the speciation
trend parameter.
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4.6 ClaDS1
The prior distributions related to the speciation rates are the same as for ClaDS0. In addition, we assume

ε ∼ Uniform(0, 1),

where ε is the initial turnover rate. The extinction rate, µ = ελ0, remains constant in the whole tree.

4.7 ClaDS2
The prior distributions related to the speciation rates are the same as for ClaDS0. In addition, we assume

ε ∼ Uniform(0, 1),

where ε is the turnover rate. Unlike ClaDS1, the extinction rate changes at each speciation such that the turnover remains
constant over the whole tree.

4.8 LSBDS
For the LSBDS model, we define the joint prior Φ, such that the all λi values, including the speciation rate for the MRCA
(λo), are drawn from the standard λ prior used for other models, and such that the µi values, including the value of the
MRCA, are drawn independently from the distribution induced by drawing ε from the standard uniform distribution used
for other models. Specifically,

η ∼ Exponential(tMRCA),
λi ∼ Exponential(1),
ε i ∼ Uniform(0, 1),

where η is the rate of shifts in diversification processes, tMRCA is the time (age) of the most recent common ancestor, and
λi and ε i are the speciation and the turnover rates of the i-th diversification process.

BAMM
The prior distributions for BAMM are the same as for LSBDS, with addition of

zi ∼ N(0, 0.052),

where zi is the time dependence parameter for the speciation rate of the i-th diversification process. This is the same prior
distribution used for the z parameter of the TDB and TDBD models.

5 PPL model descriptions
In this section, we describe the PPL model scripts we used in the paper. We focus on WebPPL, as we think these model
scripts are the most accessible to biologists. We start by describing model scripts that make use of the analytical likelihood
equations. We then present the complete description of the explicit simulation script for the CRBD model that is partly
covered in the main paper. Finally, we provide a brief overview of the simulation scripts for the remaining models. We
end the section with a brief discussion of how the Birch scripts are similar to and how they differ from theWebPPL scripts.
For full details, we refer the interested reader to the code repository accompanying the paper.

5.1 Scripts based on analytical likelihoods
As mentioned in Section 3, the likelihood of a reconstructed tree conditioned on the age of the MRCA and the pa-
rameters of the diversification process is known analytically for the simple diversification models (CRB, CRBD, TDB,
TDBD). We can take advantage of this in probabilistic programs, facilitating efficient inference of model parameters,
by simply scoring simulations according to the analytical likelihood. To simplify the implementation of such scripts,
we provide the analytical likelihoods as deterministic functions in the phyjs library. Four functions are available.
The function exactCRBDLikelihoodComplete (tree, lambda, mu) computes the likelihood of a reconstructed tree
under the CRBD model for specific values of λ and µ, assuming complete sampling of the leaves (tips) in the tree,
ρ = 1. The function exactCRBDLikelihoodRandom (tree, lambda, mu, rho) computes the same likelihood when
the leaves are randomly sampled with probability ρ < 1. Finally, the functions exactTDBDLikelihoodComplete
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Figure 2: Prior distributions of model parameters. The shaded regions correspond to the region of parameter space
illustrated in the posterior plots for the empirical analyses (Figs. 12–21). See also Fig. 22.

(tree, lambda, mu, z) and exactTDBDLikelihoodRandom (tree, lambda, mu, z, rho) compute the corre-
sponding probabilities for the TDBD model. By setting mu = 0, the functions can be used to compute the likelihoods for
the CRB and TDB models.

The following listing shows how to infer the posterior distribution of λ and ε for the CRBD model using the analytical
likelihood and the MCMC inference method:

Listing 1: CRBD model with analytical likelihood.

1 var tree = phyjs.bisse_32
2

3 var model = function() {
4 var lambda = exponential({ a: 1 })
5 var epsilon = uniform({ a:0.0, b: 1.0 })
6 var mu = epsilon*lambda
7

8 factor( exactCRBDLikelihoodComplete(tree, lambda, mu) )
9

10 return [lambda, epsilon]
11 }
12

13 var dist = Infer({method: ’MCMC’, samples: 100, lag: 10, burn: 1000})
14

15 dist

In the script, we first select one of the provided trees in the phyjs package. The model is then set up by specifying
the priors on the model parameters, and computing the value of the extinction rate µ, encoded as the variable mu. The
simulation then simply scores the simulation according to the analytical likelihood of the sampled parameter values using
the factor construct. In the final line of the model function, the values of the model parameters are returned.

For inferring the posterior distribution induced by the model function, the MCMC method is a good choice. For
explanation of the inference settings, see the WebPPL documentation of the MCMC methodd. The last line ensures that
the estimated joint posterior distribution, encoded as dist, is printed.

The script can be run using the commands we provide in the code repository accompanying this papere, as explained in
the documentation provided there. In the directory webppl/phywppl/examples/ in the repository, we provide analytical
scripts of this kind for the CRB, CRBD, TDB and TDBD models.

dhttp://docs.webppl.org/en/master/inference/methods.html#mcmc
ehttps://github.com/phyppl/probabilistic-programming
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5.2 Basic script for CRBD
Here, we give a complete WebPPL implementation of the CRBD model. The program describing the model is divided
into two files to facilitate reuse of the code. The simulation part is specified in one file, and the analysis part in another.
The simulation file contains code that simulates the CRBD process along a given tree for specified values of the model
parameters. This file can be reused unaltered regardless of the particular analysis one wants to perform. The analysis file
contains the specification of the priors, the data, and the inference method. This file needs to change from one analysis to
another.

The analysis file (Listing 2) is structured in the same way as the script using the analytical likelihood for CRBD.
However, instead of calling a function to compute the analytical likelihood, we call the simulation function for the
CRBD model. This function weights the simulation appropriately for the given parameter values, conditioned on
the observed reconstructed tree. The model function returns the model parameters, as before. However, instead of
inferring the posterior distribution on those parameters, we now use SMC and focus on the normalization constant (the
model evidence). The normalization constant estimate is available in the normalizationConstant property of the
distribution object returned by the Infer function when the method is SMC. Similar example scripts are available in the
webppl/phywppl/examples/ directory for all models studied in the paper.

Listing 2: Analysis script for CRBD simulation.

1 var tree = phyjs.read_phyjson("bisse_32.phyjson")
2

3 var model = function() {
4 var lambda = exponential({ a: 1 })
5 var epsilon = uniform({ a:0.0, b:1.0 })
6 var mu = epsilon*lambda
7

8 simCRBDNaive( tree, lambda, mu)
9

10 return [lambda, epsilon]
11 }
12

13 var dist = Infer({method: ’SMC’, particles: 10000})
14

15 dist.normalizationConstant

Let us now turn to the simulation script (Listing 3). The script presented here is a naive PPL implementation of
the CRBD model in that it does not use the analytical likelihood. Instead, it explicitly simulates the speciation and
extinction process conditioned on the reconstructed tree. The script is also naive in the sense that it does not include any
modifications to support aligned SMC inference, which is important for improving inference efficiency. The advanced
inference techniques we used in the paper, including alignment, are discussed in Section 6. The script forms a basic
template that can be used to express all diversification models analyzed in our paper. It should also be straightforward to
extend the script to a range of new diversification models that have not been explored previously.

Listing 3: A complete WebPPL script for simulating CRBD.

1 var goesExtinct = function( startTime, lambda, mu )
2 {
3 var t = exponential( {a: lambda + mu} );
4

5 var currentTime = startTime - t;
6

7 if ( currentTime < 0 ) {
8 return false
9 }

10

11 var speciation = flip( lambda/(lambda+mu) )
12 if ( !speciation )
13 return true;
14

15 return( crbdGoesExtinct( currentTime, lambda, mu )
16 && crbdGoesExtinct( currentTime, lambda, mu ) );
17 }
18

19 var simBranch = function( startTime, stopTime, lambda, mu )
20 {
21 var t = exponential ( {a: lambda} );
22

23 var currentTime = startTime - t;
24

25 if ( currentTime <= stopTime )
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26 return 0.0;
27

28 factor( Math.log( 2.0 ) );
29 condition ( crbdGoesExtinct( currentTime, lambda, mu ) )
30

31 return simBranch( currentTime, stopTime, lambda, mu )
32 }
33

34 var simTree = function( tree, parent, lambda, mu )
35 {
36 factor( - mu * ( parent.age - tree.age ) );
37

38 simBranch( parent.age, tree.age, lambda, mu );
39

40 if ( tree.type == ’node’)
41 {
42 factor( Math.log( lambda ) );
43

44 simTree( tree.left, tree, lambda, mu )
45 simTree( tree.right, tree, lambda, mu )
46

47 }
48 }
49

50 var simCRBDNaive = function( tree, lambda, mu )
51 {
52 var numLeaves = phyjs.countLeaves( tree )
53 var corrFactor = ( numLeaves - 1 ) * Math.log( 2.0 ) - phyjs.lnFactorial( numLeaves )
54 factor( corrFactor )
55

56 simTree( tree.left, tree, lambda, mu )
57 simTree( tree.right, tree, lambda, mu )
58 }

The main function in the script is simCRBDNaive, defined at the end of the script. It takes three parameters: the
model parameters lambda and mu, and the tree on which to condition the simulation. For simplicity, the process is
simulated along an oriented and unlabelled tree (see Section 3.2). This allows us to ignore the probability factor associated
with rotation and labeling of the reconstructed tree during the main part of the simulation. To ensure that the simulation
nevertheless carries the right weight, it is first endowed with the appropriate rotation and labeling probability (see Section
3.2) using two utility functions in the phyjs library and the factor construct inWebPPL. This is important for computing
the correct normalizing constant, but does not affect inference otherwise, since this probability factor is the same for all
simulations. Note that, for numerical stability, the particle weights in WebPPL are stored as logarithms.

Next, the function simTree is called on both children of the root node (the MRCA), initiating the recursion over the
observed tree. Note that simCRBDNaive does not return anything. It is called only for the side-effect of weighting the
sampled lambda and mu values by conditioning the simulation on the observed tree.

The function simTree is similar in structure to simCRBDNaive: it computes various weights and, if we have not
reached a leaf, continues the recursion. The first probability factor or weight, lnProb1, accounts for the probability of
no extinction along the current branch. The second weight, lnProb2, accounts for the speciation event at the end of the
branch, if there is one. The third weight, lnProb3, is based on a call to the simulation function simBranch, defined just
above simTree. The simBranch function recursively simulates speciation events along the branch. If there is a speciation
event, the side branch it generates must go extinct, as it is not present in the observed reconstructed tree. We call such a
speciation event a “hidden” speciation because it is not visible in the observed tree. To condition the simulation on the
extinction of the side branch resulting from a hidden speciation, we require the call to the recursive simulation function
goesExtinct to return true. The goesExtinct function is described in the main paper; it is defined at the top of the
script presented here. It simply simulates an outcome of the birth-death process for given lambda and mu values, starting
at a given time in the past and counting downwards until the present (time 0). If all lineages go extinct before reaching
the present, the function returns true, otherwise it returns false. In connection with the call to goesExtinct, the
simBranch function also needs to take a rotational factor into account. This arises because there are two indistinguishable
simulations that correctly account for the tree we condition on: one in which the right descendant of the hidden speciation
event goes extinct and the left descendant gives rise to the observed continuation of the lineage, and one in which the
left descendant goes extinct and the right descendant gives rise to the observed continuation of the lineage. Thus, the
correct probability score for the simulation is twice what would have resulted from a single call to goesExtint, and we
therefore need to add log 2 to the weight (recall that probability factors are represented on the log scale in WebPPL) before
continuing the recursion.

The analysis and simulation scripts described above are simplified versions of the example script crbd-naive.wppl
in the webppl/phywppl/examples/ directory, and the similarly named model script in the webppl/phywppl/models/
directory. The simulation script presented here differs in four details from the model script in the repository. First, the
script in the repository accommodates the possibility of incomplete sampling of the leaves in the tree. Thus, there is an
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additional parameter ρ in the model, encoded as the variable rho in the script. This variable appears as an argument to
all simulation functions. The goesExtinct function needs to take the sampling probability into account, and is aptly
renamed to goesUndetected.

Second, the definitions of thesimTree, simBranch andgoesUndetected functions are hidden inside thesimCRBDNaive
function. This allows us to use the same generic names for these functions in all diversification models; only the simulation
function needs to have a unique name. Hopefully, this facilitates for readers to recognize how we extended the basic
template to accommodate the other diversification models.

Third, the script in the repository employs guards against extreme values of the lambda variable, which can otherwise
cause problems with numerical exceptions or stalled simulations. We solve these problems by simply assigning zero
weight to the simulation if the lambda value is above or below certain threshold values. We verified that the discarded
simulations have negligible impact on the inference for all the examined models using the chosen guard values.

Finally, unlike the simple script described here, the script in the repository corrects for survivorship bias as explained
in the next section. Before moving on to this, we want to point out that the naive CRBD simulation is suitable mainly for
exploratory analyses of small trees. For efficient inference in WebPPL on phylogenetic diversification models for larger
trees, it is important to manually modify the scripts so that they support aligned SMC inference (see Section 6.1). The
CRBD model is the only model for which we provide an unaligned (“naive”) model script.

5.3 Correcting for survivorship bias
As discussed above (Section 3.3), if we condition the simulation on the age of the MRCA, we implicitly condition on the
survival of the two subtrees originating at this point in time. To do this in a probabilistic program, we need to divide
the probability of a simulation by S(tMRCA, θ)2, that is, the square of the probability that the process survives (and is
sampled) if it starts at tMRCA, and the model parameter values are θ. If S(t, θ) is not available in closed form, this is
potentially cumbersome because it involves a sum and integral over an infinite number of realizations of the process for
each simulation. However, we can solve this by observing that the division by S(tMRCA, θ)2, which we cannot evaluate in
general, can be rewritten as follows:

p(θ |ψ, survival) ∝ p(θ)p(ψ |θ)
S(tMRCA, θ)2

= p(θ)p(ψ |θ)
∞∑

M=1
M (1 − S(tMRCA, θ)2)M−1 S(tMRCA, θ)2.

This shows that we can correct for the survivorship bias by using the generative model encoded in the function
goesExtinct (or goesUndetected) to simulate two evolutionary processes starting at tMRCA. We repeat this until
both simulations survive to the present time, and multiply the weight of the rest of the simulated diversification process
along the observed tree by the number of repetitions required to achieve this.

In WebPPL, we use the following recursive function to compute the number of simulations required until both trees
survive:
var M_goesExtinct = function( t, lambda, mu )
{
if ( !goesExtinct( t, lambda, mu ) && !goesExtinct( t, lambda, mu ) )
return 1

else
return 1 + M_goesExtinct( t, lambda, mu )

}

The following lines are then inserted at the end of the simulation function simCRBDNaive to correctly condition on the
survival of the two subtrees defining the MRCA:
var M = M_goesExtinct( t, lambda, mu )
factor( Math.log( M ) )

The script in the repository is slightly more complex because we take incomplete sampling into account, and also
implement a guard against an excessive number of repetitions.

5.4 Scripts for other diversification models
Example analysis scripts for all models are provided in the directory webppl/phywppl/examples/, and generic model
simulation scripts in the directory webppl/phywppl/models/. All simulation scripts we provide in the latter direc-
tory are set up to trigger aligned SMC inference in WebPPL. As mentioned above, the only exception is the CRBD
model, where we provide both a naive, unaligned version (phywppl/models/crbd-naive.wppl) and an aligned version
(phywppl/models/crbd.wppl) for instructional and testing purposes. We provide both scripts using analytical likeli-
hoods and scripts using explicit simulation for all simple diversification models (CRB, CRBD, TDB, TDBD). The scripts
for the CRB, TDB and TDBD models involve simple and straightforward modifications of the corresponding scripts for
the CRBD model, described above.
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The model scripts for all lineage-specific diversification models (ClaDS0, ClaDS1, ClaDS2, LSBDS, BAMM) follow
the template described above for the CRBD model, including the modifications needed to trigger aligned SMC inference.
Analogous component functions are used in the simulation scripts; they are even named the same except for the main
simulation function, which is named after the corresponding diversification model.

In probabilistic programming, you have to be explicit about the model variables that you want to estimate. These
are the variables that are returned from the model function. The focus in our study was on the normalization constant
and the main model parameters. Therefore, our model simulation scripts do not have to return anything, as all relevant
parameters are defined already in the analysis scripts in the webppl/phywppl/examples/ folder. However, readers may
well be interested in sampling the outcome of a diversification process along the tree. For instance, it may be desirable to
analyze parameters such as the number and location of change events on different lineages, or the mean speciation rate
for individual branches in the tree. To facilitate such analyses, we give an example model script for the ClaDS2 model
returning the entire reconstructed tree, with descriptions of the outcome of the simulation process for each branch and
node in the tree in extended Newick format. This script is found in the webppl/phywpppl/models/ folder.

5.5 Birch model scripts
Birch is an object oriented probabilistic programming language. It uses more concise syntax than WebPPL for the
probabilistic constructs. For example, the assume statement in the form
x ~ Exponential(1);

is used to express that a random variable (x in the example above) is distributed according to a given probability distribution
(an exponential distribution with rate 1). Execution of such a statement depends on whether the variable has a value or not.
If it has, its behavior is equivalent with an observe statement; if not, the variable is associated with the given distribution.
Birch uses delayed sampling, so a concrete value might not be sampled until needed. Birch also supports explicit sample
and observe statements. To draw a value from an exponential distribution with rate λ, we would write
t <~ Exponential(λ);

To state that an outcome of a random variable distributed according to a Poisson distribution with rate λ is 0, we would
write
0 ~> Poisson(λ);

The factor statement inWebPPL corresponds to yield FactorEvent(log_factor). To simplify the diversification
model definitions, we have defined two helper functions for commonly used yield statements.
yield duple();

corresponds to
yield FactorEvent(log(2));

and is used to account for the rotational factor at hidden speciation events. Similarly,
yield impossible();

is the same as
yield FactorEvent(-inf);

and it is used when simulated side branches resulting from hidden speciation do not go extinct, that is, when they are
incompatible with the observed tree. Note that yield impossible() statement also ceases the execution of the particle.

As we have mentioned above, Birch is an object-oriented language and the models take advantage of this. For instance,
the CRBDmodel script defines a CRBDModel class, which is derived from a base class called PhyModel. Let us examine a
somewhat simplified version of the CRBDModel class definition (Listing 4), to see how it compares to the WebPPL script.

Listing 4: CRBDModel class definition in Birch (somewhat simplified)

1 class CRBDModel < PhyModel<PhyNode, PhyParameter> {
2 λ_k:Real;
3 λ_θ:Real;
4 ε_min:Real;
5 ε_max:Real;
6 ρ:Real;
7

8 fiber initial() -> Event {
9 super.initial();

10 θ.λ ~ Gamma(λ_k, λ_θ);
11 θ.ε ~ Uniform(ε_min, ε_max);
12 }
13
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14 fiber step() -> Event {
15 count:Random<Integer>; // number of (hidden) speciation events
16 count ~ Poisson(θ.λ * (node.t_beg - node.t_end));
17 for i in 1..Integer(count) {
18 t:Random<Real>;
19 t ~ Uniform(node.t_end, node.t_beg);
20 simulateUnobserved(t);
21 yield duple();
22 }
23

24 0 ~> Poisson(θ.λ * θ.ε * (node.t_beg - node.t_end));
25

26 if node.isSpeciation() {
27 0.0 ~> Exponential(θ.λ);
28 }
29 }
30

31 fiber simulateUnobserved(t_beg:Real) -> Event {
32 Δ_d:Random<Real>; // waiting time until an extinction event
33 Δ_d ~ Exponential(θ.λ * θ.ε);
34 t_d:Real <- t_beg - Δ_d;
35 if t_d < 0 {
36 // Species survived to the present time
37 yield impossible();
38 }
39

40 count:Random<Integer>; // number of speciation events
41 count ~ Poisson(θ.λ * (t_beg - t_d));
42 for i in 1..Integer(count) {
43 t:Random<Real>;
44 t ~ Uniform(t_d, t_beg);
45 simulateUnobserved(t);
46 }
47 }
48 }

The CRBDModel class is derived from the class PhyModel, which is a templated class. The base class takes care of
tasks that are common to all diversification models, such as walking over the tree. This is analogous to the recursive calls
in the simTree function in the WebPPL script (Listing 3), which also walk over the branches in the tree. At the top of the
class definition, the member variables and their types are declared. These are the parameters of the prior distributions for
the model variables λ and ε . The parameters are assigned specific values when the class is instantiated in connection with
running the program. The inference settings and input values for the analyses are in the config/crbd.json file and in
each of the input/<name of tree>.json input files.

Instead of member functions, the class defines several member fibers. A fiber (also known as a coroutine) is similar
to a function, but the execution might be paused (e.g., to resample the particles) and resumed. The initial fiber simply
initializes the simulation by assuming lambda and epsilon to be distributed according to the appropriate priors. Note
that these model variables are packaged inside an object called θ.

The step fiber corresponds to the simBranch function in the WebPPL script. In Birch, we use a different method for
simulating the speciation and extinction events than in WebPPL. Rather than drawing the waiting times between hidden
speciation events, we use the fact that the number of hidden events is described by a Poisson distribution, and the event
positions are uniformly distributed over the branch length. This simulation method is faster than drawing each of the
waiting times. In the line
0 ~> Poisson(θ.λ * θ.ε * node.branch_length);

we condition on the fact that there are 0 extinction events on the branch (recall that µ = λε). In WebPPL, we used a
factor statement with the appropriate probability instead, which is an alternative way of accomplishing the same thing.
Finally, in the line
0.0 ~> Exponential(θ.λ);

we condition on there being a speciation at the end of the branch (if it ends in an interior node). Equivalently, we could
have factored in log λ, as we did in WebPPL, with a yield statement.

The simulateUnobserved fiber corresponds to the goesExtinct function in WebPPL. However, here we first
simulate the time until the branch goes extinct. If the branch does not go extinct, we set the weight to zero, effectively
killing off the simulation. If it does go extinct, we simulate the hidden speciation events along the branch, and call
simulateUnobserved recursively for each of those events.

The code described above is subject to change, as Birch is developing rapidly. However, this section illustrates the
basic Birch features, and how they can be used to code diversification models efficiently. Hopefully, it also sheds additional
light on general PPL concepts, as it gives alternative but equivalent ways of coding some model elements compared to the
WebPPL scripts we have seen previously.

17



6 Inference
In this section, we provide additional details on the non-standard algorithms we used to allow efficient PPL inference on
phylogenetic diversification models.

6.1 Alignment
The encoding of the CRBD model given in Section 5.2 is rather natural—it is simply a description of the birth-death
process, with a few calls to factor to correct for some probability effects that we do not model explicitly. Unfortunately,
the default SMC algorithm implemented in WebPPL is quite inefficient for this naive implementation of the birth-death
process. The algorithm always resamples particles (simulations are called particles in the SMC algorithm) at calls to
factor and condition. Since, for every execution of the program, there is a different number of hidden speciation
events on each branch in the observed tree, this will cause the SMC particles to get out of sync at resampling points, so
that we will be comparing particles that can be at very different points in the simulation.

Intuitively, one might expect that it would be better to compare the particles only when they reach the same points in
the probabilistic program. We call this alignment of the SMC resampling points. In the diversification models, we could,
for instance, make sure that the resampling occurs only at the branching points in the observed tree. To explore this idea,
we simply “tricked” the SMC algorithm in WebPPL to align the resampling points by introducing a few modifications
to the birth-death simulation in the simBranch and simTree functions, as illustrated in the code below (compare to the
naive CRBD simulation presented above):
var simBranch = function( startTime, stopTime, lambda, mu )
{
var t = sample{ Exponential ( {a: lambda} ) };

var currentTime = startTime - t;

if ( currentTime <= stopTime )
return 0.0;

var sideExtinction = goesExtinct( currentTime, lambda, mu )
if ( sideExtinction == false )
return ( -Infinity );

return simBranch( currentTime, stopTime, lambda, mu ) + Math.log( 2.0 );
}

var simTree = function( tree, parent, lambda, mu )
{
var lnProb1 = - mu * ( parent.age - tree.age );

var lnProb2 = ( tree.type == ’node’ ? Math.log( lambda ) : 0 );

var lnProb3 = simBranch( parent.age, tree.age, lambda, mu );

factor( lnProb1 + lnProb2 + lnProb3 )

if ( tree.type == ’node’)
{
simTree( tree.left, tree, lambda, mu )
simTree( tree.right, tree, lambda, mu )

}
}

Specifically, we need the WebPPL SMC implementation to skip the resampling induced at the calls to factor and
condition within simBranch in the naive model script. We achieve this by replacing the factor and condition
statements in the simBranch function by code that accumulates the weight and returns it to simTree. The accumulated
weight is then passed as an argument to factor in simTree, after the entire branch has been processed, triggering
resampling at this point. The factor statement is also passed the probability of no extinction on the branch (lnProb1),
and the likelihood of a speciation at the end of the branch, if it is an interior branch in the observed tree (lnProb2). Note
that, to improve efficiency, we immediately return -Infinity in simBranch if a call to goesExtinct returns false,
since there is no need to continue the recursion if this occurs. By modifying the simulation script in this way, the SMC
particles stay in sync. There are no triggers of resampling in the simBranch recursion, so resampling is always performed
in simTree, in between processing branches of the observed tree.

Simulations on a few example trees of varying sizes confirm that this indeed improves SMC efficiency on diversification
models considerably (Fig. 3). The larger the tree, the more important it is for SMC performance to align the resampling
points in this way. Ideally, one should not have to manipulate model scripts in the way described above; alignment should
be applied automatically when it improves SMC efficiency. This is an idea that we are exploring within the TreePPL
project. The goal is to analyze the potential performance gains induced by resampling, and then apply it intelligently
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either in the compiler and/or the language runtime. We separately present a static analysis for automatic alignment of
programs36. Note that alignment is not guaranteed to improve accuracy—in certain cases, it might actually degrade
performance. However, for all models considered here, alignment is beneficial.
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Figure 3: A comparison of the precision in the estimated normalization constant between naive and aligned CRBD. Left:
32-taxon tree (Bisse_32). Center: 87-taxon tree (Cetaceans_87). Right: 233-taxon tree (Primates_233). SMC inference
with 10,000 particles inWebPPL. Dotted line: exact analytical solution. Parameters: λ = 0.2, ε = 0.5, complete sampling
of leaves assumed (ρ = 1).

6.2 Delayed sampling
Probabilistic computations involve not only simulation and observation, as represented by the sample and observe
statements in a PPL, but also such computations as marginalization, enumeration, and conjugate updating.

Consider the following joint distribution between two variables x and λ:

p(x, λ) = p(x | λ)p(λ),

where the two factors on the right are encoded in the probabilistic program as, for example:

λ ∼ Gamma(1, 1),
x ∼ Poisson(λ).

We may wish to compute the marginal distribution of x:

p(x) =
∫

p(x | λ)p(λ) dλ,

or, given a value of x, compute the posterior distribution over λ:

p(λ | x) = p(x | λ)p(λ)
p(x) .

Evaluations such as these can be performed analytically for random variables with a conjugate relationship (such as
the gamma-Poisson relationship in the example above), or for discrete random variables where all possible outcomes
can be enumerated. This can improve the performance of inference by, for example, reducing the variance in statistical
estimators, such as that for the marginal likelihood.

Delayed sampling6 is a particular heuristic that may be employed by a PPL to identify and leverage such situations
to improve inference outcomes. It does so in a manner that produces correct results, even for programs with stochastic
branches and unbounded recursion as may be encountered in Turing-complete programming languages. It is not necessary
for the programmer to painstakingly code such computations by hand.

We have used delayed sampling extensively in this work, significantly reducing the variance in marginal likelihood
estimates for the models of interest. In particular, for Poisson processes on trees, gamma prior distributions over rates
are conjugate either to the Poisson-distributed number of events in a given time interval, or the exponentially-distributed
time between events. These rate parameters are then automatically marginalized out by delayed sampling, significantly
reducing variance in the marginal likelihood estimate for these models. The same approach to handling parameters is
used in Kudlicka et al. 37 and Wigren et al. 38 . Delayed sampling is only available in Birch at this point.
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6.3 Alive particle filter
The resampling step in SMC amounts to drawing N samples (with replacement) from the current set of N particles
with probabilities proportional to their weights. While simulating the evolution of unobserved side branches, if any
species survives to the present day (and is sampled), the weight of the particle must be set to 0. This leads to sample
impoverishment—there are simply fewer particles to choose from during resampling. In extreme cases, where all particles
have zero weight, there are no particles to choose from at all, and the algorithm fails. This can be a serious problem for
SMC inference on diversification models when the likelihood of extinction of side branches is low. For instance, this can
occur if the net diversification rate (λ − µ) is high.

The extended alive particle filter37—the development of which from the initial version of this algorithm39 was inspired
by phylogenetic diversification models—solves these two problems by replacing the particles with zero weights with new
samples drawn from the particle set at the previous time step (again with probabilities proportional to the particle weights
at that time) and repeating the propagation step (the simulation from the previous resampling point until the current
resampling point). This replacing procedure is repeated until the weights of all particles are positive. Note that in order
to estimate the marginal likelihood without bias, one needs to repeat this procedure for one additional particle. However,
with a reasonable number of particles, this extra computational cost is negligible, and we therefore applied the alive
particle filter to all analyses. The alive particle filter is only available in Birch at this point.

6.4 Tree orientation
During the course of the study, we discovered that the orientation of the nodes in the observed tree can have a significant
influence on the efficiency of SMC inference for some trees. The effect appears to be associated with highly imbalanced
trees, which may be oriented such that left and right subtrees systematically have different properties. A depth-first SMC
algorithm can apparently become misled by the imbalance between left and right descendants in such trees, so that early
resampling events can select particles that do not do well towards the end of the simulation, decreasing the quality of the
final estimate. We found that orienting all nodes such that the descendant branch with the shortest subtree length was
always processed first solved this problem. Thus, all trees were reoriented in this way before final analyses in Birch.

7 Verification
We performed a wide range of experiments to verify that the model scripts are correct. For all tests involving WebPPL
or third-party software, the full set of experiments—including the source code, data, graphs and reports—can be found
in the directory verification of the phywppl package. The verification experiments involving Birch were performed
by changing the input files and/or models to fix the values of selected parameters. The results from these experiments are
included in the above-mentioned directory, together with the results from the experiments involving WebPPL.

Here, we only present a summary of the experiments. They all use the 32-taxon example tree, which we provide as
one of the builtin trees in the phyjs package. The tree has been previously used as an example in diversification model
papers; it is originally from the Mesquite software19 but does not appear to have been published separately. Only scrips
adapted for aligned SMC inference were used in the verification experiments.

The experiments are based on several lines of attack. In the first round of tests, we used the fact that there are analytical
solutions for the likelihood of the simple diversification models (CRB, CRBD, TDB and TDBD) under specific parameter
values. Thus, we could verify that the normalization constant computed by SMC from our explicit simulation scripts for
the same models (the scripts that simulate the process along the tree instead of calling the likelihood function) matched the
corresponding analytical likelihoods for a wide range of specific parameter values. These tests are important because the
explicit simulation scripts for the simple models served as templates for the scripts describing the more complex models.

The second round of tests were based on the observation that the more complex diversification models (ClaDS0,
ClaDS1, ClaDS2, LSBDS and BAMM) all collapse to simpler models with analytically known likelihoods under specific
parameter settings. This allows us to verify that the normalization constant computed from the scripts for the complex
models matched the corresponding analytical likelihoods for select points in parameter space.

For other points in parameter space, we cannot verify the scripts for the more complex models against analytical
likelihoods, but we can use other approaches to test their correctness. For instance, the WebPPL and Birch scripts for
the complex models were implemented independently by different developers, and the inference algorithms in WebPPL
and Birch were also different and based on independent implementations. In the third round of tests, we verified that the
WebPPL and Birch scripts for the complex models gave the same normalization constant for a grid of parameter values
despite these differences.

The fourth round of tests took advantage of the independent implementations available in third-party software for the
ClaDS models40 and for LSBDS29. We verified that our scripts for these models resulted in the same estimates of the
likelihood as these implementations for a select set of parameter values, despite being based on entirely different code
bases and computational strategies.
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Figure 4: Verification of explicit simulation scripts (WebPPL) for simple diversification models: normalization constants
match analytical likelihoods for select parameter values. Error bounds: ±2 standard deviations. Experiment codes in the
GitHub repository indicated under the main title.

Third-party software also exists for BAMM35 but it does not compute correct likelihoods for the model32, so it cannot
be used to verify our scripts. However, the BAMM model collapses to the LSBDS model when all zi = 0. We therefore
verified that our BAMM model script results in the same likelihood estimates as the LSBDS model script under select
parameter values matching this constraint but lacking analytical solution.

7.1 Simple models against analytical likelihoods
All simulation scripts for simple models (CRB, CRBD, TDB and TDBD) generated normalization constant estimates that
matched the corresponding analytical likelihoods very closely. We observed some variance in the estimates for high λ
values, but these parameter values have low likelihood and are thus less important for inference (Figure 4).

7.2 Complex models against analytical likelihoods
All model scripts for advanced diversification models (ClaDS0, ClaDS1, ClaDS2, LSBDS and BAMM) generated
normalization constant estimates that matched analytical likelihoods under parameter settings for which closed solutions
exist (Figure 5).

7.3 Birch and WebPPL cross-verification
Under parameter and prior settings for which closed solutions do not exist, the independently developed Birch andWebPPL
scripts for advanced diversification models resulted in matching normalization constant estimates. Birch estimates were
slightly more precise than WebPPL estimates (Figure 6) but this is expected given the more powerful inference algorithms
used by Birch.

7.4 Verification of ClaDS models against RPANDA
Verification of the probabilistic programs and PPL inference algorithms described in this paper against the reference
RPANDA implementation of the ClaDS models is quite involved, and would not have been possible without extensive
help from the author of the ClaDS code in RPANDA (Odile Maliet), as computing the likelihoods with RPANDA is not
part of its public API. RPANDA computes the likelihood for points in parameter space where all the initial λi values for the
branches in the reconstructed tree are known, as well as the λo value, pertaining to the MRCA of the tree. The likelihood
in RPANDA is also conditioned on specific values of the model parameters α and σ, as well as on µ (for ClaDS1) or ε (for
ClaDS2). The ClaDS0 likelihood function in RPANDA is based on analytical equations, while the ClaDS1 and ClaDS2
functions are based on numerical approximations using a variety of techniques. The functions only give the density up to
a proportionality constant, complicating direct comparisons with our scripts.
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Figure 5: Verification of WebPPL simulation scripts for lineage-specific diversification models (complex models):
normalization constants match analytical likelihoods for select parameter values. Error bounds: ±2 standard deviations.
Experiment codes in the GitHub repository indicated under the main title. For completeness, we also give Birch CRBD
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23



The RPANDA setup means that the PPL scripts have to condition on specific values for all of the model parameters,
including the initial λ values for all branches, to emulate the RPANDA likelihood computations. To be able to conduct
the verification experiments, we decided to use a fixed value λ f for λo and all λi parameters of the model in our WebPPL
scripts; we did not attempt to perform these verification experiments in Birch. We then chose a range of λ f values, and
explored these points in parameter space under some specific values of α, σ and µ (for ClaDS1) and ε (for ClaDS2).
Likelihoods for the same points in parameter space were then computed in RPANDAwith the analytical likelihood function
(for ClaDS0) and the numerical solvers (for ClaDS1 and ClaDS2). In the git repository accompanying the paper, we
provide both the WebPPL scripts emulating the RPANDA computations and the R scripts we used to compute likelihoods
for the corresponding points in parameter space with RPANDA.

For ClaDS0, the initial experiments showed that the likelihood function in RPANDA computes densities that very
closely match the densities expected for oriented and unlabeled trees. Thus, we concluded that the proportionality
constant for the ClaDS0 likelihood function in RPANDA is the same as the conversion factor from densities on oriented
and unlabeled trees to densities on labeled, unoriented trees. This factor is Lp = log(2(n−1)/n!), where n is the number of
leaves in the tree (see Section 3.2).

When controlling for this, the likelihoods estimated by WebPPL for ClaDS0 are consistent with those computed by
RPANDA (Fig. 7). For points in parameter space where ClaDS1 and ClaDS2 collapse to ClaDS0, that is, for points where
µ = ε = 0, likelihoods estimated by WebPPL and RPANDA are also very similar. The same is true for small values of
λ and µ) in ClaDS1, and for small values of λ and ε in ClaDS2. For larger values, RPANDA apparently overestimates
the likelihood for both models, and there are also some apparent discretization effects at very high values of λ. We tried
to examine the effects of these inaccuracies in RPANDA on the posterior estimates of the ClaDS1 and ClaDS2 model
parameters for the test tree, but were unable to get sufficiently good MCMC convergence in RPANDA to allow meaningful
analysis of the results.

7.5 Verification of LSBDS against RevBayes
In the current implementation of LSBDS in RevBayes (the SCM algorithm), the likelihoods are computed by discretizing
the λ and µ priors. Transitions happen by “jumping” from one pair of discrete values of λ and µ to a different pair.
We discovered that λ and µ are coupled when these jumps are made: i.e., the discrete vectors representing the prior
distributions fλ and fµ have to be of the same length and, when a jump happens, a single new array index is chosen
for both the λ and the µ vector. Thus, usually, the RevBayes LSBDS examplesf fix λ but discretize µ (or vice-versa).
However, it is possible to discretize both λ and µ and then expand the two arrays so that all possible combinations of λ
and µ values appear by sweeping both vectors simultaneously with a single array index. This has to be done manually.

We verified our LSBDS scripts against RevBayes for specific values of η and integrated out λ ∼ Exponential(1) and
µ = ελ, where ε ∼ Uniform(0, 1) using k = 10 rate categories for both λ and µ. We implemented the appropriate vector
of parameter values manually, as described above. The RevBayes scripts used in the verification experiments are provided
in the git repository accompanying the paper.

Under these settings, both the WebPPL and Birch scripts for the LSBDS model generate normalization constant
estimates that match the likelihoods computed by RevBayes (Figure 8). As observed previously in several experiments,
Birch provides slightly more precise estimates of the normalization constant than WebPPL.

7.6 Verification of BAMM against LSBDS
There is no third-party software implementing BAMM that we can verify theWebPPL and Birch scripts against. However,
we can use the fact that BAMM collapses to LSBDS when all zi values approach 0. Under these conditions, and when
integrating out the other model parameters, both the WebPPL and Birch simulations scripts for BAMM produce the same
normalization constants as the corresponding LSBDS scripts (Figure 9),

8 Empirical data
For the empirical analyses illustrating PPL inference for phylogenetic diversification models, we used the bird trees
analyzed previously for the ClaDS2 model30. The trees originate from an earlier study inferring a global timed phylogeny
of birds41. Specifically, clades with 50 or more leaves (excluding outgroups) from the earlier study were selected in
the ClaDS2 study30 and post-processed to remove outgroups and to rescale branch lengths to time units (myr). We
downloaded these post-processed trees from the repositoryg accompanying the ClaDS2 paper.

The trees were converted from binary R data (RData) to text format (Nexus) with the ape package. The Nexus
files were then converted to PhyJSON with the nexus2phyjson tool that we provide18. Next, the PhyJSON trees were
reoriented to avoid any systematic left-right imbalances in the original trees that could have a negative effect on inference
(see Section 6.4). The resulting PhyJSON trees were then used as input data for the WebPPL and Birch analyses.

fhttps://github.com/hoehna/birth-death-shift-analyses
ghttps://github.com/OdileMaliet/ClaDS/tree/master/birds_MCC_results
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 Ẑ

B14. α = 1 σ = 0.05

μ = 0 λf (RPANDA)

μ = 0 . 1 λf (RPANDA)

μ = 0 . 5 λf (RPANDA)

μ = 0 . 9 λf (RPANDA)

0.0 0.2 0.4 0.6 0.8 1.0

-7
0

-6
0

-5
0

-4
0

-3
0

-2
0

-1
0

WebPPL ClaDS2 vs RPANDA ClaDS2

λf

lo
g

 Ẑ

B12. α = 1 σ = 0.05

ε = 0 (RPANDA)

ε = 0 . 1 (RPANDA)

ε = 0 . 5 (RPANDA)

ε = 0 . 9 (RPANDA)

Figure 7: Verification of the likelihoods computed by WebPPL in programs emulating RPANDA against likelihoods
computed by RPANDA for the ClaDS models.
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Figure 8: Verification that the WebPPL and Birch scripts for the LSBDS model generate normalization constant estimates
that match the numerically estimated likelihood computed by RevBayes.
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Figure 9: Verification that the WebPPL and Birch scripts for the BAMMmodel generate normalization constant estimates
that match those of the corresponding scripts for the LSBDS model for some points in parameter space where the BAMM
model collapses to LSBDS.
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There are 42 bird clades in the Jetz et al. 41 study with more than 50 species excluding outgroups. However, we
discovered that two of the trees, P2 and Scolopaci, have negative branch lengths. Rather than introducing arbitrary
corrections for the negative branch lengths, we excluded these trees from further analysis. The remaining 40 bird trees
are summarized in Table 5. The original names of the bird clades41 are rather cryptic. Here, we named the clades after
the family (or other higher taxon) to which most members belong according to the taxonomic classification used in the
original bird study41. If a family is split between two clades, the clades are numbered 1 and 2. A ’-’ sign after the family
name indicates that some members of the family are not included in the clade; a ’+’ sign indicates that the clade includes
some members of other families. Four of the trees in the repository accompanying the ClaDS paper30 are mislabeled
there: Caprimulgidae is incorrectly labeled CC7, CC4 is labeled Cathartidae, CC7 is labeled CC5CC6B, and CC8 is
labeled CC5CC6C.

Tree Clade (Jetz et al) Leaves Age (Ma) Notes

Accipitridae Accipitridae 175 59.6 Hawks, eagles, kites and allies
Alcedinidae Alcedinidae 54 34.9 Kingfishers
Anatinae Anatinae 108 20.3 Dabbling ducks
Caprimulgidae Caprimulgidae 57 57.3 Nightjars
Campephagidae- CC4 70 30.1 Cuckooshrikes and allies
Charadrii Charadrii 63 59.6 Waders
Columbidae Columbidae 133 35.9 Pigeons and doves
Corvidae+ CC8 234 30.0 Crows, magpies, monarchs and allies
Cuculidae Cuculidae 126 66.6 Cuckoos
Emberizidae- P20b 125 14.8 Buntings
Estrildidae P7 101 19.5 Estrildid finches
Fringillidae+ P10 123 25.4 True finches
Furnaridae Furnaridae 205 19.9 Ovenbirds
Hirundinidae S6 77 23.1 Swallows, martins and allies
Icteridae P21 92 14.0 New World blackbirds, New World orioles and allies
Lari Lari 127 24.6 Gulls
Malaconotidae+ CC7 80 31.4 Bushshrikes
Meliphagidae-+ BC7 90 37.1 Honeyeaters
Muscicapidae-+ M6 231 20.2 Old world flycatchers
Paridae+ S2 55 40.9 Tits
Parulidae+ P20a 111 17.2 New World warblers
Phasianidae Phasianidae 131 27.2 Pheasants, partridges and allies
Picidae Picidae 137 27.1 Woodpeckers
Procellariidae Procellariidae 105 59.6 Shearwaters, fulmarine petrels and allies
Psittacidae1 Psittacidae1 111 33.2 True parrots (part)
Psittacidae2 Psittacidae2 118 34.9 True parrots (part)
Pycnonotidae-+ S9 95 29.4 Bulbuls
Ramphastidae Ramphastidae 81 32.2 Toucans
Strigidae Strigidae 101 45.7 True owls
Sturnidae+ M4 130 24.9 Starlings, mockingbirds and allies
Syvliidae1+ S11 79 28.1 Warblers, parrotbills and allies (part)
Sylviidae2+ S7S8 93 24.3 Warblers, parrotbills and allies (part)
Thamnophilidae Thamnophilidae 165 22.4 Antbirds
Thraupidae1+ P13P14P16 158 12.5 Tanagers (part)
Thraupidae2+ P17P18 139 13.7 Tanagers (part)
Timaliidae-+ S13 180 21.0 Old World babblers
Trochilidae Trochilidae 233 28.1 Hummingbirds
Troglodytidae+ M1 91 32.7 Wrens
Turdidae-+ M5 134 21.7 Thrushes
Tyrannidae+ Tittyranrest 316 33.6 Tyrant flycatchers

Table 5: Overview of the bird trees used for diversification analyses.

The size of the trees vary from54 (Alcedinidae) to 316 leaves (Tyrannidae+), and the ages from12.5Ma (Thraupidae1+)
to 66.6 Ma (Cuculidae). The tree shapes are depicted in Figures 10, 11.
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(a) Accipitridae (b) Alcedinidae (c) Anatinae (d) Caprimulgidae

(e) Campephagidae- (f) Charadrii (g) Columbidae (h) Corvidae+

(i) Cuculidae (j) Emberizidae- (k) Estrildidae (l) Fringillidae+

(m) Furnaridae (n) Hirundinidae (o) Icteridae (p) Lari

(q) Malaconotidae+ (r) Meliphagidae-+ (s) Muscicapidae-+ (t) Paridae+

Figure 10: Shape of the bird trees, part 1
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(a) Parulidae+ (b) Phasianidae (c) Picidae (d) Procellariidae

(e) Psittacidae1 (f) Psittacidae2 (g) Pycnonotidae-+ (h) Ramphastidae

(i) Strigidae (j) Sturnidae+ (k) Syvliidae1+ (l) Sylviidae2+

(m) Thamnophilidae (n) Thraupidae1+ (o) Thraupidae2+ (p) Timaliidae-+

(q) Trochilidae (r) Troglodytidae+ (s) Turdidae-+ (t) Tyrannidae+

Figure 11: Shape of the bird trees, part 2
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9 Extended results
The main purpose of the empirical analyses is to demonstrate the power of probabilistic programming in addressing
inference problems in phylogenetics, not to advance the field of diversification studies. Nevertheless, there are several
interesting patterns in the results that deserve attention and that may inspire further study. In this section, we present model
likelihoods and posterior estimates of model parameters for all bird clades and diversification models (Figs. 12–21). The
plots of posterior distributions should be interpreted in relation to the prior distributions for the corresponding regions of
parameter space (Fig. 22). We structure the discussion of the results around several cross-cutting themes.

9.1 Conservative nature of Bayesian model tests
One of the most striking patterns across the bird trees, especially given the recent debate about the importance of
accommodating lineage-specific diversification rates, is that simple birth-death models do so well in a Bayesian model
comparison. For 16 of the 40 bird trees, there is no strong Bayes factor against the simple CRB and CRBD models. In
fact, in most of these cases, the simple models (either CRB(D) or TDB(D)) have the best normalizing constants. There
are also some cases where the TDB(D) models do clearly better than the other models, significantly so in a couple of cases
(Emberizidae- and Muscicapidae-+, Figs. 14 and 16, respectively).

There is a clear correlation between the size of the tree and the outcome of the model comparison. Of the trees
with less than 100 leaves, the CRB(D) models adequately describe the diversification process in a majority of cases, as
indicated by Bayes factors. The largest trees lacking strong evidence of lineage-specific or slowing diversification have
around 130 leaves (Cuculidae, Phasianidae and Sturnidae+; Figs. 14, 17 and 19, respectively). Above that size, all trees
bear a clear mark of lineage-specific or, at least, slowing (TDB(D)) diversification. The age of the tree appears to be
inversely related to the adequacy of simple diversification models. Of the ten youngest trees, only two (Estrildidae+ and
Icteridae; Figs. 14 and 15, respectively) lack strong support for lineage-specific or slowing diversification, while this is
fairly common among the oldest trees.

These patterns appear to be best explained by the density of branching events in the reconstructed tree. The more
branching events there are per unit time, the more likely it is that the evolutionary process has left signs of density-
dependent or lineage-specific diversification. These fluctuations in diversification rates may tend to even out over longer
time scales, as old and species-poor trees are often adequately explained by simple models. However, there are clear
exceptions. For instance, the Paridae+ (Fig. 16) shows clear evidence of lineage-specific diversification, despite being an
old group (40.9 Ma) with relatively few species (55).

Overall, our results clearly illustrate that Bayes factors are inherently conservative, preferring simpler models unless
the signal in the data is sufficiently strong to decisively reject them. While this could be considered a reasonable feature,
some caution is nevertheless needed when interpreting the outcome of the model comparison experiment. In particular, the
fact that very simple models seem adequate for so many of the bird clades appears to largely reflect the lack of (sufficiently
strong) evidence and should not be interpreted as evidence of absence. Many of the trees analysed here (and elsewhere)
are simply too small or not informative enough to allow for a non-trivial outcome. An alternative to be considered here
is the data consistency criterion42, which is a general criterion to evaluate the consistency of a model with respect to the
observed data.

The degree to which Bayes factors are conservative is dependent on the prior distributions used for the additional
parameters of the more complex models. More diffuse priors automatically result in higher penalties in the model
comparison—and this even if the posterior distribution itself is not impacted or only marginally impacted. Often, this
is not a major problem, for instance when comparing models of sequence evolution, where the signal contributed by the
sequence data easily overwhelms the penalty induced by diffuse priors. Here, in contrast, the empirical signal contributed
by phylogenetic trees of surviving lineages about the underlying diversification process is somewhat weaker, making the
relative impact of the prior on the outcome of Bayesian model tests more substantial.

Whether our priors strike a reasonable balance between simple and complex models is, of course, open to discussion.
We note, however, that our priors for the ClaDS models are less conservative than the ones proposed originally for these
models30. Thus, our priors penalize the ClaDS models less than would otherwise have been the case. We also want to
re-emphasize that, to allow fair model comparisons, we chose priors on analogous model parameters that were similar, if
not identical, across models.

9.2 Robustness of complex models
An important result that emerges from our analyses, and that we want to emphasize, is the robustness of complex
diversification models. Even when Bayes factors indicate that simple models are adequate, the more sophisticated models
often give consistent estimates for the additional model parameters. Good examples are provided by the posterior estimates
for σ2, describing the rate of gradual, lineage-specific change in diversification rates in the ClaDS models, and η, denoting
the rate of punctuated change in the LSBDS and BAMM models; both of these parameters are usually estimated to be
close to 0 when simple models appear adequate. Similarly, the parameters related to potential density-dependent effects
(z for TDB(D) and BAMM, and logα for ClaDS) are often close to 0 when the CRB(D) models have the best marginal
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Accipitridae Alcedinidae Anatinae Caprimulgidae
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Figure 12: Normalization constants and parameter estimates for Accipitridae, Alcedinidae, Anatinae, Caprimulgidae.
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Campephagidae- Charadrii Columbidae Corvidae+
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Figure 13: Normalization constants and parameter estimates for Campephagidae-, Charadrii, Columbidae, Corvidae+.
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Cuculidae Emberizidae- Estrildidae Fringillidae+
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Figure 14: Normalization constants and parameter estimates for Cuculidae, Emberizidae-, Estrildidae, Fringillidae+.
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Furnaridae Hirundinidae Icteridae Lari
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Figure 15: Normalization constants and parameter estimates for Furnaridae, Hirundinidae, Icteridae, Lari.
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Malaconotidae+ Meliphagidae-+ Muscicapidae-+ Paridae+
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Figure 16: Normalization constants and parameter estimates for Malaconotidae+, Meliphagidae-+, Muscicapidae-+,
Paridae+.
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Parulidae+ Phasianidae Picidae Procellariidae
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Figure 17: Normalization constants and parameter estimates for Parulidae+, Phasianidae, Picidae, Procellariidae.
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Psittacidae1 Psittacidae2 Pycnonotidae-+ Ramphastidae
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Figure 18: Normalization constants and parameter estimates for Psittacidae1, Psittacidae2, Pycnonotidae-+, Ramphastidae.
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Strigidae Sturnidae+ Syvliidae1+ Sylviidae2+
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Figure 19: Normalization constants and parameter estimates for Strigidae, Sturnidae+, Syvliidae1+, Sylviidae2+.
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Thamnophilidae Thraupidae1+ Thraupidae2+ Timaliidae-+
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Figure 20: Normalization constants and parameter estimates for Thamnophilidae, Thraupidae1+, Thraupidae2+,
Timaliidae-+.
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Trochilidae Troglodytidae+ Turdidae-+ Tyrannidae+
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Figure 21: Normalization constants and parameter estimates for Trochilidae, Troglodytidae+, Turdidae-+, Tyrannidae+.
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Figure 22: Prior distributions plotted for the same region of parameter space used for the posterior distributions in
Figs. 12–21.

likelihoods. Furthermore, no-extinction models , such as ClaDS0, often have higher likelihoods than their counterparts
that accommodate extinction. However, in these cases, the more complex models almost always estimate extinction or
turnover rates that are close to 0. This usually occurs with very little impact on the estimation of other parameters, as is
well illustrated by the very similar posterior distributions obtained across the ClaDS model series, despite the fact that
ClaDS0 often has better marginal likelihood than the more complex variants.

If the results are scrutinized, one discovers that the advanced diversification models actually appear to pick up weak
but consistent signal for more complex patterns even when they are not favored by the model tests. For instance, when
posterior estimates of logα or z are significantly different from 0 in these cases, the estimates always suggest slowing
diversification rates, and the models that accommodate such variation over time tend to be the ones with the best model
likelihoods, even if they are only marginally better than the constant-rate models. Taken together, these observations
suggest that the more complex models might in fact be generally more adequate than the simpler ones. The risk of
obtaining erroneous or misleading inference under more complex models appears to be low, at least in comparisons
among nested models with similar dimensionality.

9.3 Slowing diversification rates
The strongest signal across bird clades in our analyses is undoubtedly the support for slowing diversification rates. This
is seen already in the model comparisons but perhaps more clearly in the posterior estimates of logα in the ClaDS
models, and z in the TDB(D) and BAMMmodels (Figs. 12–21). The estimates are almost universally below 0, indicating
decelerating rates, and usually significantly so (more than 95% of the credible interval on negative values). Nowhere is the
signal more evident than in the five bird clades where the models that only account for changing diversification rates over
time—the TDB(D) models—come out distinctly ahead of all others in the model comparison (Columbidae, Emberizidae-,
Meliphagidae-+, Muscicapidae-+ and Pycnonotidae-+). In two of those cases (Emberizidae- and Muscicapidae-+; Figs.
12 and 12, respectively), the Bayes factors even provide strong evidence in favor of TDB(D) over all other models.

Diversification rates that slowdownover time are usually attributed to competition for limited resources or niches43,44,45.
Alternative explanations that have been proposed include: (1) subdivision of geographic ranges at speciation; (2) speci-
ation bursts driven by environmental or geological change; (3) failure to keep pace with environmental change; and (4)
protracted speciation (related to the diversified sampling bias, see below)46. It might be possible to tease apart some of
these factors by developing more sophisticated diversification models within the PPL framework, but this is outside the
scope of the current paper. Regardless of the causes, it is clear that there is a strong signature of slowing diversification
rates in the bird clades, and that it is important to account for this in diversification models.

9.4 Gradual change, punctuated change or both?
Unsurprisingly, there is also clear evidence of variation across lineages in diversification rates. Of the 40 bird trees, Bayes
factors strongly favor models accommodating lineage-specific effects over simpler ones in 14 cases. Even in the remaining
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cases, there is often some support for lineage-specific variation in diversification rates, as indicated by posterior estimates
of model parameters.

The ClaDS models consistently explain this variation in diversification rates better than the LSBDS and BAMM
models. In fact, there are only three groups for which the LSBDS and BAMM models are strongly favored over the
corresponding simple models: Anatinae, Lari, and Timaliidae-+ (Figs. 12, 15 and 20, respectively), The BAMM model
also does comparatively well on the Thraupidae1+ tree (Fig. 20). As expected, these trees are also associated with
posterior estimates of η that differ substantially from 0. However, even for these trees, where BAMM and LSBDS detect
major shifts in diversification rates, the ClaDS models provide a better fit to the data.

Wemay conclude that lineage-specific differences in diversification rates are better explained by slow, gradual changes,
which accumulate over time, than by a few events that drastically alter the rates. One possible explanation for this is
that the punctuated models (BAMM and LSBDS) draw the new λ and µ (and z for BAMM) values from diffuse priors
at process switching events. This means that they carry heavy penalties in Bayes factor comparisons; the more switches
there are, the heavier the penalty against these models. An interesting difference between the punctuated models and the
gradual models is that the former allow both λ and µ to vary over the tree, while only λ is modulated over the tree in
the latter. Could this be the explanation for the gradual models outperforming the punctuated models? We tested this by
modifying LSBDS and BAMM such that they assumed a constant turnover rate (ε = µ/λ), as in ClaDS2, and only varied
λ (and z for BAMM) at switching points. We then re-computed the normalization constants for Lari, one of the clades
with the strongest evidence for major shifts in diversification rates. The normalization constants of the punctuated models
did not improve significantly due to this modification (results not shown). This suggests that the strong evidence in favor
of gradual over punctuated change is not due simply to the punctuated models postulating changes in extinction rates that
are not supported by the data.

A fascinating question is whether there remains any evidence for occasional major shifts in diversification rates if
one first adequately accounts for the strong underlying signal of slow and gradual change. This can now be examined
by extending the PPL framework to diversification models that combine ClaDS-like and BAMM-like features. Given the
general lack of support for radical shifts in diversification rates across the bird trees, it seems likely that such shifts are
rare, if they occur at all. Therefore, identifying them would presumably require analyses of larger trees than the ones
examined here. However, it also seems likely that the two processes interact, such that it becomes more difficult to detect
major shifts when the gradual changes are not accounted for. Thus, it is possible that there are major shifts in the bird
trees that our analyses failed to detect because of shortcomings in the models. We will have to await future analyses using
more sophisticated models before we know whether this is the case.

9.5 Discretizing punctuated-change models
Computing likelihoods for punctuated models of diversification by integrating out the rate priors using discrete approxi-
mations is potentially a very powerful approach29. It allows for robust and computationally efficient MCMC inference,
as long as a small number of rate categories yield sufficiently accurate likelihood estimates. This decidedly appears to be
the case, especially if only changes in speciation rate are modeled; empirical analyses suggest that ten categories is quite
sufficient in most cases29.

Unfortunately, it is difficult to see how this approach can be extended to accommodate slowing (or increasing)
diversification rates over times as in BAMM, because then it would be necessary to integrate out an infinite number of
rate acceleration or deceleration processes with different starting points. This appears to be an important limitation from
an empirical perspective, at least judging by the bird trees we analyzed. The LSBDS model simply does not fit many of
the reconstructed trees well; this is undoubtedly linked to the substantial support for slowing diversification rates in most
bird clades. If we restrict our attention to models of punctuated change, we find 12 trees with strong evidence favoring
the BAMM model over the LSBDS model. In contrast, there are only a few trees for which LSBDS performs better than
BAMM, Cuculidae being the best notable (Fig. 14), and in those cases there is never strong evidence in favor of LSBDS
over BAMM.

9.6 Sampling biases
Some of the results that emerge from our analyses are probably due, at least in part, to sampling biases. The lack of
evidence for significant extinction rates is an obvious case. Models without extinction (CRB, TDB, ClaDS0) almost
always do better than models with extinction except in two cases: the related bird groups Charadrii (waders) and Lari
(gulls) (Figs. 13 and 15, respectively). The outcome of the model comparison is generally consistent with posterior
estimates of µ under the corresponding models that do accommodate extinction (CRBD and TDBD). Estimated extinction
rates are usually low, except for Charadrii and especially Lari. Interestingly, Lari is also unusual in that there is evidence
for accelerating speciation rates (z > 0). However, this occurs only in the TDB model, and is probably an artefact of not
accounting for extinction, as significant extinction rates are expected to lead to an apparent acceleration of speciation rates
close to the present in reconstructed trees25.

Given the overwhelming evidence for frequent extinction in the fossil record, these results are not plausible, but they
are consistent with results from previous diversification studies45. An important factor that is likely to contribute toward
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underestimation of extinction rates is the diversified sampling bias47. This is the tendency of biologists to systematically
select leaves of phylogenetic trees in such a way that the diversity represented in the sampled tree is maximized, instead of
choosing leaves randomly as assumed by standard birth-death models. The diversified sampling bias will lead to pruning
of the most recent splits from the complete reconstructed tree. The more incomplete the sampling is, the deeper the period
devoid of splits will extend into the past. In the most extreme cases, the sampled tree will look like a bush: most of the
splits will be close to the root of the tree, and all the leaves will sit on long terminal branches. If one analyzes a tree sampled
to maximize diversity under a model assuming random sampling, extinction rates can be significantly underestimated47.
Failing to account for diversified sampling bias can also result in severe biases in divergence time estimates48,49.

The bird trees we examined here contain most or all of the described species in the corresponding clades41, and our
analyses therefore assumed that the sampling of leaves is complete (ρ = 1). Nevertheless, diversified sampling biases
probably affect also our results, as biologists tend to sample morphologically distinct species, and omit incipient species,
sibling species and subspecies. Such unacknowledged diversified sampling at the species level is linked to the phenomenon
of protracted speciation50. Interestingly, diversified sampling bias that is not accounted for correctly could also, at least
to some extent, explain the strong support for slowing diversification rates in diversification studies46. To understand
why, consider that the extinction rate estimates are largely based on the apparent acceleration of speciation seen towards
the recent seen in surviving trees because there has not been time enough for extinction of the side lineages that will
eventually disappear25. Diversified sampling would systematically remove the evidence for this apparent acceleration in
speciation rates.

As one might expect, there is also a link between the posterior estimates of extinction and the evidence for slowing
diversification rates. Specifically, models that accommodate slowing diversification rates (TDBD, ClaDS models and
BAMM) are also associated with distinctly higher estimates of extinction rates than models that do not (LSBDS, CRBD)
(Figs. 12–21). How this link might be affected by diversified sampling biases is currently unclear. Pursuing this topic
further would be outside of the scope of the current paper. However, we do note that it is relatively straightforward to
modify our script to account for diversified sampling according to the model suggested by Höhna et al. 47 , or potentially
even more realistic models.

9.7 Statistical power
Reconstructed trees carry only a limited amount of information about absolute speciation and extinction rates. This is
illustrated well by the underestimation of extinction rates discussed above. For really powerful analyses of diversification
processes, we need trees that include data from the fossil record, that is, observations of both extinct and extant lineages51.
In most cases, however, observation of extinct lineages is not possible, or the information about extinct lineages is bound
to be very incomplete, so we need to extract as much information as possible from trees only (or mainly) comprising
surviving lineages. There are several ways in which analyses of such trees can be improved. Addressing sampling biases
appropriately would be an important step in the right direction. Making the model of the diversification process itself
more realistic, for instance by combining gradual and punctuated change as suggested above, would be another. However,
the most obvious way to improve the analyses would be to increase the amount of data.

A natural way of extending the present work in this direction would be to opt for a hierarchical model-averaging
approach, in which all trees in a set, such as the bird clades, would be analyzed simultaneously. Specifically, each tree
would randomly choose from a mixture of all available models, while the mixture proportions and the hyper-parameters
tuning the priors over model-specific parameters would themselves be estimated across trees, using a hierarchical modeling
design. Global estimation of hyper-priors and mixture weights based on the whole collection of trees is an efficient way
to fit the priors to the true prevalence of alternative modes of diversification and the true variation in parameter values
present in the data and therefore should result in well-calibrated model selection. Joint analysis of all trees would also
make it possible to collect the weak signals disseminated across the many small trees of the analysis. Such developments
are exactly what the probabilistic programming framework introduced here is meant to facilitate.

A completely different approach would be to analyze larger portions of the tree of life. For instance, our analyses
of 40 bird clades could have been replaced with a single analysis of the entire bird tree, doubling the coverage of bird
species (from 5,000 to 10,000). Such an analysis would not only include more of the variation seen across terminal
clades, it would also add data on the deeper splits in the tree. These splits could potentially inform the model about
long-term macroevolutionary patterns that could not be detected in analyses of only terminal clades, regardless of how
sophisticated. For instance, it has been suggested that the bird radiation as a whole is characterized by rare but major
boosts in diversification rates, presumably linked to key innovations opening up new ecological niches41. If these upward
jumps in diversification rates are substantial enough, it could explain why there is overwhelming support for slowing
diversification rates in individual bird clades, even though the rates appear to be accelerating over the bird tree as a
whole41. Such a mega-analysis would have to be based on a model that is more sophisticated than the ones explored here.
Minimally, it would have to account for both gradual and punctuated change in diversification rates. Ideally, it would also
account for variation across lineages in the strength of the slowing forces on diversification, and in the rate of gradual
change in speciation and extinction rates. Again, such developments are well supported by the probabilistic programming
framework, although it is still an open question whether current inference strategies are efficient enough or whether further
refinement is needed.
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